In the thesis, the development of a certification and traceability framework based on Distributed Ledger Technology (DLT) is proposed. Initially, an overview of the fundamental concepts of DLT is provided, focusing on distinctive features such as decentralization and data immutability. The specific topic of blockchain is then explored, including its general structure and division into public, private, and authorized blockchains. Subsequently, a detailed examination of the Ethereum network is conducted, starting from transaction structure to concepts of tokens and smart contracts. The work continues with a thorough description of the state of the art of certification and traceability protocols utilizing blockchain technology, often combined with technological solutions such as RFID and NFC sensors and decentralized storage systems like IPFS. Comprehensive details are then provided regarding the technologies used in the proposed framework, including programming language, libraries, database, and the simulation environment for interaction with the Ethereum network. The culmination of the thesis work is the introduction of the dierent proposed architectures. In the first, each piece of data is individually certified through an Ethereum transaction, while in the second, data to be certified is organized in a data structure called a Merkle tree, where only the root is inserted into a transaction. It is crucial to emphasize that the concept of the Merkle tree is the core of the work. Due to its characteristics, certification costs can be significantly reduced, and the verification phase is simplified through the concept of Merkle proof. The thesis provides an in-depth analysis of the simulation results for various approa- ches, highlighting their strengths and weaknesses in terms of costs and performance based on the volume of data to be certified and the number of Merkle trees created. In conclusion, a cost function is presented, taking into account factors such as Ethereum cost, storage, and verification time, to generalize the treatment and make it applicable to dierent use cases. Finally, in the concluding part of the thesis, practical scenarios of interest are outlined, identifying optimal solutions by minimizing the cost modeling function.
Nella tesi, si propone lo sviluppo di uno schema di certificazione e tracciabilità basato su Distributed Ledger Technology (DLT). Inizialmente, si ore una pano- ramica dei concetti fondamentali della DLT, concentrandosi sulle caratteristiche peculiari che la contraddistinguono quali la decentralizzazione e l’immutabilità dei dati, per poi approfondire il tema specifico della blockchain di cui ne viene presentata la struttura generale e la divisione in blockchain pubblica, blockchain privata e blockchain autorizzata. Successivamente, si esamina con dovizia di particolari la rete Ethereum, partendo dalla struttura delle transazioni fino ai concetti di token e di smart contract.Il lavoro prosegue con una minuziosa descrizione dello stato dell’arte dei protocolli di certificazione e tracciabilità che ricorrono alla tecnologia blockchain, la quale, viene spesso combinata con soluzioni tecnologiche quali sensori RFID e NFC e sistemi di archiviazione decentralizzati quale IPFS. Vengono poi forniti dettagli approfonditi riguardanti le tecnologie impiegate nello schema proposto come il linguaggio di programmazione e le librerie utilizzate, il database e l’ambiente di simulazione per l’interazione con la rete Ethereum. Il culmine del lavoro di tesi è rappresentato dall’introduzione delle diverse architteture proposte: nella prima ogni dato viene certificato singolarmente attraverso una transazione Ethereum mentre nel secondo i dati da certificare vengono organizzati in una struttura dati chiamata Merkle tree in cui la sola radice viene inserita in una transazione. E’ cruciale sottolineare che il concetto di Merkle tree è il cuore pulsante del lavoro, in virtù delle sue caratteristiche si riuscirà a ridurre in modo significativo i costi di certificazione e si semplificherà la fase di verifica grazie al concetto di Merkle proof. La tesi ore, pertanto, un’analisi approfondita sui risultati della simulazione dei vari approcci mettendo in mostra i pregi e i difetti che li contraddistinguono in termini di costi e prestazioni al variare della numerosità dei dati da certificare e dal numero di Merkle tree che si creano. In conclusione, viene presentata una funzione costo che tiene conto di molteplici fattori quali il costo in ethereum, lo storage e il tempo di verifica in modo da poter generalizzare il più possibile la trattazione e renderla applicabile a diversi esempi applicativi. Infine, nella parte finale della tesi, sono delineati alcuni scenari di interesse pratico per cui si andrà ad individuare la soluzione ottimale minimizzando la funzione che modella i costi.
Sviluppo e validazione di strumenti open source per protocolli di certificazione e tracciabilità basati su DLT
FARINASSO, MARCO
2022/2023
Abstract
In the thesis, the development of a certification and traceability framework based on Distributed Ledger Technology (DLT) is proposed. Initially, an overview of the fundamental concepts of DLT is provided, focusing on distinctive features such as decentralization and data immutability. The specific topic of blockchain is then explored, including its general structure and division into public, private, and authorized blockchains. Subsequently, a detailed examination of the Ethereum network is conducted, starting from transaction structure to concepts of tokens and smart contracts. The work continues with a thorough description of the state of the art of certification and traceability protocols utilizing blockchain technology, often combined with technological solutions such as RFID and NFC sensors and decentralized storage systems like IPFS. Comprehensive details are then provided regarding the technologies used in the proposed framework, including programming language, libraries, database, and the simulation environment for interaction with the Ethereum network. The culmination of the thesis work is the introduction of the dierent proposed architectures. In the first, each piece of data is individually certified through an Ethereum transaction, while in the second, data to be certified is organized in a data structure called a Merkle tree, where only the root is inserted into a transaction. It is crucial to emphasize that the concept of the Merkle tree is the core of the work. Due to its characteristics, certification costs can be significantly reduced, and the verification phase is simplified through the concept of Merkle proof. The thesis provides an in-depth analysis of the simulation results for various approa- ches, highlighting their strengths and weaknesses in terms of costs and performance based on the volume of data to be certified and the number of Merkle trees created. In conclusion, a cost function is presented, taking into account factors such as Ethereum cost, storage, and verification time, to generalize the treatment and make it applicable to dierent use cases. Finally, in the concluding part of the thesis, practical scenarios of interest are outlined, identifying optimal solutions by minimizing the cost modeling function.File | Dimensione | Formato | |
---|---|---|---|
Tesi_di_laurea_Farinasso_Marco.pdf
accesso aperto
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/15982