The framework created is responsible for automating the tasks of monitoring and surveillance of safety conditions within an Oil & Gas construction site. Drones are the tool used for collecting photos by capturing the current state of work at a certain moment over time. Through the use of QGIS software and specific python classes, these images are then processed in the pre-processing phase. It aims to create DSM profiles, that is a digital model of the surface relative to the flight considered. The dataset for training models of one-dimensional convolutional neural networks (1D CNN) consists of some of the flights already carried out by drones, and which present greater heterogeneity between classes. The ultimate goal is to create models that identify three different classes along the entire extension of the track works: open-trench pipeline, closed-trench pipeline and pipe laying. Therefore, thanks to data augmentation techniques, customization of a class, optimization of hyperparameters and splitting of the dataset, it has been extended a pre-existing binary classification to create a multi-class one. In the various experiments we wanted to generalize the cases analyzed on the same flight, on a different flight of the same construction site, and finally on the flight of another construction site. The results have shown excellent prediction accuracy levels for testing on a subset of the model training, and with some marginal differences, for testing on different flights in the area of the construction site considered. The results concerning the last case study differ from the previous two because the models are generated through datasets related to a construction site, and then tested on datasets from another construction site; Here it has been experienced that a substantial increase (double or more) of the real data provided to the model for training, for example, from merging the datasets of two flights, brings an increase in overall predictions accuracy with less imbalance between the minority classes.
Il framework creato si occupa di automatizzare i compiti di monitoraggio e di sorveglianza delle condizioni di sicurezza all’interno di un’area cantieri oli & gas. I droni sono lo strumento impiegato per la raccolta delle foto che, ad un certo istante nel tempo, catturano lo stato corrente dei lavori. Tramite l’uso del software QGIS e di apposite classi python, queste immagini sono poi elaborate nella fase di pre-processamento. Essa mira a creare i profili del DSM, ovvero un modello digitale della superficie relativo al volo considerato. Il dateset per il training dei modelli di reti neurali convoluzionali mono-dimensionali (1D CNN) è composto da alcuni dei voli già effettuati mediante droni, e che presentano una maggiore eterogeneità fra le classi. L’obiettivo ultimo è quello di creare modelli che identificano tre classi differenti lungo tutta l’estensione del tracciato lavori: scavo aperto, scavo chiuso e posa del tubo. Pertanto, grazie a tecniche di data augmentation, personalizzazione di una classe, ottimizzazione degli iperparametri e splitting del dataset, si estende una pre-esistente classificazione binaria per crearne una multi-classe. Nei diversi esperimenti si è voluto generalizzare i casi analizzati su un medesimo volo, su un diverso volo dello stesso cantiere, e infine sul volo di un altro cantiere. I risultati hanno mostrato che nei modelli creati si raggiungono facilmente eccellenti livelli di accuratezza delle predizioni per il test su un sottoinsieme del dataset di training del modello, e con qualche marginale differenza, per il test su voli differenti nell’area del cantiere considerato. Gli esiti che riguardano l’ultima casistica si differenziano dalle due precedenti perché i modelli sono generati tramite dataset relativi ad un cantiere, e poi testati su dataset provenienti da un altro cantiere; qui si è sperimentato che un aumento consistente (il doppio o più) dei dati reali forniti al modello per il training, ad esempio ricavati dall’unione dei dataset di due voli, apportano un aumento dell’accuratezza generale sulle predizioni con un minor squilibrio tra le classi minoritarie.
Sviluppo di un framework basato su algoritmi di Deep Learning per il monitoraggio di cantieri industriali
COLLELUORI, FEDERICO
2021/2022
Abstract
The framework created is responsible for automating the tasks of monitoring and surveillance of safety conditions within an Oil & Gas construction site. Drones are the tool used for collecting photos by capturing the current state of work at a certain moment over time. Through the use of QGIS software and specific python classes, these images are then processed in the pre-processing phase. It aims to create DSM profiles, that is a digital model of the surface relative to the flight considered. The dataset for training models of one-dimensional convolutional neural networks (1D CNN) consists of some of the flights already carried out by drones, and which present greater heterogeneity between classes. The ultimate goal is to create models that identify three different classes along the entire extension of the track works: open-trench pipeline, closed-trench pipeline and pipe laying. Therefore, thanks to data augmentation techniques, customization of a class, optimization of hyperparameters and splitting of the dataset, it has been extended a pre-existing binary classification to create a multi-class one. In the various experiments we wanted to generalize the cases analyzed on the same flight, on a different flight of the same construction site, and finally on the flight of another construction site. The results have shown excellent prediction accuracy levels for testing on a subset of the model training, and with some marginal differences, for testing on different flights in the area of the construction site considered. The results concerning the last case study differ from the previous two because the models are generated through datasets related to a construction site, and then tested on datasets from another construction site; Here it has been experienced that a substantial increase (double or more) of the real data provided to the model for training, for example, from merging the datasets of two flights, brings an increase in overall predictions accuracy with less imbalance between the minority classes.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Colleluori_UNIVPM.pdf
embargo fino al 22/02/2026
Descrizione: Tesi di laurea triennale in Ing. Informatica e dell'Automazione
Dimensione
11.27 MB
Formato
Adobe PDF
|
11.27 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/12311