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ABSTRACT

Introduction. This thesis aims to propose a robust and reliable method for the estimation of
continuous joints angles during the task of ground level walking from myoelectric signals. We aim
to provide an approach able to estimate ankle, knee, and hip angles from larger amount of data.
Regression is performed firstly on each trial, then inter-trial regression approach is done on the same
subject. We aim to verify which of the models considered of Neural Network regression can provide
a robust estimation of continuous joints angles by taking into account different amount of training
and testing data. We start from a model with large amount of training data with respect to testing data,
to arrive to a model with a reduced set of data for the training with respect to testing data. Another
important aim of this study is to verify which of the main superficial leg muscles can provide a robust
estimation of continuous joints angles respect to others once the validity of the regression model is
confirmed by all electrodes’ setup configuration. In particular, the aim is to analyze what happens to
regression performance if one considers proximal muscles respect to distal muscles and to verify the

effectiveness of the model by reducing the muscles from the initial electrode’ setup.

Materials and methods. 6 healthy subjects are asked to walk on the Laboratory’s platform for about
3 minutes (that corresponds to about 70 steps). EMG signals are acquired by 6 electrodes positioned
on the right leg of each subject, 3 on the shank and 3 on the thigh. Ankle, knee, and hip angles are
obtained according to the Davis protocol. Once the signals are processed and EMG signals
segmented, 4 features are extracted to constitute one feature set (see Section 2.6.2): Mean Absolute
Value (MAV), Root Mean Square (RMS), Waveform Length (WL) and Integrated Absolute Value
(IAV). This feature set is used to train and validate models coming from Feed-Forward Neural
Network regression architecture. 6 models are built to perform regression of joints angles on each
trial for each muscle or group of muscles considered and 2 models are built for inter-trial regression
for each group of muscles. Regression performance metrics (RMSE and R?) are calculated to access
the degree of regression accuracy for all regression models. Finally, the Wilcoxon rank sum test is

used to evaluate the statistical differences on R? metric between the considered models.

Results and discussion. Results obtained in this study reveal that, feed-forward Neural Network
models can be used for the estimation of ankle, knee, and hip angles, with best results achieved
considering all the electrodes’ setup. None of the considered models demonstrates to be statistically
different, with exceptions for those used for the hip angle regression on each trial and for the two

models employed to regress the ankle angle in the inter-trial regression (in both cases, the models



were defined considering all the six muscles from the initial configuration). For the ankle regression,
choosing only the electrodes of the thigh, good results can be achieved with RMSE lower than 6°. If
proximal muscles are considered instead, results comparable to all electrodes’ setup are achieved. For
the knee regression, results proved that the tibialis anterior muscle does not provide reliable
estimation supporting the lack of functional role of this muscle for this joint. For the hip regression,
just the configuration with all muscles involved gave the best performance (RMSE lower than 4° and

R? that reaches 0.90).



1 INTRODUCTION

Gait is the way that animals, including humans, move their lower limbs when they are moving over
a surface, and it is one of the most fundamental activities [1]. Gait is characterized by a pattern of
cyclical motor activity of the inferior limbs and of the trunk that allows to support the body weight
on the supported limb and to advance the contralateral limb forward [2]. Recent studies have
classified gait with preferred definitions based on mechanics [2]-[4]. In fact, gait is also referred to
‘gait cycle’ or ‘cycle time’ and it is usually considered one cycle time as the time interval between
two successive occurrences of one of the repetitive events of walking that will be described properly
in Section 2.1. The movement of walking requires the body to solve a problem of dynamic balance
at all times, where the nervous and musculo-skeletal systems should integrate perfectly. Any
alteration in these systems, due to age or pathology, leads to a functional limitation that can be
detected and quantified with instrumental techniques and using mathematical models [2].

The analysis of the gait can assist in the diagnosis of diseases that affect one of the involved systems
(nervous, musculoskeletal), revealing the degree of functional impairment required for the pathology,
facilitating the planning of particular treatments, and providing important elements for assessing the
efficacy of rehabilitation interventions [5]. Thus, the study of human locomotion is of great
importance. Gait analysis is the systematic study of human motion, using equipment for observing
movements, body mechanics, and muscle activity. It is frequently employed in sports biomechanics
to assist athletes in running more effectively and to spot posture- or movement-related issues in
patients with injuries [6].

Joint angles measurements can be a useful tool for understanding movement in scenarios from simple
gym exercises up to complex actions in a wide variety of sports and activities. Joint angle is also often
measured in conjunction with other signals, such as EMG, to get even more information about
movement or reflexes. Surface EMG signal is the recording of muscle electrical activity and by
performing a signal processing procedure on the raw surface EMG signals, muscle activity and body
movement information can be obtained. In particular, because of the structural characteristics of the
musculoskeletal system, activity levels during human muscle motion are conditioned to generate a
significant difference depending on the joint angle [7]. The magnitude of the change or the length of
the muscles at the joint location have a significant effect on the maximum power generated by the
muscle during the isometric contraction of the element that acts as the length, and the angle of the

joint determines the maximum strength of the muscle [8], [9]. Due to its ability to precede changes



in motion, surface EMG is widely studied as a peripheral sensing modality for capturing features of

muscle activity as an input for control of powered assistive devices [10].



1.1 State of the art

Many studies in the last decades have focused on the exploitation of surface EMG signals for the
estimation of continuous lower-limb movements. Various tasks investigated relies on the importance
of human locomotion and on the estimation of joints angles for limb prostheses [11]-[13]. To estimate
human joints angles, regression algorithms were employed, involving both machine-learning
approaches and neural network-based analysis. A study by Xiong et al. [14] focuses on the estimation
of continuous ankle and knee angles, by tracking human gait using surface EMG. Six estimation
methods were compared and all of them regard machine-learning approaches: Multi-Layer Perceptron
(MLP) Regressor, Polynomial Regressor, Decision Tree Regressor, K-Nearest Neighbors Regressor,
Support Vector Regressor and Random Forest Regressor. It was showed that machine learning
algorithms are good methods to predict lower limbs joints angles, with knee joint having larger error
compared to ankle joint. Attention is devoted also on the specific leg muscles recorded by surface
EMG electrodes and used for the estimation of joints angles as well as the features being extracted
from EMG signals. In fact, in [14] 7 leg muscles were considered for the analysis, with time-domain
features sets widely used due to their low computational complexity but with the compromise of
limited information about the data. Models that estimate ankle angle or related moment during more
than one condition (e.g., different walking speeds) have been recently described in literature. Further
studies evaluate neural network-based approaches for the estimation of joints angles, as the study
done by Zabre-Gonzalez et al. [15] and Chen et al. [16]. The letter used a deep belief network and
principal component analysis, for EMG dimensionality reduction from ten muscle signals,
individually combined with a nonlinear back-propagation network to estimate hip, knee, and ankle
angle of healthy participants. Zabre-Gonzalez et al. [21] confirmed the accuracy of neural network
regression methods, which show the merit to be simple and quick for the estimation of ankle dorsi-
plantar flexion as can be found also in [17]. Most approaches characterize performances during
walking on specific terrain (e.g., level walking) as the study of Prasertsakul and Poonsiri [18]. They
suggest a regression model based on artificial neural network methods to predict knee and ankle
angles during walking defining the relationship between the EMG of 8 muscles and angular
displacements of both knee and ankle joints of both legs [18]. The results show that, once again, the
neural network regression method is the best with performance of testing set very close to the training
set. The main focus of these studies is to provide reliable information for the development of control
architectures for active prostheses/orthoses, with sensor inputs used to recognize the user’s
locomotive intention and generate corresponding control commands able to produce the desired limb

movement [19]. Such intelligent prosthetic/orthotic devices are expected to understand the user’s



intention using sensor input and assist in performing the required task to replace the lost functionality.
An EMG-driven nonlinear autoregressive neural network with exogenous inputs (NARX) with
predictive future states can address these challenges and provide a robust and intuitive control of
active powered ankle-foot prostheses [20]. Previous works demonstrated the ability of a single-output
feedforward (open-loop) NARX model to continuously predict ankle angle of the prosthesis using
within-socket EMG activity from the residual limb of transtibial amputees [20], [21]. In the study of
Huang et al. [22] an algorithm based on neuromuscular-mechanical fusion was proposed to
continuously recognize a variety of locomotion modes performed by patients with transfemoral
amputations using Support Vector Machine and recording EMG from gluteal and residual thigh

muscles.



1.2 Aim of the study

The main goal of this research is to propose a robust and reliable method for the estimation of
continuous joints angles from surface EMG signal during the task of ground level walking. The
information extracted from the EMG signal can be exploited to help the patient with a real-time aid
for walking. The aim of this study is to provide a solid regression approach to estimate continuously
hip, knee and ankle angles during normal ground level walking. Particular attention was devoted to
the proper electrodes’ setup on the patient’s leg, that was done according to recent studies [14], [16].
It is of interest to investigate which of the main superficial leg muscles can provide robust estimation
of joints angles respect to others. We considered both specific muscles of one joint, and non-specific
muscles (the aim is also to verify the accuracy of the models if the anatomical-functional conditions
are not adequate, simulating the case of trans-femoral amputees and thus considering only the muscles
of the thigh for the ankle and knee angles regression). Another important aim of this study is the
estimation of joints angles by considering different amount of data between training set and testing
set, starting from a trained model with more training data with respect to testing data to a trained
model with less training data with respect to testing data and evaluate which of the considered model
gives the best results. Finally, we aim to verify the accuracy of the model considering as training set
and testing set one or more trials of the same subject. In this way, longer training and testing times
will be considered, compared to recent studies which instead considered shorter test times or a single
cycle time [23], [24]. The following 4 macro-sections of this thesis are Materials and methods
(chapter 2) that describes in detail the setup, the walking task, the signal processing phase, the
extraction of features and the regression phase. An introduction to gait analysis, with a brief
description of the Davis protocol, and a general overview of the main superficial muscles of the lower
limb is added. Results (chapter 3) is the section dedicated to all the results that we have carried out
from experiments while in Discussion and Conclusion (chapter 4), the results are thoroughly
explained and discussed. Moreover, further possible enhancements in estimation of continuous joints

angles from EMG signal during gait are proposed.



2 MATERIALS AND METHODS

Starting from the definition and description of the various phases that characterize the gait cycle, a
brief overview of gait analysis and the Davis protocol is given as well as an introduction to the main
superficial muscles of the lower limb and EMG signal acquisition and processing. Hardware and set
up of this study are explained, and it is also given a general description of Neural Network architecture
used for the regression. Six models of Neural Network regression were used on each of the trials
performed by the subjects, together with two models for inter-trial analysis for each muscle or group
of muscles considered from the initial configuration with all muscles in the setup. Finally, once the
feature set is presented, the two main regressor performance metrics are explained: RMSE (Root

Mean Squared Error) and R? (Coefficient of Determination, usually called “R squared”).



2.1 Definition of gait cycle

The gait cycle is defined as the time interval between two successive occurrences of one of the
repetitive events of walking. It is generally convenient to consider the instant at which one foot
contacts the ground (called ‘initial contact’, that is the phase in which the heel strikes the ground).
In this study a series of consecutives strides (a single stride is the distance between two successive
heel contacts events for the same h foot) each defined by two heel strikes events are examined. In
Figure 1 there are displayed ankle, knee, and hip angles among one cycle time. The major events of
one gait cycle referred to one leg are: Initial Contact (IC), Opposite Toe off (OT), Heel Rise (HR),
Opposite Initial contact (OI), Toe Off (TO), Feet Adjacent (FA) and Tibia Vertical (TV). These seven
events subdivide the gait cycle into seven periods or subphases, four of which occur in the stance
phase (Loading response, Mid-stance, Terminal stance and Pre-swing) and three in the swing phase

(Initial swing, Mid-swing and Terminal swing) [3], [25].
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Figure 1: Ankle, knee and hip angles among one cycle time. The stance phase (that starts from IC to TO)
constitutes the 60% of the total gait cycle, while the swing phase (from TO to the next IC) the remaining 40%.



In Figure 1 it can be seen that, during a single gait cycle, the hip flexes and extends once. The limit
of flexion is reached around the middle of the swing phase and the hip is then kept flexed until initial
contact. The peak extension is reached before the end of the stance phase, after which the hip begins
to flex again. The knee shows two flexion and two extension peaks during each gait cycle. It is fully
extended before IC, flexes during the loading response and the early part of mid-stance, then extends
again during the latter part of mid-stance. It starts then flexing again, reaching a peak during initial
swing. It extends again prior to IC. The ankle is usually within a few degrees of the neural position
for dorsiflexion/plantarflexion at the time of IC. After IC, the ankle plantarflexes, bringing the
forefoot down onto the ground. During mid-stance, the tibia moves toward over the foot, and the
ankle joint becomes dorsiflexed. Before OI, the ankle angle again changes, and a major plantarflexion
takes place until just after TO. In the next Section, there will be described gait analysis with the
chosen protocol to obtain ankle, knee, and hip angles, as well as the conventions used to specify joints

angles.



2.2 Gait analysis and the Davis protocol

Gait analysis is a methodology to study human locomotion in order to assess the functionality of the
neuro-musculoskeletal system, for instance, and through the use of instrumentations it guarantees
body movements measurements body mechanics, together with the activity of the muscles [6].

It is also convenient to refer joints angles to precise reference coordinates systems. Positions,
displacements, and angles are projected onto a system of planes referred to a person in an upright
position [3]. The motion of the limbs is described using reference planes: sagittal plane, frontal plane,

and transverse plane (Figure 2).
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Figure 2: anatomical planes of the body. The motion of each limb of the human body can be described using

the following reference planes: sagittal (median), frontal (coronal), transverse (or horizontal) planes.

The joints angles considered for the gait analysis are that of hip, knee, and ankle as we have seen in
the previous Section (Figure 1) [26]. Figure 3 shows the different joints movements of the lower limb.
Movement in the sagittal plane are flexion/extension and plantar/dorsiflexion for the ankle joint.
Movement in the frontal plane is generally defined as abduction/adduction and, for the foot, eversion

(that causes the soles to point away from the midline) and inversion (that brings the soles together).



In the transverse plane, finally, there are movements of internal/external rotations [27]. In the present
study, there will be particular attention on the movements that describe the kinematics of the hip,
knee, and ankle in the frontal plain. The conventions used to specify joint angles [28] are showed in

Figure 4.
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Figure 3: joint movements of the lower limbs. Flexion and extension take place in the sagittal plane (a,b); in

Extension

Plantar flexion Dorsiflexion

the ankle these movements are called dorsiflexion and plantarflexion (c). Abduction and adduction take place
in the frontal plane (a) and in the ankle (c) those movements are called inversion (adduction) and eversion

(abduction). Internal and external rotation take place in the transverse plane (a). Taken from [27].
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Figure 4: conventions used to specify joints angles. The hip flexion/extension is described by the angle between
long axis of pelvis and thigh segment; the knee flexion/extension angle is between long axis of thigh and shank
segment, the ankle dorsi/plantarflexion is the angle between the shank and long axis of the foot. Taken from

[28].
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To estimate hip, knee, and ankle angles, it is necessary the use of protocols. A kinematic protocol is
nothing more than a procedure that regulates the acquisition and processing of kinematic data, using
a certain marker set and known mathematical conventions. It also ensures that the acquisition method
is standardized, and that the measurement is repeatable [29]. Various protocols used for quantitative
gait analysis have been implemented to guarantee accuracy and to reduce motion artifacts as the Davis
- Helen Hayes protocol [5] (Figure 5), C.A.S.T protocol [...], SAFLo protocol [..], the LAMB
protocol [...]. In the present study, Davis protocol was used because it showed good consistency and
small bias for joints flexion/extensions, among the before mentioned protocols [30]. Therefore, it is

described in detail below.
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Figure 5: Graphic representation of markers placement according to the protocol proposed by Davis et al.

[5], [29]. Figure adopted from [29].

After the measurement of some anthropometric measures as [5]:

- body weight
- height
- tibia length

- distance between lateral and medial femoral epicondyles of the knee
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distance between the lateral and medial malleoli of the ankle
distance between the anterior iliac crests

pelvis thickness

The protocol requires the placement of reflective markers on some anatomical landmarks and other

technical points. Specifically, some markers are directly placed on the skin and in particular:

three markers placed in the trunk, that are right sternoclavicular junction, left
sternoclavicular junction and spinous apophysis;

three makers are used to describe pelvic motion, such that two markers are placed directly
over the left, right anterior superior iliac spine, and one marker is positioned on the
sacrum;

twelve markers are placed on the leg: two markers are placed on the left and right greater
trochanter; two markers are placed on the lateral epicondyle of the left, right knee; another
two markers are placed at the level of the left and right head of fibula; other two markers
are placed on the lateral malleolus along an imaginary line the passes through the
transmalleolar axis; moreover, femoral wand and tibial wand are placed on the right and
left thigh and shank side to describe their planes with respect to the foot segment;

four markers are placed on the foot: two markers are located on the second metatarsal
head, on the mid-foot side of the equinus break between forefoot and midfoot; the final
two markers are located on the calcaneus at the same height above the plantar surface of

the foot as the toe markers [5], [31].

Calibration is carried out during the standing phase and consists in acquiring the subject in an upright

position for a few seconds. Once the static acquisition has been completed, the dynamic acquisition

proceeds, in which the subject walks at normal speed starting from a fixed point [5].
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2.3 Main superficial muscles of the lower limb

Proceeding in the proximal-distal direction, there are 4 muscle groups that are part of the lower limb,
and they are: hip muscles, thigh muscles, shank muscles and foot muscles [32]. The main muscles of
the leg considered for this study are generally involved during gait and their activity can be accurately
captured with surface electrodes [33], [34]. In Figure 6 it is shown anterior and posterior muscles of
the right leg. We can classify the muscles of the leg according to the number of joints they cross, and
to which joints they’re acting. Therefore, there are classified as monoarticular and biarticular muscles

based on they act on one or two joints [35].
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Figure 6: Anterior and posterior muscles of the right leg. Four muscles groups are part of the lower limb, and

they are: hip muscles, thigh muscles, shank muscles and foot muscles.
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The muscles acting only at the hip joint allow hip movements along the three planes (frontal, sagittal
and horizontal) and guarantee stability to the joint itself. Therefore, the hip is able to move the femur
and consequently the lower limb, in various directions, following the movements of:
flexion/extension, ab/adduction, internal and external rotation of the femur [35].

The muscles of the thigh are constituted, anteriorly, by the quadriceps: rectus femoris, vastus
medialis, vastus lateralis and vastus intermedius. The quadriceps, contracting, extend the leg and,
with the rectus femoris, participate in the flexion of the thigh as well as, with the knee flexed, in the
flexion of the pelvis on the thigh [32].

The muscles acting both at hip and knee joints are: rectus femoris (one of the four muscles of the
quadriceps), tensor fasciae latae, sartorius, the hamstrings (semimembranosus, semitendinosus and
biceps femoris), gracilis.

The gastrocnemius (medial and lateral), together with the plantaris, are the muscles that act across
the knee and ankle joints. The tendon of the gastrocnemius joins with that of the soleus and plantaris
to form the Achilles tendon, which inserts into the back of the calcaneus.

The soleus and gastrocnemius together are called the triceps surae acting both at ankle and subtalar
joints. The triceps surae, contracting, plantarflexes the foot and rotates it inside; contributes, with the
gastrocnemius, to the flexion of the shank on the thigh. Pivoting on the forefoot, the triceps extends
the leg over the foot [32].

For what concern the anterior muscles of the shank, we find: tibialis anterior, extensor digitorum
longus, peroneus brevis. Tibialis anterior is the most medial of the anterior muscles. It arises from the
lateral condyle and the upper half of the lateral fascia of the tibia, bringing its bundles vertically down
and crossing the ankle joint. It dorsiflexes, adducts, and medially rotates the foot [32].

A method for analyzing and capturing the electrical activity generated by skeletal muscles’
contraction is called electromyography (EMG) [36]. The electrical expression of the neuromuscular
activation brought on by a muscle contraction is known as a myoelectric signal. EMG is performed
using an instrument called electromyograph to produce a signal called an electromyogram. EMG
signals acquired from muscles require advanced methods for onset detection, decomposition,
processing, and classification [37]. EMG signals can be used for clinical/biomedical applications,
hardware development, and modern human computer interaction. Clinically, EMG is used as
diagnostic tool for neurological disorders. In fact, it is frequently being used for assessment of patients
with neuromuscular diseases, low back pain and disorders of motor control. Other than physiological
and biomechanical research, EMG has been developed as an evaluation tool in applied research,
physiotherapy, rehabilitation, sports medicine and training, biofeedback, and ergonomics research

[371, [38].
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2.4 Hardware and setup

This study was done at the Movement Analysis Laboratory of Universita Politecnica delle Marche
(UNIVPM), equipped by a motion capture system (BTSEngineering, with sampling rate of 250 Hz)
that use 8 digital cameras with powerful infrared illuminators (SMART-DX6000, 2.2 Mpixels,
2048x1088, 340 fps at full resolution) to capture motion in a large measurement volume [5Sm (1) x 3m
(w) x 2m (h)] by guaranteeing accuracy in measurement. Before starting the walking task, each
subject is armed of a marker set by a modified Davis protocol and each subject’s right leg is provided
with EMG electrodes. BTS Bioengineering FREEEMG surface electrodes are employed for this kind
of experiment, and they are showed in Figure 7. Using Wi-Fi technology, these probes convert the
myoelectric signal produced when muscles contract into an electric digital signal. By doing so,
connection wires are minimized, allowing a more comfortable walking task for the subject. Their thin
and compact size ensures that they are placed precisely over targeted muscles. To prevent any
unwanted movement during a dynamic activity that would contribute random noise to the signal, it is
crucial to make sure that each electrode is firmly attached to the skin during the placement phase. To
prevent cross-talking occurrences, electrodes must also be placed as close as possible to the muscle's
center while maintaining an inter-distance from one another. These electrodes allow the acquisition
of EMG data at a sampling rate of 1000 Hz. For each participant, a specific positioning probes
protocol was followed. We performed a 6 channels EMG analysis. Figure 8 shows the positioning of
EMG electrodes on the right shank. Figure 9 shows the positioning of EMG electrodes on the right
thigh and in figure 12 we show the complete EMG electrodes set-up for a representative subject [39].
For what concerns the muscles considered for the analysis, 6 superficial muscles of the right leg are
recorded. The first electrode corresponds to TA (Tibialis Anterior); the second electrode is positioned
over the GM (Gastrocnemius Medialis) and the third over the GL (Gastrocnemius Lateralis); the
fourth electrode is placed on VM (Vastus Medialis) and the fifth over the RF (Rectus Femoris);

finally, the sixth and last electrode is positioned on BF (Biceps Femoris caput longus).

The passive and retroreflective markers are located on the subject anatomical landmarks according to
Davis protocol showed in Figure 10 and 12: H and B markers are placed over the right and left
anterior-superior iliac spine (ASIS), respectively; the sacral H marker is positioned over the subject’s
posterior-superior iliac spine (PSIS); the right thigh marker set, i.e., the RK, RF, and RH markers, is
placed on the subject such that the identified epicondylar axis lies in the plane formed by these three
markers (same for the left thigh marker set, i.e. LK, LF and LH); also, the RK and LK markers are
positioned along the epicondylar axis and the right and left marker plane are oriented so that the

longitudinal axis of the right and left thigh lies in the plane formed by, respectively, the right 3
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markers and left 3 markers; the right shank markers, RA, RB and RP are placed on the subject to form
another plane in which the epicondylar axis are found (same procedure repeated for the left shank
markers, i.e. LA, LB and LP); the RA and LA markers are placed at the level of, but not necessarily
over (depending on the subject’s tibial rotation characteristics), the lateral malleolus; the toe markers
(RT and LT) are placed on the lateral aspect of the foot over the fifth metatarsal head; finally, the heel
markers (RQ and LQ) are positioned so that the heel-toe-marker vector is parallel to the sole of the

foot and aligned with the foot progression line.

Figure 7: BTS Bioengineering FREEEMG surface electrodes. At left: one of the six surface electrodes used.
1t is of easy placement and being wires firee they let a more comfortable walking task. At right: it is showed

the charging box BTS electrodes.
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TA

Figure 8: locations of right shank (1,2,3)
electrodes with anatomical references of
superficial muscles considered for this study.
TA: Tibialis Anterior; GM: Gastrocnemius

Medialis; GL: Gastrocnemius Lateralis.

Figure 9: locations of right thigh (4,5,6) electrodes
with anatomical references of superficial muscles
considered for this study. VM: Vastus Medialis; RF:

Rectus Femoris; BF: Biceps Femoris caput longus.

Figure 10: modified Davis protocol used for the study. At the left there is the anterior view of the marker set.

At the right it is showed a dorsal view of the subject with the marker set. Taken and modified from [39].
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Figure 11: BTS electrodes placement on one subject. In posterior view of the subject (a) there are visible

electrodes 2,3 and at the anterior view (b) electrodes 1 and 4 are clearly visible. Electrodes 6 and 5 are
covered by subject’s shorts.

Figure 12: complete marker set and EMG electrodes set on one subject, anterior (a) and lateral (b) views
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2.5 Definition of walking task

Six healthy adults participated to the study, 4 women and 2 men aged between 25 and 50. All
participants are asked to walk on the Laboratory’s platform at their comfortable walking speed, doing
reversals while performing the test, for a duration of about 2-3 minutes. The time required to perform
one task, as the number of steps done are showed in Table 1. Just the right leg was taken in
consideration for the analysis, therefore, the number of steps done by each participant and the time
required to perform the entire task is referred to this leg. In Figure 13 it is shown the walkway used
for the test. No static acquisition was done before the trials, therefore no initial offset angles were

removed from the motion angles.

SUBJECTS SEX NUMBER OF NUMBER TEST
TRIALS OF TIME
PERFORMED  STEPS

1 | female 1 44 2 min
and 15s

2 | female 3 72 3 min

3 | female 3 72 3 min

4 | male 4 80 4 min
and 20 s

5 | male 4 80 4 min
and 20 s

6 | female 3 72 3 min

Table 1: in this table it is shown the number of trials performed by the six subjects, their sex, the average
number of steps done on one trial and the average time required to perform one trial. The number of steps is

referred to the subjects’ right leg.

Figure 13: Movement Analysis Laboratory of UNIVPM. Here the six subjects performed the walking task on

the platform that is clearly visible in the picture.
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2.6 Kinematic data and EMG signal processing

2.6.1 Kinematic data

The analysis of both kinematic data (hip, knee, and ankle angles) and EMG signals were done on the
right leg of each participant. Firstly, the kinematic data were filtered with a low-pass Butterworth
filter of 2Hz since the power spectrum of all the markers was too low (figure 14, power spectral
calculated for heel marker). The extraction of joints angles belonging to the right leg from markers
coordinates was done according to the procedure by Davis et al. [5]. The data from ankle, knee and
hip angles appeared as depicted in Figure 15. Since the subjects during walking did some reversals,
there are present in the signal. Therefore, the next step was simply to exclude from the following
analysis the portion of kinematic signal during which each turning is performed. By cutting the signal
in the points of initial heel strike and final heel strike for each roundtrip, the entire gait cycles are
preserved, and it is possible to obtain a continuous joint motion (Figure 16). The initial and final heel

strikes of each roundtrip were found from the vertical component of the heel marker. The last step in
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Figure 14: Power Spectral Density of the Anterior-Posterior (ap) component of the heel marker. It is clearly
visible the low frequency component of the power spectrum, therefore it was chosen a cut-off frequency of 2

Hz for the Butterworth low-pass filter applied to every marker’s raw signal.
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kinematic data signal processing, was to resample them from 250 Hz to 25 Hz. In this way, we will

have the same number of samples between kinematic data and features vectors of each roundtrip.
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Figure 15: Ankle, knee, and hip angles of the first 6500 samples referred to one subject. Each kinematic signal
was cut in the points of initial and final heel strike of each roundtrip, found through the vertical component of
the heel marker’s coordinates. The standing phase is referred to the time in which the subject was in standing

position before starting the walking test, and not referred to the static acquisition, which was not done.
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Figure 16: Ankle, knee, and hip joints angles after the cutting phase. Here each roundtrip is joined to obtain

a continuous joint motion, without the reversals’ phases.
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2.6.2 EMG signals and features extraction

The result of the electromyographic acquisition is raw EMG data. Six tracks can be recorded and
displayed from a single multi-channel acquisition, as shown in Figure 17. The surface EMG signal
acquired at 1000Hz was filtered by a pass band filter with cut off frequencies between 10 and 400 Hz
[40].
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Figure 17: 6 channels recording of a single return. One single acquisition includes 6 channels recording, as
shown in figure. Each channel refers to an electrode sensing electrical activity of a different muscle or a group

of muscles.

After the filtering phase, it was necessary to cut every EMG channels according to the principle that
was applied for kinematic data to delete the reversals phases that were useless for the study. Therefore,
the heel strikes of initial and final samples of each roundtrip acquired at a sampling rate of 250 Hz,
were transposed into the corresponding samples at EMG sampling rate of 1000 Hz. An example of
the way in which EMG data have been cut, is displayed in Figure 18. It is visible the initial and final
heel strike samples (that correspond to the event of Initial Contact-IC) of one roundtrip in kinematic

signals (here it is reported the knee angle) that corresponds to specifics samples acquired at 1000 Hz.
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Figure 18: example of EMG signals cutting phase. Here it is reported an example of the way in which EMG
channels have been cut, excluding reversals phases that were useless for this study. The kinematic samples
(in this example it is displayed the knee angle) corresponding to initial and final heel strikes of each roundtrip
(Initial Contact event-IC), were transposed into the corresponding samples at EMG sampling rate of 1000 Hz
to conserve the myoelectric information of each roundtrip. The EMG channel displayed in this example is that

of Gastrocnemius Medialis (GM, second channel).

EMG signal for each channel have been segmented in each roundtrip before EMG’s features
calculation. EMG signal is highly variable in nature, and a segmentation approach is required to
analyze its random and dynamic pattern. Feeding a myoelectric signal presented as a time sequence,
directly to a classifier or a regressor, is impractical, due to the large number of inputs and randomness
of the signal. Therefore, the sequence must be mapped into a smaller dimension vector, which is
called a feature vector. Features represent raw myoelectric signals useful for regression [41]. A wide
spectrum of features has been introduced in literature both for myoelectric classification and
regression. Features fall into one of three categories: time domain, frequency (spectral) domain, and
timescale (time—frequency) domain [41], [42]. In this study we considered just time domain features,
because they have computational simplicity and because they have been widely used in a lot of
research and studies [43]. In fact, time domain features are characterized by low computation
complexity but contains limited information about the data, while frequency and time-frequency
domain features often contain more information about the data, but the disadvantage is that it is often
with high computation complexity [14]. In this study, the following time-domain feature set was
considered: Mean Absolute Value (MAV), Root Mean Square (RMS), Waveform Length (WL) and
Integrated Absolute Value (IAV).
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Mean Absolute Value (MAV) is one of the most used features in EMG signal analysis. This feature is

an average of absolute value of the EMG signal amplitude in a segment, which can be defined as:

1 N
MAV = N.leil
=1

(1)

Root Mean Square (RMS) is another frequently used feature. It is modeled as amplitude modulated
Gaussian random process whose relates to constant force and non-fatiguing contraction [44]. It is

defined as:

RMS =

2)

Waveform Length (WL) is defined as cumulative length of the EMG waveform over the time window.

It is computed as:
N-1
WL = Z |xi41 — X;
i=1

)

Integrated Absolute Value (IAV) is one of the most effective surface EMG features since it gives a
measure of signal amplitude [17]. It is calculated as the summation of the absolute values of the EMG

signal amplitude [45], [46]:

N
14V = z x|
i=1

4
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Windowing methods are largely adopted to segment and prepare data to further regression analyses
in order to calculate EMG’s features. Basically, windowing means sub-dividing the entire signal into
small parts, with a proper length, from which features will be extracted. Sliding windowing with and
without overlapping are two basic types of windowing procedures. In adjacent windowing, windows
are taken to a certain length and the following window begins at the end of the previous one. Features
are extracted from these windows. However, this windowing method does not provide a dense array
of signals, and it's possible that the information is not being fully exploited [47]. In an overlapping
window, a predetermined window slides along the entire signal with an increment size fixed that
guarantees a percentage of overlapping. By doing so, data from one window is shared with the one
next to it [48]. In general, regression or classification accuracy increases as window size increases
[49]. In fact, more data will lead to features with lower statistical variance and higher
regression/classification precision. The trade-off here should be between a real-time latency and
regression/classification accuracy because huge window sizes are substantially more expensive in
terms of computational burden (extracting characteristics from large windows requires more power).
Typically, window sizes should be examined considering the task being investigated. However,
research discover that the upper limit for the window size must be 300ms [50]. Moreover, more recent
studies suggest that the window size should optimally be kept between 100-250 ms [51]. In the present
work, we set the window size to 200 ms [52], [53], with an overlap of 160 ms (80% of the window
dimension). Segmentation is performed over the roundtrips’ phases, where myoelectric information
is contained.

Once time-domain features (MAV, RMS, WL and IAV) are extracted from sliding windows, they are
arranged in a matrix (we obtain one matrix related to each roundtrip) whose number of rows coincides
with the total number of segmented windows, and columns contain the value of the features related
to all 6 channels. Once the features set is realized, the regressor’s input is ready. All the four features
are used to train and test regression models. Neural network regressor algorithm is used to predict
joints angles, learning from training data (features sets and kinematic data). These signals must be
normalized before using neural network. Normalization is an important stage where the range of data
will be at the same level or equalize the data range so that no data is more inclined to other attributes
[54].Normalization is a technique often applied for preparing data for Machine Learning or Neural
Network, in this case. The goal of normalization is to change the values of the numeric columns in
the dataset to use a common scale, without distortion in the ranges of values or loss of information.
Normalization is also needed for some algorithms to model data correctly. Normalization creates new
values that maintain the overall distribution and proportions in the source data, keeping the values

within an applied scale in all numeric columns used in the model [55]. In this research we used
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standardized score normality or Z-score. Equation 6 is the formula of the Z-score, where y is the
value of each observed data and u is the average of observed data, and o is the standard deviation
[54].

Z — Score(z) = M

)

As it was said previously, one of the aims of this study is to verify the validity of the Neural Network
models for the joints angles regression based on the features obtained from specific and non-specific
muscles sets for each joint. This procedure is firstly validated separately for each subject’s trials (six
regression models were considered for each muscle or group of muscles taken into account), then an
inter-trial regression is done (with two regression models for each group of muscles considered). In

the next section it is reported a brief description of such architecture.
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2.7 Neural Network regression algorithm

A neural network is an artificial neural network (ANN) made up of synthetic neurons or nodes. A
neural network can therefore be either a biological neural network consisting of biological neurons,
or an artificial neural network intended to address artificial intelligence (Al) issues [56]. Most neural
networks have some sort of training rule. In other words, neural networks learn from examples and
exhibit some capability for generalization beyond the training data. One deep learning algorithm that
mimics the actions of neurons in the human brain is artificial neural networks. Vanilla neural
networks, recurrent neural networks, and convolutional neural networks are some examples of
artificial neural networks [57]. Only organized data can be handled by vanilla neural networks; in
contrast, recurrent neural networks and convolutional neural networks excel at handling unstructured
data [57]. Artificial neural networks model biological neuron connections as weights between nodes
(Figure 19) [58]. Neural computing requires several neurons, to be connected into a neural network.
Each neuron within the network is usually a simple processing unit which takes one or more inputs
and produces an output. At each neuron, every input has an associated weight which modifies the
strength of each input. The neuron simply adds together all the inputs and calculates an output to be
passed on. Neurons are arranged in layers. There are three layers in artificial neural networks: Input
layer, Hidden layer, and Output layer. The hidden layer can be more than one in number. A layer has
a number of neurons in it. Each layer's neuron will have an associated activation function, that is the
function that introduces non-linearity into the relationship. Linear functions are limited because the
output is simply proportional to the input. Each layer can also have regularizes associated with it.
Regularizes are responsible for preventing overfitting. Artificial neural networks consist of two
phases: forward propagation and backward propagation. Forward propagation is the process of
multiplying weights with each feature and adding them. The bias is also added to the result. Backward
propagation is the process of updating the weights in the model. Backward propagation requires an
optimization function and a loss function. An excitatory link is represented by a positive weight,
whereas an inhibitory connection is represented by a negative weight. To each input is given a weight
before being added together. A linear combination is used to describe this activity. Finally, an
activation function regulates the output's amplitude. For instance, a typical acceptable output range is
between 0 and 1, however it may be -1 and 1. Neural networks can be used in different fields. The
tasks to which artificial neural networks are applied tend to fall within the following broad categories

[59]:

- Function approximation, or regression analysis, including time series prediction and

modelling.

27



- Classification, including pattern and

sequential decision making.

sequence

recognition, novelty detection and

- Data processing, including filtering, clustering, blind signal separation and compression.
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Figure 19: Artificial Neural Network (ANN) structure. It consists of the Input layer, Hidden layers, and Output

layer. The learning rule modifies the weights according to the input patterns that is presented with. In a sense,

ANNs learn by example as do their biological counterparts. Taken from [58].

In this study we employed a kind of feed-forward Neural Network for regression. A feed-forward

neural network is a type of artificial neural network that differs from recurrent neural networks in that

connections between nodes do not form loops [60]. This type of neural network was the first and

simplest of those developed. Information in this neural network only travels in one direction, forward,

with respect to entering nodes, hidden nodes (if any), and exit nodes [61], [62]. Feed-forward

networks have no memory of inputs that occurred in previous times, so the output is determined only

by the current input. There exist two kinds of feed-forward neural network: single-layer perceptron

and multi-layer perceptron. The first kind is the simplest, in fact it consists of a single layer of output

nodes, so that the inputs are fed directly to the outputs via a series of weights; each node calculates

the sum of the products of the weights and the inputs, and if the value exceeds a predetermined

threshold (usually 0), the neuron fires and takes the active value (generally 1), otherwise it takes the
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deactivated value (typically -1) [63]. The second type, the multi-layer perceptron, the one taken into
account for our study, consists instead of multiple layers of computational units, usually
interconnected in a feed-forward way; each neuron in one layer has directed connections to the

neurons of the subsequent layer [64].

The structure of the present Neural Network is the one depicted in Figure 20. The first layer (input
layer) corresponds to the predictor data (a matrix that contains vectors of all the features plus the
response values in a vector Y, that is the joint angle we want to predict). The second layer is the fully
connected layer that contains 10 outputs by default. To initialize the weights, it is employed the Glorot
initializer (also known as the Xavier initializer) [65]. For each layer, the Glorot initializer
independently samples from a uniform distribution with zero mean and variable 2/(I+0), where I is
the input size and 0 is the output size of the layer. The third layer is the Rectified Linear Unit (ReLU)
activation function that is applied to the first fully connected layer. It performs a threshold operation

on each element of the input, where any value less than zero is set to zero, that is:

x, x=0

f(x):{o, x<0

(6)

The fourth layer is the final fully connected layer that has one output; finally, the last layer

corresponds to the output, that is the predicted response values.
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Figure 20: Feed-forward Neural Network. The first fully connected neural network has a connection from the
network input (predictor data), and each subsequent layer has a connection from the previous layer. Each
fully connected layer multiplies the input by a weight matrix and then adds a bias vector. An activation function
follows each fully connected layer, excluding the last. The final fully connected layer produces the network’s

output, namely predicted response values.

As we have previously explained, the aim of this study is to verify the accuracy of Neural Network
regression model considering different amount of data to train and test; secondly, we want to
investigate which of the main superficial leg muscles can provide a robust estimation of joints angles
respect to others if one considers joint-related muscles and non-joint-related muscles for the
regression, once the accuracy of the procedure is verified considering all the muscles configuration
(in our study we considered 6 muscles in the complete configuration, see Section 2.4). Two analyses
have been performed: regression analysis has been performed firstly on each trial done by the subjects
(each trial contains an amount of 44-80 steps, see Table 1) and considering all the six muscles together
as well, to evaluate the goodness of the models; secondly, an inter-trial regression analysis was done
on each subject. In both the analyses, and for each joint angle’s regression, different muscles

configurations were taken into account (Table 2).
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JOINTS JOINT-RELATED MUSCLES NON-JOINT-RELATED MUSCLES
ANKLE -All muscles -Thigh muscles

-Shank muscles
-Tibialis anterior

-Gastrocnemius medialis and lateralis

KNEE -All muscles /
-All muscles without tibialis anterior
-Gastrocnemius medialis and lateralis
-Vastus medialis

-Rectus femoris

-Biceps femoris caput longus

-Thigh muscles

HIP -All muscles /

-Rectus femoris and biceps femoris caput
longus

-Rectus femoris

-Biceps femoris caput longus

Table 2: muscles configurations for each joint angle’s regression.

The models considered for the regression of ankle, knee, and hip on each trial have been six, one for
each muscles’ configuration and the number of training data and testing data differs between them.
Model 1 has 90% training data and 10% testing data; Model 2 has 80% training data and 20% testing
data; Model 3 has 70% training data and 30% testing data; Model 4 has 60% training data and 40%
testing data; Model 5 has 50% training data and 50% testing data; finally, Model 6 has 40% training
data and 60% testing data. For what concern the inter-trial regression, we have two models for each
muscles’ configuration: Model 1 has 67% of training data (that corresponds to two trials of about 150
steps) and 33% of testing data (that corresponds to one trial of about 70 steps); Model 2 has 33% of
training data (one trial) and 67% of testing data (two trials). Only two subjects performed 4 trials
each, and for this reason Model 1 and Model 2 were carried out with 3 trials data and 1 left apart in a

k-fold manner; thus, the models were tested 4 times. The inter-trial analysis was not done on subject
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1, since has performed just one trial (Table 1). The last method consists in a statistical evaluation
using the Wilcoxon rank sum test on regressor metrics to recognize the statistical differences between
the considered models for Neural Network regression. The Wilcoxon rank sum test is a non-
parametric test for two populations when samples are independent [66], [67]. The significance level

assumed in this study is 0.05, since it is the common threshold for the p-value in literature [72].
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2.8 Regressor performance metrics

To evaluate the performance of neural network regressor, we evaluated 2 classical meters: Root Mean
Squared Error (RMSE) and Coefficient of determination (R?, and pronounced “R squared”). These
parameters are calculated for the six models considered for each trial, and then for the two models of
intra-subject’s regression on each muscles’ configurations. On one hand, RMSE describes the typical
distance between the predicted value obtained by the regression model and the actual value [68]. On
the other hand, R? tells us how well the predictor variables can explain the variation in the response

variable.

- Root Mean Squared Error (RMSE): it is the difference between values (sample or
population values) predicted by a model or estimator and the values observed. The RMSE
is the square root of the second sample moment of the differences between anticipated
values and actual values or the quadratic mean of these differences. These deviations are
called residuals when the calculations are performed over the data sample that was used
for estimation and are called errors (or prediction errors) when computed out-of-sample.
The RMSE is used to combine the sizes of predictions' errors for different data points into
a single indicator of predictive power [68]. RMSE is a measure of accuracy, and since it
is scale-dependent, it should only be used to compare forecasting errors of several models
for a single dataset and not between datasets. The 0 number (nearly never attained in
practice) would represent a perfect fit to the data, and RMSE is always non-negative. A
smaller RMSE is often preferable to a greater one. However, because the measure depends

on the scale of the numbers used, comparisons across other types of data would be invalid

[69], [70]. RMSE can be computed as:

RMSE = \/ Iivzl(Xobs,i - Xpred,i)2
N

(7
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Coefficient of determination (R?): It is a metric applied to statistical models whose main
objective is to either predict future outcomes or test hypotheses using data from other
relevant sources. Based on the percentage of overall variation in outcomes that the model
is responsible for explaining, it provides a measure of how effectively observed outcomes
are replicated by the model [71]. The coefficient of determination normally ranges from
0 to 1 and it can be expressed in percentage. The most general definition of the coefficient

of determination is:

(8)

where: 55,5 is the sum of squares of the residuals, also called the residual sum of squares:

SSres = z,(xobs,i - Xpred,i)z
i

)
and SS;,¢ 1s the total sum of squares (proportional to the variance of the data):
SStot = z.(Xobs,i - X)Z
l
(10)
with X is the mean of observed data:
N
_ 1
X = Nz Xobs,i
i=1
(11)
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3 RESULTS

We can divide this macro-section into two subsections. First subsection describes the results obtained
when the regression on each trial is done by varying the number of muscles used for the model.
Moreover, additional analysis is done to evaluate the different models based on the different
subdivision between training and testing for the data. Then, each of model was tested again to the
corresponding testing set. Second subsection shows the results related to inter-trial study, with 2

regressive neural networks models for each muscles’ configuration.
3.1 Reduced electrodes setup’s impact on overall performance

This section aims to explore the validity of the Neural Network (NN) models for the joints angles
regression based on features obtained from specific muscles sets and joint-function related, non-
specific muscles sets or non-joint-function related. Table 3 reports regression’s results with RMSE
(in degrees) and R? for the ankle joint, considering the following muscles or groups of muscles: All
Muscles (AM), Shank Muscles (SM, i.e., Tibialis Anterior and Gastrocnemius Medialis and
Lateralis), Tibialis Anterior (TA), Gastrocnemius Medialis and Lateralis (GML) and Thigh Muscles
(TM, i.e., Vastus Medialis, Rectus Femoris and Biceps Femoris). Table 4 shows instead RMSE and
R? values for the knee joint, considering the following muscles or groups of muscles: All Muscles
(AM), All Muscles without Tibialis Anterior (AM without TA), Gastrocnemius Medialis and
Lateralis (GML), Vastus Medialis (VM), Rectus Femoris (RF), Biceps Femoris (BF). Table 5 reports
RMSE and R? values for the hip joint, considering the following muscles or group of muscles: All
Muscles (AM), Rectus Femoris and Biceps Femoris (RF and BF), Rectus Femoris (RF), Biceps
Femoris (BF). Histograms in Figures 21- 26 allow a visual inspection of these concepts. Additionally,
part of the predicted angle using the Model 1 and Model 6 (for AM and TM configurations) and the
true angle for ankle, knee and hip (for the hip it is displayed just the predicted angle obtained from
Model 1 and Model 6 for AM configuration) are displayed from Figure 27 to 32. It shows that the
joints angles during walking can be estimated with great precision using EMG signals, considering
all the six muscles. In Tables 3, 4 and 5 results of p-values from the Wilcoxon rank sum test are
highlighted comparing R? metric between Model 1 and Model 6. Only the models for hip regression
considering all muscles in the electrodes’ setup revealed to be statistically different in R? metric with

a p-value lower than 0.05 (p-value of 0.004).
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ANKLE AM SM T4 GML ™
RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?

MDL I | 2.55+0.49 0.87£0.04  3.02+0.69 0.80£0.09  4.83+0.83 0.53£0.14  3.36%0.75 0.77+0.08  4.77£1.27 0.54£0.19
MDL 2 | 2.62+0.47 0.861£0.04 3.11+0.64 0.80£0.08  4.86+0.91 0.5240.15  3.52+0.71 0.75+0.08  4.80£1.33 0.53£0.21
MDL 3 | 2.56+0.43 0.87£0.03  3.14+0.60 0.79£0.09  4.93+£0.92 0.51£0.15  3.44+0.57 0.77+0.06  4.67£1.14 0.56£0.16
MDL 4 | 2.70+0.49 0.86£0.04  3.25+0.60 0.78£0.09  4.93+0.94 0.51£0.16  3.52+0.60 0.76+0.06  4.82%1.26 0.54+0.18
MDL 5 | 2.71+0.49 0.85+0.04  3.20+0.66 0.78+0.09  4.90+0.94 0.51+0.16  3.59+0.67 0.74+0.07  4.88+1.28 0.52+0.19
MDL 6 | 2.83£0.47 0.84+0.04  3.39+0.65 0.76+0.09  4.92+0.94 0.51+0.15  3.66+0.70 0.73+£0.08  5.10%1.24 0.48+0.18

Table 3: Mean and standard deviation values of RMSE and R? for all the following groups of muscles
considered referred to the ankle joint. Here SM, TA and GML are the specific muscles of the ankle joint, while
TM are non-specific muscles, considered to study the goodness of the models in the simulated case of trans-
amputees’ subjects. Statistical evaluation on R? metric using the Wilcoxon rank sum test was done between

Model 1 and Model 6 (none of the considered models revealed to be statistically different).

KNEE AM AM witHour  GML VM RF BF ™
TA
RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?
MDL | 457+ 0.89+ 4.78+ 0.88+ 643+ 0.77+ 11.83% 0.29+ 12.03% 0.29+ 11.11+ 0.38+ 8.63+ 0.63+
1 1.29 0.06 1.00 0.06 2.30 0.15 2.63 0.19 2.79 0.11 2.72 0.16 2.47 0.11
MDL | 436+ 0.90+ 4.86+ 0.88+ 6.39% 0.78+ 11.83% 0.29+ 11.84% 031+  11.02t 0.39+ 893+ 0.60+
2| 103 0.04 1.25 0.04 2.23 0.14 2.44 0.19 2.86 0.13 2.74 0.18 2.65 0.14
MDL | 454t 0.89+ 477+ 0.88+  6.56t 0.77+  11.76x 0.30+ 11.95% 0.28+ 11.02t 0.39+ 8.67t 0.62+
3| 1.08 0.03 1.13 0.03 2.31 0.13 2.45 0.19 2.59 0.18 2.61 0.16 2.20 0.11
MDL | 443+ 0.90+ 4.86+ 0.88+  6.52+ 0.77+ 11.81% 0.29+ 11.75% 0.32+ 11.10+ 0.38+ 8.95+ 0.60+
4 | 090 0.03 1.07 0.03 2.41 0.14 2.38 0.19 2.88 0.13 2.53 0.16 2.50 0.14
MDL | 4.65+ 0.89+ 4.98+ 0.87+  6.33+ 0.79+ 11.84+ 0.29+ 11.87+ 0.31+ 11.10+ 0.39+ 935+ 0.56+
51099 0.03 1.17 0.04 2.49 0.14 2.42 0.19 291 0.13 2.66 0.17 2.60 0.15
MDL | 5.02+ 0.87+ 5.27+ 0.86+  6.65% 0.77+  11.96% 027+ 1195+ 0.30+  11.08t 0.38= 941+ 0.56+
6 | 131 0.04 1.28 0.04 2.35 0.13 2.41 0.21 2.88 0.14 2.56 0.17 2.96 0.18

Table 4: Mean and standard deviation values of RMSE and R? for all the following groups of muscles referred
to knee joint. Here there are not considered non-specific muscles for the knee joint, but it has been taken TM
for the regression analysis to evaluate the goodness of the models to simulate the case of trans-amputees’
subjects. Statistical evaluation on R* metric using the Wilcoxon rank sum test was done between Model 1 and

Model 6 (none of the considered models revealed to be statistically different).
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HIP AM RF axo BF RF BF

RMSE R? RMSE R? RMSE R? RMSE R?
MDL 1 3.25+0.88 0.91+0.03** 5.57+1.67 0.74+0.10 7.25+1.90 0.55+0.16 8.40+2.61 0.41+0.22
MDL 2 3.35+0.87 0.90+0.04 5.74+1.66 0.72+0.11 7.13+1.96 0.57+0.16 8.4342.65 0.40+0.23
MDL 3 3.38+0.80 0.90£0.04 5.71+1.57 0.72+0.09 7.10£2.00 0.57+0.17 8.43+2.54 0.40+0.21
MDL 4 3.48+0.81 0.90+0.03 5.75+1.56 0.72+0.09 7.19+1.97 0.55+0.17 8.461+2.43 0.40+0.20
MDL 5 3.51£0.84 0.89+0.03 5.79+1.66 0.72+0.10 7.21+2.02 0.55+0.17 8.5242.50 0.39+0.20
MDL 6 3.80+0.97 0.88+0.04** 5.95+1.67 0.70+0.10 7.25+2.03 0.55+0.17 8.561+2.56 0.38+0.21

Table 5: Mean and standard deviation values of regression performance metrics RMSE and R? for the hip
Jjoint considering all the following groups of muscles. Statistical evaluation on R? metric using the Wilcoxon

rank sum test between Model 1 and Model 6 is added (** models with p-value < 0.05).

5
4
3
1
0
AM SM TA GML ™

m MDL 1 (90% TRAINING, 10% TESTING) m MDL 2 (80% TRAINING, 20% TESTING) m MDL 3 (70% TRAINING, 30% TESTING)

RMSE (degrees)

mMDL 4 (60% TRAINING, 40% TESTING) m MDL 5 (50% TRAINING, 50% TESTING) m MDL 6 (40% TRAINING, 60% TESTING)

Figure 21: Histogram of RMSE obtained for ankle joint. The RMSE is higher than 4° if one considers just the
tibialis anterior muscle in the electrodes’ configuration, while if only the muscles of the shank are considered,
comparable results can be achieved with respect to the initial configuration with all the six muscles. If distal

muscles respect to the ankle joint are chosen (the muscles of the thigh), RMSE remains still lower than 6°.
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Figure 22: Histogram of R? obtained for ankle joint. Here the R-Squared obtained for the ankle angle
regression reaches values very close to 0.90 considering all the six muscles,; choosing only the muscles of the
shank, the R-Squared remains still high and around 0.80; R-Squared is diminished instead considering the

muscles of the thigh, with R-Squared lower than 0.60.
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Figure 23: Histogram of RMSE obtained for knee joint. Best results are achieved from the initial configuration
with the six muscles (4°<RMSE<6°); excluding the tibialis anterior muscle, the results obtained are
comparable to the initial configuration. RMSE remains higher for the other groups of muscles considered, and

choosing the muscles of the thigh, regression performance is diminished, with a RMSE higher than 6°.
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Figure 24: Histogram of R? obtained for knee joint. From the initial configuration with all the six muscles, R-
Squared is high, with values for all the six models that remains around 0.90; comparable results are obtained
excluding the tibialis anterior muscle. Choosing the muscles of the thigh, the R-Squared reaches values lower

than 0.70.
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m MDL 4 (60% TRAINING, 40% TESTING) m MDL 5 (50% TRAINING, 50% TESTING) m MDL 6 (40% TRAINING, 60% TESTING)

Figure 25: Histogram of RMSE obtained for hip joint. Best results are achieved from all muscles configuration
(3°<RMSE<4°). The other muscles configurations chosen to regress hip angle, are those with muscles that

cross the hip joint (RF and BF): from those, it was obtained an RMSE higher than 5°.
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Figure 26: Histogram of R? obtained for hip joint. Best results are achieved if one considers all the six muscles
with R-Squared around 0.90. R-Squared obtained from the two muscles that cross the hip joint together
reaches values close to 0.70, while if RF' and BF are considered alone for the regression, the R-Squared

obtained is lower than 0.60.
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Figure 27: The estimated angle and true angle of the ankle using Neural Networks regression Model 1 (a)

and Model 6 (b), considering all the six muscles.
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Figure 28: The estimated angle and true angle of the ankle using Neural Networks regression Model 1 (a)
and Model 6 (b), considering the muscles of the thigh.
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Figure 29: The estimated angle and true angle of the knee using Neural Networks regression Model I (a) and
Model 6 (b), considering all the six muscles.
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Figure 30: The estimated angle and true angle of the knee using Neural Networks regression Model 1 (a) and
Model 6 (b), considering the muscles of the thigh.
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Figure 31: The estimated angle and true angle of the hip using Neural Networks regression Model 1 (a) and
Model 6 (b), considering all the six muscles.
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In this section, the results obtained re-testing the models with training data sets are appended as well,

and they are indicated in Table 6, 7 and 8.

ANKLE AM SM TA GML ™
RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?

MDL I | 1.95£037  0.92£0.04 2.73£0.62  0.85+0.10 4.59£0.79  0.57+0.15  3.22+0.72 0.79+0.08 4.11£1.09  0.66+0.23
MDL 2 | 1.98+0.35  0.92£0.04 2.75£0.57  0.85£0.09 4.53£0.85  0.58+0.17  3.21+0.65 0.79+0.08 4.03£1.12  0.67+0.27
MDL 3 | 1.90+0.31  0.93+0.03 2.72+0.52  0.85+0.10 4.64+0.88  0.56+0.17  3.16+0.52 0.80+0.06 4.03£0.98  0.67+0.19
MDL 4 | 189034  0.93+0.04 2.67£0.49  0.86+0.10 4.52+0.86  0.58+0.17  3.13£0.53 0.80£0.06 3.93£1.03 0.68+0.23
MDL 5 | 1824032  0.93£0.04 2.64+0.55 0.86£0.10 4.49+0.86  0.59+0.19  3.16+0.59 0.80£0.08 3.89£1.02  0.6940.25
MDL 6 | 1.70£0.28  0.94£0.03 2.66+0.53  0.86£0.10 4.46+0.85  0.59+0.17  3.14+0.60 0.80£0.09 3.8440.93 0.70£0.26

Table 6: Mean and standard deviation of RMSE and R*results for training data.

KNEE AM AM witHour GML VM RF BF ™
TA
RMSE R?> RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?
MDL | 3.07+ 095t 3.34+ 0.94+ 552+ 0.83= 11.05¢ 0.38+ 11.26% 0.38¢ 1033t 047+  7.19¢ 0.74+
] | 087 0.03 0.70 0.04 1.97 0.16 2.46 0.25 2.58 0.14 2.53 0.20 2.06 0.13
MDL | 295+ 096+ 3.39+ 094+ 556+ 0.83= 11,09+ 0.38+  11.24¢ 039+ 10.25¢ 047+ 7.26t 0.74%
21070 0.02 0.80 0.03 1.94 0.14 2.29 0.25 2.72 0.16 2.55 0.21 2.15 0.12
MDL | 293+ 096+ 321+ 0.95+ 553+ 0.84+ 11.04+ 0.38+  11.24+ 0.39+  10.28+ 0.48+ 7.20%+ 0.74+
3070 0.02 0.76 0.02 1.95 0.12 2.30 0.24 2.44 0.25 2.43 0.19 1.83 0.15
MDL | 275+ 096+ 3.15¢ 0.95+ 5.65¢ 0.83+ 10.98+ 0.39+  11.18+ 0.40+ 10.23+ 0.48+ 7.00+ 0.76+
4 | 059 0.02 0.69 0.03 2.09 0.13 2.21 0.26 2.74 0.16 2.33 0.19 1.96 0.16
MDL | 280+ 0.96+ 3.09+ 095+ 5.24+ 0.85+ 10.93+ 0.39+  11.12¢ 0.40+ 1030t 047+ 697+ 0.76+
5 | 0.60 0.02 0.73 0.03 2.06 0.10 2.23 0.26 2.73 0.15 2.47 0.18 1.94 0.13
MDL | 264+ 097+ 298+ 0.96+ 528+ 0.85+ 10.90+ 0.40+ 11.04% 041+ 10.16% 048+ 6.72+ 0.77+
6 | 0.69 0.02 0.72 0.02 1.87 0.12 2.20 0.31 2.66 0.16 2.35 0.18 2.11 0.13

Table 7: Mean and standard deviation of RMSE and R*results for training data.

HIP AM RF aNnp BF RF BF
RMSE R? RMSE R? RMSE R? RMSE R?

MDL 1 2.23+0.60 0.96+0.02 4.84+1.45 0.80£0.12 6.78+1.78 0.61£0.18 7.92+2.46 0.47+0.25
MDL 2 2.16+0.56 0.960.01 4.85+1.40 0.80+0.10 6.77+1.86 0.61+0.19 7.78+2.45 0.49+0.28
MDL 3 2.1610.51 0.96+0.01 4.81+1.32 0.81+0.09 6.76+1.90 0.61+0.18 7.77+2.34 0.49+0.26
MDL 4 2.08+0.48 0.96+0.02 4.74£1.29 0.81+0.08 6.75+1.85 0.61+0.18 7.74+2.22 0.50+0.25
MDL 5 2.01+0.48 0.97+0.01 4.69+1.34 0.81+0.08 6.71+1.88 0.62+0.17 7.80+2.29 0.49+0.25
MDL 6 1.94+0.50 0.97+0.01 4.53+1.27 0.83+0.09 6.59+1.85 0.63+0.15 7.70+2.30 0.50+0.28

Table 8: Mean and standard deviation of RMSE and R? results for training data.
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3.2 Inter-trial analysis

The last point of this study addressed is how the overall regression performance is influenced in inter-
trial analysis, when the same training/testing data are referred to the same subject but to different
trials. The aim is to verify the efficacy of the NN models when doing regression on an entire trial or
two trials (corresponding, respectively, to about 70 or 150 steps) of the same subject that is used as
training data to be tested on one or two trials performed by the same subject. Mean values of the
metrics obtained for Model 1 and Model 2 were calculated. Specific evaluations are performed
defining models with the above-mentioned subdivision for training and testing but considering a
specific set of electrodes. The muscles or group of muscles taken into account were the same
considered for the previous analysis for the ankle, knee and hip angles regression.

Table 9, 10 and 11 shows the results obtained for each joint angle with the performance of statistical
evaluation on R? metric. It is showed statistically differences in R? metric between Model 1 and
Model 2 for the ankle angle regression considering all muscles in the overall electrodes’ setup with a
p-value lower than 0.05. Histograms in Figures 32, 33, 34, 35, 36 and 37 allow a visual inspection of
these aspects. Additionally, part of the predicted angle using the two models (for ankle and knee both
in AM and TM configurations) and the true angle for ankle, knee and hip (for the hip it is displayed
just the predicted angle from AM configuration) are displayed in Figures 38, 39, 40, 41 and 42.

ANKLE AM SM TA GML ™
RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?
MDL 1 ‘ 2.85+0.47 0.84+0.04**  3.32+0.48 0.79+0.05  4.93+0.60 0.53+0.09  3.65+0.61 0.74+0.08  4.89+1.11 0.52+0.19

MDL 2 ‘ 3.45+1.34 0.75+£0.23**  3.96+1.35 0.68+0.24  5.38+0.91 0.44+0.16  4.37+1.48 0.61+0.26  5.36%1.45 0.42+0.30

Table 9: Mean and standard deviation values of RMSE and R? metrics for the ankle joint. As in the previous
section, here we consider as well both specific (SM, TA and GML) and non-specific (TM) muscles of the ankle.

Statistical evaluation on R? metric using the Wilcoxon rank sum test between Model 1 and Model 2 is added

(** models with p-value < 0.05).
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KNEE AM AM witHour GML VM RF BF ™
TA
RMSE ~ R?* RMSE R* RMSE R* RMSE R* RMSE R* RMSE R* RMSE R?
MDL [ | 455+ 087+ 4.64% 0.87+ 6.00% 0.78+ 11.29¢ 0.22+ 1098+ 0.29+ 10.15¢ 0.38+  7.92+ 0.63+
1.58 0.05 1.46 0.05 1.37 0.07 2.36 0.16 2.90 0.12 2.55 0.14 2.52 0.12
MDL 2 | 553+ 080+ 592+ 0.78+ 6.78% 0.71£ 11.86% 0.15+ 11.23¢ 0.26+ 10.64t 0.32+  8.75% 0.55+
3.47 0.22 3.50 0.23 3.06 0.20 2.94 0.20 3.26 0.17 2.90 0.15 3.53 0.22

Table 10: Mean and standard deviation values of RMSE and R? metrics for the knee joint. Statistical

evaluation on R? metric using the Wilcoxon rank sum test was done between Model 1 and Model 2 (none of

the considered models revealed to be statistically different).

HIP AM RF anp BF RF BF

RMSE R? RMSE R? RMSE R? RMSE R?
MDL 1 3.38+1.32 0.89+0.06 5.37+1.82 0.72+0.11 6.78+2.30 0.55+0.20 7.21£2.40 0.49+0.19
MDL 2 4.11£2.58 0.82+0.22 5.7442.03 0.68+0.13 7.07+2.46 0.52+0.20 7.5242.55 0.46+0.19

Table 11: Mean and standard deviation values of RMSE and R? metrics for the hip joint. Statistical evaluation

on R? metric using the Wilcoxon rank sum test was done between Model 1 and Model 2 (none of the models

revealed to be statistically different).

RMSE (degrees)

3
2
5
0
AM

SM TA GML ™

B MDL 1 {67% TRAINING, 33% TESTING)

= MDL 2 (33% TRAINING, 67% TESTING)

Figure 32: Histogram of RMSE obtained for the ankle joint. From the initial configuration with all the six

muscles, it is obtained an RMSE with values close to 3°; comparable results are obtained if only the muscles

of the shank are considered for the ankle angle regression, with RMSE that remains lower than 4°. Choosing

distal muscles with respect to the ankle joint (the muscles of the thigh), the RMSE obtained has values around
5° for both Model 1 and Model 2.
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Figure 33: Histogram of R? obtained for the ankle joint. R-Squared obtained from the ankle angle regression
considering all the six muscles reaches values around 0.80 for both Model 1 and Model 2; reducing the number
of muscles from the initial configuration, R-Squared is diminished, with lower values from the configuration

with thigh muscles (around 0.50).
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Figure 34: Histogram of RMSE obtained for the knee joint. To regress the knee angle, best results are achieved
both from the configuration with all the six muscles and from the configuration with all the muscles excluding
tibialis anterior (4°<RMSE<6°). Worst results are obtained considering the muscles that cross the knee joint

alone. Choosing thigh muscles, RMSE is obtained with values higher than 6° and around 8°.
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Figure 35: Histogram of R? obtained for the knee joint. Results obtained considering all the six muscles are
the best with R-Squared between 0.80 and 0.90. Considering thigh muscles alone for the knee angle regression,
R-Squared is low, with values around 0.60 both for Model 1 and Model 2.
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Figure 36: Histogram of RMSE obtained for the hip joint. Best results are achieved considering all the six
muscles from the initial configuration with RMSE that reaches values around 4° for both Model 1 and Model
2. Regression performance is diminished considering RF and BF together and alone (5°<RMSE<8°).
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Figure 37: Histogram of R? obtained for the hip joint. R-Squared reaches value of 0.90 if the initial
configuration with all the six muscles is considered for the hip angle regression. Worst results are obtained if
only the muscles that cross the hip joint are considered: in fact, the R-Squared remains lower than 0.70

(considering RF and BF together), to reach values lower than 0.50 (considering BF muscle alone).
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and Model 2 (b) for the inter-trial analysis, considering all the six muscles.
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Figure 39: The estimated angle and true angle of the ankle using Neural Networks regression Model 1 (a)
and Model 2 (b) for the inter-trial analysis, considering the muscles of the thigh.
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Figure 40: The estimated angle and true angle of the knee using Neural Networks regression Model I (a) and

Model 2 (b) for the inter-trial analysis, considering all the six muscles.
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Figure 41: The estimated angle and true angle of the knee using Neural Networks regression Model 1 (a) and
Model 2 (b) for the inter-trial analysis, considering the muscles of the thigh.
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Figure 42: The estimated angle and true angle of the hip using Neural Networks regression Model 1 (a) and

Model 2 (b) for the inter-trial analysis, considering all the six muscles.
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Moreover, additional analysis is done re-testing Model 1 and Model 2 on the same training data sets.

Table 12, 13 and 14 show the results obtained.

ANKLE AM SM TA GML ™
RMSE R? RMSE R? RMSE R? RMSE R? RMSE R?
MDL 1 | 2384039  0.89+0.04 3.08+0.44  0.82+0.10 4.78+0.58  0.56:0.10 3.42+0.57  0.77+0.08 439£1.00  0.62+0.20
MDL 2 | 2.16£0.83  091+0.02 297+1.01  0.83£0.09 4.82+0.82  0.55:0.20 3.28+1.11  079+0.14 4.13%1.12  0.66+0.27
Table 12: Mean and standard deviation of RMSE and R? metrics for training data.
KNEE AM AM witnoutr GML VM RF BF ™
TA
‘ RMSE ~ R* RMSE  R* RMSE R®* RMSE R* RMSE R® RMSE R® RMSE R?
MDL | 356+ 092+ 382+ 091+ 556 080+ 1083+ 028+ 1038+ 036+ 9.62= 044+ 694+ 071+
7| 124 003 120 002 127 007 226 020 274 015 242 016 221 0.10
MDL | 292+ 095+ 331+ 093t 523+ 083+ 1025t 034+ 994+ 040+ 9.09+ 049+ 631+  0.76%
2018 002 19 002 136 009 254 035 2.89 026 248 023 255 0.09
Table 13: Mean and standard deviation of RMSE and R? metrics for training data.
HIP AM RF AND BF RF BF
‘ RMSE R? RMSE R? RMSE R? RMSE R?
MDL I | 2.64+1.03 0.93£0.02 4.94+1.57 0.77+0.10 6.652.26 0.58+0.18 6.86+2.28 0.55+0.15
MDL 2 | 2.31£1.45 0.95+0.01 4.73%1.40 0.79+0.09 6.63£2.31 0.58+0.19 6.5942.23 0.59+0.14

Table 14: Mean and standard deviation of RMSE and R? metrics for training data.
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4 DISCUSSION AND CONCLUSION

In this section, results obtained from the two analyses are discussed starting from the effect on the
estimation of joints angles due to the reduction of muscles from the initial configuration with six
muscles, then these effects are explained considering more trials done by the subjects for the
regression (inter-trial analysis). Further explanations on the statistical differences between the

considered models for this study is reported.

4.1 Regression analysis reducing electrode’s setup

Lower limbs joint angles have been estimated, in this study, through NN models from EMG signals.
For each joint, regression was performed considering all electrodes setup (six electrodes on the right
leg) and then performing the regression reducing electrode’s setup, differently for each joint. Then,
the effect of the electrodes setup on regression performance has been taken into account. This can be
particularly relevant when data obtained by trans-tibial amputees are considered and when data by
the only thigh muscles can be considered for the myoelectric control of ankle and knee prosthesis.
Finally, regression was done with six neural networks models, starting from a model with large
amount of training data (90%) with respect to testing data (10%), to finally consider models with
lower amount of data for training and consequently higher number for testing. The results showed in
Table 3, 4 and 5 explain that better results are achieved considering all the six muscles (for ankle:
RMSE of 2.55 degrees and R? of 0.87 with Model 1; for knee: RMSE of 4.36 degrees and R? of 0.90
with Model 2; for hip: RMSE of 3.25 degrees and R? of 0.91 for Model 1), confirming in this way
the reliability and robustness of the feed-forward NN models. For what concern the inter-trial
analysis, good results are achieved as well with respect to the previous analysis done on each trial
separately (Tables 9, 10 and 11). This means that, in order to obtain an estimation of the joint angles
exploiting regressive methods, it could be sufficient non-complex architecture, as the feed-forward
NN regression method used in this study (Figure 20). With the inter-trial analysis, it can be confirmed
the robustness of data and the subdivision of data sets because the feed-forward NN models can give
good performance in the joints angles regression with longer training and testing data and these results
are similar to those obtained from the analysis performed on each trial. In fact, it has been seen that
even one or more trials with a great amount of cycle times - about 70 steps on one trial and 150 steps
on two trials - carried out by the same subject can be used as a training/testing set. This gives the
possibility to achieve reliable results if one considers only six muscles in the overall electrodes’ setup,

while other studies considered instead more muscles in the electrodes’ configuration [14], [16], [17],
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[72]. For example, in the study of Chen et Al. [16] better results were achieved, considering ten
muscles (biceps femoris, semitendinosus, vastus medialis, vastus lateralis, rectus femoris, sartorius,
gastrocnemius medialis, gastrocnemius lateralis, tibialis anterior and soleus) in the surface EMG
electrodes’ setup and using Back Propagation (BP) Neural Network for the ankle, knee and hip angles
regression and Deep Belief Neural Network for the extraction of the optimal features vectors, for
what concern the R? (for the hip: achieved value of 0.96; for the knee: 0.97; for the ankle: 0.95). In a
view of limitation of the EMG information, by considering different muscles configurations as
explained in Section 2.7 (see Table 2), we have seen in our study that the performance of the models
is considerably reduced with respect to the initial configuration with all muscles, as one could expect.
A better view of this concept can be seen in the histograms of RMSE and R? in Figures 21, - 26 and
for inter-trial analysis in Figures 32, - 37. RMSE when each muscle is considered alone or when a
group of muscles (Shank Muscles-SM, Thigh Muscles-TM, Gastrocnemius Medialis and Lateralis-
GML, Rectus Femoris-RF and Biceps Femoris-BF) with respect to a configuration with All Muscles
(AM), is generally increased. However, some positive aspects in muscle reduction can be observed.
Generally, regression analysis could be done in an optic of exploiting prosthesis for trans-amputees’
subjects, as seen in some studies [20], [21]. For this reason, we had considered alone Thigh Muscles
(TM) to do the regression of ankle and knee and evaluate the performance of this choice, but, as it
can be seen in Tables 3, 4, 9 and 10, the regressor performance of R? for all the considered models is
relatively low compared to all electrodes set up (but with a RMSE that remains still low for the ankle,
even lower than 6°). Then, the considered TM group of muscles (Vastus Medialis, Rectus Femoris
and Biceps Femoris) could not be sufficient to have a good regression performance on knee angle,
given the high RMSE (lower value 8.63 for each trial, and lower value 7.92 for inter-trial regression).
An additional aspect considered in this study is the role of shank muscles for ankle joint motion
reconstruction. As it can be seen in Tables 3 and 9, the results obtained for RMSE and R? can show
comparable performance when signals from all the electrodes are used (Figures 21, 22 and 32, 33).
This means that, in order to do the regression of ankle angles, it could be just sufficient to consider
the proximal muscles of the shank (Tibialis Anterior and Gastrocnemius Medialis and Lateralis),
avoiding for instance the distal ones. For the regression of the knee angle, Tibialis Anterior resulted
useless: in fact, it can be observed in Tables 4 and 10 and in Figures 23, 24, 34 and 35 that the RMSE
and R? results are almost comparable to the case in which one considers all the six muscles in the

complete electrodes configuration.
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4.2 Regression models performance

Six models have been considered for the regression of ankle, knee, and hip angles on each trial for
every muscle or group of muscles considered, and two models for the inter-trial regression for each
group of muscles as well. To evaluate the statistical difference between the models, the Wilcoxon
rank sum test was adopted on R? metrics. It was chosen R? to evaluate the statistical differences
between the models because, unlike RMSE, R? is not sensitive to systematic errors and gives an
overall sense on how well the model is good in predicting data [73]. Among the models reported in
Tables 3, 4 and 5 for the regression on each trial, we evaluated the statistical difference between
Model 1 and Model 6 because the differences in the amount of training and testing data between them
were more respect to the other models and we wanted to verify possible statistical differences due to
data subdivision between training and testing. Results of the statistical analysis performed between
Model 1 and Model 6 revealed significant differences only for the hip joint when all muscles are
considered (which gave a p-value<0.05) as we can see in Table 5.

In Tables 9, 10 and 11 it can be observed that there is a difference in R? between Model 1 and Model
2 that is statistically significant: it is between the models used to regress the ankle angle considering
all the electrodes set up (Table 9). This explains the fact that all the models that showed not
statistically differences in the R? metric are valid in the regression of the joint angles, so that a model
with lower amount of training data could be as robust and reliable as a model with larger amount of

training data with respect to testing data.

In conclusion it can be said that all the models used for the regression have demonstrated to be reliable
and robust in the estimation of ankle, knee, and hip angles, with statistically differences between
Model 1 and 6 for the estimation of the hip in the regression on each trial and between Model 1 and
2 for the estimation of the ankle in the inter-trial analysis.

It has been showed that good results are achieved considering all the electrodes’ setup, comparable
to the study of Xiong et Al. [14]. In the study of [14], in fact, better results are achieved, in terms of
RMSE metric, for the ankle with respect to the knee. In the case of trans-amputee subjects, the
estimation of joint angle for the use of transtibial prosthesis is very important. The models of Neural
Network regression showed an RMSE for the ankle lower than 6°, choosing only the electrodes of
the thigh for the regression. In this way, it showed that the use of a simple NN regression approach,
to continuously predict joint kinematics using natural residual muscle activity, provides opportunities
for direct (transparent) control of a prosthetic joint by the user. On the other hand, in our work, the

models showed a R? value quite low (for ankle: the highest value among all the models is 0.56; for
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knee: the highest value among the proposed models is 0.63), saying that the models could be not good
enough in predicting the joint angle in case of transtibial amputees’ subjects. In this study, in fact,
better results are achieved considering more proximal muscles to the ankle (the muscles of the shank)
giving the possibility to reduce the electrodes set up from 6 to only 3 electrodes in the estimation of
ankle angle. For the knee, only muscles crossing the knee joint could be useful, excluding Tibialis
Anterior. For the hip joint, only the complete set up has proved to be the most effective in the
estimation of the joint angle. Further improvements of this study could be done. Firstly, more
participants could take part to the experiments, and many other tasks could be involved (stair ascend,
stair descend, walking at different speeds, etc.) to prove the efficacy of the method proposed in this
study and to see if the neural network model is efficient; then, to improve the limitations done by the
choice of using only one features set in time domain, the features set could be enlarged and, as in the
study of Chen et Al [16], it could be proposed a method of feature dimensionality reduction in order
to reduce the time needed by the system to get the best model in a short time. In fact, in the study [16]
it was employed a Deep Belief Network method by which the multi-channel surface EMG signals
were encoded in low dimensional space and the optimal features were extracted. Another option could
be to consider multiple time domain features combined together to compensate the limited
information problem of one feature set while keeping the computation complexity relatively lower,
as in the study done by Xiong et Al. [14]. Lastly, more muscles in the electrodes set up could be
involved and if more channels in the surface EMG signal are used as input, the regression accuracy

could be improved.
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