

UNIVERSITA’ POLITECNICA DELLE MARCHE

FACOLTA’ DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Gestionale

GESTIONE DEGLI OBIETTIVI NELLO SVILUPPO DI PIATTAFORME DI PRODOTTO
INNOVATIVE IN UN CONTESTO AGILE

SCOPE MANAGEMENT OF NEW PRODUCT PLATFORM, IN A CONTEXT OF AGILE
DEVELOPMENT

Relatore: Chiar.mo Tesi di Laurea di:

Prof. Filippo Emanuele CIARAPICA Luca CAFFARINI

Correlatore: Chiar.mo

Prof. Rui ABRANTES

A.A. 2019 / 2020

Table of Contents

ABSTRACT .. 4

INTRODUCTION ... 5

1 PRODUCT DEVELOPMENT .. 6

1.1 TRADITIONAL METHODS ... 6
1.1.1 Waterfall and Stage-gate ... 6
1.1.2 Set-based Concurrent Engineering .. 8

1.2 AGILE METHODS .. 9

2 SCRUM AGILE FRAMEWORK ... 11

2.1 SCRUM TEAM .. 11
2.1.1 Product Owner ... 12
2.1.2 Developers ... 12
2.1.3 Scrum Master ... 12

2.2 SCRUM EVENTS ... 13
2.3 PRODUCT BACKLOG .. 13
2.4 SPRINT BACKLOG .. 14
2.5 INCREMENT ... 14
2.6 USER STORIES .. 14

3 PRODUCT PLATFORM DESIGN APPROACHES (TANGIBLE PRODUCTS) .. 15

3.1 PRODUCT PLATFORM ... 15
3.2 METHODS USED IN PRODUCT PLATFORMS DESIGN: .. 17

3.2.1 Quality Function Deployment .. 17
3.2.2 Kano model .. 17
3.2.3 Axiomatic Design ... 18
3.2.4 Design Structure Matrix .. 19
3.2.5 Pruning Analysis and Attribute matching .. 20
3.2.6 Commonality matrix .. 21
3.2.7 Mixed Integer Linear Programming (MILP) ... 22
3.2.8 Clustering algorithm .. 22
3.2.9 Generational Variety Index (GVI) ... 22
3.2.10 Enhanced function-means tree (EF-M) ... 23
3.2.11 Similarity index and Sensitivity index ... 25

3.3 INFORMATION MANAGED .. 26
3.4 PRODUCT DERIVATION .. 29
3.5 PRODUCT IMPROVING .. 29
3.6 AGILE PHYSICAL PRODUCT PLATFORM ... 30

4 SOFTWARE PRODUCT LINE SCOPING APPROACHES .. 30

4.1 FEATURE MODEL ... 32

4.2 ORTHOGONAL VARIABILITY MODEL ... 32

5 AGILE SOFTWARE PRODUCT LINE SCOPING APPROACHES .. 34

5.1 AGIFPL ... 34
5.2 APLE METHOD .. 35
5.3 AGILE SPL SCOPING ... 37
5.4 SPLICE ... 38
5.5 SCRUMPL .. 39
5.6 A-PRO-PD ... 41
5.7 BACKLOG MANAGEMENT AND FEATURE MODEL ... 41
5.8 APLA .. 42

6 HARDWARE AND LARGE-SCALE AGILE .. 46

7 DISCUSSION ... 47

8 CONCLUSION ... 50

9 REFERENCES ... 51

Abstract

Nel tempo il mercato ha subito una profonda trasformazione e le aziende sono chiamate a rispondere

alle sempre più elevate esigenze dei clienti e ad un sempre maggiore grado di personalizzazione del

prodotto. L'uso delle piattaforme di prodotto è stato riconosciuto come un mezzo strategico per

ottenere la personalizzazione di massa.

In generale si possono identificare due tipi di processi di sviluppo di nuovi prodotti: Tradizionale e

Agile. Quando si considera un processo di sviluppo tradizionale ci si riferisce a modelli come

Waterfall, dove la modalità di lavoro è fortemente orientata all'esecuzione di passaggi sequenziali.

Al contrario dei metodi tradizionali, abbiamo processi di sviluppo Agile, come Extreme Programming

(XP) o SCRUM. Questi ultimi modelli sono composti da una serie di fasi iterative, in cui viene

considerata ogni volta una piccola e definita parte del progetto. Nel modello Waterfall, si presume

che tutti i requisiti del prodotto siano identificati nella fase iniziale, prima delle fasi di progettazione

e implementazione, ed è difficile modificare il prodotto nelle fasi finali. L'approccio Agile consente

di sviluppare prodotti in modo incrementale e iterativo insieme al feedback dei clienti. In questo modo

è possibile reagire agli imprevisti e il prodotto può subire modifiche anche nelle fasi finali o quando

è già ultimato.

La presente tesi mira ad analizzare l'utilizzo degli approcci Agile nei processi di sviluppo della

Product Platform. Questo studio è stato condotto attraverso la ricerca, nella letteratura scientifica, di

casi reali che potrebbero mostrare l'uso di metodologie agili nello sviluppo di piattaforme di prodotto

nel dominio dei prodotti fisici e software.

Il Capitolo 1 spiega i metodi di sviluppo del prodotto tradizionali e agili, mostrandone le differenze.

Il Capitolo 2 introduce una delle metodologie di sviluppo agile più popolari, chiamata Scrum.

Il Capitolo 3 analizza principalmente le metodologie utilizzate nello sviluppo di piattaforme di

prodotto fisico, il tipo di informazioni gestite per il suo sviluppo e miglioramento e i casi studio.

Il Capitolo 4 presenta la Software Product Line (SPL), una teoria di sviluppo di piattaforme software,

e le principali metodologie applicate.

Il Capitolo 5 indaga l'uso di metodologie agili all'interno della linea di prodotti software analizzando

le metodologie proposte e i casi studio.

Il Capitolo 6 analizza l'uso di metodologie agili nello sviluppo di prodotti fisici e l'uso di framework

agili su larga scala.

Nel capitolo Discussione vengono mostrati i principali risultati dello studio.

Infine, il capitolo 7 rivela le conclusioni.

Questa ricerca mira a trovare una connessione tra lo sviluppo della piattaforma del prodotto e lo

sviluppo agile nel campo dei prodotti fisici e software. In particolare, lo scopo dello studio è stato

quello di trovare casi di studio dell'applicazione dei framework Agili, come Scrum, nella gestione

degli obiettivi della piattaforma di prodotto. Come risultato viene dimostrata, grazie ai casi di studio

analizzati, la possibilità di utilizzare le metodologie agili per lo sviluppo delle piattaforme software.

È stato mostrato come la metodologia agile combinata con un'architettura della linea di prodotto

flessibile possa fornire una consegna tempestiva e continua del software. Inoltre, è stata dimostrata

la possibilità di creare piattaforme software pronte ad accogliere i cambiamenti dei requisiti in

qualsiasi momento, anche nelle fasi finali dello sviluppo.

La ricerca ha rilevato una mancanza di letteratura sull'applicazione dei framework Agile nello

sviluppo di piattaforme di prodotti fisici e in generale vi è una carenza di studi empirici che affrontano

l'impiego di framework Agili su larga scala.

Inoltre, sono state trovate somiglianze tra le metodologie di sviluppo tradizionali di piattaforme per

prodotti fisici e le metodologie per lo sviluppo agile di piattaforme software. Date queste somiglianze

tra le metodologie analizzate, come suggerimenti per il futuro, il framework Scrum potrebbe essere

applicato allo sviluppo di piattaforme di prodotti fisici, come è stato fatto per le famiglie di prodotti

software.

Introduction

Over time, the market has undergone a major transformation and companies are called upon to

respond to ever higher customer needs and an ever greater degree of product customization.

Being able to cope with short lead times and react to changing requirements is a key factor to create

unique products. The use of product platforms has been recognized as a strategic enabler for mass

customization.

In general two types of new product development processes can be identified: Traditional and Agile.

When we consider a traditional development processes we refer to models such as Waterfall, where

the working mode is strongly oriented to the execution of sequential steps. As opposed to the

traditional methods we have Agile development processes, such as Extreme Programming (XP) or

SCRUM. The latter models are composed of a series of iterative phases, where one small and defined

part of the project is considered each time. In the Waterfall model, it is assumed that all the product’s

requirements are identified in the early stage, before the design and implementation phases, and it is

difficult to modify the product in the final stages. The Agile approach permits to develop products

incrementally and iteratively coupled with customer feedback. In this way it is possible to react to the

unexpected and the product can undergo changes even in the final phases or when it’s already

completed.

The present thesis aimed to analyze the use of Agile approaches in Product Platform development

processes. This study was carried out through the research, in the scientific literature, of real cases

that could show the use of agile methodologies in the development of product platforms in the domain

of physical and software products.

The first chapter explain the traditional and agile product development methods.

The second chapter introduce one of the most popular agile development methodologies, called

Scrum.

The third chapter mainly analyzes the methodologies used in the development of physical product

platforms and the type of information managed for its development and improvement.

The fourth chapter presents the Software Product Line (SPL), a theory of platform-based Software

development and some of methodologies applied.

The chapter 5 investigates the use of agile methodologies within the software product line by

analyzing proposed methodologies and case studies.

Chapter 6 analyzes the use of agile methodologies in the development of physical products and the

use of large-scaled agile frameworks.

In the Discussion chapter the major findings of the study are shown.

Finally, Chapter 7 reveals the conclusions.

1 PRODUCT DEVELOPMENT

1.1 TRADITIONAL METHODS

1.1.1 Waterfall and Stage-gate

The Waterfall Model, also called Classic Life Cycle, is a sequential and linear approach to software

development, born in the 1950s, when the software development business began to establish itself.

At that time, since no software development methodology was present, the developers were inspired

by manufacturing production processes and the construction industries, to obtain a methodology that

could be applied to code development in an orderly and less chaotic way.

The first traces of the waterfall model can be found in a 1956 publication by Herbert D. Benington

(1983), where he describes a sequential structure formed by different phases, which was used for the

development of the complex Semi-Automatic Ground Environment (SAGE) for the American

defense. The waterfall method was formally described later by Winston Royce (1970). Although

Royce never mentions the word "waterfall" in the article, this methodology is known all over the

world with this name due to the particular structure of the various activities that compose it, where

the flow of development flows linearly from a phase to the next one. This means that the output

produced by the first stage will be the input for what follows. The linear execution of all phases

produces the final software product in output. A characteristic of this method is that it is based on the

big design up front, for this reason product modifications in the final stages are costly and it is

advisable to modify the product in the early stages.

Figure 1 - Waterfall Model

The stage-gate methodology is also a Waterfall methodology, widely used in the development of

physical products. This model was designed by Cooper (1990) in the early 1990. It is made up of

Stages (or phases) and at the end of each of them it is decided whether or not to continue with the

development of that product (Go / Kill decision). At the end of each Stage, the related Gate must

review the work and decide if the project can move on to the next Stage. If the passage to the next

Stage is not accepted, the project remains in that Stage until the problem is solved.

According to Cooper (2008) the game is won or loss in the front end, i.e. ideation, scoping the project,

defining the product, and building the business case. This is the part that most influences the success

of the project.

Figure 2 - Stage-gate model versions (Cooper, 2008)

1.1.2 Set-based Concurrent Engineering

Traditional design practice tends to quickly converge on a solution and then modify that solution until

the required objectives are met. There is the risk of creating a sub-optimal solution if you start from

the wrong place, without considering the time lost to refine that solution. Set-based Concurrent

Engineering (SBCE), instead, considers group of possible solutions and shrinks them to obtain a final

solution, as shown in Figure 3, drawn by Raudberget (2010). This method may take longer initially

to identify the various solutions, but allows to reach the final solution more quickly (Sobek et al.,

1999). The SBCE is based on three basic concepts: Mapping the design space, Integrate by

intersection, Establish feasibility before commitment.

One of the most important idea of Concurrent Engineering (CE) is to carry out activities in parallel,

trying to bring more feedback upstream through face-to-face meetings with the purpose of decrease

product development and delivery time (Prasad, 1999). According to Levandowski et al. (2014),

SBCE can be used to define variants in the product platform design process. Also Johannesson et al.

(2017) used this method for the construction of a product platform.

Figure 3 - Principles of SBCE (Raudberget, 2010)

1.2 AGILE METHODS

Agile methodology appeared in 2001 with the conception of the Manifesto for Agile Software

Development (Beck et al., 2001). The Agile Manifesto consists of 12 principles:

1. “Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.”

2. “Welcome changing requirements, even late in development. Agile processes harness change

for the customer's competitive advantage.”

3. “Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale. “

4. “Business people and developers must work together daily throughout the project. “

5. “Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.“

6. “The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.”

7. “Working software is the primary measure of progress.”

8. “Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.“

9. “Continuous attention to technical excellence and good design enhances agility.”

10. “Simplicity--the art of maximizing the amount of work not done--is essential.”

11. “The best architectures, requirements, and designs emerge from self-organizing teams.”

12. “At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.”

In most situations, customers are not clear about what they want and for this reason they must be

followed with particular attention to try to make them understand the requirements of a product that

is able to meet their needs. To achieve this, a strong collaborative bond must be built with customers.

One of the main differences with the traditional methodology is that the agile methodology allows

the product requirements to be modified during the development phase, they are not fixed, as shown

in Figure 4. Furthermore, the agile methodology is incremental and iterative, then new versions of

the product are released at frequent intervals.

Figure 4 - WATERFALL vs. AGILE

Various agile methodologies have been devised, one of the first and most used is Scrum, explained

in Chapter 2. Others methodologies are Extreme programming (XP) and Feature-Driven

Development (FDD). Frameworks that allow to scale Agile and Scrum development at large scale

exist. The best known are Scaled Agile Framework (SAFe), Large Scale Scrum (LeSS) or Disciplined

Agile Delivery (DAD) and Scrum of Scrums (SoS).

2 SCRUM AGILE FRAMEWORK

Scrum is one of the most important and widely used Agile frameworks for software development,

conceived by Ken Schwaber and Jeff Sutherland in early 1990s (2020). This method appeared to

respond to an ever increasing market competitiveness following the principles of the Agile Manifesto

written by Beck et al. (2001). For this reason the Scrum method has as its main objectives the

customer satisfaction, the ability to adapt to changes in requirements and the willingness to deliver

working products with a certain cadence. This framework applies an iterative, incremental approach

combined with Sprint events. It starts normally with a vision of the system to be developed

(Schwaber, 2004)

Figure 5 - Scrum Framework overview

2.1 Scrum Team

The Scrum Team is accountable to give life to the product, and since they have to work together on

ongoing projects, it is advisable that they develop a strong and close relationship, as peers (Pichler,

2010).

This team is composed of Product Owner, Developers and Scrum Master and it is cross-functional,

self-managing and oriented to the Product Goal.

When the team is small, their members communicate and work more efficiently. For this reason is

advisable that the team consist of maximum 10 people, and if the number exceeds it is better to split

the team into multiple teams (Schwaber & Sutherland, 2020).

2.1.1 Product Owner

The Product Owner is the person that is in charge of building the product vision, managing the product

backlog, staying in contact with the stakeholders and cooperating with the team (Pichler, 2010).

Schwaber & Sutherland (2020) defines the Product Owner as the person responsible for maximizing

the product value.

Furthermore he is the only representative for the stakeholders, he interprets customer needs and

translates them into product backlog items.

He guarantees that:

• The elements of the Product Backlog are clearly expressed;

• Product Backlog items are ordered to better achieve objectives and missions;

• The value of the work done by the Team is optimized;

• The Product Backlog is visible, transparent and clear to all and shows what the Scrum Team

will work on next;

• Items in the Product Backlog are understood to the required level by the Development Team.

2.1.2 Developers

Developers are an important part of the Scrum Team, and they are responsible for creating usable

Increment that is delivered at the end of each Sprint.

• Developers are always in charge of planning the Sprint Backlog;

• Adjust the plan every day in line with the Sprint Backlog;

• Act according to Definition of Done;

2.1.3 Scrum Master

The Scrum Master is the person responsible for checking the correct application of the Scrum

framework as described in the Scrum Guide. One of his tasks is to help the organization and the

Scrum team comprehend Scrum principles.

The Scrum Master supports the Product Owner in various ways, including:

• Finding procedure to effectively determine the Product Goal and lead the Product Backlog;

• Helping the Scrum Team perceive the importance of well-expressed and easily understood

backlog items;

• Ensuring stakeholders cooperation when necessary.

The Scrum Master also assists the Development Team:

• Helping the team members being self-managed and cross-functional;

• Building high-value increments;

• Avoiding that the Development team encounters obstacles;

• Guaranteeing the execution of all Scrum events.

2.2 Scrum Events

Each event in Scrum has the goal of inspecting and adjusting Scrum artifacts. The main event that

includes all the others is called Sprint. Normally it has a fixed duration of less than one month,

because if it were too long the risk and complexity would increase and turn invalid the Sprint Goal.

The Sprint Planning event is a meeting lasting up to eight hours for a one-month Sprint, or less if the

Sprint size is smaller. During this meeting the Scrum Master, the Product Owner and the Team come

together to determine the work that will be done during the Sprint.

Every day during the Sprint, a communication meeting of the development team is held. This meeting

is called "Daily Scrum" and is intended to review the work done, check the progress and adapt the

work that needs to be done.

At the end of the Sprint, the Sprint Review meeting, lasting up to 4 hours, is held to inspect the

increment and adjust the Product Backlog if necessary. During the Sprint Review meeting the Scrum

Team and stakeholders collaborate on what was done during the Sprint.

The Sprint Retrospective is a meeting of up to three hours and is an opportunity for the Scrum Team

to examine the past Sprint and create an improvement plan to implement during the next Sprint. The

Scrum Team meets for the Sprint Retrospective after the Sprint Review and before the next Sprint

Planning (Schwaber & Sutherland, 2020).

2.3 Product Backlog

The Product Backlog is one of the most important Scrum artifacts, it is the representation of the

Product Goal. It is a dynamic list of organized items that shows the work that must be done to get the

final product (Schwaber & Sutherland, 2020). Normally it consists of functional and non-functional

requirements that will deliver the product vision. The Product Backlog is prioritized giving more

priority to the items most likely to create value. It is an emergent list, so during the project the Product

Backlog could change, some items could be modified or removed, others could be added according

to customer needs. Product Backlog items are decomposed into smaller and more accurate items

during the Product Backlog refinement. In this phase more details are added, such as a description,

order and size of the items. A general view of the structure of the product backlog is provided in

Figure 6.

Figure 6 - Product Backlog (Pichler, 2010)

2.4 Sprint Backlog

The Sprint backlog is the list of work that the Developers needs to complete during the next sprint

focusing on the Sprint Goal. This list is generated by selecting a quantity of items from the top of the

product backlog determined by what the Development Team believes it can accomplish during the

sprint. As knowledge increases, the sprint backlog is updated, and is usually detailed enough so that

the team can check their progress in the Daily Scrum.

2.5 Increment

An increment is a tangible step in the direction of the product goal.

Each time an increment is obtained it is added to the previously accomplished increments and the

proper functionality of the system is verified.

In order for work to be considered completed, it must meet the "Definition of Done", i.e., achieve the

sufficient quality required for the product.

The Definition of Done can be defined by the organization or created by the Scrum Team if it is not

present.

2.6 User stories

According to Leffingwell (2011) and Cohn (2004), User stories are a textual notation used more and

more often in agile software development, with the aim of acquiring the requirements.

User stories are descriptions that use a simple construction such as “As a ⟨role⟩, I want ⟨goal⟩, [so

that ⟨benefit⟩]”. A user story describes a story of a customer or user using the product. In order to get

a complete story, it must contain a name, a short narrative and an acceptance criteria that must be

verified (Pichler, 2010).

According to Cohn (2004), Scrum does not establish how the product backlog items are delineated,

but he prefer to use User Stories. User Stories are normally small and detailed, if they are larger are

called epics. Themes usually consists of between two and five coarse-grained requirements (i.e. epics)

(Pichler, 2010).

3 PRODUCT PLATFORM DESIGN APPROACHES (TANGIBLE
PRODUCTS)

3.1 Product Platform

Due to the growing demands in term of personalized commodities, product platform planning has

emerged in order to increase product diversity and Mass Customisation (MC).

McGrath (1995) defines a product platform as a group of common parts, in particular the core

technology, used within a wide range of products. Meyer and Lehnerd (1997) define the term as a

collection of subsystems and interfaces that constitute a common structure from which a group of

products can be efficiently designed and created. Robertson and Ulrich (1998) proposed a broader

definition: they describe product platforms as a set of assets (e.g., components, processes, knowledge,

people and relationships) that are shared by a group of products.

A product platform can decrease development cost, reduce time-to-market, participate in the

extension of product variety and create competitive advantage. This development approach is an

effective strategy for addressing mass customization. In recent years, due to the increase in demand

for product customization, the product-centered strategy has shifted to a customer-centered strategy,

academia and industries have begun to study the product platform to improve adaptability of

businesses in an uncertain environment. A platform approach enables efficient customisation, reuse

and production standardization.

The platform-based development is present mainly in the automotive industry, where various car

models come from the same product platform, but it begins to emerge in many other fields in the

domain of tangible products, software and embedded systems.

The Software Product Line (SPL) outlines the development of software product platforms.

According to Zhang et al. (2019), product platform mainly consists of core modules, representing the

basic structure of the product family, and variable modules that symbolize the product variety.

Furthermore, the product can be enhanced by improving or redesigning the various modules,

therefore is possible to have greater product diversity that is a key factor to achieve mass

customisation. Boute et al. (2018) as well affirmed that they manage product variety through the

adoption of product platforms as shown in Barco’s case, where a product platform which outlines 17

diagnostic displays it was developed.

The platform design model developed by Zhang et al. (2019) is based on product data already

available in product lifecycle management (PLM) database, and his model does not only consider the

product family, but also product series and could be extended to the whole portfolio.

Product platform planning is crucial to achieve a successful product family with the purpose of

increasing competitiveness of the enterprise.

Landahl et al. (2020) use the platform to obtain a wide variety of products to satisfy a large amount

of customer needs.

The product platform design process, in the opinion of Cheng et al. (2015), consists of analysing

clients’ needs, defining Functional Requirements (FRs), associating them to Design Parameters (DPs)

in the physical domain and clustering the latter to recognize common platform and adjustable

variables, as shown in Figure 7.

Figure 7 - Product Platform Design process (Cheng et al., 2015)

Product Platforms usually come in three types: modular, scalable, or adaptable. The module based

platform consists of interchangeable modules, which are sets of components. The scalable one

permits the adjustment of design variables to obtain product variety. The latter allows both modularity

and scalability.

Beyond modularity, it was introduced a new platform element, called Design Asset, that provides

efficient customization, reuse and standardization (Elgh et al., 2018; Raudberget et al., 2019). The

idea is that a product platform should consist not only of modules or components, but also of

information, models, methods and knowledge. In particular, eight domains have been determined

with the purpose of creating Design Assets: Process, Product, Synthesis Resources, Analysis

Resources, Geometry Resources, Constraints, Solutions, and Projects.

3.2 Methods used in product platforms design:

The following methods, encountered in our bibliographic research, permit us to understand how the

product platform is created, how the information is managed and how the product variants take shape.

They enable to understand customer’s needs in term of features or functional requirements and

connect them to physical components.

3.2.1 Quality Function Deployment

According to Akao and Mazur(2003), Quality Function Deployment (QFD) was created in Japan in

1966 to guarantee that customer needs are considered and employed in the development of a new

product. The first book dealing with this topic was written by Mizuno and Akao (1978).

Quality Function Deployment (QFD) can be used in the first stage of the product platform planning

to detect product features and their importance for the client, as shown in Barco’s case, where it is

used this method concurrently with the Design Structure Matrix (Boute et al., 2018).

It is normally used to connect Customer requirements to Engineering requirements, and the latter to

Components. Furthermore it could be utilize in conjunction with Generational Variety Index (Martin

& Ishii, 2002).

3.2.2 Kano model

Kano’s model takes the name of its founder Noriaki Kano (1984) and it classifies customer

requirements into five categories:

• Must-be, basic necessity that the customer expects. Their absence lead to high levels of

dissatisfaction;

• One-dimensional, attributes that bring to satisfaction when fulfilled and dissatisfaction if they

are not fulfilled;

• Attractive, unexpected requirements that provide satisfaction;

• Indifferent, attributes that are not taken in consideration by the customer;

• Reverse, requirements that can provide high levels of dissatisfaction if present.

This model was used in the field of product platform by various authors to understand, classify and

prioritize customer needs based on the satisfaction level (Alsawalqah et al., 2014; Cheng et al., 2015)

Pohl et al. (2005) used a Kano-method Portfolio Planning to develop a customer-oriented Software

Product Line (SPL). Pichler (2010) also outline the importance of this method, applied to the product

vision and to the product backlog, in the Agile product management with Scrum.

Wu & Wang (2012) proposed a Fuzzy extension of Kano’s model to deal with uncertain Customer

Requirements.

3.2.3 Axiomatic Design

Axiomatic design (AD) was proposed by Suh and Sekimoto (1990) and permits to connect customer,

functional, physical and process domain. This method links Functional Requirements (FR) and

Design Parameters (DP), obtaining a hierarchical representation, as shown in Figure 8. Through an

iterative zigzagging process, the FR – DP connection is established and represented by the design

matrix (Cheng et al., 2015).

As also reported by Johannesson (2017) this method shows the link between functional requirements

(FRs) and design parameters (DPs). Furthermore the zigzagging process denotes that before

decomposing a functional requirement into other requirements it is necessary to determine

intermediate solutions (i.e. DPs).

Figure 8 – FR – DP zigzag mapping based on Axiomatic Design (Cheng et al., 2015)

3.2.4 Design Structure Matrix

Donald Steward (1981) first coined the term Design Structure Matrix and implemented this concept

to manage the design of complex systems.

The Design Structured Matrix (DSM) is normally used to show interconnections in the physical

domain with the purpose of decompound the system in substructures that could be considered as

modules. Cheng et al. (2015) utilize the DSM to represent the relationship among the Design

Parameters. He developed the Design Structure Matrix (DSM) from the Design matrix, obtained in

turn from the Axiomatic Design process, as shown in Figure 9.

According to Cheng et al. (2015) a limitation of this method is that is suitable only for products that

have already been designed.

Simpson et al. (2012) use the DSM to show a generic product architecture enhanced with a component

change propagation grade (Low – Medium – High) which exhibit if an alteration of a specific

component affects another one.

According to Johannesson et al. (2017) DSM can be used to examine system alternatives combined

with axiomatic design matrices, and trade-off curves.

Boute et al. (2018) also used the DSM in their approach along with Quality function deployment to

explore the features, their importance for the client and their connection with element in the Bill of

materials (BOM).

Baylis et al. (2018) use this method to show the connection between components, to group them into

modules. The DSM permits also to see if components of different modules are linked, so these

modules could be merged in a building block.

Figure 9 - Design Structure Matrix process (Cheng et al., 2015)

3.2.5 Pruning Analysis and Attribute matching

Zhang et al. (2019) suggest a new approach consisting of two methods, i.e., pruning analysis and

attribute matching. The first one allows to represent the core structure of the product platform

discovering common parts of several product families. A Minimum Structure tree and a Residual

Subset are created as a result, representing respectively the Basic framework and the Variables.

The latter permits to group product modules into four types based on their sharing degree. In

particular, the product modules are classified as Private (PrM), if the product module is included

exclusively in a specific product family, Families sharing (FSM), if it appears in several product

families, Series sharing (SSM), if it is part of every family of the product series, or Global sharing

(GSM), if it is contained by each product series of the enterprise. The SSM and GSM groups are part

of the Basic product modules and they are derived from the Minimum structure trees. The PrM and

FSM are Variable product modules and they originated from the Residual subsets. (Zhang et al.,

2019)

Figure 10 - Product Platform planning (Zhang et al., 2019)

3.2.6 Commonality matrix

Chowdhury et al. (2011, 2016) used the commonality matrix in their mathematical approach, called

Comprehensive Product Platform Planning (CP3) Framework, with the aim of designing a product

platform for universal electric motors and unmanned-aerial-vehicle (UAVs).

In the original CP3 model the commonality matrix was represented by common physical design

variables between products (Chowdhury et al., 2011), while the improved framework consisted of

module-sharing variables (Chowdhury et al., 2016). According to Chowdhury et al. (2016) this

method supply a product-platform plan, shown in Figure 11, which shows the sharing of modules and

features and permits the generation of viable platforms. Furthermore it can be used in both cases of

modular or scalable attributes. The Figure 11 shows that two modules are totally shared between the

family of products, i.e. Horizontal tail and fuel tank, and other two are partially shared, i.e. Fuselage

and Booms, in the Pareto solution with maximum commonality.

The commonality matrix shows if a design variable is required, not relevant or optional for a specific

product. The Product Platform Plan resulting allows to organize the design variables in Platform,

Sub-platform and Nonplatform, respectively if the variable is shared by all the products in the family,

only with a group of products, or with any product. (Chowdhury et al., 2011)

Figure 11 - UAV Platform Plan (Chowdhury et al., 2016)

3.2.7 Mixed Integer Linear Programming (MILP)

Mixed integer linear programming is a subset of linear programming, founded by Kantorovich(1939).

ElMaraghy and Moussa (2019) use a mixed integer linear programming (MILP) model to create the

product platform of a guiding bushes family. The optimization problem recognizes the core features

that establish the platform and other characteristics that can be added or removed to obtain the product

variants. The product derivation is obtained through additive or subtractive processes (ElMaraghy &

Moussa, 2019).

Also Chowdhury et al. (2011) use MILP model to obtain the optimization of the Electric motors

family.

3.2.8 Clustering algorithm

According to Zhang et al. (2019) the clustering algorithm is the most frequently used algorithm to

identify the sharing parts in scalable product platform planning.

Cheng et al. (2015) use clustering algorithm to distinguish cluster of design parameters (DPs) and

this allows to identify common platform and scalable variables.

The DPs having the higher effect on other design variables are gathered in the same cluster and will

become part of the common platform variables. Therefore, the others are designated as adjustable

variables. (Cheng et al., 2015)

3.2.9 Generational Variety Index (GVI)

The generational variety index (GVI) helps identify the components of product variants that are more

likely to require redesign in the future (Martin & Ishii, 2002).

Customer requirements are normally classified in “High - Medium - Low” where High implies that

the requirement evolve quickly and Low means that not much redesign is needed in the future (Martin

& Ishii, 2002).

For this reason components with low GVI values are considered potential platform elements.

According to Simpson et al. (2012), it is advisable to modularize components with high GVI so as to

be more easily exchanged or improved.

Li et al. (2016) also employed Variety Index (VI), together with Fuzzy arithmetic and Change

Propagation Index (CPI), to classify group of modules as standardized or flexible. Components of a

flexible module are subsequently categorized as common or scalable through Lifecycle factors such

as Design complexity, Sensitivity of manufacturing cost and Assembly complexity.

3.2.10 Enhanced function-means tree (EF-M)

The model was originally developed by Tjalve (1979, p. 9) and represents a hierarchical

decomposition of the principal function into sub-functions and means to accomplish these.

The function-means (F-M) tree can be considered comparable to the Axiomatic Design because they

both decompose the system showing the interconnections between Functional Requirements and

Design Solutions (Johannesson et al., 2017).

The original function-means tree was improved by Schachinger & Johannesson (2000) by considering

additional parameters like Constraints (Cs), defined as non-functional requirements.

The introduction of the Constraint variable in the Enhanced function-means (EF-M) tree, make clear

why a DS is selected and why other options have been refused.

Furthermore Johannesson et al. (2017) combined the EF-M tree with the Configurable Component

(CC) model proposed by Claesson (2006) to allow modularity and scalability.

Landahl et al. (2020) used the EF-M tree to describe product variety of a Turbine Rear Structure. The

reason why this method shows product variety is due the fact that when it is merged with CC model,

it permits modularity through compatible solutions and scalability through changeable parameters

within fixed range. Moreover, in Landahl et al. (2020) opinion, this method allows variety at product

level, production resources level and production process level.

According to Johannesson et al. (2017) their approach allows building the platform from the

beginning and also adding new FR, if requested. In this case a DS to satisfy that FR will be found and

evaluated in iterations. In the Figure 12, drawn by Levandowski et al. (2014), is possible to understand

the interconnection among different assets provided by the EF-M tree that provides the Design

Rationale (DR). The Configurable Component tree shown in Figure 13, drawn by Levandowski et al.

(2015), allows to have an insight of the product architecture. Furthermore, it shows the possibility to

obtain scalable or interchangeable Design Solutions (DSs) by shaping FRs. Moreover, DSMs,

Axiomatic design and trade-off curves are used to examine various architectural options. Johannesson

et al. (2017) normally analyze pre-embodiment solutions to avoid creating 3D models that take a long

time to be developed.

Figure 12 - Enhanced Function Means EF-M tree (Levandowski et al., 2014)

Figure 13 – Configurable Components tree (Levandowski et al., 2015)

3.2.11 Similarity index and Sensitivity index

The similarity index, a well-known principle in the product architecture literature, points out the grade

of similarity between two physical components (Kamrani et al., 2002). Two elements should be

placed together in case of high similarity index, and if one element is part of the platform, the related

component should also be added. The sensitivity index reveals the alteration of a physical

component’s value based on differing weights of the customer requirements (Kim et al., 2006).

Kim et al. (2006) use these two methods to understand which components should be part of the

product platform. In particular are considered platform elements those who have wide similarity index

and low sensitivity index. The similarity index were used also by Cheng et al. (2015) in the clustering

analysis together with the Design Structure Matrix (DSM) thus creating a Similarity Matrix.

Year Product Platform type Method Information Autor

Requirements

level/Functional

level

Physical

level

2015 Electro-

hydraulic drum

brakes

Scalable Axiomatic Design -

Design structure matrix -

Clustering analysis

Functional

Requirements

Design

Parameters

Xianfu

Cheng, 2015

2017 Valve Modular Pruning analysis -

Attribute matching

Product Modules

(Function

parameter)

Product

Modules

(Structure

parameter)

Qiuhua

Zhang, 2017

2018 High-tech

medical

displays

Customizable

(monolithic)

Quality function

deployment - Design-

structure matrix -

Optimization model (Cost

model)

Features - Costs Design

Parameters

Robert N.

Boute, 2018

2011 Universal

electric motors

Modular and

Scalable

Mixed integer nonlinear

problem - Platform

segregating mapping

function - Particle swarm

optimization algorithm -

Commonality constraint

matrix - Cost decay

function

- Design

variable

Souma

Chowdhury,

2011

2016 Unmanned-

aerial-vehicle

Modular Commonality matrix Performance Modules =

Multiple

design

variable

Souma

Chowdhury,

2016

2019 Guiding bushes

family

- Mixed integer linear

programming (MILP)

model

Costs Features and

relationships

Hoda

ElMaraghy,

2019

2012 Unmanned

ground vehicles

(UGVs)

- Generational Variety

Index (GVI) - Design

Structure Matrix -

Commonality

specifications - Multi-

objective optimization

User

needs/requirement

s

Commonalit

y

specification

s

Timothy W.

Simpson,

2012

2017 Aero engine

sub-systems,

Vehicle seats,

Electromagneti

c contactors

Modular and

Scalable

Function-means models -

Configurable

Components System

model - Set-based

concurrent engineering

processes

Functional

Requirements

Design

Solutions -

Constraints

Johannesson,

2017

2015 Rear frame of a

jet engine

Adaptable(Modula

r and Scalable)

Configurable component

- Function–means tree

Functional

Requirements -

Performance

parameters

Design

Solutions -

Constraints

Levandowski

, 2015

2020 Aero engine

sub-systems

Modular and

Scalable

Function-means model -

Set-based concurrent

engineering processes -

Production operation

model

Functional

Requirements

Design

Solutions -

Constraints

Landahl,

2020

2006 Speed reducer - Similarity index -

Sensitivity index

Customer

requirements

Physical

elements

Kim, 2006

2015 Spraying

machine

Adaptable(Modula

r and Scalable)

Variety index - Change

propagation index - Fuzzy

alogrithm

Functional

modules

Product

attributes

Li, 2015

2018 impact drivers

and electric

drills

Modular Product component

matrix - Pareto front of

maximum commonality -

Design Structure Matrix

Clustering cost Components Baylis, 2018

Table 1 - Product Platform Design Approaches

3.3 Information managed

In most of the cases encountered, shown in the Table 1, it was noted that the product functional

requirements were the basis for the construction of the product platform in the functional domain.

Instead, others authors considered physical features as shown in Elmaraghy (2019).

As a rule, the functional layer is subsequently connected to the physical domain, represented mainly

by Design parameters, Design variable, Design solutions or Physical elements.

Boute et al. (2018) consider each product of the portfolio as a group of features and the platform as a

collection of design parameters.

In Barco’s case the platform consists of design parameters, as power consumption or pixel pitch, that

can satisfy product features, as megapixel count or colour levels (Boute et al., 2018).

As shown also in Van den Broeke et al. (2017) the set of the possible platforms can be represented

by a platform-product tree, where the amount of design parameters points out the profundity and the

variants of each design parameters outline the wideness.

Cheng et al. (2015) structure the product platform of electro-hydraulic drum brakes on functional

requirements (FRs) linked to design parameters (DPs) in the physical domain. They investigate

customer needs and separate product functional requirements resulting in basic, expectable and

adjunctive through Kano model. In particular the basic requirements are represented by functions, as

“braking” and “brake release”, that are hierarchically decomposed and connected to design

parameters through the axiomatic design. Design parameters are also broken down at the same time,

so that each FR corresponds to a specific DP. For example, the FR1 “close brake” is decomposed in

the FR11 “provide brake force” and they are respectively represented by the DP1 “closing brake

device” and DP11 “brake spring”. The DPs relations are shown in the Design structured matrix and

by means of the clustering analysis they are classified in common platform, controllable and

customization parameters (Cheng et al., 2015).

Zhang et al. (2019) consider the product module, that it consists of three parameters, such as

structural, functional and procedural, to build the product platform of power-driven and self-driven

valves. According to them the structural and process parameters are mutable attributes, instead the

function remains fixed. For this reason, in the Attribute matching phase, they classify the product

modules based on function parameters such as “seal”, “link”, “flow control”, “pressure control” etc..

The product families are represented in Product family structure trees (PFSTs), and product modules

are classified in four group based on the sharing level among product families or product series as

shown above.

Chowdhury et al. (2011) in their first model considered the design variables in the platform planning

of ten universal electric motors. The product family is represented by Functional requirements like

Torque specifications, Design constraints as output power, total mass or efficiency, and Design

variables as Number of turns on the armature, radius of the motor or thickness of the stator. Through

the commonality matrix the design variables are sorted in Platform, Sub-platform or Nonplatform

depending on whether they are part of several products, of a specific group of the product family, or

if they are not present in more than one product (Chowdhury et al., 2011).

In the enhanced model, Chowdhury et al. (2016) considered group of modules to obtain a

reconfigurable Unmanned Aerial Vehicles, where a module can be seen as a set of design variables.

The modules were mostly physical parts of the product like wing, vertical tail, horizontal tail, fuel

tank and fuselage, everyone composed at least by one design variable. For example the fuselage was

expressed by cross section and length. In this model the commonality matrix considers also a module-

inclusion variables.

Simpson et al. (2012) in their approach to design a family of unmanned ground vehicles (UGVs)

consider User requirements like “weight, speed, range, lift capacity” in the product plan phase.

A generic UGV architecture is represented by a Design structured matrix which display sub-

system/component interconnections and how each component affects another one.

The GVI analysis compare performance requirements as “range, slope climb, Maneuver width” with

sub-systems as “chassis, battery, tracks, cameras” to understand which component can be shared in

the product family. The analysis also concerns about Design parameters as “length, width, height” in

the case of Chassis subsystem, showing common parameters between two or more vehicles.

Furthermore, the mathematical model provides a complete structure diagram of the System

decomposition (Simpson et al., 2012).

One of the broader methodologies that permit to represent the product in all its levels, is represented

by Johannesson et al. (2017). They combined two methods to obtain a broader view of the product

family. The first method is the Enhanced function-means (EF-M) tree that expresses the relation

among three parameters: FR – DS – C.

In the specific, the FR describes a certain purpose of the product or a subsystem, DS is the physical

solution that allows to accomplish the FR, and C is a requirement that indicates DS’s limitations.

The EF-M tree express interconnections at any hierarchical level, including system dependencies that

are utilized in the structure analysis through Design structured matrices (DSMs) and Axiomatic

design (AD) matrices.

The second method is the Configurable Component system model that illustrates an entire family of

alternatives. The CC system model contains the Design rationale (DR) and the EF-M tree. Design

rationale (DR) is a set of information that clarifies why the product or the component was designed

in that way including all the reasons and options analyzed (Gedell & Johannesson, 2013).

Furthermore other variables are included as Variant parameters (VPs) and Control Interface (CI) that

allow to build suitable variants.

According to Johannesson et al. (2017) the CC model permits modularity by substituting CC or DS,

and scalability due to the fact that CC and Ds can be altered within a range expressed by parameter

bandwidth. Johannesson et al. (2017) applied their method on aero engine sub-systems, vehicle seats

and electromagnetic contactors. Also Landahl et al.(2020) used the EF-M model for a Turbine Rear

Structure (TRS) and we have FR like “convey thermal loads” that can be settled by DS as “cooling

system” or “heat shield”. Moreover, constraints, product resources and product operations are

considered.

In the speed reducer platform of Kim et al. (2006) are considered physical components as “gears,

shafts and bearings” and customer requirements as “size, weight and cost”.

Li et al. (2016) consider hierarchically modules, components and parameters. In particular they

connect Modules and Functional Attributes as “Spray capacity, Power or Pressure” into an Attribute-

module matrix. Modules are clustered into standard or flexible, the latter are decomposed in

components like “Hooper, batching plate or rotor” and classified into common or scalable based on

lifecycle factors.

Baylis et al. (2018) take into account components such as “Clamshell, armature, stator or rotor”

clustered into modules that are grouped into building blocks.

Few of the cases shown considered mainly the physical sharing degree to build the product platform.

Instead, in most of the cases seems the product platform is built based on functional requirements,

which translate the customer needs, and a design solution is found to satisfy them.

3.4 Product derivation

According to Cheng at al. (2015), product variants can be generated adding, eliminating or

exchanging platform modules. In a different perspective, ElMaraghy & Moussa (2019) sustain that

is possible to originate the product variants through additive or subtractive processes.

In the case shown by Boute et al. (2018) the different products can be derived summing extra elements

to the product platform.

3.5 Product improving

According to Zhang et al. (2019), redesigning the PrM, i.e. product module not shared by various

product families, or adding new product modules lead to a variant development for the product

family. An alternative to modify various product families simultaneously is to redesign the Family

sharing product module (FSM). According to Johannesson et al. (2017) it is possible to improve the

product platform adding new functional requirements. New design solutions to satisfy these

requirements are created and analyzed.

3.6 Agile physical Product Platform

The only case study dealing with the application of agile methodologies within physical product

platforms is the one shown by Varl et al. (2020). This study propose a method to of power

transformers but it is not providing a depth explanation and seems like the Scrum agile methodology

has been applied only at the team level. Furthermore, Scrum artifacts, as Product backlog, are not

present.

4 SOFTWARE PRODUCT LINE SCOPING APPROACHES

Software product line Engineering is a Software development concept that combines platform-based

development and mass customisation (Pohl et al., 2005). The main difference between Software

product line and single product development is the need of two separate development processes and

the necessity to define the variability. The purpose of scoping approaches is to identify more

important features and products that will be part of the product family. A key section of the product

line scoping is the commonality and variability analysis. Common and variable features can be

identified through the Kano method (Pohl et al., 2005). Variability can be defined through use case

models, feature models, message sequence diagrams and class diagrams.

Another method used to define the variability is the Orthogonal Variability Model, usually combined

with the Feature model with the aim of avoiding the feature tree overloading.

The use of explicit documentation, as the Feature model and the Orthogonal Variability model,

provides some advantages. These models improve decision making, communication with customers

and traceability of variability. The traceability permits to obtain the reuse of assets.

The SPL development process is split into two phases called Domain Engineering (DE) and

Application Enginerring (AE), as shown in Figure 14. The first one aims to create a product platform

and define common and variable assets. The second phase wants to derivate products starting from

the product platform found in the previous phase. Kano model is generally used in the commonality

analysis to understand the requirements importance. In particular, are considered Common part the

Basic requirements and the High-priority requirements for a large group of customers.

The PuLSE-Eco V2.0 approach, proposed by Schmid (2002), divided the scoping phase in three main

components. The first is the Product line mapping, an high-level domain analysis, which aims to

obtain a description of the product line, including relevant features, by combining existing

information regarding the planned product portfolio, existing systems, available product plans, expert

knowledge (from interviews). As a result of this phase an initial Product map is created. The second

phase, called Domain potential assessment, analyzes benefits and risks related to the product line

development. The last phase is the Reuse infrastructure scoping aims to identify reusable assets.

Alsawalqah et al. (2014) proposed an approach to optimize the scope of a Software product platform.

In the customer needs analysis phase Kano model and Quality Function Deployment Product

Portfolio Planning (QFD-PPP) are used to comprehend and organize customer requirements. The

latter are prioritized using the Kano’s absolute importance value, using the impact on customer

satisfaction (SATj) e dissatisfaction (DISj). Furthermore, an integer linear programming problem is

generated to optimize the scope.

One of the most recent methods called CoMeS was presented by Ojeda et al. (2018). This approach

identifies roles, exhibit tangible artifacts and shows a series of steps to build the scope. A Detailed

list of steps to construct the product map and the correlated artefact are shown. In this part features

are classified as essential, desirable or inconsistent with the product. This method allows to

understand the relation within artifacts and their inputs and outputs making the scope easy to

understand for all the stakeholders. An example of the artifacts interconnection is shown but there is

a lack of a case study. Another case of a Pick-and-Place Unit (PPU) is shown by Hinterreiter et al.

(2020), in which Feature-oriented development and variation control system are used. In particular

the method consists of a feature model defining feature commonality and variability; a variation

control system that connects features to implementation artifacts; and product configurations, that

consists of code and artifact. There are two types of approach: Proactive and Reactive. The first one

is like the waterfall approach to conventional software, with analyze, architect, design, and implement

all product variations on the foreseeable horizon up front. The reactive approach build the core assets

incrementally based on products built as single-systems.

Figure 14 - Software Product Line Engineering framework (Pohl et al.,2005)

4.1 Feature Model

Feature model is one of the most used methodology that permits to represent the entire product family

in software product line development. This method was conceived by Kang et al. (1990) in the

Feature-Oriented Analysis (FODA). Feature models have been used to express the high-level

requirements of an architecture (Pohl et al., 2005).

This model is largely employed to manage common and variable assets in software product line and

plays a key role in customization. It consists of features hierarchically organized in a tree structure

(Benavides et al., 2010). This model is not only used in software industry, but also in other fields as

automotive (Oliinyk et al., 2017). Abrantes & Figueiredo (2014) presented an analog-to-digital

converters (ADC) case study showing how the feature model can be a useful method for scoping the

New Product Development Portfolio. This demonstrate that can be also applied to physical products

domain. The feature model is intuitive and permits to perceive graphically if features are mandatory,

optional and alternatives, as shown in Figure 15. Furthermore, the Extended feature model can

express complex constraints as ‘‘If attribute A of feature F is lower than a value X, then feature T

cannot be part of the product’’ (Benavides et al., 2010).

Figure 15 - Example of Feature Model (Benavides et al., 2010)

4.2 Orthogonal Variability Model

To avoid overloading the feature model with variability information, the latter are normally defined

by another method, called Orthogonal Variability Model, shown by Pohl et al. (2005). In this way,

the variability definition is more clear and misinterpretations are avoided. The domain variability

model defines the variability of the software product line through the use of variation points. The

variation point applies to all kinds of development artefacts, i.e. requirements, architecture, design,

code, and tests. Additional information are added to specify why the variation point was introduced.

For example in case the product is sold in different countries and have different stakeholders needs.

“Variation point”, “Variant” and “Variability dependencies” are the key elements of the model. This

model shows the dependency between the variation point and the variant, which can be Optional or

Mandatory. It permits also to select a minimum or a maximum number of variants, and shows the

constraints.

Figure 16 - Orthogonal Variability Model (Pohl, 2005)

5 AGILE SOFTWARE PRODUCT LINE SCOPING APPROACHES

The connection between Agile Software Development (ASD) and Software product line (SPL) is

getting bigger and as reported by Da Silva (2012) there are proofs of the use of agile methodologies

in the SPL activities, such as planning game, incremental design, Extreme Programming (XP), Scrum,

Test Driven Development (TDD), collaboration engineering, Feature Driven Development (FDD),

Dynamic Systems Development Method (DSDM), Lean and Evo.

A new approach called Agile Product Line Engineering supports the combination of Software Product

Line Engineering and Agile Software Development with the purpose of reducing the big upfront

design. Another goal is to make the development of software product lines more flexible and

adaptable to changes. Although it is a promising approach, designing and evolving the product

platform, meeting the agile principles, it is challenging (Díaz et al., 2014).

Klünder et al. (2018) show the outcomes of a document review and proposed a method called Agile

hamburger for large companies without going into the scoping phase.

Some cases of hybrid approaches that attempt to combine agile methodologies within SPL are given

below.

5.1 AgiFPL

Haidar et al. (2017, 2019) proposed an Agile Framework for managing evolving Product Line called

AgiFPL, constituted of Goal-oriented requirement engineering (GORE) approach, Feature modelling,

Scrumban in Domain Engineering (DE) processes and Scrum in Application Engineering (AE)

development processes. The GORE framework report stakeholders aims and the feature model show

the product line variability. In the first place the goal model is prepared and turned into a feature

model, afterwards User stories are produced (Haidar et al., 2019).

User stories are explanations of a feature consisting of Format, Role, Means, Ends as “As a ⟨role⟩, I
want ⟨goal⟩, [so that ⟨benefit⟩]”. As an example, the User story of the feature “Invoicing” is “As

⟨Accountant⟩, I want to ⟨Generate and Send Invoices⟩, so that ⟨the Invoice can be paid⟩”.

In the Domain Design (DD) phase a reference architecture is generated, commonalities and

variabilities are identified and Feature models are created to determine Feature Backlog items.

Features are classified as User stories (US) and Domain experts create the Selected Backlog (SB), a

list of tasks that the Development team need to complete next. Whenever a US is introduced into the

SB or into the production flow a planning session is executed. The production flow is composed by

task backlog, task in progress, task done, story testing and story done. When the increment is prepared

and approved, the feature is positioned in a Common assets warehouse.

In the Application Engineering (AE) phase product owner and stakeholders are more present and

when a new feature is insert the requirement phase is performed. As a result, features that appear in

the database are classified as Selection of feature (SoF) otherwise if they do not exist are categorized

as Definition of feature (DoF). App Backlog is built and the work is accomplished in Sprints. In

particular, when the product owner (i.e. “App i Owner”) has new aims, the “Line i Team” can follow

the domain engineering procedure to create new reusable artefacts that are not present in the

warehouse. Otherwise, if the new objective do not influence the product line but just an individual

product, and there are not similar features in the common assets, then User stories and Backlogs are

immediately generated.

Furthermore Haidar et al. (2017) show a small case study of an ERP platform to implement features

as “Invoicing Application” and “eTracking service”.

5.2 APLE method

One of the most recent approaches was suggested by Kiani et al. (2019, 2021). They have conducted

research on various existing approaches and proposed a new Agile Product Line Engineering (APLE)

method, shown in Figure 19, which intends to combine the strengths of Software product line (SPL)

and Agile Software Development (ASD). This approach is built on the Scrum agile framework and

the Scoping phase is not kept apart as in the conventional SPL, instead the artifacts are defined, built

and/or upgraded according to the necessity. This is a reactive manner coherent with the agile principle

YAGNI (You aren’t Gonna Need it) and in opposition to the conventional proactive SPL approach.

The Product Owner (PO) is the stakeholder representative, as in the Scrum method, and create the

Feature Catalog composed by User stories (US) and Acceptance Tests (ATs). The latter are procured

within a database called Info Base, if nothing is found a new Product Line is begun otherwise the

Requirement Classification starts. The sorting phase is based on a resemblance value and as a result

New, Variable and Core requirements are obtained respectively if the value is lower, higher or equal

to the threshold value. New requirements are included in the Product Backlog. Variable requirements

represent components that can be upgraded or refined. If the customer requirement is incompatible

with the component a new component is developed, otherwise the component is examined to

understand if satisfy the new requirement. Core requirements are reusable and are included in the

SPL backlog if they are not already implemented. Stories can move from SPL backlog to product

backlog and the other way around. There are two types of teams, Application Engineering (AE) team

and Domain Engineering (DE) team. The first one focuses more on product derivation from the PL

architecture, while the second one allows to shape the product architecture in a iterative and

incremental way.

Figure 17 - Agile DE process (Kiani, 2021)

Figure 18 - Agile AE process (Kiani, 2021)

Figure 19 - APLE method proposed by Kiani et al. (2019, 2021)

5.3 Agile SPL Scoping

Da Silva et al. (2012) propose an SPL scoping approach combined with Agile fundamentals or

techniques. The first phase presented is the Define pre-scoping that use Onsite interaction session

agile practice and collaboration engineering patterns to understand what products or sub-domains

consider. After that features are determined and sharpened through Feature Driven Development

(FDD) and Feature Oriented Domain Analysis (FODA) with the stakeholders presence. In the

commonality and variability analysis it was proposed the use of Pair Programming and Shared Code

activities to have a shared vision of the products. Product map and Feature model are generated and

Da Silva (2012) suggest to carry out the models examination task simultaneously with the other

activities to improve the iterativeness. Furthermore propose the use of Model Storming to represent

and comprehend faster the features and their interconnections.

After that come the Release scope phase with the feature prioritization task, based on value, potential

change, reuse and risk, the estimate feature and set team velocity tasks to establish the most significant

feature. Based on these activities a list of features is issued.

In conclusion the features to be executed are selected with the contribution of the Planning game

practice and the Specify acceptance test for leaf feature activity, respectively to evaluate the effort

and connect the method to requirements or testing (Da Silva, 2012).

Figure 20 - Agile SPL Scoping (Da Silva et al., 2012)

5.4 SPLICE

Vale et al. (2014) proposed an approach called SPLICE that merge Software product line engineering

(SPLE) and Scrum agile methodology. Scope Owner role is presented similar to the Scrum Product

Owner. In the Portfolio Planning phase Scope Owner and Product Expert identify products, identify

significant features, build a product map and a feature model and prioritize features. The list of

organized features is called Scope Backlog.

The Sprint Development phase allows to determine Sub-features, analyze commonality and

variability as a result of the feature model and the product map. A case study of a product line mobile

applications is shown. Tracking, Contact, Language, User info are some of the features considered

an the product map generated is shown in Figure 21.

Figure 21 - Product map (Vale et al., 2014)

5.5 ScrumPL

Santos & Lucena (2010) presented a method called ScrumPL that connects the Scrum agile practice

with Software Product Line Engineering (SPLE). In particular the approach is divided in Domain

Engineering (DE) and Application Engineering (AE) in accordance with the SPLE and consists of

Scrum phases as Planning, Staging, Development and Release.

In the DE process product features are identified and attached to the product backlog and reusable

features are detected in the AE process.

The product owner, who is also the architect, is accountable for building and conserving the

architecture and inserting components into the product backlog.

They show the model in a Tv navigation System case study in which the reference architecture is

shown in Variability and Component Diagrams.

Language, Market segment and Standard components are identified as variation points and their sub

features, like English language and Portuguese language, are added to the product backlog and

classified between Low, Medium, High prioritization value.

Figure 22 - ScrumPL process Overview (Santos & Lucena, 2010)

5.6 A-Pro-PD

O’Leary et al. (2012) presented an agile product derivation approach called A-Pro-PD.

This method is divided into three phases that are Preparation for Derivation, Product Configuration

and Product Development and Testing. The first phase is important for defining product requirements

and scoping the product. The second phase aims to build a partial product configuration that meet

product requirements through reuse of platform assets. The last phase intends to fulfill requirements

not satisfied by reusable platform artefacts.

O’Leary et al. (2012) embrace the “early and continuous delivery of valuable software” agile rule,

for this reason the Product Team apply alterations at product level and if this variations could be

reusable the Platform Team extracts them from the product. They suggest the use of pair

programming methodology to implement and reassess product alterations and planning game

technique to control product iterations. This method not include Scrum framework and product

backlog.

5.7 Backlog management and Feature model

Raatikainen et al. (2008) propose an approach that employs Agile practices in Software Product

family development. In particular Kumbang and Agilefant were considered and shown in Figure 23.

Feature model is the key factor of Kumbang and for this reason this method allows to shape the

product family at every level. Features are decomposed in sub-features until the leaf nodes are

obtained and constraints are identified. On the other side, Agilefant permits to manage backlogs. The

Product backlog is constituted by one or more feature backlog items, corresponding to the Kumbang

leaf features. Objects in development are merged into iteration backlog and moved to detailed backlog

items to be implemented. The feature backlog item is intended finalized when all its items are done.

This combined approach allows to have a whole view of the architecture, functionality and backlogs

of the product family (Raatikainen et al., 2008).

Figure 23 - Kumbang and Agilefant concepts (Raatikainen, 2008)

5.8 APLA

Diaz et al.(2014) presented an in-depth case study of a family of power metering management

applications in the domain of Smart Grids to demonstrate that it is possible to combine agile

development approaches and methodologies to develop a product-line. To prove this statement the

approach called Agile Product-Line Architecting (APLA) is applied. This approach wants to merge

the Product-Line Architecture (PLA) model, a method to build a product-line platform, with the Agile

Scrum development method, as shown in Figure 24.

Diaz et al. (2014) employ a method called Flexible-PLA that aims to make the architecture more

flexible and adaptable throughout its creation. The main principle of this method is the Plastic Partial

Component (PPC) which shows the component internal variability by using Variation points.

Points of variability are connected to portions of code, known as variants, that can be used to extend

PPCs. The weavings instead indicate how to add these variants.

They use the PLAK metamodel, a tool for documenting knowledge and tracking features during their

implementation, which permits to indicate whether a design decision is closed or open and can also

show sub decisions and alternatives. The PLAK metamodel makes it possible to obtain a link between

features and architecture solutions, moreover it is lightweight as it only acquires necessary

information and after each iteration the knowledge is improved and updated.

Furthermore a change impact analysis was applied to understand what happen if a new feature is

introduced. In this way, through the traceability-based algorithm and the propagation rule,

connections are formed between the features and the architecture.

The APLA process adjusts the Scrum framework to focus on building the product line architecture in

each sprint. For this reason the architect was added to the Scrum Team with the aim of controlling

the architecture and its constraints. Scrum was applied in both Software Product Line phases, i.e.

Domain Engineering and Application Engineering, respectively to build the common platform and

develop individual products. In the beginning the Software Product-Line Owner translate the product

vision into features, subsequently decomposed in User Stories and prioritized based on business

value. The tasks related to the agile construction of the PLA are developed in the Sprint Planning

Meeting, so that it is possible to reorder the features if needed. The APLA process involve three

phases. In the first step the architects analyze, through the change impact analysis algorithm, the

Working PLA deriving from the previous sprint. In this way they can perceive how the system

changes due to the addition of the planned features for the current sprint and they could reprioritize

them. In the second step, features are added to the Working PLA and architects implement them using

the Flexible-PLA model. In the last step all the decisions, constraints and dependencies are

documented through the PLAK model. As output of the sprint planning are obtained: (i) Sprint

Backlog, (ii) Change-impact knowledge and (iii) Flexible-PLA and PLAK models that have to be

executed in the sprint. The developers implement the Working PLA, that consists of common and

variable assets, using as input the Flexible-PLA and PLAK models. Instead, in the Application

Engineering, working products are implemented. The Sprint Review and Sprint retrospective

meetings are executed and when the Sprint is completed, Increments of Working PLA and Working

products are achieved. In the case study were present six developers, two product owner, one Scrum

master, who played also the role of part-time architect, and a full time architect.

Features were defined by the Product Owner in a detailed way, for example the first feature was

described as: “F2_Meter storing. It consists of a large data store running over an object-oriented

NoSQL database (specifically, Big Data Oracle running over Berkeley DB).” A feature model that

shows the product family structure is shown and the features are broken down into user stories.

For example the feature F2 shown above was decomposed in two user stories: “(i) installation and

configuration of the database manager (Berkeley DB)” and “(ii) several conceptual proofs to create

and access the database “. Some missing things were found: The prioritization of the user stories is

based on business value, but it is not explain exactly how this activity is executed; User stories are

not defined in the template “As a ⟨role⟩, I want ⟨goal⟩, [so that ⟨benefit⟩]”; The Product backlog

artifacts was not shown.

As a result this approach is the only one that has fully applied the Scrum methodology and that shows

an extensive case study.

Figure 24 - APLA approach proposed by Diaz (2014)

A list of the main steps of the APLA model is shown in the Table 2.

As a result of this case study, the Flexible-PLA modeling produce flexible and adaptable

architectures, Flexible-PLA and PLAK model allow to keep a record of PLA and the change impact

analysis detects the impact of the new feature and assists architects taking better decisions.

The change impact analysis consists of traceability-based algorithm that provide a set of design

decisions or architectural elements affected by the changes in features, and rule-based inference

engine that simulates changes in the working architecture to see the propagation and the effects.

Table 2 - APLA model steps

Table 3 – AGILE SPL SCOPING APPROACHES

6 HARDWARE AND LARGE-SCALE AGILE

New studies on the use of Large-scale Agile frameworks are appearing, but despite the growing use

of these methodologies, there is still a lack of evidence of their use in the scientific literature (Uludag

et al., 2019). Pradhan et al. (2021) declare that Cysco System Inc. will still take several years to

complete the Agile transition. Furthermore, companies that are scaling agile are normally mixing

Waterfall and Agile development methodologies becoming Hybrid organizations (Pradhan &

Nanniyur, 2021). As also reported by Bohmer et al.(2018), despite the wide use of Scrum framework,

there are still isolated cases showing its use in hardware field.

According to Bosch (2016) the Software can get faster releases than hardware, for this reason the

system architecture is usually separated to allow independence between the two areas. As reported

by Berg et al. (2020) hardware startups are able to obtain prototypes quickly through evolutionary

methods, hardware-software decomposition approaches and appropriate Agile practices. It has been

found a case study of developing a product platform of a family of power transformers but it is not

providing a depth explanation and seems like the Scrum agile methodology has been applied only at

the team level and not at the product level, then there are not information about the product backlog

(Varl et al., 2020).

Žužek et al. (2020) proposed an Agile-Concurrent hybrid framework that wants to combine the Scrum

agile method with concurrent product development. This proposed framework maintains the

concurrent engineering model as its basic structure introducing collaboration with customers, scope

adjustability, team self-organization, Scrum events and roles.

According to Vinodh et al. (2010), the use of CAD and rapid prototyping allows to obtain agility in

the development of physical products. Berg et al. (2020) also report the importance of rapid

prototyping to receive customer feedbacks, exhibiting the difficulty in the hardware environment, due

to long production and shipping times. Simulation is also considered an useful tool to satisfy quality

attributes of physical products.

West (2011) introduced another hybrid method called Water-Scrum-Fall, where the Scrum

framework is used just in the development process. Instead the Upfront design and Release frequency

are more similar to the Waterfall approach.

Another hybrid methodologies for physical new product, called the Agile-stage-gate model, was

proposed by Cooper (2016, 2018, 2020) , the creator of the Stage-Gate approach explained in the first

Chapter. According to Cooper it’s possible to integrate Scrum into Stage-Gate, not only in the

development phases, but also in earlier stages or even in the launch stage. The problem in the physical

field is that it’s not possible to build a working product deliverable at the end of a single sprint, as in

the software development. For this reason Cooper proposed the use of “protocept”, something in the

middle between product concept and ready-to-trial prototype. They can be computer-generated 3D

drawings, virtual prototypes, crude models, working models, rapid prototypes, or early prototypes,

something that is possible to show to obtain the customer feedback. Furthermore, in the product

definition, only a part of the requirements should be fixed (40-to-70%), because the product is still

unknown.

7 DISCUSSION

Various affinities have been found between product platform design of physical product and Software

product line. In the customer needs analysis of tangible product platform and Software product line

are used same methods such as Kano model and Quality function deployment (QFD) (Alsawalqah et

al., 2014; Cheng et al., 2015). It was proposed to use the Kano model also in the Agile Product

management with Scrum by Pichler (2010) .

Another common thing between product platform development and SPL is the use of algorithm and

integer linear programming to create the product platform or optimize the scope (Alsawalqah et al.,

2014; ElMaraghy & Moussa, 2019)

In the tangible product platform design methods are found similarities with the Feature model. The

Product Family Structure Tree (PFST) of Zhang et al. (2019) is comparable to the feature model, but

instead of features there are product modules composed by structure, function and process

parameters, then a broader view based also on physical and process domain. However this method

does not show product variants and options as the feature model.

The Agile artifact Product backlog applied to product platform (i.e. Product Platform Backlog) in the

field of physical products was not found, but in its place a Software Product Line (SPL) backlog was

found in software product line scoping (Díaz et al., 2014; Kiani et al., 2019, 2021). The existence of

an SPL backlog indicates the possibility that a Product Platform Backlog may exist also in the context

of physical products.

As it is possible to derive the product backlog and the SPL backlog from the feature model, we can

assume that it is possible to do the same with enhanced function-means (EF-M) tree to obtain a

product platform backlog for tangible products.

By analyzing Johannesson's case study of physical product platforms, and Diaz's case study of Agile

SPL architecting, some similarities and differences were found. First of all, both methods are focused

on customer needs. Both approaches seems Flexible and Adaptable to changes. Johannesson obtained

this properties through the use of the Configurable Component (CC) model and the parametric

bandwidth, instead Diaz succeeded employing the Plastic Partial Component (PPC) concept. More

specifically, the CC model provides modularity, the parametric bandwidth give scalability and the

PPC support both of them. Johannesson uses the Design Rationale (DR) concept to describe the

reason why things are the way they are, for example why a certain Design Solution was chosen, and

the DR is refined repetitively. Diaz on the other side uses the PLAK model to encapsulate knowledge

and design decisions. The global vision of the product family is shown by the CC model in

Johannesson and by the Feature model in Diaz. Comparing these two methods it was found that they

are similar and they both provides variants information but the CC model consists of physical

components. Only in the more detailed EF-M tree Functional Requirements are shown. The EF-M is

composed mainly of triplets, i.e. FR, DS and C. These elements are connected by arrows with a small

wording such as "isb" which means "is_solved_by". When these acronyms are many, it becomes

difficult to understand the type of relationship between the various elements. Instead in the feature

model it is easier to understand the connections because they are shown in a simple and graphical

way. Johannesson also reports that is important including customers and pre-production engineers in

the development process. It seems like, as in the agile development, also in the traditional product

development it is more and more present the customer centricity.

Normally one of the problem of physical products is that are difficult to adjust when requirements

change. Therefore, they are inflexible to manage during the development phases of the platform. But

this problem can be reduced through the concepts of elaboration and encapsulation, which

respectively allow to look at the detail and have a global vision of the system (Johannesson et al.,

2017).

Various authors have tried to apply agile methodologies to the development of product families, but

only a few have provided in-depth case studies to demonstrate their possible implementation. The

case study shown by Diaz et al.(2014) is the only one who has managed to fully apply the Scrum

methodology to the development of a platform product-line. None of the authors have applied the

Scrum methodology exactly as in the Scrum guide, each one made some changes to customize the

method. For example, Kiani et al. (2021) split the product backlog in three artifacts, an initial Feature

Backlog, SPL Backlog in Domain Engineering and Product backlog in Application Engineering,

allowing the movement of stories between SPL backlog and Product backlog. A general view of

several differences are shown in Table 2. Normally, in the SPL, the Scoping phase is carried out at

the beginning, but with the introduction of agile methodologies, it is spread over the entire

development process, as can be seen in Diaz et al. (2014) and Kiani et al. (2019).

Another very common thing is the use of databases to collect artifacts as, for example, shown by

Kiani et al. (2019), with the “Info Base”, and Haidar et al. (2017), with the “Warehouse”.

Furthermore, not all approaches encountered that use agile methodologies employ the product

backlog as shown in Da silva et al. (2012) and O’Leary et al. (2012). Moreover, not all those who use

the product backlog also use the User stories, for example the product backlog shown by Santos &

Lucena (2010) consists of product backlog items, represented by the requirements name,

Prioritization, Estimate (size) and Sprint columns.

As shown in chapter 6, analyzing few cases of software-hardware embedded system companies, what

emerges is a coexistence between plan-driven (waterfall) and agile methodologies, caused by the long

time needed for the agile transformation. In general, there is the tendency to combine Agile and

Traditional methodologies in the product development.

Most of the Agile SPL Scoping approaches found are based on Scrum. Large-scaled frameworks such

as Scaled Agile Framework (Safe), Large-Scale Scrum (Less) or Disciplined Agile Delivery (Dad)

are starting to be wisely used, but there is not a large presence of case studies.

Another hybrid methodologies for physical new product, called the Agile-stage-gate model, was

proposed by Cooper (2016, 2018, 2020) , the creator of the Stage-Gate approach explained in the first

Chapter. According to Cooper it’s possible to integrate Scrum into Stage-Gate, not only in the

development phases, but also in earlier stages or even in the launch stage. The problem in the physical

field is that it’s not possible to build a working product deliverable at the end of a single sprint, as in

the software development. For this reason Cooper proposed the use of “protocept”, something in the

middle between product concept and ready-to-trial prototype. They can be computer-generated 3D

drawings, virtual prototypes, crude models, working models, rapid prototypes, or early prototypes,

something that is possible to show to obtain the customer feedback. Furthermore, in the product

definition, only a part of the requirements should be fixed (40-to-70%), because the product is still

unknown.

8 CONCLUSION

This research aimed to find a connection between product platform development and agile

development in software and physical product field. In particular, the purpose of the study was to find

case studies of the application of Agile frameworks, as Scrum, in the product platform scoping

approach. As a result, the possibility of creating agile product platforms in the software field was

found in the case study presented by Diaz et al. (2014). It was shown how the agile methodology

combined with a flexible product line architecture can provide an early and continuous delivery of

valuable software. Furthermore, the possibility of creating software platforms ready to accommodate

changes in requirements at any time, even in the final stages of development, was demonstrated.

The research found a lack of literature in the application of Agile frameworks in physical product

platform development and in general there is a shortage of empirical studies addressing the

employment of large-scale Agile framework.

In addition, similarities between the agile approach of Diaz et al. and Johannesson et al. were found,

Furthermore, similarities were found between the methodologies shown by Johannesson in the

development of physical product platforms and the methodologies presented by Diaz in the agile

software product line development.

Due to the similarities found between the methodologies analyzed, as suggestions for the future, the

Scum framework could be applied to the development of physical product platforms, as has been

done for software product families.

9 References

Abrantes, R., & Figueiredo, J. (2014). Feature based process framework to manage scope in dynamic

NPD portfolios. International Journal of Project Management, 32(5), 874–884.
https://doi.org/10.1016/j.ijproman.2013.10.014

Akao, Y., & Mazur, G. H. (2003). The leading edge in QFD: Past, present and future. International
Journal of Quality & Reliability Management, 20(1), 20–35.
https://doi.org/10.1108/02656710310453791

Alsawalqah, H. I., Kang, S., & Lee, J. (2014). A method to optimize the scope of a software product
platform based on end-user features. Journal of Systems and Software, 98, 79–106.
https://doi.org/10.1016/j.jss.2014.08.034

Baylis, K., Zhang, G., & McAdams, D. A. (2018). Product family platform selection using a Pareto
front of maximum commonality and strategic modularity. Research in Engineering Design,
29(4), 547–563. https://doi.org/10.1007/s00163-018-0288-5

Beck, K., Beedle, M., Cockburn, A., Schwaber, K., & Sutherland, J. (2001). Manifesto for Agile
Software Development. http://agilemanifesto.org/

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years
later: A literature review. Information Systems, 35(6), 615–636.
https://doi.org/10.1016/j.is.2010.01.001

Benington, H. D. (1983). Production of Large Computer Programs. 5(4).
Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I. O., & Jaccheri, L. (2020). Achieving agility and

quality in product development - an empirical study of hardware startups. Journal of Systems
and Software, 167. https://doi.org/10.1016/j.jss.2020.110599

Bohmer, A. I., Hugger, P., & Lindemann, U. (2018). Scrum within hardware development insights
of the application of scrum for the development of a passive exoskeleton. 2017 International
Conference on Engineering, Technology and Innovation: Engineering, Technology and
Innovation Management Beyond 2020: New Challenges, New Approaches, ICE/ITMC 2017 -
Proceedings, 2018-Janua, 790–798. https://doi.org/10.1109/ICE.2017.8279965

Bosch, J. (2016). Speed, Data and Ecosystems: The Future of Software Engineering. IEEE Software.
Boute, R. N., Van Den Broeke, M. M., & Deneire, K. A. (2018). Barco implements platform-based

product development in its healthcare division. Interfaces, 48(1), 35–44.
https://doi.org/10.1287/inte.2017.0917

Cheng, X., Lan, G., & Zhu, Q. (2015). Scalable product platform design based on design structure
matrix and axiomatic design. International Journal of Product Development, 20(2), 91–106.
https://doi.org/10.1504/IJPD.2015.068962

Chowdhury, S., Maldonado, V., Tong, W., & Messac, A. (2016). New modular product-platform-
planning approach to design macroscale reconfigurable unmanned aerial vehicles. Journal of
Aircraft, 53(2), 309–322. https://doi.org/10.2514/1.C033262

Chowdhury, S., Messac, A., & Khire, R. A. (2011). Comprehensive product platform planning (CP3)
framework. Journal of Mechanical Design, Transactions of the ASME, 133(10).
https://doi.org/10.1115/1.4004969

Claesson, A., & Johannesson, H. (2006). Integrated and configurable product and manufacturing
system models. 9th International Design Conference, DESIGN 2006, 791–798.

Cohn, M. (2004). User Stories Applied: For Agile Software Development. Addison-Wesley.
https://books.google.pt/books?id=SvIwuX4SVigC

Cooper, R. G. (1990). Stage-Gate Systems: A New Tool for Managing New Products. June.
Cooper, R. G. (2008). Perspective: The stage-gates® idea-to-launch process - Update, what’s new,

and NexGen systems. Journal of Product Innovation Management, 25(3), 213–232.

https://doi.org/10.1111/j.1540-5885.2008.00296.x
Cooper, R. G., & Sommer, A. F. (2016). The Agile–Stage-Gate Hybrid Model: A Promising New

Approach and a New Research Opportunity. Journal of Product Innovation Management, 33(5),
513–526. https://doi.org/10.1111/jpim.12314

Cooper, R. G., & Sommer, A. F. (2018). Agile–Stage-Gate for Manufacturers: Changing the Way
New Products Are DevelopedIntegrating Agile project management methods into a Stage-Gate
system offers both opportunities and challenges. Research Technology Management, 61(2), 17–
26. https://doi.org/10.1080/08956308.2018.1421380

Cooper, R. G., & Sommer, A. F. (2020). New-Product Portfolio Management with Agile: Challenges
and Solutions for Manufacturers Using Agile Development Methods. Research Technology
Management, 63(1), 29–38. https://doi.org/10.1080/08956308.2020.1686291

Da Silva, I. F. (2012). An agile approach for software product lines scoping. ACM International
Conference Proceeding Series, 2, 225–228. https://doi.org/10.1145/2364412.2364450

Díaz, J., Pérez, J., & Garbajosa, J. (2014). Agile product-line architecting in practice: A case study in
smart grids. Information and Software Technology, 56(7), 727–748.
https://doi.org/10.1016/j.infsof.2014.01.014

Elgh, F., Johansson, J., Stolt, R., Lennartsson, M., Heikkinen, T., & Raudberget, D. (2018). Platform
models for agile customization – what’s beyond modularization? Advances in Transdisciplinary
Engineering, 7, 371–380. https://doi.org/10.3233/978-1-61499-898-3-371

ElMaraghy, H., & Moussa, M. (2019). Optimal platform design and process plan for managing
variety using hybrid manufacturing. CIRP Annals, 68(1), 443–446.
https://doi.org/10.1016/j.cirp.2019.03.025

Gedell, S., & Johannesson, H. (2013). Design rationale and system description aspects in product
platform design: Focusing reuse in the design lifecycle phase. Concurrent Engineering Research
and Applications, 21(1), 39–53. https://doi.org/10.1177/1063293X12469216

Haidar, H., Kolp, M., & Wautelet, Y. (2017). Agile product line engineering: The AgiFPL method.
ICSOFT 2017 - Proceedings of the 12th International Conference on Software Technologies,
Icsoft, 275–285. https://doi.org/10.5220/0006423902750285

Haidar, H., Kolp, M., & Wautelet, Y. (2019). Formalizing agile software product lines with a RE
metamodel. ICSOFT 2018 - Proceedings of the 13th International Conference on Software
Technologies, Icsoft, 90–101. https://doi.org/10.5220/0006849000900101

Hinterreiter, D., Linsbauer, L., Feichtinger, K., Prähofer, H., & Grünbacher, P. (2020). Supporting
feature-oriented evolution in industrial automation product lines. Concurrent Engineering
Research and Applications. https://doi.org/10.1177/1063293X20958930

Johannesson, H., Landahl, J., Levandowski, C., & Raudberget, D. (2017). Development of product
platforms: Theory and methodology. Concurrent Engineering Research and Applications,
25(3), 195–211. https://doi.org/10.1177/1063293X17709866

Kamrani, A. K., Salhieh, S. E. M., & Salhieh, S. M. (2002). Product Design for Modularity. Springer
US. https://books.google.st/books?id=m0xEhCPRC0oC

Kang, K. C. (1990). Feature-oriented Domain Analysis (FODA): Feasibility Study ; Technical Report
CMU/SEI-90-TR-21 - ESD-90-TR-222. November.
https://books.google.es/books?id=yYi5PgAACAAJ

Kano, N., Seraku, N., Takahashi, F., & Ichi Tsuji, S. (1984). Attractive Quality and Must-Be Quality.
Kantorovich, L. V. (1939). Mathematical Methods of Organizing and Planning Production.

Management Science. https://doi.org/10.1287/mnsc.6.4.366
Kiani, A. A., Hafeez, Y., Anwar, N., & Abbas, G. (2019). A new approach for agile product line

engineering. Proceedings - 22nd International Multitopic Conference, INMIC 2019, 1–7.
https://doi.org/10.1109/INMIC48123.2019.9022798

Kiani, A. A., Hafeez, Y., Imran, M., & Ali, S. (2021). A dynamic variability management approach
working with agile product line engineering practices for reusing features. In Journal of
Supercomputing (Issue 0123456789). Springer US. https://doi.org/10.1007/s11227-021-03627-

5
Kim, K. J., Lee, D. U., & Lee, M. S. (2006). Determining product platform elements for mass

customisation. International Journal of Productivity and Quality Management, 1(1–2), 168–
182. https://doi.org/10.1504/ijpqm.2006.008379

Klünder, J., Hohl, P., & Schneider, K. (2018). Becoming Agile while preserving software product
lines. 1–10. https://doi.org/10.1145/3202710.3203146

Landahl, J., Jiao, R. J., Madrid, J., Söderberg, R., & Johannesson, H. (2020). Dynamic platform
modeling for concurrent product-production reconfiguration. Concurrent Engineering Research
and Applications. https://doi.org/10.1177/1063293X20958938

Leffingwell, D. (2011). Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley.
https://books.google.pt/books?id=Vn44mQEACAAJ

Levandowski, C. E., Jiao, J. R., & Johannesson, H. (2015). A two-stage model of adaptable product
platform for engineering-to-order configuration design. Journal of Engineering Design, 26(7–
9), 220–235. https://doi.org/10.1080/09544828.2015.1021305

Levandowski, C., Michaelis, M. T., & Johannesson, H. (2014). Set-based development using an
integrated product and manufacturing system platform. Concurrent Engineering Research and
Applications, 22(3), 234–252. https://doi.org/10.1177/1063293X14537654

Li, Z., Pehlken, A., Qian, H., & Hong, Z. (2016). A systematic adaptable platform architecture design
methodology for early product development. Journal of Engineering Design, 27(1–3), 93–117.
https://doi.org/10.1080/09544828.2015.1112366

Martin, M. V., & Ishii, K. (2002). Design for variety: Developing standardized and modularized
product platform architectures. Research in Engineering Design, 13(4), 213–235.
https://doi.org/10.1007/s00163-002-0020-2

McGrath, M. E. (1995). Product Strategy for High-technology Companies: How to Achieve Growth,
Competitive Advantage, and Increased Profits. Irwin Professional Pub.
https://books.google.pt/books?id=qQx2QgAACAAJ

Meyer, M. H., & Lehnerd, A. P. (1997). The Power of Product Platforms. Free Press.
https://books.google.pt/books?id=PKJuQjSaHp0C

Mizuno, S., & Akao, Y. (1978). Quality Function Deployment: A Company-wide Quality Approach.
JUSE Press.

O’Leary, P., McCaffery, F., Thiel, S., & Richardson, I. (2012). An Agile process model for product
derivation in software product line engineering. Journal of Software: Evolution and Process,
24(5), 561–571. https://doi.org/10.1002/smr.498

Ojeda, M. C. C., Alegría, J. A. H., Rodriguez, F. J. Á., & Melenje, P. H. R. (2018). A Collaborative
Method for a Tangible Software Product Line Scoping. 2018 ICAI Workshops, ICAIW 2018 -
Joint Proceedings of the Workshop on Data Engineering and Analytics, WDEA 2018, Workshop
on Smart Sustainable Cities, WSSC 2018, Workshop on Intelligent Transportation Systems,
WITS 2018 and Workshop on Empirical Experien.
https://doi.org/10.1109/ICAIW.2018.8554999

Oliinyk, O., Petersen, K., Schoelzke, M., Becker, M., & Schneickert, S. (2017). Structuring
automotive product lines and feature models: an exploratory study at Opel. Requirements
Engineering, 22(1), 105–135. https://doi.org/10.1007/s00766-015-0237-z

Pichler, R. (2010). Agile Product Management with Scrum. In Evolution. Addison-Wesley.
Pohl, K., Böckle, G., & Van Der Linden, F. (2005). Software Product Line Engineering: Foundations,

Principles, and Techniques. Springer Berlin Heidelberg.
Pradhan, S., & Nanniyur, V. (2021). Large scale quality transformation in hybrid development

organizations – A case study. Journal of Systems and Software, 171.
https://doi.org/10.1016/j.jss.2020.110836

Prasad, B. (1999). Enabling principles of concurrency and simultaneity in concurrent engineering.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 13(3),

185–204. https://doi.org/10.1017/S0890060499133055
Raatikainen, M., Rautiainen, K., Myllärniemi, V., & Männistö, T. (2008). Integrating product family

modeling with development management in agile Integrating Product Family Modeling with
Development Management in Agile Methods. January.
https://doi.org/10.1145/1370720.1370728

Raudberget, D. (2010). Practical applications of set-based concurrent engineering in industry.
Strojniski Vestnik/Journal of Mechanical Engineering, 56(11), 685–695.
https://doi.org/10.5545/149_DOI_not_assigned

Raudberget, D., Elgh, F., Stolt, R., Johansson, J., & Lennartsson, M. (2019). Developing agile
platform assets – Exploring ways to reach beyond modularisation at five product development
companies. International Journal of Agile Systems and Management, 12(4), 311–331.
https://doi.org/10.1504/IJASM.2019.104588

Robertson, D., & Ulrich, K. (1998). Planning for Product Platforms. Sloan Management Review,
39(4), 19–31.

Royce, W. W. (1970). Managing the Development of Large Software Systems.
https://doi.org/10.7551/mitpress/12274.003.0035

Santos, A., & Lucena, V. (2010). ScrumPL: Software product line engineering with Scrum. ENASE
2010 - Proceedings of the 5th International Conference on Evaluation of Novel Approaches to
Software Engineering, July 2010, 239–244. https://doi.org/10.5220/0003038302390244

Schachinger, P., & Johannesson, H. L. (2000). Computer modelling of design specifications. Journal
of Engineering Design, 11(4), 317–329. https://doi.org/10.1080/0954482001000935

Schmid, K. (2002). A comprehensive product line scoping approach and its validation. Proceedings
- International Conference on Software Engineering, 593–603.
https://doi.org/10.1145/581339.581415

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press.
Schwaber, K., & Sutherland, J. (2020). Scrum Guide V7. November, 133–152.
Simpson, T. W., Bobuk, A., Slingerland, L. A., Brennan, S., Logan, D., & Reichard, K. (2012). From

user requirements to commonality specifications: An integrated approach to product family
design. Research in Engineering Design, 23(2), 141–153. https://doi.org/10.1007/s00163-011-
0119-4

Sobek, D. K., Ward, A. C., & Liker, J. K. (1999). Toyota ’ s Principles of Set-Based Concurrent
Engineering Toyota ’ s Principles of Set-Based Concurrent Engineering Durward K Sobek II.
Sloan Management Review, 40(2), 67–83.

Steward, D. V. (1981). Design Structure System: a Method for Managing the Design of Complex
Systems. IEEE Transactions on Engineering Management, EM-28(3), 71–74.
https://doi.org/10.1109/TEM.1981.6448589

Suh, N. P., & Sekimoto, S. (1990). Design of Thinking Design Machine. CIRP Annals -
Manufacturing Technology, 39(1), 145–148. https://doi.org/10.1016/S0007-8506(07)61022-1

Tjalve, E. (1979). Creation of a Product. A Short Course in Industrial Design, 1–15.
https://doi.org/10.1016/b978-0-408-00388-9.50004-5

Uludag, O., Kleehaus, M., Dreymann, N., Kabelin, C., & Matthes, F. (2019). Investigating the
Adoption and Application of Large-Scale Scrum at a German Automobile Manufacturer.
Proceedings - 2019 ACM/IEEE 14th International Conference on Global Software Engineering,
ICGSE 2019, 22–29. https://doi.org/10.1109/ICGSE.2019.00019

Vale, T., Cabral, B., Alvim, L., Soares, L., Santos, A., Machado, I., Souza, I., Freitas, I., & Almeida,
E. (2014). SPLICE: A lightweight software product line development process for small and
medium size projects. Proceedings - 2014 8th Brazilian Symposium on Software Components,
Architectures and Reuse, SBCARS 2014, September, 42–52.
https://doi.org/10.1109/SBCARS.2014.11

Van den Broeke, M., Boute, R., Cardoen, B., & Samii, B. (2017). An efficient solution method to
design the cost-minimizing platform portfolio. European Journal of Operational Research,

259(1), 236–250. https://doi.org/10.1016/j.ejor.2016.10.003
Varl, M., Duhovnik, J., & Tavčar, J. (2020). Agile product development process transformation to

support advanced one-of-a-kind manufacturing. International Journal of Computer Integrated
Manufacturing, 33(6), 590–608. https://doi.org/10.1080/0951192X.2020.1775301

Vinodh, S., Devadasan, S. R., Maheshkumar, S., Aravindakshan, M., Arumugam, M., &
Balakrishnan, K. (2010). Agile product development through CAD and rapid prototyping
technologies: An examination in a traditional pump-manufacturing company. International
Journal of Advanced Manufacturing Technology, 46(5–8), 663–679.
https://doi.org/10.1007/s00170-009-2142-4

West, D. (2011). Water-Scrum-Fall Is the Reality of Agile for Most. For Application Development
& Delivery Professionals, 2011–2012.
http://www.storycology.com/uploads/1/1/4/9/11495720/water-scrum-fall.pdf

Wu, M., & Wang, L. (2012). A continuous fuzzy Kano’s model for customer requirements analysis
in product development. Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, 226(3), 535–546.
https://doi.org/10.1177/0954405411414998

Zhang, Q., Peng, W., Lei, J., Dou, J., Hu, X., & Jiang, R. (2019). A method for product platform
planning based on pruning analysis and attribute matching. Journal of Intelligent
Manufacturing, 30(3), 1069–1083. https://doi.org/10.1007/s10845-017-1305-7

Žužek, T., Kušar, J., Rihar, L., & Berlec, T. (2020). Agile-Concurrent hybrid: A framework for
concurrent product development using Scrum. Concurrent Engineering Research and
Applications, 28(4), 255–264. https://doi.org/10.1177/1063293X20958541

