The progressive development of artificial intelligence technologies (AI), combined with the recent proliferation of inexpensive but reasonably accurate sensors has led to a paradigm shift in the field of industrial maintenance in the last two decades. The advent and adoption of Predictive Maintenance (PdM) in a smart factory is the winning solution to provide for the development of targeted solutions so as to significantly reduce repair costs and downtime. This strategy provides for the continuous monitoring of industrial equipment so that the amount of data generated daily becomes the basis for real-time identification of the state of health of the machinery, thus making it possible to predict their remaining useful life (RUL) and the definition of ad hoc maintenance interventions. This thesis research aims primarily to provide a description and a comparison of the main maintenance approaches, underlining how each of them turns out to be successful or not depending on the asset or application considered. Then we enter into the merits of predictive maintenance, deepening three of its fundamental factors: a) the condition monitoring technologies integrated in the industrial field, b) the IoT architecture aimed at the correct acquisition, transmission and storage of data generated by the sensors, and c) the main mathematical and statistical approaches which, starting from such data, lead to the identification of the state of health of the machinery. With regard to the latter aspect, this Thesis research considers, as a case study, a public dataset called Milling dataset and including data collected by a milling machine. In this regard, a predictive maintenance framework for RUL estimation of the data-driven type and based on deep learning is proposed. The framework consists of two phases: in the offline phase following the training in unsupervised mode of a bidirectional LSTM autoencoder and a linear regression model, the state of health of the machinery is extracted and identified from the sensor readings, constituting a library of possible trends in the degradation process. In the online phase, once the data relating to a test process is input, the state of health and the corresponding temporal trend are extracted from them. The relative estimation of the RUL is based on the comparison of this trend with the training trends and therefore historical and stored in the system. This prognostic approach, compared to the more common deep learning techniques, is more effective in cases where the amount of failure data is significantly lower than health data and when the size of the entire training set is limited. The results obtained show how the prognostic approach adopted is in line with and in some cases outperforms the most modern prognostic methods found in the literature.
Il progressivo sviluppo delle tecnologie di intelligenza artificiale (AI), unito alla recente proliferazione di sensori economici ma ragionevolmente precisi ha comportato, nelle ultime due decadi, un cambio di paradigma nell’ambito della manutenzione industriale. L’adozione della manutenzione predittiva (Predictive Maintenance, PdM) in una smart factory viene ad essere la soluzione vincente per sviluppare soluzioni mirate tali da ridurre notevolmente i costi di riparazione e dei fermi macchina. Tale strategia prevede il continuo monitoraggio degli asset industriali cosicché la mole di dati generata vada a divenire la base per l’identificazione real-time dello stato di salute dei macchinari, comportando in questo modo la possibilità di prevedere la loro vita residua utile (RUL) e la definizione di interventi manutentivi ad hoc. La presente ricerca di Tesi si pone in primo luogo l’obbiettivo di fornire una descrizione ed un confronto dei principali approcci manutentivi, sottolineando come ciascuno di essi si riveli vincente o meno a seconda dell’asset o applicazione considerata. In seguito si entra nel merito della manutenzione predittiva, approfondendo tre suoi fondamentali fattori: a) le tecnologie di condition monitoring in ambito industriale, b) l’architettura IoT volta alla corretta acquisizione, trasmissione ed archiviazione dei dati generati dai sensori, e c) i principali approcci matematici e statistici che a partire da tali dati conducono all’estrazione dello stato di salute del macchinario. In merito a quest’ultimo aspetto, la ricerca di Tesi vede come caso di studio un dataset pubblico denominato Milling dataset e comprendente i dati raccolti da una macchina fresatrice. Viene proposto a riguardo un framework di manutenzione predittiva per la stima della RUL del tipo data-driven e basato su deep learning. Il framework si compone di due fasi: nella fase offline in seguito al training in modalità non supervisionata di un autoencoder bidirezionale LSTM e un modello di regressione lineare, si va ad estrarre dalle letture dei sensori lo stato di salute del macchinario, definendo così una libreria di andamenti storici del processo di degrado. Nella fase online, forniti in ingresso i dati di una lavorazione di test si va ad estrarre da essi l’andamento temporale dello stato di salute. La relativa stima della RUL si basa sul confronto di tale andamento con gli andamenti di training memorizzati nel sistema. Tale approccio prognostico, rispetto alle più comuni tecniche di deep learning, si rivela maggiormente performante nei casi in cui la quantità di failure data sia notevolmente minore rispetto ai health data e quando la dimensione dell’intero training set sia limitata. I risultati ottenuti mostrano come l’approccio prognostico adottato sia in linea e in taluni casi superi i più moderni metodi di prognostica presenti in letteratura.
Studio e sviluppo di sistemi di manutenzione predittiva basati su industrial IoT.
TEMPERINI, GIULIA
2020/2021
Abstract
The progressive development of artificial intelligence technologies (AI), combined with the recent proliferation of inexpensive but reasonably accurate sensors has led to a paradigm shift in the field of industrial maintenance in the last two decades. The advent and adoption of Predictive Maintenance (PdM) in a smart factory is the winning solution to provide for the development of targeted solutions so as to significantly reduce repair costs and downtime. This strategy provides for the continuous monitoring of industrial equipment so that the amount of data generated daily becomes the basis for real-time identification of the state of health of the machinery, thus making it possible to predict their remaining useful life (RUL) and the definition of ad hoc maintenance interventions. This thesis research aims primarily to provide a description and a comparison of the main maintenance approaches, underlining how each of them turns out to be successful or not depending on the asset or application considered. Then we enter into the merits of predictive maintenance, deepening three of its fundamental factors: a) the condition monitoring technologies integrated in the industrial field, b) the IoT architecture aimed at the correct acquisition, transmission and storage of data generated by the sensors, and c) the main mathematical and statistical approaches which, starting from such data, lead to the identification of the state of health of the machinery. With regard to the latter aspect, this Thesis research considers, as a case study, a public dataset called Milling dataset and including data collected by a milling machine. In this regard, a predictive maintenance framework for RUL estimation of the data-driven type and based on deep learning is proposed. The framework consists of two phases: in the offline phase following the training in unsupervised mode of a bidirectional LSTM autoencoder and a linear regression model, the state of health of the machinery is extracted and identified from the sensor readings, constituting a library of possible trends in the degradation process. In the online phase, once the data relating to a test process is input, the state of health and the corresponding temporal trend are extracted from them. The relative estimation of the RUL is based on the comparison of this trend with the training trends and therefore historical and stored in the system. This prognostic approach, compared to the more common deep learning techniques, is more effective in cases where the amount of failure data is significantly lower than health data and when the size of the entire training set is limited. The results obtained show how the prognostic approach adopted is in line with and in some cases outperforms the most modern prognostic methods found in the literature.File | Dimensione | Formato | |
---|---|---|---|
Tesi Magistrale - Giulia Temperini.pdf
Open Access dal 22/10/2023
Descrizione: Tesi Magistrale - Giulia Temperini
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/1107