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SUMMARY 

Functional magnetic resonance imaging (fMRI) is a class of imaging modalities used to characterize 

regional, time-varying changes in brain metabolism (Glover, n.d.). These metabolic changes may be 

the result of task-induced changes in cognitive status or of unregulated processes in the resting brain. 

Since its introduction in 1990, fMRI has been used in numerous studies in cognitive neuroscience, 

clinical psychiatry/psychology, and preoperative planning. The popularity of fMRI stems from its 

wide availability in both clinical and research environments (ranging from 1.5 to 7 Tesla), non-

invasiveness (no injection of radioisotopes or other drugs is necessary), and optimal spatial resolution 

(order of millimeters). fMRI is increasingly used as a biomarker of disease, for treatment monitoring 

or to study pharmacological efficacy (Glover, n.d.). In recent years functional connectivity study 

using fMRI (fcMRI) has drawn the increasing attention of neuroscientists and computer scientists, 

since it opens a new window to explore functional networks of the human brain with relatively high 

resolution (Li et al. 2008). 

Functional connectivity is defined as the “temporal correlations between spatially remote 

neurophysiological events” (Li et al. 2008) and examines regional interactions in the brain at a macro 

level, using datasets from electroencephalographic (EEG), magnetoencephalographic (MEG), local 

field potentials (LFP), positron emission tomography (PET) or fMRI. After extensive study for more 

than a decade, scientists have come up with several methods for functional connectivity detection 

using fMRI. Generally, these methods can be classified into two categories: model-driven and data-

driven methods. For the model-driven methods, strong prior neuroscience knowledge or experience 

is needed to select some region of interest (ROI) called ‘’seeds’’ and determine whether other regions 

are connected to these. Data-driven methods are developed to overcome some of these limitations of 

the model-driven one, indeed these methods are independent of prior information or assumed models 

(Horovitz et al. 2019). For the data-driven methods, one of the most widespread approach is the 

Independent component analysis (ICA), which expresses the original neuroimaging dataset as a 

statistically independent component (Bordier, Dojat, and de Micheaux 2011). Functional connectivity 

is mandatory especially when activations are spread around the brain, mainly during cognitive 

processes. 

A key to human interaction with the environment is the planning and execution of motor actions to 

coordinate the body’s movements, which is essential for daily actions on objects. The success of such 

actions depends on the coordination of several complex factors such as visual cues, tactile and skin 

feedback, control of grip, speed, direction and duration of the force applied on the surface of the 

object. 
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Through neuroimaging studies, with the use of fMRI, the organization of brain activity during 

execution and the coordination of precision and strength has been extensively investigated to clarify 

the space-time dynamics of these processes and to identify the neural origins of the cognitive 

components involved in motor control, but also to be the basis of more complex motor studies. The 

organization of human motor control and the knowledge of its characteristics are also fundamental 

for the implementation of the Brain-Computer Interface (BCI). (Ortiz-Rosario and Adeli 2013) 

It is widely recognized that continuous sensory feedback plays a crucial role in accurate motor control 

in everyday life. Feedback information is used to adapt force output and to correct errors. While the 

primary motor cortex contralateral to the movement (cM1) plays a dominant role in this control, 

converging evidence supports the idea that that ipsilateral primary motor cortex (iM1) also directly 

contributes to hand and finger movements. Similarly, when visual feedback is available, the primary 

visual cortex (V1) and its interactions with the motor network also become important for accurate 

motor performance (Verstynen et al. 2005a). To clarify this issue, we performed and studied 

measurements obtained during isometric compression of a compliant rubber bulb, at 10% maximum 

voluntary contraction, both with (visuomotor task) and without visual feedback (motor task).  

However, all studies to date use the mass-univariate voxel-based approach, which focuses on 

segregating and localizing processes, failing to account for the integration across processes within 

larger networks (Mayhew et al. 2017). The mass univariate voxel-based analysis also relies on 

subtraction methods between conditions, emphasizing more significant differences than similarities 

between processes. Functional connectivity analysis is an alternative multivariate method to assess 

the functional architecture of the central nervous system that integrates brain signals across multiple 

regions. Among others, this approach uses correlations between distant regions as the dependent 

variable. 

ICA is often used to identify clusters of regions that show high correlations of signal change within 

a given time window. These clusters are assumed to reflect intrinsic connectivity networks (Porcaro 

et al. 2020a; Mansi et al. 2022). Consistent intrinsic networks have been repeatedly identified using 

ICA [21]. These include networks that connect homologous regions processing visual, auditory, and 

sensory-motor output. These are the default mode network (anterior and posterior midline and inferior 

parietal); the lateralized dorsal frontal-parietal network, putatively involved in attention; the saliency 

network which comprises the insula and the anterior cingulum; the frontal network involving 

prefrontal, frontotemporal, and cingulate cortex, thought to reflect executive control; the left-

lateralized ventral, frontal, and parietal network, involved in language processing and the precuneus, 

basal ganglia, and a cerebellum network. Importantly, similar networks are detected when participants 
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are engaged in a task (goal-driven behavior) or are free to wander (rest). In addition, differences 

between rest and specific task conditions are modeled as a reconfiguration of connections within and 

between networks. It has been argued that the task-based spatial ICA data-driven approach is 

advantageous over conventional mass-univariate analysis of signal amplitude change. This is because 

it does not rely on assumptions regarding the time course, the temporal characteristics, and the shape 

of the hemodynamic response function. 

In this thesis, we analyzed fMRI data recorded from sixteen healthy volunteers  (Mayhew et al. 2017) 

using a multivariate data-driven approach focusing on intrinsic connectivity between voxels through 

group ICA of fMRI Toolbox (GIFT), asking the following main questions:  

1. which are the networks involved during a motor task (i.e. without a visual feedback) and a 

visuomotor task (i.e. with visual feedback)? 

2. Is there any hemodynamic signal complexity difference between the visuomotor and the 

motor task? 

Visual network (VN), Frontal Eye Field (FEF), Default Mode Network (DMN), Attention Network 

(AttN - Salience Network (SN) and Control Executive Network (CEN), Cerebellum (Cb), Basal 

Ganglia (BG ) and Sensorimotor Network (SMN) are the main networks involved during the tasks, 

with the VN and the FEF mainly involved in the visuomotor task. Interestingly, during the visuomotor 

task, the involvement of the FEF and the ipsilateral primary motor area (iM1) seems to be essential 

for the fine motor control of the movement in keeping the force shown by the visual feedback. 

Moreover, the characterization of the neuronal dynamics of the blood oxygenation level-dependent 

(BOLD) activity (i.e. the fMRI signal) of the intrinsic networks involved during both tasks (motor 

and visuomotor task) showed a higher complexity (estimated by Higuchi’s Fractal Dimension) of the 

BOLD activity on the following intrinsic networks (VN, FEF, SMN (in particular the iM1), ExCN, 

CB) for visuomotor task respect to the pure motor task. 
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1. NUCLEAR MAGNETIC RESONANCE 

1.1  Principles of Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) is a non-invasive investigation technique that exploits radiation-

matter interaction in the radio waves frequency band (Dais, 2012). The principle of this technique is 

that many nuclei have spin and all nuclei are electrically charged. When an external magnetic field is 

applied, energy transfer between fundamental energy to higher energy levels (usually a single energy 

gap) is possible. Energy transfer occurs at wavelengths that correspond to radio frequencies, the same 

frequency that energy is emitted when the spin returns to its fundamental energy level. The signal 

corresponding to this transmission is measured and processed in a number of ways to obtain the NMR 

spectrum of the nucleus in question. It works on nuclear paramagnetic materials, microscopically 

made of magnetic dipoles spontaneously randomly distributed. It is essential in magnetic resonance 

that nuclear magnetic moments in the sample align to an external magnetic field in order to obtain a 

measurable macroscopic. When resonant radiation (whose energy corresponds to the difference 

between energy levels in a physical system) is sent to that system, the absorbed and emitted radiation 

provides information about the system itself. The NMR signal is derived from the nuclear spins 

obtained from the system response after excitation. Degenerate nuclear spin levels, call Zeeman 

effect, can be split by applying an external static magnetic field, and then using resonant high-

frequency pulses to bring the spins to higher energy levels. Therefore, NMR can study matter through 

the macroscopic magnetization generated by the nuclear magnetic moment aligned with the external 

magnetic field. Observing subsamples of nuclear paramagnetic species requires an optimized 

frequency range. The radio frequencies used range from 20MHz to 1GHz, generated digitally and 

then transmitted from the coil. These radiations are coherent in nature and are characterized by very 

low energy, allowing high photon fluxes at a given energy, while using wavelengths from millimeters 

to tenths of a centimeter in water. The importance of radio frequency is that spontaneous emission 

can be forgotten and stable inversions in the population can be achieved, thereby obtaining 

information about molecular dynamics from NMR signal quenching. (Louro 2013) 

1.2  Physical principles of Magnetic Resonance Imaging (MRI) 

MRI is a technique that allows obtaining images of living tissues noninvasively and without using 

ionizing radiation, by measuring the magnetic spin properties of certain atomic nuclei, mainly 

hydrogen, due to its important presence in the human, in form of water molecules (Hendee and 

Morgan 1984). When a nucleus contains either unpaired protons, neutrons, or both, it has angular 

momentum. This property provides the basis for magnetic resonance imaging (MRI). Because of its 
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abundance in the human body, hydrogen is used for clinical MRI. Within the MR magnet, the atoms 

are aligned with the magnetic field (Hendee and Morgan 1984).  

MRI enabled to generate anatomical images of human body sections, by recording the minuscule 

radio signal released by atomic nuclei excited with temporary varying magnetic fields. Protons and 

neutrons, as we said before, are characterized by an intrinsic angular momentum, or spin, to which is 

associated a nuclear magnetic moment, processing in correspondence of a given static magnetic field 

𝐵⃗ 𝑜 at the so-called Larmor frequency 𝑤L: 

                                                                           𝑤L= 𝛾∗ 𝐵𝑜⃗⃗⃗⃗  ⃗                                                                     (1.1) 

in which 𝛾 represents gyromagnetic ratio, which is equal to 42.57 MHz/T for a hydrogen nucleus. In 

absence of a strong magnetic field, nuclear magnetic moments are randomly oriented and the overall 

sum of their magnetic contribution is equal to zero. The presence of the static high-intensity magnetic 

field, gradually, induces the alignment of the nuclear magnetic moments with or against the main 

direction of the magnetic field, as shown in Figure 1. If the nuclear magnetic moments display a 

preferential orientation, while keeping cancelling each other contribution, the net magnetization 

vector 𝑀⃗⃗   is non-zero (“Physical Principles of Magnetic Resonance Imaging - PubMed” n.d.). 

 

Figure 1. Behavior of nuclear magnetic moments a) in absence and b) in presence of a static magnetic field B. In a), 

nuclei are randomly oriented and their magnetic contribution is equal to zero, since there is not a preferential direction 

of alignment. In b), the presence of a magnetic field induces the alignment of nuclear magnetic moments in the direction 

of the magnetic field, in a parallel or antiparallel fashion. 

Though, when a supplementary magnetic field 𝐵⃗ 1 is applied (Figure 2), this equilibrium is disrupted 

and the magnetization vector 𝑀⃗⃗⃗⃗  is tilted proportionally to the exposure duration of the temporary 

magnetic field. This field is applied in form of electromagnetic wave, and modifies the characteristic 

Larmor frequency 𝑤𝐿 associated with the given proton: 

                                                                          𝑤𝐿 =  𝛾 ∗ (𝐵𝑜 ⃗⃗ ⃗⃗  ⃗ +  𝐵1
⃗⃗⃗⃗ )                                                    (1.2) 

𝑀⃗⃗⃗⃗  rotates around the main magnetic field vector, through a movement called precession. When an 

oscillatory magnetic field 𝐵⃗ 1 transverse to 𝐵⃗ O is applied at a frequency similar to Larmor frequency, 
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it is in resonance with the processing nuclei, which means that the net magnetization 𝑀⃗⃗⃗⃗  changes its 

equilibrium orientation of a certain angle, flip angle (Seeger 1989). 

 

Figure 2. In presence of a static magnetic field B, the magnetization vector M is aligned with B and it has maximum 

magnitude (a). When a supplementary magnetic field B1 is applied M is tilted of a certain angle proportional to the 

duration and entity of B1 (b). Both in a) and b), M keeps rotating around its own axis with a movement called precession. 

Following this excitation, 𝑀⃗⃗   , by continuing the rotation around the z-axis at the Larmor frequency, 

presents a longitudinal component 𝑀⃗⃗𝑍 and a transversal component 𝑀⃗⃗𝑥𝑦 perpendicular to each other. 

This precession can be detected by a receiver coil, by means of electromagnetic induction, expressed 

by Faraday’s law: 

                                    ε𝑙 = −
d∅s

dt
(t) =  −

d

𝑑𝑡
∫

𝑆
 B⃗⃗  ⃗ (r  , t) ∗  N⃗⃗  (r  , t)dS                              (1.3) 

In which 𝜀𝑙 is the induced electromotive force,∅S represents the magnetic flux through the surface S 

enclosed by the coil, and 𝑁⃗⃗  he unitary normal vector to the surface S at the position 𝑛⃗  and the instant 

time 𝑡 . When the exciting oscillatory magnetic field is removed, the 𝑀⃗⃗⃗⃗  tends to return to its original 

state of equilibrium, by dissipating the energy received during the excitation step. Thus, the 

magnitude of 𝑀⃗⃗𝑍 and 𝑀⃗⃗𝑥𝑦 does not remain constant in time. In particular, 𝑀⃗⃗𝑍 increases, while 𝑀⃗⃗𝑥𝑦 

becomes again null. This process is called spin relaxation and, depending on the way the excited 

nuclei dissipate their energy, it is possible to differentiate three mechanism (Seeger 1989): 

1) 𝑇1 relaxation time constant explicates a process called spin-lattice relaxation, in which excited 

nuclei dissipate their energy in interactions with surrounding molecules mediated by 

randomly fluctuating magnetic fields. The 𝑇1 relaxation mechanisms drive the regeneration 

of the 𝑀⃗⃗⃗⃗  along the z-axis, as described by the following expression:  
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                                           𝑀⃗⃗𝑍(𝑡) = 𝑀⃗⃗0 − (𝑀⃗⃗0 − 𝑀⃗⃗𝑍(0)) ∗ 𝑒−𝑡 𝑇1⁄                                              (1.4) 

 

In which 𝑀⃗⃗𝑍 reaches the maximum value 𝑀⃗⃗𝑂 corresponding to the 𝑇1. 

2) 𝑇2 relaxation time constant explicates a process called spin-spin relaxation, in which excited 

nuclei experience small variations in their Larmor frequency, due to low-frequency, 

microscopic random fluctuations of the local magnetic field. These small individual variations 

in the Larmor frequency lead to a general loss of phase coherence for the individual magnetic 

moments, resulting in a decrease of the magnitude of the transverse magnetization 𝑀⃗⃗𝑥𝑦 , as 

described by the following expression: 

                                                𝑀⃗⃗𝑥𝑦(𝑇) =  𝑀⃗⃗𝑥𝑦(0) ∗ 𝑒−𝑡 𝑇2⁄                                                (1.5) 

 

3) 𝑇2
∗ mechanisms are associated with differences in Larmor frequency across a sample of nuclei 

due to “external”, macroscopic magnetic field inhomogeneities. These inhomogeneities can 

be caused by distortions occurring in the static magnetic field, or by differences in magnetic 

susceptibility between structures in the sample, such as air/tissue interfaces. Due to these 

differences, their contributions are cancelled by each other, and fast decay of the signal occurs. 

𝑇2
∗which depends on the field inhomogeneities, can be considerably shorter than 𝑇2 (LL., 

1989): 

                                                  
1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
′                                               (1.6) 

In order to produce an image, the alignment between the static magnetic field B and the magnetization 

vector is perturbed. Magnetic resonance imaging exploits these physical properties to differentiate 

tissues, which are characterized by peculiar composition and density. In fact, temporary and spatially 

varying magnetic fields are used to encode magnetic spins with space-dependent properties, and 

thereby obtain information regarding their distribution in living tissues. More specifically, magnetic 

field gradients are applied in the scanner in which the static strong magnetic field is already present. 

When the supplementary gradient is switched on the magnetic field linearly increases in the selected 

direction, resulting in variation in Larmor frequency based on the position. Thus, it is possible to 

focus on the specific sample of interest that presents the defined Larmor frequency (Seeger 1989). 

Image generation is achieved by combining three types of spatial encoding, i.e. slice selection, phase 

encoding and frequency encoding, one for each spatial dimension. Accordingly, three different 

gradient fields along three orthogonal directions are superimposed to the static magnetic field. The 

slice selection consists in the excitation of certain range of frequencies, centered in W, to which 



11 
 

corresponds a certain slice thickness in the acquired volume. The process is repeated for different 

values of frequencies, thus for electing different slides, until the full volume of interest is acquired. 

After the excitation of a slice, based on the echo time, the RF coils detect the signal, associated with 

the relaxation. The magnetization vector can be described as a complex number, in which magnitude 

relates to the actual relaxation and the phase to the precession movement. Following the selection of 

the slice of interest, phase and frequency encoding enable the spatial discrimination on a plane. The 

phase encoding consists in the application of a gradient G that will introduce a spatially dependent 

shift. Thus, it is possible to identify differences in position based on the different phases of the 

detected signal. The frequency encoding is then applied to differentiate the precession frequencies 

along the x direction. The third gradient is typically applied simultaneously with the actual image 

acquisition, i.e. Readout. Each tissue is characterized by specific relaxation time, thus by selecting a 

certain acquisition sequence is possible to enhance or suppress the effect of magnetization given from 

a certain brain region. By manipulating the acquisition parameters, repetition time (TR), and echo 

time (TE) the magnetization vector, and, subsequently, the acquired signal, displays differences 

associated with the time constants 𝑇1 and 𝑇2 , such as contrast or brightness, and enable the 

discrimination of tissues (Foster et al., 1984), as shown in Figure 3. 
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Figure 3. Discrimination of brain tissues based on the contrast associated with specific relaxation times. In a) T1-

weighted recovery of different structures is shown. A short TR time provides a larger contrast between two tissues 

with different composition. A long TR does not allow discriminating the two structures. In b) T2-weighted decay of 

different structures is shown. A short TE time does not allow discriminating the two structures. A long TR provides 

a larger contrast between two tissues with different composition. 

TR represents the time between two consecutive pulses, and it should be long enough to allow the 

magnetization vector to restore its equilibrium state. TE is referred to as the time between the initial 

excitation pulse and the detection of the MR signal. 

1.3 MRI Scanner 

Magnetic resonance imaging (MRI) is a type of scan that uses strong magnetic fields and radio 

waves to produce detailed images of the inside of the body. An MRI scanner is a large tube that 

contains powerful magnets. The MR scanner consists of several components, including a cylindrical 

superconductive magnet that generates the static magnetic field, and radiofrequency (RF) coils 

which are used to apply the temporary supplementary magnetic gradients and, eventually, to detect 

the released signal following the relaxation. 
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Figure 4 Schematic of an MRI acquisition system, including a) superconductive magnet, which generates the static 

magnetic field, b) RF coils, which generates the temporally-varying gradients and detect the released signals from the 

brain, c) head-coil, which constrains the volume of interest to be acquired, d) recording computer on which MR data can 

be visualized, following the reconstruction of the image, and e) bed on which the subject lies during the investigation in 

the MR scanner. The MR scanner is located in a shielded room. This is required for safety reasons, for avoiding dangerous 

situations related to the presence of a free strong magnetic field, and for data quality, for avoiding unwanted distortions 

in the MR data due to electromagnetic disturbances. Accordingly, only MR compatible electronic device and metal-free 

objects can be introduced in the MR scanner room. The recording computer is located in the control room, which is 

typically next to the MR scanner room. 

An MRI scan can be used to examine almost any part of the body, including the: 

• brain and spinal cord 

• bones and joints 

• breasts 

• heart and blood vessels 

• internal organs, such as the liver, womb or prostate gland 

The results of an MRI scan can be used to help diagnose conditions, plan treatments and assess how 

effective previous treatment has been. To preserve its superconductive state, the magnet is kept at 

very low temperature, just a few Kelvin, by means of a helium pump cooling system, also called 

cryogenic pump, in addition to several thermally insulating layers. The MR scanner is controlled from 

a computer located in an external room. In particular, this computer is used to program the specific 

sequence associated with the acquisition protocol and allows the visualization of the acquired 

volumes. The triggers of the acquisition are sent to the RF coil transmitting the excitatory temporally-

varying gradients. These coils are designed to provide a fast field switching, with fast rise-times, 

which enables specificity in the selection of the volume of interest and low-level of distortion in the 
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magnetic field. The RF coils generate the gradients along three different directions, orthogonal to 

each other. In brain imaging, extra coils, to be put around the subject’s head, can be used to more 

accurately define the volume of interest (Giussani et al. 2010). 

1.4  Brain Activation and Blood Oxygen Level Dependent (BOLD) Effect 

The major breakthrough for the application of MRI to the study of brain function was achieved in the 

early 1990’s by Ogawa and colleagues, with the discovery of the blood oxygenation level-dependent 

(BOLD) contrast (S. Ogawa et al. 1992). This technique, sensitive to local fluctuations in the 

metabolic and vascular properties of living tissues, allowed for the non-invasive monitoring of human 

brain function with unprecedented spatial resolution (Seiji Ogawa, Lee, and Barrere 1993). The 

BOLD effect is the signal change observed due to the change in blood oxygenation in response To 

localized neuronal activity (S. Ogawa et al. 1993). The timescale of the BOLD response is on the 

order of seconds after the neuronal activation, which results in a low functional temporal resolution. 

BOLD contrast relies on the use of hemoglobin (Hb) as an endogenous contrast agent. Hb is the 

protein, characterized by the presence of an iron molecule, responsible of carrying oxygen in the red 

blood cells. Depending on its level of oxygen saturation, Hb presents different magnetic properties, 

in particular, diamagnetic and paramagnetic, when Hb is oxygenated and deoxygenated respectively. 

Commonly speaking, diamagnetic materials weakly interact with a magnetic field, while 

paramagnetic substances typically induce distortion in the surrounding magnetic field. When neurons 

are activated their demand of oxygen increases, thus Hb releases oxygen more easily and changes its 

state from oxygenated to deoxygenated, and, subsequently, also its magnetic susceptibility. The high-

level of deoxy-hemoglobin induces a distortion in the magnetic field inside the MR scanner. This 

distortion can be detected and interpreted has a measure of the neuronal activity in a certain brain 

area (Seiji Ogawa et al. 1990). In detail, the distortion of the magnetic field leads to a change of the 

relaxation time constant 𝑇2∗ in the activated areas, and, therefore, to a difference of the signal 

intensity in the collected images. It has also been shown that the BOLD response appears with a 

certain delay, a few seconds, after the neuronal activation (Silva et al. 2000). In fact, changes in blood 

flow, provoked by the growing metabolic request of the activated neuronal populations, occur over a 

much slower timescale (hundreds of milliseconds to seconds) than changes in electrophysiological 

activity (milliseconds or tens of milliseconds) (Silva et al. 2000). 
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2. SENSORY-MOTOR INTEGRATION 

The key to human interaction with the environment lies in the planning and execution of motor 

movements that coordinate body movements that are in any case necessary for everyday actions over 

objects. The success of such movements depends on the coordination of several complex factors, 

including visual cues, tactile and cutaneous feedback, grip force control, and internal representations 

that control the magnitude, speed, direction, and duration of the force applied to an object’s surface. 

2.1 Motor Cortex 

The upper motor neurons in the cerebral cortex reside in several adjacent and highly interconnected 

areas in the frontal lobe, which together mediate the planning and initiation of complex temporal 

sequences of voluntary movements. These cortical areas all receive regulatory inputs from the basal 

ganglia and cerebellum via relays in the ventrolateral thalamus, as well as inputs from the somatic 

sensory regions of the parietal lobe. The motor cortex can be divided into three areas: 

1. Primary motor cortex. This is the main contributor to generating neural impulses that pass 

down to the spinal cord and control the execution of movement. It can be distinguished from 

the adjacent premotor areas both cytoarchitettonically (Brodmann’s area 4) and by the low 

intensity of current necessary to elicit movements by electrical stimulation in this region. 

However, some of the other motor areas in the brain also play a role in this function. It is 

located in the precentral gyrus. 

2. Premotor cortex. It is responsible for some aspects of motor control, possibly including the 

preparation for movement, the sensory guidance of movement, the spatial guidance of 

reaching, or the direct control of some movements with an emphasis on control of proximal 

and trunk muscles of the body. Located anterior to the primary motor cortex 

3. Supplementary motor area (SMA). It has many functions including the internally generated 

planning of movement, the planning of sequences of movement based on prior experience, 

and the coordination of the two sides of the body such as in bi-manual coordination. Located 

on the midline surface of the hemisphere anterior to the primary motor cortex. It can be also 

divided into: 

• Posterior parietal cortex. It is sometimes also considered to be part of the group of 

motor cortical areas; however, it is best to regard it as an association cortex rather than 

motor. It is thought to be responsible for transforming multisensory information into 

motor commands, and to be responsible for some aspects of motor planning, in 

addition to many other functions that may not be motor-related. 
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• Primary somatosensory cortex. Especially the part called Brodmann’s area 3a, 

which lies directly against the motor cortex, it is sometimes considered to be 

functionally part of the motor control circuitry. 

 
Figure 5. Representation of motor area divided for colors 

Motor regions of the cortex and brainstem contain upper motor neurons that initiate movement by 

controlling the activity of local circuit and lower motor neurons in the brainstem and spinal cord. 

There are two additional regions of the brain that are important in motor control: the cerebellum and 

the basal ganglia. They influence movement by regulating the activity of upper motor neurons, 

2.2 Cerebellum 

The cerebellum can be subdivided into three main parts based on differences in the source of input. 

As a rule of thumb, each term is constituted by the suffix –cerebellum and the prefix indicating the 

source of input signals: 

1. Cerebrocerebellum. It is the larger of the three subdivisions and is concerned with the 

regulation of highly skilled movements, especially the planning and execution of complex 

spatialized temporal sequences of movement, including speech. 

2. Vestibulocerebellum. As the phylogenetically oldest part of the cerebellum, this portion 

comprises the caudal lobe of the cerebellum and includes the flocculus and the nodulus. As 

suggested by the name, the vestibulocerebellum receives inputs from the vestibular nuclei in 

the brainstem, and is primarily concerned with the regulation of movements, underlying 

posture and equilibrium. 

3. Spinocerebellum. It occupies the median and paramedian zone of the cerebellar hemispheres 

and is the only part that receives input directly from the spinal cord. The lateral part of the 

spinocerebellum is primarily concerned with movement of distal muscles, such as relatively 

gross movements of the limbs during walk. The central part, called the vermis, is primarily 
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concerned with movements of proximal muscles, and also regulates eye movements in 

response of vestibular inputs. 

 
Figure 6. Representation of Cerebellum division 

2.3 Basal Ganglia  

The basal ganglia are essential to motor control in ways entirely different from those of the 

cerebellum. Their most important functions of basal ganglia are: 

1. To help the cortex execute subconscious but learned patterns of movements. 

2. To help planning multiple parallel and sequential patterns of movements that brain must 

put together to accomplish a purposeful task. 

On the other hand, the is more addressed to keep muscle tonus and force, correct and stabilize 

movements by means of feed-forward signals, rapidly initiate a movement, program complex 

movements, memorize learned movements. 

The motor components of the basal ganglia, together with the substantia nigra and the subthalamic 

nucleus, effectively make a subcortical loop that links most areas of the cortex with upper motor 

neurons in the primary motor and premotor cortex and in the brainstem. The neurons in this loop 

respond in anticipation of and during movements, and their effects on upper motor neurons are 

required for the normal course of voluntary movements. 

When one of these components of the basal ganglia or associated structures is compromised, the 

patient cannot switch smoothly between commands that initiate a movement and those that terminate 

the movement. 

The disordered movements that result can be understood as a consequence of abnormal upper motor 

neuron activity in the absence of the supervisory control normally provided by the basal ganglia. 
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Figure 7. Representation of Basal Ganglia components 

In addition to their well-known role in skeletal movements, the basal ganglia control saccadic eye 

movements (saccades) by means of their connection to the superior colliculus (SC). The SC receives 

convergent inputs from cerebral cortical areas and the basal ganglia. To make a saccade to an object 

purposefully, appropriate signals must be selected out of the cortical inputs, in which the basal ganglia 

play a crucial role. This is done by the sustained inhibitory input from the substantia nigra pars 

reticulata (SNr) to the SC. This inhibition can be removed by another inhibition from the caudate 

nucleus (CD) to the SNr, which results in a disinhibition of the SC. (Hikosaka, Takikawa, and 

Kawagoe 2000) 

2.4 Visuomotor integration 

Neuroimaging studies have detected the importance of sensory feedback, which plays a fundamental 

role in accurate motor control in everyday life. The bilateral visuo-parietal-motor network is 

responsible for the fine control of hand movements, so while the primary motor cortex contralateral 

to movement (cM1) plays a dominant role in this control, demonstrating convergence support the 

idea that the ipsilateral primary motor cortex (iM1) also contributes directly to fine hand and finger 

movements. Similarly, when visual feedback is available, the primary visual cortex (V1) and its 

interactions with the motor network also become important for accurate motor performance. (Porcaro, 

Mayhew, and Bagshaw 2021) 

An optimized, feedback loop integrates visual information into the motor commands which link the 

primary motor cortex activity to the limb physics subtending motor behavior. Such transformations 

are mediated by the dominant, dorsal-stream, visuomotor pathway (Goodale and Milner 1992), which 

is distinct from the pathways of somatosensory proprioception (Lam and Pearson 2002). 

Visual feedback is necessary to detect errors in performance relative to the target. These errors serve 

as information to revise the motor plan and improve the performance of subsequent trials (Gordon 

and Ghez 1987). Without it, the user might feel the experience is inconsistent and be unsure about 
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what triggered a specific action. The ability of visual-motor integration, therefore. Allows visual 

information to integrate with the information of the gross and fine motor system: the gross motor 

allows to integrate the visual aspects with the movement of the body while the fine-motor integrates 

the visual aspects with the hand (hand-eye coordination) and with the graphic aspect. 

Furthermore, the systems that control eye movements have a lot in common with the motor systems 

that regulate the movements of other parts of the body. Just as the spinal cord provides the basic 

circuits to coordinate the actions of the muscles around a joint, the reticular formation of the pons and 

midbrain provides the basic circuits that mediate eye movements. The descendant projections from 

higher-order centers in the superior colliculus and frontal field innervate the gaze centers of the brain 

stem, providing a basis for integrating eye movements with a variety of sensory information 

indicating the position of objects in space. The superior colliculus and the frontal visual field are 

organized in a parallel and hierarchical way, devising one of these structures to compensate for the 

loss of the other. Eye movements, like other movements, are also under the control of the basal ganglia 

and cerebellum; this check guarantees the correct start and the correct execution of these simple ones 

motor behaviors, so observers can efficiently interact with the universe things that can be seen. 
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3. FUNCTIONAL CONNECTIVITY NETWORKS  

3.1 Functional Connectivity  

The brain is a very complex organ composed of anatomically specific but highly interconnected 

regions. Although it accounts for only about 2% of the normal body weight, it consumes about 20% 

of the total energy (Gillebert and Mantini 2013) . Remarkably, its metabolism is largely constant 

across time, notwithstanding widely varying levels of cognitive and sensory activity. The complex 

connectional architecture of the brain and its large energy budget suggest that this organ does not 

passively analyze and respond to environmental stimuli but actively maintains ongoing 

representations of cognitive states and behavioral responses, even during idle moments (Engel, Fries, 

and Singer 2001). To study spatiotemporal patterns of intrinsic activity, specific neuroimaging data 

analysis methods are available such as: EEG, MEG that revealed much faster neuronal oscillations 

showing a high temporal resolution and fMRI that show instead a great spatial resolution. These are 

typically referred to as functional connectivity methods, where functional connectivity indicates 

statistical interdependence of activity in distant brain regions (Friston 2011). 

Functional connectivity is defined as the temporal coincidence of spatially distant 

neurophysiological events (Friston, 1994). Two regions are believed to show functional connectivity 

if there is a statistic among the activity measures recorded for them. It is therefore assumed that the 

areas are coupled or are components of the network if their behavior itself is coherently correlated 

with each other. Functional connectivity represents a much more direct approach to functional 

network analysis and agrees with the intuitive notion that when two things happen together, these two 

things should be related to each other. Relying very little on a priori assumptions, the functional 

connectivity analysis therefore rather reflects a direct observational measure of functional 

relationships (Eickhoff and Müller 2015).   

When it comes to functional connectivity, we can distinguish between extrinsic and intrinsic 

functional connectivity: 

• Extrinsic functional connectivity: also called functional task-evoked connectivity, it depends 

on the task performed and therefore on external stimuli 

• Intrinsic functional connectivity: measures temporal correlation of spontaneous BOLD signal 

among spatially distributed brain regions, with the assumption that regions with correlated 

activity form functional networks. 

Functional connectivity analysis, of both fMRI and EEG/MEG data, have documented that intrinsic 

activity is spatially organized into a finite set of specific, coherent patterns, namely networks. 
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Functional connectivity can be studied during the performance of active tasks, such as finger tapping 

or visual stimulation, as well as during resting state, a condition in which the participant is not 

performing any active task and is simply instructed to remain still, with eyes closed or open while 

fixating a cross. The simplest and most established approach for constructing RSNs is to extract the 

time course from a seed region and then determine the temporal correlations between this seed time 

course and those of all other brain voxels. The resulting correlation map shows the entire network of 

brain regions having activities similar to that of the seed. Many RSNs are reported in literature such 

as: visual, auditory, default, dorsal and ventral attention, language and somatosensory networks. 

Different methods of analysis are developed to implement functional connectivity in both resting and 

task-related states. We can distinguish them in two main parts: model-based methods and data-driven 

one. The first one requires a great knowledge and experience in neuroscience because it based on a 

selection of a region of interest ROI to calculate the connection of this seeds with all the other voxels. 

The data-driven methods instead do not need any prior knowledge to be implemented. One of the 

most famous approach, in this respect, is the independent component analysis (ICA) (“(PDF) An 

Extension of The Herault-Jutten Network to Signals Including Delays for Blind Separation” n.d.). It 

analyses the entire set of fMRI signals to derive a set of components that are maximally independent 

in the spatial domain. These components are characterized by a representative time course and a 

spatial map that expresses the relative contribution of the time course to the fMRI data (Gillebert and 

Mantini 2013).  In the current thesis I aimed to investigate connectivity both within and between 

functional networks involved in the process. 

3.1.1 ROI-to-ROI measures 

In the ROI-level approach, the nodes are ROIs that comprise tens to hundreds of voxels. An ROI’s 

signal is typically computed by averaging the BOLD signals of its voxels (Stanley et al., 2013). ROIs 

are usually defined using an anatomical atlas, based on structural MR images or histological 

investigations (see, e.g., Stanley et al., 2013). The main benefits of the ROI approach are increased 

signal-to-noise ratio (SNR) and decreased computational cost. Further, one can expect that cognitive 

functions cover brain areas larger than single voxels (Shen et al., 2013; Wig et al., 2011). Therefore, 

the ROI approach may characterize true brain activity better than voxels with functionally arbitrary 

boundaries. However, areas related to cognitive functions may not necessarily match with the 

anatomical boundaries that define ROIs: The same function may be distributed across multiple 

anatomical areas, or one anatomical area may contain several functionally distinct subareas (Papo, 

Zanin, & Buldú, 2014; Stanley et al., 2013). Thus, the main disadvantage of the ROI approach is the 

possible loss of information that results from averaging signals of voxels that represent different 
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functions for producing the ROI signal (Stanley et al., 2013). ROI-to-ROI Correlation (RRC): RRC 

matrices represent the level of functional connectivity between each pair of ROIs. RRC is defined as 

the Fisher-transformed bivariate correlation coefficients between two ROIs (Regions Of Interest) 

BOLD timeseries (ROI BOLD timeseries are computed by averaging voxel timeseries across all 

voxels within each ROI). Alternatively, bivariate regression coefficient (raw) between the same 

timeseries: 

                                                           𝑟(𝑖, 𝑗) =
∑ 𝑅𝑖(𝑡)𝑅𝑗(𝑡)𝑡

√∑ 𝑅𝑖(𝑡)
2

𝑡  ∑ 𝑅𝑗(𝑡)
2

𝑡
                                  (3.1) 

                                                           𝑍(𝑖, 𝑗) = 𝑡𝑎𝑛ℎ−1𝑟(𝑖, 𝑗)                                           (3.2) 

with Ri(t) = BOLD timeseries within i-th ROI, centered to zero mean 

• r(i,j) = correlation coefficients between i-th and j-th ROIs 

• Z(i,j) = Fisher-transformed correlation coefficient 

 

3.1.2 Network (voxel-level) measures 

In the functional brain network approach, the brain is depicted as a collection of nodes and links. 

Each node represents a brain area that is supposed to be functionally homogeneous, and links 

represent anatomical or functional connections between nodes. In the voxel-level approach, the nodes 

are voxels, cubical volume elements with 2–8 mm edges that form a regular grid covering the brain. 

Intrinsic Connectivity (IC) maps represent a measure of network centrality at each voxel, 

characterized by the strength of connectivity between a given voxel and the rest of the brain. IC is 

defined as the root mean square of correlation coefficients between each individual voxel and all of 

the voxels in the brain (Martuzzi et al. 2011): 

                                                           𝐼𝐶(𝑥) = √
∑ 𝑟(𝑥,𝑦)2𝑦𝜖𝑀

𝑁
                                            (3.3) 

with r(x,y) = correlation coefficients between voxels x and y 

• N = number of voxels in analysis mask M 

• IC(x) = Intrinsic Connectivity at voxel x 

ICA maps represent a measure of different networks expression and connectivity at each voxel, 

characterized by the strength and sign of connectivity between a given network timeseries and the 

rest of the brain. It is defined as the multivariate regression coefficients between each 

component/network timeseries and an individual voxel BOLD timeseries (Nieto-Castanon 2021). 
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3.2 Independent component analysis (ICA) 

ICA is a promising examination technique that is progressively applied to fMRI information. A chief 

benefit of this approach is its pertinence to mental standards for which point by point models of mind 

action are not accessible. ICA  has been effectively used to dissect single-subject fMRI informational 

indexes, and an augmentation of this work is accommodate bunch inductions information (Calhoun 

et al. 2001). ICA endeavors to isolate free “sources” that have been combined as one (blind source 

division BSS). ICA as applied to fMRI information can be utilized to isolate either spatially and 

transiently free sources, giving as results spatial and worldly guides of the Independent parts (Ics). 

3.2.1 Independent Component Analysis: Algorithms and Applications 

Imagine that you are in a room where two people are speaking simultaneously (Hyvärinen, 

Hyvärinen, and Oja 1999). You have two microphones, which you hold in different locations. The 

microphones give you two recorded time signals, which we could denote by 𝑥1(𝑡) and 𝑥2 (𝑡) with 𝑥1 

and 𝑥2 the amplitudes, and t the time index. Each of these recorded signals is a weighted sum of the 

speech signals emitted by the two speakers, which we denote by 𝑠1(t) and 𝑠2 (t). We could express 

this as a linear equation: 

                                                      𝑥1(𝑡) = 𝑎11𝑠1 + 𝑎12𝑠2                                                  (3.4) 

                                              𝑥2(𝑡) = 𝑎21𝑠1 + 𝑎22𝑠2                                                  (3.5) 

where 𝑎11 , 𝑎12, 𝑎21, and 𝑎22 are some parameters that depend on the distances of the microphones 

from the speakers. It would be very useful if you could now estimate the two original speech signals 

𝑠1(t) and 𝑠2 (t), using only the recorded signals 𝑥1(𝑡) and 𝑥2 (𝑡). This is called the cocktail-party 

problem. As an illustration, consider the waveforms in Figure 7 and Figure 8. 

 

Figure 7. The original signals 
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Figure 8. The observed mixtures of the source signals in Fig.7 

These are, of course, not realistic speech signals, but suffice for this illustration. The original speech 

signals could look something like those in Fig. 7 and the mixed signals could look like those in Fig. 

8. The problem is to recover the data in Fig. 7 using only the data in Fig. 8. Actually, if we knew the 

parameters 𝑎𝑖𝑗 , we could solve the linear equation in (1) by classical methods. The point is, however, 

that if you don’t know the 𝑎𝑖𝑗 , the problem is considerably more difficult. One approach to solving 

this problem would be to use some information on the statistical properties of the signals 𝑠𝑖(t) to 

estimate the 𝑎𝑖𝑖 . Actually, and perhaps surprisingly, it turns out that it is enough to assume that 𝑠1(t) 

and 𝑠2(t), at each time instant t, are statistically independent. This is not an unrealistic assumption in 

many cases, and it need not be exactly true in practice. The recently developed technique of 

Independent Component Analysis, or ICA, can be used to estimate the 𝑎𝑖𝑗 based on the information 

of their independence, which allows us to separate the two original source signals 𝑠1(t) and 𝑠2(t) from 

their mixtures 𝑥1(t) and 𝑥2(t). Fig. 9 gives the two signals estimated by the ICA method. As can be 

seen, these are very close to the original source signals (their signs are reversed, but this has no 

significance). 

 

Figure 9. The estimates of the original source signals, estimated using only the observed signals in Fig. 8. The original 

signals were very accurately estimated, up to multiplicative signs. 
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3.2.2 Definition of ICA  

To rigorously define ICA (Nomura et al. 1996) we can use a statistical “latent variables” model. 

Assume that we observe n linear mixtures 𝑥1,...,𝑥𝑛 of n independent components 

                                     𝑥𝑗 = 𝑎𝑗1𝑠1 + 𝑎𝑗2𝑠2 + ⋯+ 𝑎𝑗𝑛𝑠𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗.                           (3.6) 

We have now dropped the time index t; in the ICA model, we assume that each mixture 𝑥𝑗 as well as 

each independent component sk is a random variable, instead of a proper time signal. We have now 

dropped the time index t; in the ICA model, we assume that each mixture 𝑥𝑗 as well as each 

independent component 𝑠𝑘 is a random variable, instead of a proper time signal. 

The observed values 𝑥𝑗 (t), e.g., the microphone signals in the cocktail party problem, are then a 

sample of this random variable. Without loss of generality, we can assume that both the mixture 

variables and the independent components have zero mean: If this is not true, then the observable 

variables 𝑥𝑖 can always be centered by subtracting the sample mean, which makes the model zero-

mean. It is convenient to use vector-matrix notation instead of the sums like in the previous equation. 

Let us denote by x the random vector whose elements are the mixtures 𝑥1,...,𝑥𝑛, and likewise by s the 

random vector with elements 𝑠1,...,𝑠𝑛. Let us denote by A the matrix with elements 𝑎𝑖𝑗. Generally, 

bold lower-case letters indicate vectors and bold upper-case letters denote matrices. All vectors are 

understood as column vectors; thus 𝒙𝑻, or the transpose of x, is a row vector. Using this vector-matrix 

notation, the above mixing model is written as: 

                                                                             𝑥 = 𝐴𝑠                                                                (3.7) 

Sometimes we need the columns of matrix A; denoting them by 𝒂𝒋 the model can also be written as 

                                                                     𝑥 = ∑ 𝑎𝑗𝑠𝑗
𝑛
𝑡=1                                                    (3.8) 

The statistical model in Eq. 4 is called independent component analysis, or ICA model. The ICA 

model is a generative model, which means that it describes how the observed data are generated by a 

process of mixing the components 𝑠𝑗. The independent components are latent variables, meaning that 

they cannot be directly observed. Also, the mixing matrix is assumed to be unknown. All we observe 

is the random vector x, and we must estimate both A and s using it. This must be done under as 

general assumptions as possible. The starting point for ICA is the very simple assumption that the 

components 𝑠𝑖 are statistically independent. The independent component must have nongaussian 

distributions. For simplicity, we are also assuming that the unknown mixing matrix is square. Then, 

after estimating the matrix A, we can compute its inverse, say W, and obtain the independent 

component simply by: 
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                                                                            𝑠 = 𝑊𝑥                                                       (3.9) 

ICA is very closely related to the method called blind source separation (BSS) or blind signal 

separation. A “source” means here an original signal, i.e. independent component, like the speaker in 

a cocktail party problem. “Blind” means that we know very little, if anything, on the mixing matrix, 

and make little assumptions on the source signals. ICA is one method, perhaps the most widely used, 

for performing blind source separation. 

3.3 Main Network 

Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread 

brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal. 

Through functional connectivity, the main large-scale brain networks have been identified, having 

the greatest function over the cortex in the brain and each performing a general function. These major 

networks control brain function both during task processing and while at rest.  

Depending on the granularity of how a network is defined, there is no single number of brain networks 

but at the highest level, the brain can be thought to consist of seven main networks – sensorimotor 

system, visual system, limbic system, central executive network (CEN), default mode network 

(DMN), salience network and dorsal attention network (DAN). 

The brain’s neural networks have a hierarchy to their operation, and they integrate and synchronize 

to carry out “complex functions.”  

The nodes of these core networks have been inferred from the results of fMRI studies, during tasks 

that manipulate one or more of these cognitive functions. A full characterization of core functional 

brain networks, however, will require additional studies to validate the nodes of these networks using 

other criteria, to measure their edges, and to determine whether other core networks exist. In this 

thesis were investigate main networks involved in a particular visuomotor task and its relations has 

been used. The results obtained for this thesis confirm results obtained in other studies and add 

information on the brain regions involved in our task showing that visual network, sensorimotor 

network, Default mode network, attention network, cerebellum, basal ganglia are the main networks 

underlying sensorimotor actions. 

3.3.1 Default mode network  

The default mode network (DMN) is the “internal mind.” When the brain is in a resting state and isn’t 

actively engaged in focused, goal-oriented tasks, “default” or subconscious brain activity increases 
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for internal thought processing, (Raichle et al. 2001)which likely evolved from evolutionary self-

preservation. 

 

Since we are nearly always thinking to ourselves or subconsciously processing the world around 

ourselves, the DMN is considered the most active and consistent (Lee et al. 2012) of the seven main 

brain networks. 

Due to its frequent activity, DMN plays an integral role in coordinating with other networks for 

passive sensory processing.(Greicius et al. 2003) These connections often include: 

 

• Visual processing in conjunction with the visual system when the mind subconsciously 

appreciates aesthetic beauty, (Vessel et al. 2019) like when observing impressive artwork or 

architecture. 

• Semantic processing (Wirth et al. 2011) with the language subnetwork when encoding or 

translating meaning into spoken or written words. 

• Processing or evaluating personal emotions or the emotions of others, with the limbic system. 

(Raichle et al. 2001)  

 

Very important, when talking about this network, is its interaction with the Executive Control 

Network since the previous study indicated that the areas of the DMN remain uniformly active in a 

waking state but at rest, (Raichle et al. 2001)and there is a decrease of this activity when other brain 

areas become active for goal-related tasks or for the response to external stimuli.1 Through this study, 

neurologists determined that the brain’s activity switches between the DMN’s internal state and an 

external processing state in the central executive network (CEN). Together, these two networks are 

considered the brain’s dominant control networks. 

Most importantly, the control networks occur in counterbalance to one another. As soon as the CEN 

switches into high gear for active and external task processing, the DMN is deactivated. (Ekhtiari et 

al. 2016) The salience network is responsible for the imperceptible switches back and forth — from 

introspective thinking to external active tasks and back to internal thought. 

The relationship between the DMN and CEN is a critical balance, and the two networks should not 

be active at the same time. Increased activity in one or both networks has been implicated in multiple 

mental health disorders. 
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Figure 10. From left to right: Anterior dorsal Default mode network (adDMN), posterior-dorsal DMN (pdDMN) 

and posterior-ventral DMN (pvDMN). The main core nodes of the DMN showed in the most representative slices. 

3.3.2 Attention network  

The Attention network comprises Salience Network (SN) and Control Executive Network (CEN). In 

the past SN and CEN were together considered to comprise ‘’task-positive network’’ or ‘’task-

activation ensemble’’. Seeley and colleagues demonstrated two important points in their seminal 

work (Seeley et al., 2007):  

(1) they are two dissociable networks (SN and CEN) critical for guidance of behaviors 

(2) intrinsic connectivity of these two networks differentially correlates with individual differences 

in anxiety and executive task performance. 

The salience network (SN) is “the moderator.” As your mind’s personal moderator, the salience 

network constantly monitors the external world and carefully decides how other brain networks react 

to new information and stimuli, also regulates and transitions between networks swiftly and 

imperceptibly to address the changing demands of the moment. 4 
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The SN moderates switching between the internal and external processing1 of the brain’s two main 

control networks:2 the default mode network (DMN) and central executive network (CEN), 

respectively.   

The salience network also plays a critical role in processing pain, emotion, reward, and motivation3 

in connection with the limbic system. In these cases, the moderator decides how much the human 

body “hears” signals involving emotional response. 

Th other network of the AN is the CEN, that performs high-level cognitive tasks, and works alongside 

or in anticorrelation with the other six main brain networks. 

The CEN engages in: 

• Active tasks and external thinking involving working memory 

• Controlled processing of information 

• Integration of information from the other brain networks 

• Rule-based problem solving and decision making 

• Consideration of multiple, independent stimuli and independent factors 

• Organizing behavior based on internal drives, subjective preferences, and choices 

• Reinforce visually learned behaviors 

Like previously mentioned, the CEN correlates with the DAN for attention processing, as well as 

visual spatial planning. It has always been said that the CEN and the DMNs worked in opposition, 

that is, that the activation of one determined the inhibition of the other, and that the SN mediated the 

activity of these networks due in opposition. Beaty and colleagues, instead, in their (Beaty et al. 2015) 

reveal that there is a strong connection between DMN and CEN, they work together and not in 

opposition as it was thought (Beaty et al. 2015). 

The central executive network also integrates with each of the other networks as needed for task 

processing: 

• Receives visual inputs from the visual network 

• Evaluates auditory inputs from the auditory network 

• Receives sensory inputs from the sensorimotor network while also sending back task 

directives (Niendam et al. 2012) 

• Processes stimuli and motivational signals from the limbic system. 

Since the CEN interacts so closely with other large-scale brain networks, it has been implicated in 

many neuropsychiatric disorders. 
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Aberrant switching between the CEN and DMN as a result of an over- or underactive SN has been 

demonstrated as a symptom of schizophrenia and post-traumatic stress disorder (PTSD). (Daniels et 

al. 2010) 

 

 

Figure 11 From left to right: Salience Network (SN) Left Executive Control Network (lExCN) Right Executive Control 

Network (rExCN). Core nodes of the Attention Network showed in their most representative slices. 

3.3.3 Sensorimotor Network  

The sensorimotor network is “the transducer.” As the brain’s transducer, the sensorimotor network is 

responsible for sensing physical inputs, converting them to electrical signals that travel throughout 

the brain network, and then initiating a physical response 

The sensorimotor network is responsible for: 

• Processing external physical stimuli 

• Feeling internal sensations 

• Evaluating the senses 



31 
 

• Producing a motor response. 

Because of its importance in daily life, physicians pay special attention to the motor cortex and the 

primary somatosensory cortex. The primary somatosensory cortex, in collaboration with the 

secondary somatosensory cortex, processes bodily sensations and sends signals to the motor cortex 

to execute reactions and appropriate motor responses. 

As the brain’s transducer, the sensorimotor network works closely with the other main brain networks 

to carry out key processes. It works alongside the: 

• Auditory subnetwork for hearing (Chang et al. 2013) 

• Visual system for sight  

• Salience network for behavior and reward processing  

• Central executive network for task processing (Stevens et al. 2007) 

• Dorsal attention network for planning and controlling complex motor functions (Corbetta and 

Shulman 2002) 

• And the default mode network in cases of physical or mental illness 

Together, the individual nodes in these systems share functional connections that make up our senses 

and guide our actions. Yet, they can also lead to mental or physical illness when they become over- 

or underactive.  

Abnormalities in the sensorimotor network can cause sensory and movement disorders, as well as 

degenerative diseases, developmental delays, and mental health disorders. 
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Figure 14 Sensorimotor network (SMN), bilateral activation in their most representative slices. 

3.3.4 Visual Network 

The visual system controls sight and visual processing, making the system simple to understand even 

though it handles complicated tasks. It is a very intricate network of components that all work together 

to transform light into a recognizable form. 

The visual system, which at first glance appears to be a single brain region, is actually made up of a 

number of nearby functional units that cooperate to process visual information cohesively. 

Combined, they: 

• process images in your mind’s eye 

• considering motion 

• recognize faces, patterns, and textures 

• rocalize people, structures, or items in space Identification of the use and permanence of 

objects 

• support problem-solving 

• reaffirming habits that have been seen 

The multiple nodes that compose this network are functionally and structurally connected as 

distributed networks that make up the dorsal and ventral pathways. 

The visual system works closely with many of the brain’s networks: 
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• Dorsal attention network (DAN) for reading and general visual processing (Vogel et al. 2012)  

• Sensorimotor network for early development (Sale et al. 2004) and imitation learning  

• Limbic system for visual memory and processing threat-based stimuli noticed in an individual’s 

peripheral vision (Montirosso et al. 2010).  

• Salience network for self-control when presented with tempting imagery as well as emotional empathy 

(Bilevicius et al. 2018) 

The interruption of the coordination between the visual network and the other brain networks or the 

occurrence of problems between the nodes belonging to the network can cause visual impairment and 

mental health problems. 

 
Figure 15 Primary Visual Network (pVN) and High Visual Network (hVN), bilateral activation in their most 

representative slices. 

3.3.5 Frontal Eye Field 

The Frontal Eye Field (FEF) is a region of primate prefrontal cortex defined as the area in which low-

current electrical stimulation evokes saccadic eye movements. On the basis of stimulation, recording, 

and inactivation experiments, the FEF appears to play a significant role in the planning and execution 

of saccadic eye movements. These same types of experiments have more recently demonstrated that 

the FEF also participates in the control of visual selective attention. 
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The frontal eye field is reported to be activated during the initiation of eye movements, such as 

voluntary saccades and pursuit eye movements (Mustari, Ono, and Das 2009). There is also evidence 

that it plays a role in purely sensory processing and that it belongs to a “fast brain” system through a 

superior colliculus – medial dorsal nucleus – FEF ascending pathway. FEF has also an important role 

in the covert allocation of spatial attention through its reciprocal connectivity with visual cortex 

(Bedini and Baldauf 2021).  

The unilateral irritative function of an FEF causes the conjugate, therefore a paralysis, contralateral 

to the gaze. Conversely, a one-sided destructive lesion of the FEF causes the conjugate gaze towards 

the lesion. 

 

Figure 17 Frontal Eye Field (FEF) in its most representative slices. 

3.3.6 Basal Ganglia 

The original functional organization of the basal ganglia was conceived as a loop, in which cortical 

afferent activity is dispatched to and modulated by the basal ganglia, which subsequently sends back 

a signal to the cortex to facilitate (or inhibit) motor activity. The basal ganglia were featured as a “go 

through” station within the motor loop. Current thinking now is that the basal ganglia has several 

loops, where cortical and subcortical projections interact with internal reentry loops forming a 
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complex network, ideally designed for selecting and inhibiting simultaneously occurring events and 

signals. (Lanciego, Luquin, and Obeso 2012) 

The basal ganglia, through interactions with the cerebral cortex, contribute to voluntary movement 

and other forms of behavior such as skeleton-motor, oculomotor, cognitive and emotional functions. 

In particular in motor control: 

1. they guarantee the automatic execution of movements such as walking, running, facilitating 

the actions controlled by the higher cortical centers (cortex) and suppressing the muscular 

activities that would prevent their execution 

2. They can modify or suppress these activities in new or unforeseen situations (a sudden 

obstacle) by re-establishing the control exercised by the cortex. 

The basal ganglia exert inhibition on motor systems based on signals from many parts of the brain, 

including the prefrontal cortex, which plays a key role in executive functions. 

In addition, the basal ganglia, including the internal pale globe and the subthalamic nucleus, are 

involved in the processing of reward and motivation. 

If the basal ganglia are damaged, some functions, such as the control of voluntary movements, eye 

control or procedural learning, could also be severely and irreversibly altered. The basal ganglia are 

extremely important for human sociality: they help decide which of the possible behaviors is most 

appropriate to perform at a given time based on the circumstances. 
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Figure 17 Basal Ganglia (BG) in its most representative slices. 

 

3.3.7 Cerebellum   

Cerebellum's functions revealing connectivity to motor and nonmotor cerebral areas. Within the 

motor domain, the cerebellum is seen as supporting the efficient and effective implementation of 

behavior. Cerebellum controls and coordinates complex movements and is important for adapting 

movements to changes in feedback. It does not initiate movement, but contributes to coordination, 

precision, and accurate timing:  it receives sensory and motor information from descending cortical 

pathways and ascending peripheral pathways. It has also connections to the parietal, pre-motor, and 

frontal cortices. A meta-analysis by Stoodley and Schmahmann revealed that the right hemisphere 

being more active for language and the left for visuospatial tasks. Peter Mariën and colleagues 

assessed the role of cerebellum in language associated in terms of structure involved in the “handling” 

of phonetic timing information. Some studies reveal that the cerebellum is involved during 

‘’executive function’’ such as: directing attention, decision making, working memory, but it may not 

be possible to highlight purely executive cerebellar region (Goel et al. 2000) (STOODLEY and 

SCHMAHMANN 2009). 

 

 
Figure 18 Cerebellar (Cb) network in its most representative slices 
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4. FMRI CHARACTERIZATION OF INTRINSIC BRAIN NETWORKS 

RELEVANT FOR MOTOR CONTROL WITH AND WITHOUT VISUAL 

FEEDBACK BY FRACTAL DIMENSION 

4.1 Abstract 

The bilateral visuo-parietal-motor network is responsible for fine control of hand movements. 

However, the subregions devoted to maintaining contraction stability in the presence/absence of 

visual feedback remain unclear. It is widely recognized that continuous sensory feedback plays a 

crucial role in accurate motor control in everyday life. Feedback information is used to adapt force 

output and to correct errors. While the primary motor cortex contralateral to the movement (cM1) 

plays a dominant role in this control, converging evidence supports the idea that the ipsilateral 

primary motor cortex (iM1) also directly contributes to hand and finger movements. Similarly, when 

visual feedback is available, the primary visual cortex (V1) and the visuospatial network and their 

interactions with the motor network are essential for accurate motor performance. To clarify this 

problem and investigate the regions involved in a visuomotor task, we performed functional magnetic 

resonance imaging (fMRI) measurements during isometric compression of a compliant rubber bulb, 

at 10% of maximum voluntary contraction, both with (visuomotor task) and without visual feedback 

(motor task).  

Here, by using a multivariate approach focusing on intrinsic connectivity between voxels through 

group ICA of fMRI Toolbox (GIFT), we have answered the following two main questions: 

1) which are the networks involved during a motor task (i.e. without visual feedback) and a 

visuomotor task (i.e. with visual feedback)? 

2) Is there any hemodynamic signal complexity difference between the visuomotor and the motor 

task?  

Interestingly, we have found that during the visuomotor task, the involvement of the visuospatial 

network (FEF), the ipsilateral primary motor area (iM1), the contralateral primary motor area (cM1), 

the sensorimotor network (SMN) the Executive Control Network (ExCN), the Silence Network (SN), 

the Default Mode Network (DMN), the Basal Ganglia (BG), the Cerebellum (Cb) and Precuneus are 

essential for the fine motor control of the movement while maintaining the grip force level indicated 

by the visual feedback together with higher complexity estimated by Higuchi’s Fractal Dimension. 

4.2 Introduction 

A key component of human interaction with our surrounding environment is the planning and 

execution of motor actions to coordinate movements of the body. Grasping and manipulation of 
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objects in a controlled and precise manner is an essential action that depends upon smooth 

coordination and integration of diverse sensory components such as visual cues, tactile and cutaneous 

feedback, grip force control and internal representations. (Porcaro, Mayhew, and Bagshaw 2021) The 

organization of the brain's activity during the coordination of precision or force gripping, using either 

dynamic or isometric contractions, has been investigated by numerous functional magnetic resonance 

imaging (fMRI) studies as a foundation for studying more complex motor tasks. This body of work 

has identified a bilateral fronto-parieto cerebellar network, primarily comprised of primary 

sensorimotor cortex (M1/S1), dorsal and ventral premotor cortices (PMd and PMv), supplementary 

and cingulate motor areas (SMA and CMA), prefrontal cortex, parietal association cortex and the 

cerebellum. (Mayhew et al. 2017) 

However, two aspects have been largely neglected by previous studies which, impairing a complete 

understanding. First, most previous studies have focused on understanding unimanual motor behavior 

by studying only task activations in cortical, sub-cortical and cerebellar structures. The traditional 

view has long held that motor execution is lateralized, with the activation of the contralateral primary 

motor cortex (cM1) playing a dominant role. However, during unimanual motor and somatosensory 

tasks the activity of ipsilateral M1 (iM1) is neither quiescent nor idling but substantially perturbed by 

the task, typically in the form of a reduction in mu frequency (8– 13 Hz) M/EEG power or fMRI 

signal below baseline levels. (Verstynen et al. 2005b; Verstynen and Ivry 2011; Pfurtscheller and 

Lopes Da Silva 1999; Neuper, Wörtz, and Pfurtscheller 2006) Second, the visual feedback signal 

control seems to emphasize this aspect, especially during fine movement control. (Porcaro, Mayhew, 

and Bagshaw 2021) 

From a metrological point of view, another key point is that all the studies using fMRI to study motor 

control and execution have used the mass-univariate voxel-based approach, which focuses on 

segregating and localizing processes, failing to account for the integration across functions within 

more extensive networks. In addition, the mass-univariate voxel-based analysis also relies on 

subtraction methods between conditions, placing greater emphasis on differences then similarities 

between processes. Functional connectivity analysis is an alternative multivariate method to assess 

the functional architecture of the central nervous system that integrates brain signals across multiple 

regions. This approach uses correlations between distant regions as the dependent variable. 

Independent component analysis (ICA) is often used to identify clusters of regions that show high 

correlations of signal change within a given time window. These clusters are assumed to reflect 

intrinsic connectivity networks. Consistent intrinsic networks have been repeatedly identified using 

ICA. These include networks that connect homologous regions processing visual, auditory, and 

sensory-motor output. But also, higher cognitive function (Marino et al. 2019) such as the default 
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mode network (anterior and posterior midline and inferior parietal); the lateralized dorsal frontal-

parietal network, putatively involved in attention; the saliency network which comprises the insula 

and the anterior cingulum; the frontal network involving prefrontal, frontotemporal, and cingulate 

cortex, thought to reflect executive control; the left-lateralized ventral, frontal, and parietal network, 

involved in language processing and the precuneus, basal ganglia, and a cerebellum network. 

Importantly, similar networks are detected when participants are engaged in a task (goal-driven 

behavior). In addition, differences between specific task conditions are modelled as a reconfiguration 

of connections within and between networks. It has been argued that the task-based spatial ICA data-

driven approach is advantageous over conventional mass-univariate analysis of signal amplitude 

change. This is because it does not rely on assumptions regarding the time course, the temporal 

characteristics, and the shape of the hemodynamic response function.  

In this thesis, we analyzed fMRI data recorded from sixteen healthy volunteers  (Mayhew et al. 2017) 

using a multivariate data-driven approach focusing on intrinsic connectivity between voxels through 

group ICA of fMRI Toolbox (GIFT), asking the following main questions:  

1. which are the networks involved during a motor task (i.e. without visual feedback) and a 

visuomotor task (i.e. with visual feedback)? 

2. Is there any hemodynamic signal complexity difference between the visuomotor and the 

motor task and in which brain networks?  

We have answered these two questions by recording the hemodynamic brain activity by fMRI 

technique in sixteen healthy right-handed volunteers during a motor (M - i.e. without visual 

feedback) and visuomotor (VM - i.e. with visual feedback) task performed by an isometric 

contraction by squeezing a semi-compliant rubber bulb with their right hand.  

4.3 Material and method  

4.3.1 Partecipants 

Sixteen right-handed volunteers (age = 26±4 years, 7 females) performed an isometric contraction of 

a pneumatic rubber bulb (Van Wijk et al. 2009) opposing the thumb to the first two fingers of their 

right-hand. Handedness of every subject was assessed using the Edinburgh handedness inventory, 

group mean ± standard deviation = 91.8 ± 14.1. Written informed consent was obtained from all 

participants and the protocol was approved by the Research Ethics Board of the University of 

Birmingham. 
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4.3.2 Experimental Paradigm 

Individual's maximal voluntary contraction (MVC) of this grip was measured prior to the experiment 

using a mechanical hand dynamometer (0–100 kgs, Lafayette 78010, Indiana). Three trials were 

performed where subject's held maximum contraction for 5 s and the mean force value across trials 

was used as their MVC. The pneumatic device enabled the accurate measurement of contraction 

force, thus enabling task performance to be quantified. An increase in the contraction force applied 

to the rubber bulb increased the pneumatic pressure inside a rubber tube, which was translated into 

an analogue electrical signal by in-house electronics and recorded by a Ni-DAQ (National 

Instruments) (Van Wijk et al. 2009). Prior to the experiments, the pneumatic equipment was 

calibrated so that the conversion of applied force to current was known. The contraction force was 

continuously recorded throughout all experiments at 100 Hz sampling rate.  

During the experiment, subjects were instructed to maintain the isometric contraction for the 5-second 

trial duration 10% of MVC. Throughout the experiment subjects viewed a visual display, which was 

projected onto a screen situated behind them at the rear of the scanner bore, via a mirror mounted on 

the MRI headcoil. Subjects kept their eyes open at all times and maintained fixation upon a vertical, 

white force-gauge that was centrally displayed upon a grey background throughout. The position of 

the segments aside the gauge indicated the required force (i.e. the 10% MVC), and their appearance 

communicated the onset of each trial (Fig. 19). 

Subjects were instructed to smoothly increase the contraction force and to then maintain this target 

force level as accurately as possible until the end of the trial, signaled by the disappearance of the two 

segments aside the gauge. At the trial offset, subjects were instructed to terminate the contraction and 

completely relax their hand for the duration of the inter-stimulus interval lasting either 5, 7 or 9 s. 

The choice of task durations was motivated by ensuring a stable and reliable contraction period; 

secondly that we recorded a sufficient number of trials, for both 10% condition, to allow meaningful 

correlations between fMRI responses and single-trial performance to be calculated, without creating 

an over-long total experimental duration. Isometric contractions at the force levels were executed in 

two experimental conditions (see Fig. 16 for a schematic representation of the task display): 

1) Visuomotor condition (VM), where a horizontal, black force indicator bar appeared centrally in 

the force gauge upon trial onset. The vertical position of this horizontal indicator provided continuous 

visual feedback information to the subject about the exerted contraction force (Fig.19 B). The force 

indicator was removed from the visual display at trial offset. 

2) Motor condition (M), where subjects were asked to perform the isometric contraction without the 

display of the horizontal force indicator (Fig.19 C). 
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Although matching the target force level was obviously more difficult in this M-task, subjects had 

been familiarized with the task during a single-run of each of the tasks conducted outside of the MRI 

scanner immediately before the fMRI experiment and were reasonably competent at performing the 

task at the required force levels. 

Experimental cues were visually presented to participants via a projector display and the visual 

display was controlled using the Psychophysical toolbox running in MATLAB (MathWorks). 

Immediately before fMRI scanning each subject performed a practice run of the VM and M tasks to 

familiarize them with the task and eliminate learning effects. 

During fMRI, two experimental runs of each of the VM- and M-task conditions were acquired in an 

inter leaved order that was randomized across subjects.  

 

 

Figure 19. Experimental conditions. Illustration of the visual display during the task conditions. A rectangular white 

force gauge was displayed throughout all runs of the experiment and served as the resting fixation condition (A) during 

the 5, 7 or 9 s inter-stimulus interval. The visual display during the whole 5 s duration of the visuomotor feedback (VM) 

task of the MVC10% (B) and motor (M) task 10% of the MVC (C) contractions are also shown. The trial onset GO 

signal was provided by the appearance of the two black side-bars instructing the target force level required in each 

trial. In the VM-task only, a horizontal black bar indicating the current contraction force was also displayed from trial 

onset. This force indicator bar moved vertically up/down the screen when the subject exerted greater/lesser force to 

provide real-time visual feedback of task performance. The movement of the indicator bar is illustrated in the figure 

using dashed line arrows that were not displayed during the experiment. 

4.3.3 fMRI data acquisition  

All experiments were conducted at the Birmingham University Imaging Centre using a 3T Philips 

Achieva MRI scanner. An eight channel phased-array head coil was used to acquire T1-weighted 
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anatomical image (1 mm isotropic voxels) and four task-related whole-brain T2*-weighted, 

functional EPI data (365 volumes, 3x3×4 mm voxels, 32 slices, TR=2000 ms, TE=35 ms, SENSE 

factor=2, flip angle=80°). Cardiac and respiratory cycles were continuously recorded (pulse oximeter 

and respiratory belt 

4.3.4 fMRI Pre-processing and analysis 

4.3.4.1  fMRI analysis by Statistical Parametric Mapping (SPM-Toolbox) 

The fMRI data were analyzed using SPM12 (Wellcome Department of Imaging Neuroscience, 

London; https://www.fil.ion.ucl.ac.uk/spm/). Pre-processing of the data included slice time 

correction, spatial realignment to correct for movement artefacts and motion by distortions 

interactions and normalized to the MNI standard space. The data were re-sampled given a 2x2x2 

voxel size and smoothed using 6 FWHM Gaussian Kernel to account for residual inter-subject 

differences and to accommodate assumptions of random field theory used for family wise error 

corrections. We first estimated the effect size for each participant on each of the four conditions (recall 

2x2 design) using the general linear model. Each condition was modelled by a separate regressor; the 

onsets of each trial corresponded to the time when a correct response was given. All the regressors 

were convolved with three bases functions: the canonical HRF, its derivatives and dispersions. To 

correct for signal changes due to head movement, the 6 realignment parameters were included in the 

design matrix. An additional set of regressors was added for force contraction.  

4.3.4.2 fMRI analysis by Group ICA of fMRI Toolbox (GIFT) 

Data were decomposed into functional networks using a group-level spatial ICA as implemented in 

the GIFT toolbox (https://trendscenter.org/software/gift/). The individual datasets were temporally 

concatenated and reduced for computational feasibility through three stages of principal component 

analysis (PCA) in order to reach the final dataset, which was then decomposed by ICA with Infomax 

(Bell and Sejnowski 1995) algorithm into 100 (ICs=100) spatially independent components.  

In GIFT, after each subject’s functional data were reduced, the data were then concatenated into 

groups and put through another data reduction step. The number of subjects to put into each group is 

called partitions with the number of datasets in a partition being equal to the one-fourth of the number 

of data-sets selected for. After reduction within each partition the data were stacked into one group 

and put through the final data reduction. At this stage, the number of components was estimated using 

the minimum description length criteria (MDL).  

https://www.fil.ion.ucl.ac.uk/spm/).
https://trendscenter.org/software/gift/
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Figure 20. Schematic of the analysis pipeline. Boxes on the left indicate general steps potentially applicable to a variety 

of data and analysis types; boxes on the right indicate particular choices made for the data and analysis presented 

here. 

4.3.4.3 Task-related networks 
In order to compute the degree of task-relatedness of component we regressed the corresponding 

time-courses against the design matrix, using the temporal multiple linear regression implemented in 

GIFT. We performed temporal sorting fourth times one for each conditions of interest: Visuomotor 

(VM), Motor (M), selecting in turn the regressors associated to each condition. Stats on beta weights 
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option in Utility of GIFT toolbox after temporal sorting was used, it allows one to test the significance 

of the ICs obtained. The resulting beta weights (β) reflect the degree to which the task events of 

interest modulated a component. β for each task condition was tested against zero using one-way 

ANOVA (Regressor). 28 indipendent components (ICs) were selected for the final analysis; only the 

ICs with a p-value that survived to False Discovery Rate (FDR) correction were considered. ICs were 

named accordingly to the template (Functional ROIs-

https://findlab.stanford.edu/functional_ROIs.html) they were spatially correlated with or based on 

visual inspection of the corresponding spatial map. 

4.3.5 Fractal dimension: Theoretical definition and practical estimation 

4.3.5.1 Fractal Analysis  

In geometry, fractal objects are peculiar with respect to ordinary shapes because they exhibit self-

similarity, i.e. at any scale or level of magnification, they show exact or approximate similarity to a 

part of themselves (Di Ieva et al. 2014). The complexity or unevenness of fractal patterns can be 

described by fractal (fractional) dimensions (FDs) that are strictly larger than their topological or 

geometrical dimension (δ), although being lower than the successive topological dimension (δ + 1). 

Although FDs seem purely theoretical concepts, they have been employed to model several 

phenomena in nature (Di Ieva et al. 2014).  

In the time domain, FD represents the amplitude of the signal under consideration on a plane as a 

function of time. As a consequence of this planar geometry, its dimension is limited between 1 and 

2, since a simple curve has dimension equal to 1, while a plane has dimension equal to 2. FD will be 

equal to 2 for time series with high complexity and no memory of the signal (i.e. the overall signal 

can-not be predicted using an individual portion of the signal), such as white random noise, while it 

will be equal to 1 for time series with low or no complexity in the signal, such as a ramp line, which 

is characterized by full memory (i.e. the overall signal using can be predicted using a portion of the 

signal itself). More-over, it has been demonstrated that higher values of FD correspond to the presence 

of higher frequencies in the signal’s Fourier spectrum and vice versa (Cottone et al. 2017; Klonowski 

2007; Zappasodi et al. 2014). 

This relationship might not be linear, in fact, has been demonstrated that it was rather quadratic 

(Marino et al. 2019). There are many methods used to calculate FD, but the widely accepted ones are 

Katz’s and Higuchi’s methods, respectively, (Katz 1988) with the latter considered the most accurate 

to estimate FD (Katz 1988).  

https://findlab.stanford.edu/functional_ROIs.html
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4.3.5.2 Higuchi’s fractal dimension 

Higuchi’s Fractal Dimension (FD) (Higuchi 1988) is a quantitative measure of signal dynamics. 

Linear methods commonly used for signal analysis, such as the well-known FFT and wavelet 

transformation (WT), are good choices if the analyzed signals are stationary. However, 

neurophysiological processes are generally nonstationary and nonlinear by nature. Knowing that FD 

is an accurate numerical measure no matter what the properties (stationary, nonstationary, 

deterministic or stochastic) of the analyzed signal, it is reasonable to accept this advantage over 

widely used linear methods. 

The method for calculating the fractal dimension of a curve in a plane was proposed by Higuchi in 

1988 (Higuchi 1988). Higuchi’s fractal dimension is a nonlinear measure of waveform complexity in 

the time domain. Discretized functions or signals could be analyzed as time sequences x(1), x(2),…, 

x(N), where N is the total number of samples. From the starting time sequence, a new self-similar 

time series 𝑋𝑘
𝑚  was calculated as: 

                                 𝑋𝑘
𝑚: 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘),… , 𝑥 (𝑚 + 𝑖𝑛𝑡 [

𝑁−𝐾

𝑘
] 𝑘)                          (4.1)  

for m = 1, 2,…,k where m is initial time; k is the time interval, k = 1,…, kmax;  kmax is a free parameter, 

and int(r) is the integer part of the real number r. “The length” of the curve Lm(k) was computed for 

each of the k time series or curves 𝑋𝑘
𝑚. 

                      𝐿𝑚(𝑘) =
1

𝑘
[(∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1)𝑘)|)

𝑁−1

𝑖𝑛𝑡[
𝑁−𝑚

𝑘
]𝑘
]

𝑖𝑛𝑡[(𝑁−𝑚)/𝑘]
𝑖=1                   (4.2) 

 

where N is the length of the original time series X and (N−1)/{int[(N − m)/k]k} is a normalization 

factor. Lm(k) was averaged for all m forming the mean value of the curve length L(k) for each k = 

1,…, kmax as 

                                                      𝐿(𝑘) =  
∑ 𝐿𝑚(𝑘)𝑘

𝑚=1

𝑘
.                                               (4.3) 

 

An array of mean values L(k) was obtained and the FD was estimated as the slope of least squares 

linear best fit from the plot of ln(L(k)) versus ln(1/k):  

                                                           FD = ln(L(k)) / ln(1 k).                                                        (4.4) 

In practice, the original curve or signal can be divided into smaller parts with or without overlapping, 

called “windows”. Then, the method for computing FD values should be applied to each window 

where N should be seen as the length of the window. So, FD values are calculated for each window, 

with or without overlap. Individual FD values can be averaged across all windows for the entire curve 

and the mean FD value can be used as a measure of curve complexity (Porcaro et al. 2020b). 
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The choice of the free parameter k has a crucial role in FD estimation. For each window we estimated 

values of FD for k = 7. We have obtained a value of FD for each subject, repeating the procedure for 

both tasks. 

4.3.6 Statistical Analysis 

Statistical analysis on beta weights as implemented in GIFT toolbox was performed to identify 

differences between conditions (M vs. VM). The resulting beta weights (β) reflect the degree to 

which a component was modulated by the events of interest, i.e. how well did the IC’s time course 

correlate with the condition time-course. To test for FD differences in each ICs between M and VM 

task, paired t-tests was performed. False discovery rate (FDR) was used to correct for multiple 

comparisons (Nichols and Holmes 2002). 

4.4 Results  

4.4.1 GIFT Results  

4.4.1.1 Task-related networks  

One hundred ICs were identified. Of these, 28 were determined to be task-related after One-Way 

Anova (Regressor). In the table the results, after One Way ANOVA (Regressor) implementation are 

reported. P-values and networks for all the components FDR corrected in each condition of interest 

are present. The components common to the tasks due are highlighted. 

VISUOMOTOR MOTOR 

ICs p_valueFDR Network ICs p_valueFDR Network 

Visual Network (VN) 

2 0.03 hVN   

3 0.01 pVN   

70 0.007 pVN   

74 0.001 pVN     74       0.03              pVN 

Sensorimotor Network (SMN) 

7 <0.001 iM1    

40 <0.001 cM1 40 0.001 cM1 

92 0.03 SMN 92 0.03 SMN 

 

Frontal Eye Fields (FEF) 

44 <0.001 FEF   
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46 <0.001 FEF       46        0.02               FEF 

Silence Network (SN) 

32  0.003 aSN 64 0.007 aSN 

69 <0.001 aSN 89 0.008 aSN 

Executive Control Network (ExCN) 

4 0.001 lExCN 4 0.001 lExCN 

54 0.005 rExCN 54 0.005 rExCN 

78 0.02 rExCN   

Default Mode Network (DMN) 

34 0.03 dDMN   

42 0.02 vDMN       42        0.002           vDMN 

68 0.01 dDMN   

83 0.005 dDMN   

Basal Ganglia (BG) 

87 0.02 BG 81 0.009 BG 

Cerebellum (CB) 

27 0.02 CB 27 <0.001 CB 

45 0.04 CB 45 0.007 CB 

60 0.001 CB 60 0.004 CB 

   77 0.007 CB 

Precuneus 

57 0.005 Prec 49 0.007 Prec 

Table 1  Task-related components. All the FDR corrected value for each condition are reported. 

 

In Figure 21 all the fifteen components task-related are shown. These networks included the visual 

network (IC 2, IC 3, IC 70, IC 74), the Frontal Eye Field (IC 44, IC 46), default mode network (IC 

34, IC 42, IC 68, IC 83), silence network (IC 32, IC 64, IC 69, IC 89), executive control network (IC 

4, IC 54, IC 78,) sensorimotor network (IC 7, IC 40, IC 92), cerebellum network (IC 27, IC 45, IC 

60, IC 77) and basal ganglia (IC 81, IC 87).  In the Table 2 we reported the cortical localization of 

the maximum peak activation for each network. 
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Figure 21. Spatial map (SMs) of the 28 ICs identified as task-related. They are displayed at the three most informative slices (Axial, 

Sagittal and Coronal views). They are divided into groups based on their anatomical and functional properties and include default 

mode network, attention network, cerebellum, basal ganglia, sensorimotor network. Each colored circle represents a different 

condition of interest: red for the Visuomotor condition, blue for the Motor condition. 

 

 

  Area  Brodmann 

Area 

Max Value (x, y, z) 

L/R 

MNI (x, y, z) 

VISUAL 

NETWORK 

        

IC 02 Declive * 11.4 (-48, -63, -19)/19.9 

(48, -57, -19) 

(-48, -64, -26)/(48, -58, -

26) 

  Fusiform Gyrus 19, 37 7.8 (-48, -57, -16)/19.2 

(48, -60, -15) 

(-48, -58, -22)/(48, -61, -

22) 

  Tuber * 5.5 (-45, -52, -23)/13.2 

(48, -55, -23) 

(-45, -52, -30)/(48, -55, -

30) 

  Culmen * 5.2 (-45, -49, -19)/10.8 

(45, -49, -19) 

(-45, -49, -26)/(45, -49, -

26) 
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  Inferior Temporal 

Gyrus 

20, 37 4.0 (-50, -54, -12)/9.9 

(50, -54, -12) 

(-51, -55, -18)/(51, -55, -

18) 

  Sub-Gyral * 3.1 (-48, -60, -9)/7.3 (48, 

-63, -9) 

(-48, -61, -14)/(48, -64, -

14) 

  Middle Occipital 

Gyrus 

18, 19, 37 4.1 (-50, -63, -9)/6.6 (42, 

-68, -8) 

(-51, -64, -14)/(42, -70, -

14) 

          

IC 03 Lingual Gyrus 17, 18, 19 41.0 (-3, -68, 2)/40.9 (3, -

68, 2) 

(-3, -70, -2)/(3, -70, -2) 

  Cuneus 7, 17, 18, 19, 

23, 30 

37.6 (-3, -74, 6)/38.1 (3, -

74, 6) 

(-3, -76, 2)/(3, -76, 2) 

  Posterior Cingulate 23, 30, 31 17.9 (-3, -64, 12)/28.5 (6, 

-67, 13) 

(-3, -67, 10)/(6, -70, 10) 

  Culmen of Vermis * 27.8 (0, -65, -2)/25.2 (3, -

62, 1) 

(0, -67, -6)/(3, -64, -2) 

  Culmen * 24.3 (-6, -65, -2)/26.2 (6, 

-65, -2) 

(-6, -67, -6)/(6, -67, -6) 

  Precuneus 23, 31 10.2 (0, -70, 24)/15.6 (3, 

-67, 20) 

(0, -73, 22)/(3, -70, 18) 

  Middle Occipital 

Gyrus 

* 7.4 (-27, -62, 5)/8.6 (27, -

62, 5) 

(-27, -64, 2)/(27, -64, 2) 

  Extra-Nuclear * 6.2 (-24, -62, 9)/8.3 (24, -

56, 8) 

(-24, -64, 6)/(24, -58, 6) 

  Sub-Gyral 37 7.9 (-24, -65, -2)/8.3 (24, 

-65, -2) 

(-24, -67, -6)/(24, -67, -6) 

  Declive * 6.4 (-6, -74, -11)/7.7 (9, -

74, -11) 

(-6, -76, -18)/(9, -76, -18) 

  Fusiform Gyrus 19 4.4 (-21, -65, -8)/7.5 (21, 

-65, -8) 

(-21, -67, -14)/(21, -67, -

14) 

  Lateral Ventricle * 5.3 (-27, -65, 9)/7.3 (27, -

59, 8) 

(-27, -67, 6)/(27, -61, 6) 

  Declive of Vermis * 5.5 (-3, -71, -12)/6.3 (3, -

74, -11) 

(-3, -73, -18)/(3, -76, -18) 

          

IC 70 Cuneus 17, 18, 19, 23, 

30 

76.5 (-3, -91, 3)/86.9 (3, -

91, 6) 

(-3, -94, -2)/(3, -94, 2) 

  Lingual Gyrus 17, 18, 19 74.2 (0, -88, 3)/75.0 (3, -

91, 0) 

(0, -91, -2)/(3, -94, -6) 

  Middle Occipital 

Gyrus 

18, 19 32.1 (-12, -91, 14)/48.5 

(12, -91, 14) 

(-12, -94, 10)/(12, -94, 

10) 

  Sub-Gyral * 22.1 (0, -83, -8)/6.1 (24, -

82, 2) 

(0, -85, -14)/(24, -85, -2) 

  Inferior Occipital 

Gyrus 

17 13.0 (-12, -92, -7)/4.1 

(18, -89, -7) 

(-12, -94, -14)/(18, -91, -

14) 
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  Culmen of Vermis * 8.6 (-3, -62, 1)/4.3 (3, -

62, 1) 

(-3, -64, -2)/(3, -64, -2) 

  Precuneus 7 7.7 (-3, -68, 49)/3.6 (9, -

68, 49) 

(-3, -73, 50)/(9, -73, 50) 

  Posterior Cingulate 30 6.4 (-3, -59, 8)/7.2 (3, -

59, 8) 

(-3, -61, 6)/(3, -61, 6) 

  Declive * 4.4 (-6, -83, -18)/5.0 (6, -

80, -11) 

(-6, -85, -26)/(6, -82, -18) 

          

IC 74 Extra-Nuclear * 14.9 (-15, -55, 19)/21.2 

(15, -55, 19) 

(-15, -58, 18)/(15, -58, 

18) 

  Posterior Cingulate 23, 29, 30, 31 20.5 (-15, -58, 16)/21.0 

(12, -56, 16) 

(-15, -61, 14)/(12, -58, 

14) 

  Precuneus 7, 19, 23, 31, 

39 

18.9 (-9, -64, 20)/20.7 

(12, -58, 19) 

(-9, -67, 18)/(12, -61, 18) 

  Sub-Gyral * 19.1 (-15, -61, 20)/19.4 

(15, -55, 23) 

(-15, -64, 18)/(15, -58, 

22) 

  Cuneus 7, 17, 18, 19, 

23, 30 

17.7 (-12, -59, 8)/12.3 (9, 

-59, 8) 

(-12, -61, 6)/(9, -61, 6) 

  Lingual Gyrus 17, 18, 19 13.6 (-12, -56, 5)/10.9 

(15, -53, 5) 

(-12, -58, 2)/(15, -55, 2) 

  Cingulate Gyrus 31 10.4 (0, -61, 27)/13.2 (12, 

-55, 27) 

(0, -64, 26)/(12, -58, 26) 

  Parahippocampal 

Gyrus 

18, 28, 30, 35, 

36, 37 

10.5 (-12, -50, 4)/10.0 

(18, -50, 4) 

(-12, -52, 2)/(18, -52, 2) 

  Lateral Ventricle * 8.1 (-27, -56, 12)/10.5 

(21, -47, 15) 

(-27, -58, 10)/(21, -49, 

14) 

  Angular Gyrus 39 7.4 (-36, -75, 31)/10.4 

(39, -72, 31) 

(-36, -79, 30)/(39, -76, 

30) 

  Middle Temporal 

Gyrus 

19, 39 7.5 (-42, -76, 24)/8.9 (42, 

-70, 27) 

(-42, -79, 22)/(42, -73, 

26) 

  Superior Occipital 

Gyrus 

19 8.1 (-39, -75, 28)/6.7 (36, 

-75, 28) 

(-39, -79, 26)/(36, -79, 

26) 

  Superior Temporal 

Gyrus 

22, 39 5.6 (-36, -56, 16)/6.6 (45, 

-58, 19) 

(-36, -58, 14)/(45, -61, 

18) 

  Culmen * 4.6 (-9, -56, 1)/5.0 (9, -

45, 1) 

(-9, -58, -2)/(9, -46, -2) 

  Thalamus * 4.5 (-3, -12, 6)/4.9 (3, -

12, 10) 

(-3, -13, 6)/(3, -13, 10) 

          

SENSORIMOTOR NETWORK 
 
IC 07 Precentral Gyrus 4, 6, 13, 43 3.6 (-59, -14, 39)/48.5 

(42, -13, 58) 

(-60, -16, 42)/(42, -16, 

62) 
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  Postcentral Gyrus 1, 2, 3, 5, 7, 

40, 43 

4.3 (-56, -10, 43)/39.8 

(42, -24, 58) 

(-57, -13, 46)/(42, -28, 

62) 

  Middle Frontal 

Gyrus 

6 3.3 (-33, -1, 61)/33.5 (39, 

-4, 57) 

(-33, -4, 66)/(39, -7, 62) 

  Inferior Parietal 

Lobule 

40 3.3 (-45, -33, 55)/24.2 

(48, -33, 55) 

(-45, -37, 58)/(48, -37, 

58) 

  Paracentral Lobule 4, 31 3.4 (0, -16, 47)/6.2 (6, -

10, 47) 

(0, -19, 50)/(6, -13, 50) 

  Superior Temporal 

Gyrus 

38 3.3 (-50, 18, -26)/3.2 (56, 

-7, 6) 

(-51, 20, -30)/(57, -7, 6) 

          

IC 40 Precentral Gyrus 4, 6 66.1 (-36, -18, 62)/4.9 

(59, -11, 39) 

(-36, -22, 66)/(60, -13, 

42) 

  Postcentral Gyrus 1, 2, 3, 5, 40, 

43 

58.1 (-45, -16, 54)/6.1 

(50, -25, 51) 

(-45, -19, 58)/(51, -28, 

54) 

  Superior Frontal 

Gyrus 

6 38.0 (-30, -9, 65)/3.8 (3, 

5, 53) 

(-30, -13, 70)/(3, 2, 58) 

  Inferior Parietal 

Lobule 

40 29.6 (-45, -33, 55)/3.0 

(50, -28, 47) 

(-45, -37, 58)/(51, -31, 

50) 

  Middle Frontal 

Gyrus 

6 24.5 (-33, -4, 61)/5.4 (39, 

-4, 57) 

(-33, -7, 66)/(39, -7, 62) 

  Medial Frontal 

Gyrus 

6 10.2 (-3, -1, 50)/6.2 (3, -

1, 50) 

(-3, -4, 54)/(3, -4, 54) 

  Paracentral Lobule 31 9.3 (-3, -10, 47)/3.2 (3, -

10, 47) 

(-3, -13, 50)/(3, -13, 50) 

  Cingulate Gyrus 24, 31 9.2 (-3, -4, 46)/4.3 (3, 1, 

46) 

(-3, -7, 50)/(3, -1, 50) 

          

IC 92 Inferior Parietal 

Lobule 

2, 40 26.5 (-65, -26, 29)/13.7 

(59, -23, 32) 

(-66, -28, 30)/(60, -25, 

34) 

  Postcentral Gyrus 1, 2, 3, 40, 43 26.4 (-62, -22, 36)/20.5 

(62, -17, 36) 

(-63, -25, 38)/(63, -19, 

38) 

  Inferior Frontal 

Gyrus 

9, 44, 45 19.6 (-56, 9, 31)/10.7 (59, 

15, 23) 

(-57, 8, 34)/(60, 14, 26) 

  Precentral Gyrus 4, 6, 13, 43, 

44 

18.1 (-59, -19, 40)/18.1 

(59, -16, 40) 

(-60, -22, 42)/(60, -19, 

42) 

  Middle Frontal 

Gyrus 

6, 8, 9 16.5 (-53, 9, 35)/7.7 (56, 

9, 35) 

(-54, 8, 38)/(57, 8, 38) 

  Sub-Gyral 6, 40 11.4 (-36, -37, 37)/9.2 

(39, -31, 44) 

(-36, -40, 38)/(39, -34, 

46) 

  Transverse 

Temporal Gyrus 

41, 42 7.8 (-59, -18, 10)/7.4 (62, 

-12, 13) 

(-60, -19, 10)/(63, -13, 

14) 

  Insula 13, 40 6.7 (-50, -21, 14)/5.3 (50, 

-18, 17) 

(-51, -22, 14)/(51, -19, 

18) 
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  * * 5.9 (-56, 8, 5)/3.6 (59, 14, 

5) 

(-57, 8, 6)/(60, 14, 6) 

  Middle Temporal 

Gyrus 

37 3.8 (-53, -62, 1)/5.8 (53, -

56, -2) 

(-54, -64, -2)/(54, -58, -6) 

  Inferior Temporal 

Gyrus 

19, 37 4.9 (-53, -68, -2)/5.7 (53, 

-57, -6) 

(-54, -70, -6)/(54, -58, -

10) 

  Middle Occipital 

Gyrus 

37 3.1 (-53, -68, 5)/4.8 (50, -

60, -5) 

(-54, -70, 2)/(51, -61, -

10) 

  Cingulate Gyrus 24 4.7 (0, 4, 31)/3.6 (3, 1, 

31) 

(0, 2, 34)/(3, -1, 34) 

  Extra-Nuclear * 4.1 (-36, -4, 6)/3.3 (12, -

1, -8) 

(-36, -4, 6)/(12, -1, -10) 

  Superior Frontal 

Gyrus 

6 3.4 (-27, -1, 65)/3.9 (27, -

1, 65) 

(-27, -4, 70)/(27, -4, 70) 

          

DEFAULT MODE NETWORK 
 
IC 34 Anterior Cingulate 10, 24, 32, 33 20.8 (0, 35, 19)/20.4 (3, 

29, 11) 

(0, 35, 22)/(3, 29, 14) 

  Cingulate Gyrus 23, 24, 32 20.1 (0, 27, 30)/19.0 (3, 

27, 26) 

(0, 26, 34)/(3, 26, 30) 

  Medial Frontal 

Gyrus 

6, 8, 9, 10, 25, 

32 

17.1 (0, 41, 18)/19.1 (3, 

30, 30) 

(0, 41, 22)/(3, 29, 34) 

  Extra-Nuclear * 14.2 (-3, 20, 16)/16.4 (3, 

20, 16) 

(-3, 20, 18)/(3, 20, 18) 

  Sub-Gyral * 8.6 (-9, 20, 19)/9.5 (9, 31, 

8) 

(-9, 20, 22)/(9, 32, 10) 

  Declive * 8.7 (-6, -83, -18)/5.1 (6, -

80, -14) 

(-6, -85, -26)/(6, -82, -22) 

  Lateral Ventricle * 5.8 (-6, 20, 12)/8.4 (6, 20, 

12) 

(-6, 20, 14)/(6, 20, 14) 

  Superior Frontal 

Gyrus 

6, 8, 10 7.8 (-3, 57, -1)/7.5 (3, 57, 

-1) 

(-3, 59, 2)/(3, 59, 2) 

  Inferior Frontal 

Gyrus 

46, 47 5.1 (-39, 16, -13)/7.6 (36, 

19, -13) 

(-39, 17, -14)/(36, 20, -

14) 

  Caudate * 3.4 (-12, 8, 9)/4.6 (9, 17, 

12) 

(-12, 8, 10)/(9, 17, 14) 

  Superior Temporal 

Gyrus 

38 4.5 (-45, 13, -9)/4.5 (45, 

16, -13) 

(-45, 14, -10)/(45, 17, -

14) 

  Middle Frontal 

Gyrus 

6, 10, 46 4.1 (-39, 43, 11)/4.2 (39, 

41, 15) 

(-39, 44, 14)/(39, 41, 18) 

  Paracentral Lobule 31 4.0 (0, -13, 43)/3.3 (3, -

10, 43) 

(0, -16, 46)/(3, -13, 46) 

  Declive of Vermis * 3.5 (0, -74, -11)/3.7 (0, -

75, -15) 

(0, -76, -18)/(0, -76, -22) 
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  Lingual Gyrus * 3.5 (-6, -86, -11)/3.0 (3, -

83, -8) 

(-6, -88, -18)/(3, -85, -14) 

  Subcallosal Gyrus 25 3.0 (-3, 13, -12)/3.3 (3, 

13, -12) 

(-3, 14, -14)/(3, 14, -14) 

          

IC 42 Superior Frontal 

Gyrus 

6, 8, 9, 10 38.4 (-3, 39, 51)/35.6 (9, 

45, 47) 

(-3, 38, 58)/(9, 44, 54) 

  Medial Frontal 

Gyrus 

6, 8, 9, 10 34.4 (-3, 51, 40)/37.1 (6, 

56, 36) 

(-3, 50, 46)/(6, 56, 42) 

  Middle Frontal 

Gyrus 

8, 9, 10, 11 6.7 (-48, 16, 42)/12.3 (48, 

21, 41) 

(-48, 14, 46)/(48, 20, 46) 

  Precentral Gyrus 9 3.6 (-45, 24, 37)/6.6 (45, 

24, 37) 

(-45, 23, 42)/(45, 23, 42) 

  Anterior Cingulate 32 5.0 (-3, 38, 22)/5.8 (3, 38, 

22) 

(-3, 38, 26)/(3, 38, 26) 

  Inferior Frontal 

Gyrus 

9, 47 5.6 (-50, 39, -7)/5.6 (48, 

28, -13) 

(-51, 41, -6)/(48, 29, -14) 

  Cerebellar Tonsil * 3.3 (-9, -55, -33)/3.2 (6, -

55, -33) 

(-9, -55, -42)/(6, -55, -42) 

          

IC 68 Precuneus 7, 19, 23, 31, 

39 

35.2 (0, -52, 30)/31.8 (3, 

-55, 30) 

(0, -55, 30)/(3, -58, 30) 

  Cingulate Gyrus 23, 31 33.8 (0, -52, 27)/30.6 (3, 

-49, 26) 

(0, -55, 26)/(3, -52, 26) 

  Posterior Cingulate 23, 29, 30, 31 30.3 (0, -49, 23)/26.8 (3, 

-46, 23) 

(0, -52, 22)/(3, -49, 22) 

  Cuneus 7 26.0 (0, -64, 31)/18.0 (3, 

-66, 31) 

(0, -67, 30)/(3, -70, 30) 

  Sub-Gyral * 15.8 (-12, -49, 23)/6.4 

(15, -46, 23) 

(-12, -52, 22)/(15, -49, 

22) 

  Extra-Nuclear * 12.0 (-12, -55, 19)/6.2 (3, 

-41, 15) 

(-12, -58, 18)/(3, -43, 14) 

  Middle Temporal 

Gyrus 

21, 37, 39 7.4 (-50, -64, 27)/4.6 (50, 

-58, 23) 

(-51, -67, 26)/(51, -61, 

22) 

  Superior Temporal 

Gyrus 

22, 39 7.2 (-53, -61, 27)/6.2 (53, 

-55, 27) 

(-54, -64, 26)/(54, -58, 

26) 

  Angular Gyrus 39 7.1 (-45, -69, 35)/5.4 (50, 

-58, 34) 

(-45, -73, 34)/(51, -61, 

34) 

  Supramarginal 

Gyrus 

40 5.8 (-53, -61, 31)/5.9 (50, 

-55, 30) 

(-54, -64, 30)/(51, -58, 

30) 

  Postcentral Gyrus 2, 3, 5, 7 3.2 (-48, -30, 55)/5.2 (30, 

-38, 66) 

(-48, -34, 58)/(30, -43, 

70) 

  Inferior Parietal 

Lobule 

39, 40 5.1 (-45, -66, 38)/4.5 (48, 

-57, 38) 

(-45, -70, 38)/(48, -61, 

38) 
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  Inferior Temporal 

Gyrus 

21, 37 4.2 (-59, -10, -15)/4.7 

(50, -65, -2) 

(-60, -10, -18)/(51, -67, -

6) 

  Superior Parietal 

Lobule 

7 3.4 (-36, -69, 46)/4.2 (30, 

-50, 60) 

(-36, -73, 46)/(30, -55, 

62) 

  Middle Frontal 

Gyrus 

8, 9, 10, 46 3.5 (-48, 21, 38)/3.2 (45, 

51, -1) 

(-48, 20, 42)/(45, 53, 2) 

          

IC 83 Anterior Cingulate 10, 24, 25, 32 70.1 (-3, 39, -7)/69.2 (3, 

39, -7) 

(-3, 41, -6)/(3, 41, -6) 

  Medial Frontal 

Gyrus 

9, 10 63.3 (-3, 45, -7)/63.4 (3, 

45, -7) 

(-3, 47, -6)/(3, 47, -6) 

  Sub-Gyral * 38.7 (-12, 48, -7)/38.2 

(15, 39, -10) 

(-12, 50, -6)/(15, 41, -10) 

  Middle Frontal 

Gyrus 

9, 10, 11, 47 34.4 (-18, 42, -11)/33.0 

(18, 42, -11) 

(-18, 44, -10)/(18, 44, -

10) 

  Extra-Nuclear * 27.0 (-3, 28, 0)/26.6 (3, 

28, 0) 

(-3, 29, 2)/(3, 29, 2) 

  Superior Frontal 

Gyrus 

9, 10 21.1 (-9, 51, -1)/26.3 (21, 

45, -11) 

(-9, 53, 2)/(21, 47, -10) 

  Inferior Frontal 

Gyrus 

11, 47 19.6 (-21, 33, -10)/11.1 

(24, 31, -10) 

(-21, 35, -10)/(24, 32, -

10) 

  Lateral Ventricle * 8.8 (-12, 25, 1)/7.6 (9, 22, 

1) 

(-12, 26, 2)/(9, 23, 2) 

  Caudate * 4.8 (-12, 19, 1)/4.5 (12, 

19, -3) 

(-12, 20, 2)/(12, 20, -2) 

  
 

        

SILENCE NETWORK 
 
IC 32 Medial Frontal 

Gyrus 

6, 8, 9, 32 20.8 (-3, -4, 54)/22.4 (3, 

2, 53) 

(-3, -7, 58)/(3, -1, 58) 

  Superior Frontal 

Gyrus 

6, 8, 9 18.7 (-3, 8, 53)/20.7 (3, 8, 

53) 

(-3, 5, 58)/(3, 5, 58) 

  Sub-Gyral 6 17.7 (-21, -4, 57)/18.7 

(18, -1, 57) 

(-21, -7, 62)/(18, -4, 62) 

  Middle Frontal 

Gyrus 

6, 8, 9 16.0 (-15, -10, 58)/16.2 

(18, -1, 61) 

(-15, -13, 62)/(18, -4, 66) 

  Cingulate Gyrus 24, 31, 32 12.6 (0, 4, 46)/12.3 (6, 4, 

46) 

(0, 2, 50)/(6, 2, 50) 

  Precentral Gyrus 4, 6 12.1 (-27, -10, 54)/11.4 

(33, -7, 54) 

(-27, -13, 58)/(33, -10, 

58) 

  Postcentral Gyrus 2, 3, 4, 5, 40 8.0 (-21, -27, 58)/6.5 (21, 

-27, 62) 

(-21, -31, 62)/(21, -31, 

66) 

  Superior Parietal 

Lobule 

5, 7 4.2 (-21, -45, 59)/5.1 (21, 

-39, 59) 

(-21, -49, 62)/(21, -43, 

62) 
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  Paracentral Lobule 31 5.1 (-3, -10, 47)/4.9 (3, -

10, 47) 

(-3, -13, 50)/(3, -13, 50) 

  Inferior Frontal 

Gyrus 

9 3.6 (-50, 6, 31)/4.1 (56, 9, 

31) 

(-51, 5, 34)/(57, 8, 34) 

          

IC 64 Cingulate Gyrus 23, 24, 32 16.8 (-3, 24, 37)/19.1 (3, 

24, 37) 

(-3, 23, 42)/(3, 23, 42) 

  Medial Frontal 

Gyrus 

6, 8, 9, 32 15.5 (-3, 30, 37)/17.2 (3, 

30, 37) 

(-3, 29, 42)/(3, 29, 42) 

  Sub-Gyral 6, 8, 32 16.1 (-24, 13, 42)/15.1 

(27, 24, 37) 

(-24, 11, 46)/(27, 23, 42) 

  Middle Frontal 

Gyrus 

6, 8, 9, 10 15.5 (-24, 19, 41)/15.7 

(24, 21, 38) 

(-24, 17, 46)/(24, 20, 42) 

  Superior Frontal 

Gyrus 

6, 8, 9, 10 14.4 (-21, 16, 45)/12.2 

(21, 25, 45) 

(-21, 14, 50)/(21, 23, 50) 

  Precentral Gyrus 6, 9 6.1 (-39, -2, 42)/10.3 (33, 

21, 34) 

(-39, -4, 46)/(33, 20, 38) 

          

IC 69 Cingulate Gyrus 24, 31, 32 21.8 (0, -2, 46)/20.7 (3, 1, 

42) 

(0, -4, 50)/(3, -1, 46) 

  Medial Frontal 

Gyrus 

6, 32 18.0 (0, -4, 50)/16.8 (3, -

1, 50) 

(0, -7, 54)/(3, -4, 54) 

  Paracentral Lobule 6, 31 17.9 (-3, -10, 47)/16.6 (3, 

-10, 47) 

(-3, -13, 50)/(3, -13, 50) 

  Superior Frontal 

Gyrus 

6, 8, 9, 10 14.4 (-3, 39, 51)/8.8 (9, 

39, 51) 

(-3, 38, 58)/(9, 38, 58) 

  Sub-Gyral 6 12.4 (-21, -7, 46)/11.4 

(21, 1, 42) 

(-21, -10, 50)/(21, -1, 46) 

  Middle Frontal 

Gyrus 

6, 8, 9, 10 11.8 (-24, -4, 46)/11.5 

(24, -4, 46) 

(-24, -7, 50)/(24, -7, 50) 

  Precentral Gyrus 4, 6 10.1 (-24, -10, 50)/7.8 

(33, -7, 50) 

(-24, -13, 54)/(33, -10, 

54) 

  Postcentral Gyrus 2, 3, 7 5.9 (-30, -22, 47)/4.2 (18, 

-50, 67) 

(-30, -25, 50)/(18, -55, 

70) 

  Fusiform Gyrus 18, 19 5.8 (-27, -83, -14)/5.0 

(24, -80, -14) 

(-27, -85, -22)/(24, -82, -

22) 

  Declive * 5.5 (-24, -83, -18)/5.1 

(24, -81, -18) 

(-24, -85, -26)/(24, -82, -

26) 

  Lingual Gyrus 18 5.0 (-12, -86, -14)/3.5 

(18, -80, -14) 

(-12, -88, -22)/(18, -82, -

22) 

  Subcallosal Gyrus 25 4.4 (-3, 7, -12)/3.1 (3, 7, -

12) 

(-3, 8, -14)/(3, 8, -14) 

  Inferior Frontal 

Gyrus 

9, 44, 45 3.4 (-56, 6, 24)/3.8 (59, 

12, 20) 

(-57, 5, 26)/(60, 11, 22) 
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  Superior Parietal 

Lobule 

7 3.5 (-12, -68, 53)/3.0 (24, 

-59, 60) 

(-12, -73, 54)/(24, -64, 

62) 

  Extra-Nuclear * 3.1 (-3, -6, 10)/3.4 (3, -

15, 14) 

(-3, -7, 10)/(3, -16, 14) 

          

IC 89 Superior Temporal 

Gyrus 

21, 22, 38 18.7 (-45, -4, -5)/27.7 

(45, 7, -9) 

(-45, -4, -6)/(45, 8, -10) 

  Extra-Nuclear 13, 47 15.4 (-39, 10, -9)/24.6 

(42, 4, -9) 

(-39, 11, -10)/(42, 5, -10) 

  Inferior Frontal 

Gyrus 

13, 47 17.9 (-42, 13, -9)/22.6 

(42, 16, -13) 

(-42, 14, -10)/(42, 17, -

14) 

  Sub-Gyral 21 18.8 (-42, 4, -9)/22.1 (42, 

-1, -8) 

(-42, 5, -10)/(42, -1, -10) 

  Insula 13, 22 17.4 (-42, -7, -5)/22.1 

(45, 5, -5) 

(-42, -7, -6)/(45, 5, -6) 

  Lentiform Nucleus * 8.9 (-27, -7, -5)/14.8 (27, 

-7, -5) 

(-27, -7, -6)/(27, -7, -6) 

  Claustrum * 9.0 (-36, -19, -4)/14.0 

(36, -10, -5) 

(-36, -19, -6)/(36, -10, -6) 

  Parahippocampal 

Gyrus 

28, 34 7.5 (-27, -2, -12)/12.4 

(30, -4, -12) 

(-27, -1, -14)/(30, -4, -14) 

  Middle Temporal 

Gyrus 

21 5.8 (-50, -16, -4)/12.0 

(50, 1, -12) 

(-51, -16, -6)/(51, 2, -14) 

  Subcallosal Gyrus 34 6.5 (-27, 4, -12)/9.7 (21, 

4, -12) 

(-27, 5, -14)/(21, 5, -14) 

  Lateral Ventricle * 7.2 (-33, -16, -8)/8.2 (33, 

-16, -8) 

(-33, -16, -10)/(33, -16, -

10) 

  Thalamus * 5.6 (-3, -15, 3)/6.7 (3, -

18, 10) 

(-3, -16, 2)/(3, -19, 10) 

  Anterior Cingulate 25 4.5 (-3, 19, -6)/5.9 (3, 19, 

-9) 

(-3, 20, -6)/(3, 20, -10) 

  Middle Occipital 

Gyrus 

19 3.3 (-39, -82, 10)/3.4 (33, 

-82, 13) 

(-39, -85, 6)/(33, -85, 10) 

          

EXECUTIVE CONTROL NETWORK 

  

IC 04 Middle Frontal 

Gyrus 

6, 8, 9, 10, 46 35.6 (-50, 21, 34)/13.8 

(53, 27, 26) 

(-51, 20, 38)/(54, 26, 30) 

  Inferior Frontal 

Gyrus 

9, 13, 44, 45, 

46, 47 

26.0 (-53, 21, 23)/10.1 

(56, 26, 19) 

(-54, 20, 26)/(57, 26, 22) 

  Sub-Gyral 6 21.8 (-45, 20, 19)/10.0 

(45, 26, 19) 

(-45, 20, 22)/(45, 26, 22) 

  Precentral Gyrus 4, 6, 9, 44 21.4 (-45, 21, 34)/8.3 (48, 

21, 34) 

(-45, 20, 38)/(48, 20, 38) 
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  * * 4.4 (0, 36, 33)/4.0 (0, -78, 

-18) 

(0, 35, 38)/(0, -79, -26) 

  Medial Frontal 

Gyrus 

6, 8, 9, 32 9.5 (-3, 19, 45)/6.7 (3, 19, 

45) 

(-3, 17, 50)/(3, 17, 50) 

  Superior Frontal 

Gyrus 

6, 8, 9, 10 9.0 (-36, 16, 49)/5.9 (3, 

16, 49) 

(-36, 14, 54)/(3, 14, 54) 

  Cingulate Gyrus 32 8.2 (-3, 19, 41)/5.3 (3, 19, 

41) 

(-3, 17, 46)/(3, 17, 46) 

  Precuneus 7, 19 6.1 (-30, -63, 42)/3.8 (3, -

61, 31) 

(-30, -67, 42)/(3, -64, 30) 

  Cuneus 7 4.7 (0, -64, 31)/3.2 (3, -

66, 31) 

(0, -67, 30)/(3, -70, 30) 

  Anterior Cingulate 32 4.1 (-3, 34, -7)/3.6 (6, 37, 

-7) 

(-3, 35, -6)/(6, 38, -6) 

  Postcentral Gyrus 3, 40 3.7 (-53, -10, 47)/3.1 (65, 

-21, 14) 

(-54, -13, 50)/(66, -22, 

14) 

          

IC 54 Middle Frontal 

Gyrus 

6, 8, 9, 10, 11, 

46, 47 

4.7 (-53, 7, 38)/47.8 (42, 

51, -11) 

(-54, 5, 42)/(42, 53, -10) 

  Superior Frontal 

Gyrus 

6, 8, 10 3.6 (-36, 47, 25)/38.1 (33, 

60, -8) 

(-36, 47, 30)/(33, 62, -6) 

  Inferior Frontal 

Gyrus 

9, 45, 46, 47 3.8 (-56, 9, 31)/30.5 (48, 

42, -14) 

(-57, 8, 34)/(48, 44, -14) 

  * * 4.4 (-21, -31, -24)/22.2 

(39, 36, -17) 

(-21, -31, -30)/(39, 38, -

18) 

  Sub-Gyral 20 4.3 (-42, -14, -21)/19.0 

(42, 46, 3) 

(-42, -13, -26)/(42, 47, 6) 

  Medial Frontal 

Gyrus 

8, 10, 25 4.3 (-3, 48, -7)/10.4 (12, 

45, -7) 

(-3, 50, -6)/(12, 47, -6) 

  Middle Temporal 

Gyrus 

21, 22 3.0 (-56, -64, 12)/7.2 (65, 

-33, -3) 

(-57, -67, 10)/(66, -34, -

6) 

  Precentral Gyrus 6 4.2 (-53, -2, 42)/3.9 (59, 

17, 8) 

(-54, -4, 46)/(60, 17, 10) 

          

IC 78 Middle Frontal 

Gyrus 

6, 8, 9, 10, 11, 

46 

5.7 (-50, 29, 22)/34.9 (39, 

36, 37) 

(-51, 29, 26)/(39, 35, 42) 

  Superior Frontal 

Gyrus 

6, 8, 9, 10 5.2 (-3, 39, 51)/33.7 (39, 

41, 33) 

(-3, 38, 58)/(39, 41, 38) 

  Inferior Frontal 

Gyrus 

45, 46, 47 7.5 (-50, 36, -10)/5.2 (45, 

43, 7) 

(-51, 38, -10)/(45, 44, 10) 

  Inferior Parietal 

Lobule 

40 3.5 (-65, -26, 22)/6.6 (45, 

-48, 52) 

(-66, -28, 22)/(45, -52, 

54) 

  Superior Temporal 

Gyrus 

22, 38 3.0 (-65, -13, 2)/4.8 (30, 

18, -26) 

(-66, -13, 2)/(30, 20, -30) 
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BASAL GANGLIA         

IC 81 Subcallosal Gyrus 13, 25, 34, 47 34.3 (-18, 4, -12)/30.7 

(18, 7, -12) 

(-18, 5, -14)/(18, 8, -14) 

  Parahippocampal 

Gyrus 

28, 34 31.6 (-18, 4, -15)/19.2 

(21, 4, -15) 

(-18, 5, -18)/(21, 5, -18) 

  Lentiform Nucleus * 31.0 (-18, 7, -9)/30.7 (18, 

10, -9) 

(-18, 8, -10)/(18, 11, -10) 

  Extra-Nuclear 13, 47 28.8 (-21, 10, -9)/28.9 

(18, 16, -9) 

(-21, 11, -10)/(18, 17, -

10) 

  Inferior Frontal 

Gyrus 

11, 13, 46, 47 26.0 (-21, 7, -15)/24.8 

(18, 7, -15) 

(-21, 8, -18)/(18, 8, -18) 

  Sub-Gyral * 23.0 (-21, 13, -12)/25.6 

(15, 19, -9) 

(-21, 14, -14)/(15, 20, -

10) 

  Medial Frontal 

Gyrus 

25 18.6 (-12, 10, -16)/23.1 

(15, 10, -16) 

(-12, 11, -18)/(15, 11, -

18) 

  Uncus 20, 28, 34 21.4 (-18, 4, -19)/11.5 

(18, 4, -19) 

(-18, 5, -22)/(18, 5, -22) 

  Caudate * 16.5 (-12, 16, -6)/19.2 

(12, 19, -6) 

(-12, 17, -6)/(12, 20, -6) 

  Anterior Cingulate 25 12.9 (-9, 16, -9)/19.0 (9, 

13, -9) 

(-9, 17, -10)/(9, 14, -10) 

  Claustrum * 14.2 (-27, 13, -6)/12.7 

(27, 16, -6) 

(-27, 14, -6)/(27, 17, -6) 

  Middle Frontal 

Gyrus 

9, 10, 11, 46, 

47 

7.3 (-24, 30, -17)/10.4 

(24, 33, -17) 

(-24, 32, -18)/(24, 35, -

18) 

  Insula 13, 47 7.3 (-27, 19, -6)/5.9 (30, 

19, -6) 

(-27, 20, -6)/(30, 20, -6) 

  Lateral Ventricle * 6.2 (-27, -10, -11)/3.2 

(12, 23, 4) 

(-27, -10, -14)/(12, 23, 6) 

  Superior Temporal 

Gyrus 

22, 38 6.1 (-30, 10, -19)/3.3 (30, 

10, -19) 

(-30, 11, -22)/(30, 11, -

22) 

  Thalamus * 5.6 (-3, -18, 10)/3.8 (3, -

18, 10) 

(-3, -19, 10)/(3, -19, 10) 

  Superior Frontal 

Gyrus 

10 3.3 (-3, 22, 60)/4.8 (21, 

45, -11) 

(-3, 20, 66)/(21, 47, -10) 

          

IC 87 Extra-Nuclear * 42.4 (-3, -6, 13)/44.8 (3, -

6, 13) 

(-3, -7, 14)/(3, -7, 14) 

  Thalamus * 41.9 (-3, -12, 13)/43.5 (9, 

-6, 13) 

(-3, -13, 14)/(9, -7, 14) 

  Caudate * 30.7 (-9, 0, 13)/39.0 (9, 0, 

13) 

(-9, -1, 14)/(9, -1, 14) 
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  Lateral Ventricle * 27.6 (-3, 0, 13)/32.4 (9, -

3, 17) 

(-3, -1, 14)/(9, -4, 18) 

  Lentiform Nucleus * 15.2 (-15, 2, 9)/15.6 (18, 

-1, 9) 

(-15, 2, 10)/(18, -1, 10) 

  Inferior Frontal 

Gyrus 

47 7.6 (-53, 16, -6)/6.2 (50, 

19, -9) 

(-54, 17, -6)/(51, 20, -10) 

  Superior Temporal 

Gyrus 

22, 38 5.8 (-50, 13, -6)/6.5 (53, 

16, -9) 

(-51, 14, -6)/(54, 17, -10) 

  Posterior Cingulate 23 4.5 (-3, -32, 22)/5.2 (3, -

32, 22) 

(-3, -34, 22)/(3, -34, 22) 

  Sub-Gyral * 3.2 (-15, 28, -10)/3.8 (39, 

-11, -21) 

(-15, 29, -10)/(39, -10, -

26) 

  Fourth Ventricle * 3.0 (-3, -52, -26)/3.6 (0, -

49, -26) 

(-3, -52, -34)/(0, -49, -34) 

          

FRONTAL EYE FIELD 

  

IC 44 Sub-Gyral * 5.6 (-33, -43, 37)/12.7 

(39, -37, 37) 

(-33, -46, 38)/(39, -40, 

38) 

  Inferior Parietal 

Lobule 

2, 7, 39, 40 4.7 (-36, -52, 38)/12.4 

(42, -34, 37) 

(-36, -55, 38)/(42, -37, 

38) 

  Supramarginal 

Gyrus 

40 5.3 (-36, -46, 37)/11.8 

(42, -40, 37) 

(-36, -49, 38)/(42, -43, 

38) 

  Postcentral Gyrus 2, 3, 40 3.2 (-42, -28, 36)/9.8 (39, 

-28, 33) 

(-42, -31, 38)/(39, -31, 

34) 

  Angular Gyrus 39 4.1 (-33, -55, 34)/7.8 (36, 

-55, 34) 

(-33, -58, 34)/(36, -58, 

34) 

  Precuneus 7, 19, 31, 39 4.5 (-24, -57, 38)/7.0 (24, 

-54, 41) 

(-24, -61, 38)/(24, -58, 

42) 

  Superior Parietal 

Lobule 

7 3.0 (-27, -57, 45)/6.4 (33, 

-48, 48) 

(-27, -61, 46)/(33, -52, 

50) 

  Inferior Frontal 

Gyrus 

46, 47 5.8 (-56, 19, -3)/4.2 (53, 

16, -6) 

(-57, 20, -2)/(54, 17, -6) 

  Superior Frontal 

Gyrus 

6, 10 5.5 (-24, 64, 10)/4.2 (18, 

14, 64) 

(-24, 65, 14)/(18, 11, 70) 

  Middle Temporal 

Gyrus 

21, 39 4.0 (-62, -7, -8)/5.4 (36, -

58, 27) 

(-63, -7, -10)/(36, -61, 

26) 

  * * 3.6 (-56, 13, -2)/5.2 (59, 

13, -2) 

(-57, 14, -2)/(60, 14, -2) 

  Superior Temporal 

Gyrus 

21, 22, 39 3.5 (-62, -7, -1)/5.2 (39, -

55, 27) 

(-63, -7, -2)/(39, -58, 26) 

  Medial Frontal 

Gyrus 

10 4.5 (-3, 66, 6)/3.5 (6, 67, 

10) 

(-3, 68, 10)/(6, 68, 14) 
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  Anterior Cingulate 24, 33 3.4 (-3, 15, 23)/3.7 (3, 15, 

23) 

(-3, 14, 26)/(3, 14, 26) 

          

IC 46 Inferior Parietal 

Lobule 

7, 39, 40 9.0 (-45, -42, 56)/38.2 

(45, -42, 56) 

(-45, -46, 58)/(45, -46, 

58) 

  Superior Parietal 

Lobule 

7 9.0 (-36, -56, 56)/26.9 

(39, -54, 52) 

(-36, -61, 58)/(39, -58, 

54) 

  Postcentral Gyrus 1, 2, 3, 5, 7, 40 5.6 (-39, -39, 59)/24.2 

(48, -33, 51) 

(-39, -43, 62)/(48, -37, 

54) 

  Middle Frontal 

Gyrus 

6, 8, 9, 10, 11, 

46 

5.5 (-42, 52, 7)/13.7 (45, 

49, 10) 

(-42, 53, 10)/(45, 50, 14) 

  Inferior Frontal 

Gyrus 

9, 44, 46 3.4 (-48, 43, 11)/11.0 (48, 

43, 11) 

(-48, 44, 14)/(48, 44, 14) 

  Supramarginal 

Gyrus 

40 3.0 (-59, -43, 37)/9.8 (42, 

-40, 37) 

(-60, -46, 38)/(42, -43, 

38) 

  Superior Frontal 

Gyrus 

6, 8, 9, 10 5.1 (-39, 52, 14)/8.3 (45, 

35, 30) 

(-39, 53, 18)/(45, 35, 34) 

  Declive * 3.3 (-9, -80, -14)/4.5 (48, 

-49, -19) 

(-9, -82, -22)/(48, -49, -

26) 

  Posterior Cingulate 30 3.9 (-18, -65, 9)/3.1 (15, -

59, 8) 

(-18, -67, 6)/(15, -61, 6) 

  Medial Frontal 

Gyrus 

6, 8, 9 3.0 (-3, 38, 29)/3.4 (3, 30, 

37) 

(-3, 38, 34)/(3, 29, 42) 

          

CEREBELLUM         

IC 27 Fourth Ventricle * 51.4 (-3, -40, -20)/57.7 

(0, -43, -20) 

(-3, -40, -26)/(0, -43, -26) 

  Culmen * 49.0 (-3, -46, -20)/45.9 

(3, -46, -20) 

(-3, -46, -26)/(3, -46, -26) 

  Fastigium * 36.3 (-6, -49, -19)/32.3 

(6, -49, -19) 

(-6, -49, -26)/(6, -49, -26) 

  Nodule * 27.7 (0, -55, -23)/25.2 (6, 

-55, -23) 

(0, -55, -30)/(6, -55, -30) 

  Cerebellar Lingual * 25.6 (-3, -45, -16)/25.0 

(3, -45, -16) 

(-3, -46, -22)/(3, -46, -22) 

  Declive * 15.1 (-3, -63, -22)/14.4 

(3, -63, -22) 

(-3, -64, -30)/(3, -64, -30) 

  Pyramis * 13.8 (0, -63, -25)/9.3 (3, -

66, -25) 

(0, -64, -34)/(3, -67, -34) 

  Uvula * 11.7 (-6, -61, -29)/11.3 

(3, -61, -29) 

(-6, -61, -38)/(3, -61, -38) 

  Declive of Vermis * 9.3 (0, -69, -12)/11.6 (0, -

66, -22) 

(0, -70, -18)/(0, -67, -30) 
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  Cerebellar Tonsil * 7.5 (-15, -55, -33)/9.0 

(12, -55, -33) 

(-15, -55, -42)/(12, -55, -

42) 

  Inferior Frontal 

Gyrus 

13, 45, 47 3.5 (-24, 18, -19)/7.4 (30, 

16, -19) 

(-24, 20, -22)/(30, 17, -

22) 

  Culmen of Vermis * 6.6 (-3, -65, -8)/6.1 (3, -

65, -8) 

(-3, -67, -14)/(3, -67, -14) 

  Fusiform Gyrus 20, 37 4.9 (-56, -5, -25)/5.7 (48, 

-60, -15) 

(-57, -4, -30)/(48, -61, -

22) 

  Inferior Temporal 

Gyrus 

20 5.6 (-48, -11, -21)/3.9 

(39, -9, -38) 

(-48, -10, -26)/(39, -7, -

46) 

  Superior Temporal 

Gyrus 

38 4.3 (-27, 6, -26)/5.6 (33, 

13, -19) 

(-27, 8, -30)/(33, 14, -22) 

  Extra-Nuclear * 5.1 (-3, -1, -2)/4.0 (3, -1, -

2) 

(-3, -1, -2)/(3, -1, -2) 

  Middle Temporal 

Gyrus 

21 4.7 (-59, -5, -22)/4.4 (53, 

6, -26) 

(-60, -4, -26)/(54, 8, -30) 

  Anterior Cingulate 25, 32 4.1 (-3, 34, -7)/3.1 (3, 5, -

5) 

(-3, 35, -6)/(3, 5, -6) 

          

IC 45 Declive * 19.1 (-24, -69, -15)/28.8 

(21, -66, -12) 

(-24, -70, -22)/(21, -67, -

18) 

  Culmen * 14.2 (-3, -68, -8)/22.9 (9, 

-68, -8) 

(-3, -70, -14)/(9, -70, -14) 

  Fusiform Gyrus 19, 37 13.1 (-21, -63, -9)/22.6 

(21, -63, -9) 

(-21, -64, -14)/(21, -64, -

14) 

  Lingual Gyrus 18, 19 11.6 (-15, -71, -8)/22.2 

(18, -71, -8) 

(-15, -73, -14)/(18, -73, -

14) 

  Declive of Vermis * 13.6 (0, -69, -12)/16.7 (3, 

-71, -12) 

(0, -70, -18)/(3, -73, -18) 

  Sub-Gyral 20 14.1 (-18, -65, -8)/9.6 

(30, -62, -5) 

(-18, -67, -14)/(30, -64, -

10) 

  Culmen of Vermis * 13.5 (0, -65, -8)/11.8 (3, -

63, -9) 

(0, -67, -14)/(3, -64, -14) 

  Parahippocampal 

Gyrus 

19, 36, 37 4.1 (-24, -57, -6)/10.7 

(24, -57, -6) 

(-24, -58, -10)/(24, -58, -

10) 

  Tuber * 6.1 (-42, -55, -23)/6.4 

(42, -55, -23) 

(-42, -55, -30)/(42, -55, -

30) 

  Middle Frontal 

Gyrus 

* 3.1 (-30, -1, 61)/3.2 (33, -

1, 61) 

(-30, -4, 66)/(33, -4, 66) 

          

IC 60 Declive * 85.8 (-6, -83, -18)/76.3 

(6, -81, -18) 

(-6, -85, -26)/(6, -82, -26) 

  Uvula * 43.9 (-30, -81, -25)/52.9 

(12, -81, -25) 

(-30, -82, -34)/(12, -82, -

34) 
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  Pyramis * 49.3 (-9, -81, -25)/47.5 

(3, -78, -25) 

(-9, -82, -34)/(3, -79, -34) 

  Tuber * 43.4 (-36, -78, -25)/38.3 

(39, -72, -25) 

(-36, -79, -34)/(39, -73, -

34) 

  Declive of Vermis * 20.5 (0, -71, -12)/40.8 (0, 

-75, -18) 

(0, -73, -18)/(0, -76, -26) 

  Lingual Gyrus 18 29.6 (-12, -83, -14)/31.6 

(18, -80, -14) 

(-12, -85, -22)/(18, -82, -

22) 

  Tuber of Vermis * 29.4 (0, -75, -25)/17.4 (3, 

-72, -25) 

(0, -76, -34)/(3, -73, -34) 

  Fusiform Gyrus 18, 19, 37 13.5 (-21, -80, -14)/25.3 

(24, -80, -14) 

(-21, -82, -22)/(24, -82, -

22) 

  Pyramis of Vermis * 22.4 (0, -75, -28)/13.5 (3, 

-72, -28) 

(0, -76, -38)/(3, -73, -38) 

  Culmen * 5.8 (-27, -63, -25)/9.0 (6, 

-68, -8) 

(-27, -64, -34)/(6, -70, -

14) 

  Inferior Temporal 

Gyrus 

20 3.8 (-45, -8, -28)/8.8 (39, 

-9, -38) 

(-45, -7, -34)/(39, -7, -46) 

  Cerebellar Tonsil * 8.5 (-36, -64, -32)/5.5 (3, 

-49, -36) 

(-36, -64, -42)/(3, -49, -

46) 

  Culmen of Vermis * 8.1 (0, -65, -5)/8.4 (3, -

65, -8) 

(0, -67, -10)/(3, -67, -14) 

  Postcentral Gyrus 7 6.7 (-9, -47, 67)/5.8 (6, -

47, 67) 

(-9, -52, 70)/(6, -52, 70) 

  Fourth Ventricle * 3.5 (-3, -40, -20)/5.3 (0, -

43, -20) 

(-3, -40, -26)/(0, -43, -26) 

  Sub-Gyral * 3.1 (-50, -11, -18)/4.0 

(36, -13, -14) 

(-51, -10, -22)/(36, -13, -

18) 

  Extra-Nuclear * 3.6 (-3, -24, 7)/3.8 (3, -

21, 10) 

(-3, -25, 6)/(3, -22, 10) 

  Thalamus * 3.8 (-3, -18, 6)/3.5 (3, -

18, 6) 

(-3, -19, 6)/(3, -19, 6) 

  Middle Frontal 

Gyrus 

6, 10 3.0 (-27, 11, 60)/3.5 (27, 

63, 6) 

(-27, 8, 66)/(27, 65, 10) 

  Superior Frontal 

Gyrus 

10 3.3 (-12, 66, 6)/3.4 (27, 

63, 2) 

(-12, 68, 10)/(27, 65, 6) 

  Medial Frontal 

Gyrus 

* 3.3 (-3, -27, 66)/3.0 (3, 

53, 36) 

(-3, -31, 70)/(3, 53, 42) 

          

IC 77 Nodule * 103.1 (-3, -46, -30)/87.5 

(3, -46, -30) 

(-3, -46, -38)/(3, -46, -38) 

  Cerebellar Tonsil * 78.2 (0, -49, -36)/48.0 (6, 

-49, -33) 

(0, -49, -46)/(6, -49, -42) 

  Fourth Ventricle * 21.4 (-3, -52, -26)/77.8 

(0, -49, -33) 

(-3, -52, -34)/(0, -49, -42) 
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  Uvula * 16.5 (-6, -61, -32)/13.3 

(6, -61, -32) 

(-6, -61, -42)/(6, -61, -42) 

  Declive * 6.9 (-45, -69, -22)/3.2 

(33, -78, -18) 

(-45, -70, -30)/(33, -79, -

26) 

  Superior Temporal 

Gyrus 

38 5.8 (-36, 10, -22)/6.5 (39, 

13, -19) 

(-36, 11, -26)/(39, 14, -

22) 

  Pyramis * 6.1 (-18, -61, -29)/6.0 

(18, -61, -29) 

(-18, -61, -38)/(18, -61, -

38) 

  Culmen * 5.7 (-6, -40, -20)/3.2 (6, -

40, -20) 

(-6, -40, -26)/(6, -40, -26) 

  Pyramis of Vermis * 5.2 (-3, -75, -28)/4.5 (3, -

69, -28) 

(-3, -76, -38)/(3, -70, -38) 

  Inferior Temporal 

Gyrus 

20 4.4 (-45, -8, -28)/5.1 (39, 

-9, -38) 

(-45, -7, -34)/(39, -7, -46) 

  Thalamus * 4.7 (-3, -15, 3)/5.0 (3, -9, 

6) 

(-3, -16, 2)/(3, -10, 6) 

  Fusiform Gyrus 20 3.6 (-48, -8, -25)/3.1 (27, 

-57, -9) 

(-48, -7, -30)/(27, -58, -

14) 

          

PRECUNEUS         

IC 49 Cingulate Gyrus 23, 24, 31 31.7 (0, -26, 29)/29.7 (3, 

-29, 29) 

(0, -28, 30)/(3, -31, 30) 

  Extra-Nuclear * 28.0 (-3, -23, 25)/23.5 (6, 

-20, 25) 

(-3, -25, 26)/(6, -22, 26) 

  Posterior Cingulate 23 27.7 (-3, -29, 25)/28.1 (3, 

-29, 25) 

(-3, -31, 26)/(3, -31, 26) 

  Lateral Ventricle * 17.7 (-3, -17, 21)/16.9 (6, 

-20, 21) 

(-3, -19, 22)/(6, -22, 22) 

  Paracentral Lobule 5, 6, 31 13.2 (0, -31, 44)/11.7 (3, 

-28, 44) 

(0, -34, 46)/(3, -31, 46) 

  Precuneus 7, 31 11.3 (-3, -34, 44)/11.3 (3, 

-34, 44) 

(-3, -37, 46)/(3, -37, 46) 

  Sub-Gyral * 10.1 (-18, -32, 29)/10.5 

(21, -29, 29) 

(-18, -34, 30)/(21, -31, 

30) 

  Caudate * 6.3 (-18, -20, 25)/9.9 (18, 

-20, 25) 

(-18, -22, 26)/(18, -22, 

26) 

  Thalamus * 6.7 (-6, -18, 17)/7.5 (6, -

18, 17) 

(-6, -19, 18)/(6, -19, 18) 

  Superior Frontal 

Gyrus 

8, 10 7.0 (-24, 64, 10)/3.5 (21, 

48, 40) 

(-24, 65, 14)/(21, 47, 46) 

  Middle Temporal 

Gyrus 

21, 22 5.0 (-62, -51, -6)/4.7 (62, 

-45, -3) 

(-63, -52, -10)/(63, -46, -

6) 

  Superior Temporal 

Gyrus 

22 3.0 (-62, -50, 12)/3.6 (62, 

-38, 7) 

(-63, -52, 10)/(63, -40, 6) 
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IC 57 Extra-Nuclear * 30.5 (-3, -35, 18)/30.8 (3, 

-35, 18) 

(-3, -37, 18)/(3, -37, 18) 

  Posterior Cingulate 23, 29, 30, 31 28.2 (-3, -41, 19)/28.0 (3, 

-32, 22) 

(-3, -43, 18)/(3, -34, 22) 

  Cingulate Gyrus 23, 24, 31 20.8 (0, -32, 26)/18.3 (3, 

-35, 26) 

(0, -34, 26)/(3, -37, 26) 

  Lateral Ventricle * 15.7 (-6, -23, 21)/13.7 

(12, -32, 15) 

(-6, -25, 22)/(12, -34, 14) 

  Thalamus * 10.8 (-12, -26, 14)/11.9 

(12, -26, 14) 

(-12, -28, 14)/(12, -28, 

14) 

  Sub-Gyral * 8.7 (-6, -44, 11)/8.3 (6, -

44, 11) 

(-6, -46, 10)/(6, -46, 10) 

  Caudate * 7.9 (-15, -23, 18)/6.1 (18, 

-26, 18) 

(-15, -25, 18)/(18, -28, 

18) 

  Precuneus 7, 31 3.9 (0, -46, 30)/4.9 (12, -

66, 35) 

(0, -49, 30)/(12, -70, 34) 

  Middle Frontal 

Gyrus 

8, 9, 10 4.7 (-39, 27, 41)/3.1 (36, 

37, 11) 

(-39, 26, 46)/(36, 38, 14) 

  Insula 13 4.5 (-30, -26, 14)/4.7 (36, 

-35, 18) 

(-30, -28, 14)/(36, -37, 

18) 

  Anterior Cingulate 24, 25, 33 4.5 (-3, 2, -5)/4.3 (3, 31, -

3) 

(-3, 2, -6)/(3, 32, -2) 

  Superior Temporal 

Gyrus 

13, 21, 22, 41 3.6 (-65, -15, 3)/4.3 (36, -

32, 15) 

(-66, -16, 2)/(36, -34, 14) 

  Inferior Frontal 

Gyrus 

44, 47 4.2 (-53, 31, -10)/3.6 (42, 

17, 12) 

(-54, 32, -10)/(42, 17, 14) 

  Precentral Gyrus 9 3.3 (-36, 24, 37)/3.0 (42, 

17, 8) 

(-36, 23, 42)/(42, 17, 10) 

  Cuneus 7, 17 3.0 (-6, -91, 3)/3.2 (9, -

66, 31) 

(-6, -94, -2)/(9, -70, 30) 

Table 3 Attribute manipulation: Motor vs. Visuomotor. Cortical localizations of the for contrast-related independents components 

(ICs): for each IC, we presented the anatomical location, corresponding Brodmann areas (BAs) and max value with its Montreal 

Institute Montreal Neurological Institute (MNI) coordinates(obtained using the Talairach utility provided in GIFT toolbox on group-

ICA components maps). 

 

4.4.1.2 One Way ANOVA between Motor and Visuomotor 
Three ICs, behaved differently during M vs. VN task (Fig. 22 and Table 3). IC40 within the 

contralateral Sensorimotor network (cSMN), including Precentral and Postcentral Gyrus with 

maximum activation, positively correlated with M task but negatively with the VM task. The positive 

correlation with the motor task was stronger than VM correlation. (IC35, cSMN, T= -1.301, p= 

0.019). IC74 within the primary Visual Network (pVN) showed a strong positive correlation with the 
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Visuomotor than Motor task (IC74, pVN, T= 2.377, p= 0.027). Finally, IC75 again within pVN 

showed the opposite effect (IC38, SN, T= −2.729, p=0.01) with stronger effects during Motor task.  

 

Area  Brodmann Area Max Value (x, y, z) MNI (x, y, z) 

Sensorimotor Network (SMN) 

  

IC 40 Precentral Gyrus 4, 6 66.1/4.9 (-36, -22, 66)/(60, -13, 42) 

 
Postcentral Gyrus 1, 2, 3, 5, 40, 43 58.1/6.1 (-45, -19, 58)/(51, -28, 54) 

 
Superior Frontal Gyrus 6 38.0/3.8 (-30, -13, 70)/(3, 2, 58) 

 
Inferior Parietal Lobule 40 29.6/3.0 (-45, -37, 58)/(51, -31, 50) 

 
Middle Frontal Gyrus 6 24.5/5.4 (-33, -7, 66)/(39, -7, 62) 

 
Medial Frontal Gyrus 6 10.2/6.2 (-3, -4, 54)/(3, -4, 54) 

 
Paracentral Lobule 31 9.3/3.2 (-3, -13, 50)/(3, -13, 50) 

 
Cingulate Gyrus 24, 31 9.2/4.3 (-3, -7, 50)/(3, -1, 50) 

     

Visual Network (VN) 

    

IC 74 Extra-Nuclear * 14.9/21.2 (-15, -58, 18)/(15, -58, 18) 

 
Posterior Cingulate 23, 29, 30, 31 20.5/21.0 (-15, -61, 14)/(12, -58, 14) 

 
Precuneus 7, 19, 23, 31, 39 18.9/20.7 (-9, -67, 18)/(12, -61, 18) 

 
Sub-Gyral * 19.1/19.4 (-15, -64, 18)/(15, -58, 22) 

 
Cuneus 7, 17, 18, 19, 23, 30 17.7/12.3 (-12, -61, 6)/(9, -61, 6) 

 
Lingual Gyrus 17, 18, 19 13.6/10.9 (-12, -58, 2)/(15, -55, 2) 

 
Cingulate Gyrus 31 10.4/13.2 (0, -64, 26)/(12, -58, 26) 

 
Parahippocampal Gyrus 18, 28, 30, 35, 36, 37 10.5/10.0 (-12, -52, 2)/(18, -52, 2) 

 
Lateral Ventricle * 8.1/10.5 (-27, -58, 10)/(21, -49, 14) 

 
Angular Gyrus 39 7.4/10.4 (-36, -79, 30)/(39, -76, 30) 

 
Middle Temporal Gyrus 19, 39 7.5/8.9 (-42, -79, 22)/(42, -73, 26) 

 
Superior Occipital Gyrus 19 8.1/6.7 (-39, -79, 26)/(36, -79, 26) 

 
Superior Temporal Gyrus 22, 39 5.6/6.6 (-36, -58, 14)/(45, -61, 18) 

 
Culmen * 4.6/5.0 (-9, -58, -2)/(9, -46, -2) 

 
Thalamus * 4.5/4.9 (-3, -13, 6)/(3, -13, 10) 

 
Paracentral Lobule 5 3.8/3.3 (0, -43, 50)/(3, -40, 50) 

 
Middle Frontal Gyrus 6 3.7/3.4 (-33, -4, 66)/(36, 59, 10) 

     

IC 75 Culmen * 35.8/32.4 (-9, -58, -2)/(9, -52, -2) 

 
Lingual Gyrus 17, 18, 19 35.1/35.8 (-12, -55, -2)/(12, -49, -2) 

 
Parahippocampal Gyrus 19, 27, 28, 30, 35, 36, 37 26.0/32.2 (-12, -43, -2)/(15, -52, 2) 

 
Culmen of Vermis * 26.5/24.9 (0, -61, -2)/(6, -61, -2) 

 
Posterior Cingulate 23, 29, 30, 31 19.8/24.2 (-3, -58, 6)/(15, -55, 6) 

 
Sub-Gyral * 23.3/20.1 (-15, -43, -6)/(21, -46, -2) 

 
Extra-Nuclear * 8.6/19.7 (-24, -61, 6)/(21, -55, 6) 

 
Cuneus 7, 17, 18, 19, 23, 30 18.3/16.6 (-12, -61, 6)/(3, -64, 6) 

 
Fusiform Gyrus 19, 20, 37 10.7/5.5 (-21, -55, -14)/(24, -52, -14) 

 
Lateral Ventricle * 4.6/9.9 (-27, -58, 6)/(27, -55, 6) 

 
Middle Occipital Gyrus 18 8.7/6.5 (-27, -64, 2)/(27, -64, 2) 

 
Cerebellar Lingual * 6.8/7.0 (-3, -43, -14)/(6, -46, -14) 

 
Precuneus 19, 23, 31 5.4/4.1 (-6, -82, 38)/(12, -61, 18) 

 
Declive * 5.1/4.6 (-18, -61, -18)/(18, -55, -18) 
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Table 3 Attribute manipulation: Motor vs. Visuomotor. Cortical localizations of the for contrast-related independents components 

(ICs): for each IC, we presented the anatomical location, corresponding Brodmann areas (BAs) and max value with its Montreal 

Institute Montreal Neurological Institute (MNI) coordinates(obtained using the Talairach utility provided in GIFT toolbox on group-

ICA components maps). 

 

 

 

 

 
 Figure 22. The plots represented effects size for the ICNs (y-axis beta efect size in arbitrary units). Labels: MOTOR: 

NoFeedback Task; VISUOMOTOR: Feedback task. ** indicates p<0.01 FDR corrected; * indicate p<0.05 FDR 

corrected 

4.4.1.3 Higuchi’s Fractal Dimension 
The hemodynamic FD analysis highlighted sixteen ICs with statistical differences between M and 

VM tasks significance. Figure 23 shows the ICs, grouped by the network  showing the grand average 

and standard error for the FD and the relative spatial map. At the univariate level, the FD values of 

the VM task differ from those of the M task. Higher FD values were observed for the VM than for 

the M task. 
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Significant components (Figure 23) include the VN, both pVN and hVN, the SMN, both bilateral M1 

and iM1, the FEF, the ExCN and Cb. The components belonging to the same networks were averaged  

between them and compared in the two task.  
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Figure 23. Hemodynamic activity characterization by Fractal Dimension. For each panel: to the right grand average and standard 

error for the FD values (k = 7) are shown for both groups M (light blue) and VM (light orange) and to the left spatial maps of the IC 

obtained by GIFT toolbox. * indicates p<0.05;** indicate p<0.01 
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4.5 CONCLUSION 

Understanding the mechanisms underlying fine motor control is crucial, not only for basic scientific 

knowledge but also to optimize rehabilitation strategies following brain injury or in relation to aging. 

(Heuninckx, Wenderoth, and Swinnen 2010; Prodoehl et al. 2013; López-Larraz et al. 2018) 

In this thesis, we analyzed fMRI data recorded during an isometric contraction using a multivariate 

data-driven approach focusing on intrinsic connectivity between voxels through group ICA. The 

choice to use the activity-based spatial ICA data-driven approach is due to the fact that the data-driven 

approach  a more advantageous approach over conventional mass-univariate analysis of signal 

amplitude change, as it is not based on hypotheses regarding the trend of time, the temporal 

characteristics and the shape of the hemodynamic response function.  

This analysis enabled us to identify ipsilateral primary motor cortex (iM1) as the area associated with 

accurately maintaining a stable and precise isometric contraction under conditions of visual feedback, 

while the other nodes of the visuomotor network were necessary for performance of the task in both 

conditions (with and without visual feedback). The contralateral primary motor cortex (CM1) is 

active during both tasks: its activation describes the arrangement whereby the motor cortex of each 

cerebral hemisphere is primarily responsible for controlling the movements of the contralateral 

(opposite) side of the body. More generally, the activity of the motor components is however different 

between two tasks, as the complexity of the same is greater in the presence of a visual feedback. As 

expected, the visual netwrok shows its greatest activation during the visuomotor task, especially the 

pVN. The visual network nodes are involved in visual processing and activated during visual stimuli. 

In support of this, the fractal dimension shows greater complexity for both pVN and hVN during the 

execution of the visuomotor task. The interaction of the visual field with the FEF allows the 

processing of the signal, by means of the control that the FEF has on the ocular movements. The 

components of the FEF are more correlated with the visuomotor task and the study using the FD 

shows a greater complexity of this network in the presence of visual feedback. This analysis 

highlights that, during the visuomotor task, the involvement of FEF appears to be essential for fine 

motor control of movement in maintaining visual force from feedback, as is the case for the previously 

described iM1. 

The study of complexity has allowed us to identify the ExCN, the SN and the DMN, as areas more 

associated with the support of the visuomotor task than the motor one. The ExCN interacts with the 

Vn receiving visual stimuli and, integrating them with the sensorimotor inputs, gives a response 

relating to the activity to be performed. Its activity is moderated by the SN, Its activity is moderated 

by the SN, it initiates the dynamic transition between CEN and DMN to mediate between attention 
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to endogenous and exogenous events. The considered the moderator of the mind, which constantly 

monitors the outside world and carefully decides how other brain networks react to new information 

or stimuli. The basal ganglia and cerebellum also differ between the two tasks, showing more complex 

activity in the VM: the BG supports visuomotor integration when performing a visuomotor task with 

precision force with the right hand (Papadelis et al. . 2016), while the Cb is able to transfer visual 

information into correct signals to alter the motor output in progress (Tzvi, Loens, and Donchin 2022). 

In general, we can say that  the brain networks, although active in both, all show greater complexity 

in the presence of visual feedback, for the processing of the visual stimulus and for the maintenance 

of the required level of force. 
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