The work carried out in this thesis takes place within the corporate context of Duna S.r.l. and arises from the company's need to renew business processes through the introduction of additive manufacturing technologies in the production of custom-made orthopaedic insoles. Additive manufacturing, or 3D printing, is taking hold in numerous sectors, including the footwear sector and the biomedical sector, and it is precisely in this context that custom-made orthopaedic insoles fit in. The method used in this thesis requires that selection criteria for materials and technologies are first established. Subsequently, simulations and comparative analyses are carried out and prototypes are developed. In the case study, the previously described method is applied to the specific case of employing additive manufacturing to custom-made orthopaedic insoles. In particular, 4 selection criteria are applied to the material: flexibility, Shore A hardness, durability, biocompatibility. 4 selection criteria are applied to the technologies: a construction volume that can accommodate at least one insole, production times and costs that are, at most, 150% of the traditional ones, production volumes that equal or higher than the traditional ones. From the simulations, information emerge regarding additive manufacturing which, inserted into the process, gives the possibility of evaluating 3D printing technologies in terms of costs and times, both for the entire batch and for the single insole. Subsequently, the information obtained from the simulations is used to carry out two types of comparative analysis: (1) comparing additive manufacturing technologies; (2) comparing subtractive manufacturing and additive manufacturing technologies, placing traditional manufacturing as a threshold. Finally, the development of the prototypes is carried out using the technology which, considering the previous steps, appears to have the best performances. Compliance with the geometries and weight of these prototypes are evaluated. The results that emerge in this thesis identify TPU and TPU-like resins as the most appropriate materials, as they are flexible, with a hardness of 55-95 Shore A and the biocompatibility which must be tested on the individual sample. From here, 4 technologies emerge: FDM, SLA, DLP, SLS, which are subjected to simulation, and from which information is obtained regarding the batch, the cost of the material, the printing time and post-processing. By inserting this data into the processes, the times and costs of the batches and individual insoles are obtained. The comparative analysis between 3D printing technologies highlights that the shortest times concern SLA and DLP, while the lowest costs belong to FDM and SLA. The second comparative analysis, between SM and AM, highlights SLA as the only technology comparable to traditional manufacturing in terms of costs and times. For this reason, SLA is used for the development of prototypes, which perfectly reflect the designed geometries, but have a higher weight than the traditional insole. From a future perspective, it is conceivable to combine this study with those regarding the design of custom-made 3D printed insoles and create prototypes that can be tested on patients.
Il lavoro portato avanti in questa tesi si svolge all'interno del contesto aziendale di Duna S.r.l. e nasce dall'esigenza dell'azienda di rinnovare i processi aziendali attraverso l’introduzione di tecnologie di manifattura additiva nella produzione di plantari ortopedici su misura. La manifattura additiva, o stampa 3D, sta prendendo campo in numerosi settori, tra cui il settore calzaturiero e il settore biomedicale, e proprio in questo contesto si inseriscono i plantari ortopedici su misura. Il metodo utilizzato in questa tesi prevede che in primo luogo vengano stabiliti dei criteri di selezione per i materiali e per le tecnologie. Successivamente, si svolgono delle simulazioni, delle analisi comparative e si sviluppano dei prototipi. Nel caso studio, il metodo precedentemente descritto viene applicato al caso specifico dell'applicazione della manifattura additiva ai plantari ortopedici su misura. In particolare, al materiale verranno applicati 4 criteri di selezione: flessibilità, durezza di scala Shore A, durabilità, biocompatibilità. Alle tecnologie vengono applicati 4 criteri di selezione: un volume di costruzione che possa ospitare almeno un plantare, tempi e costi di produzione che siano, al massimo, il 150% di quelli tradizionali, volumi di produzione che siano uguali o superiori rispetto a quelli tradizionali. Dalle simulazioni emergeranno delle informazioni riguardo la manifattura additiva che, inserite all'interno del processo, danno la possibilità di valutare le tecnologie di stampa 3D in termini di costi e tempi, sia per l'intero lotto che per il singolo plantare. Successivamente, le informazioni ottenute dalle simulazioni vengono utilizzate per svolgere due tipologie di analisi comparativa: (1) comparando le tecnologie di manifattura additiva; (2) comparando la manifattura sottrattiva e le tecnologie di manifattura additiva, ponendo la manifattura tradizionale come soglia. Infine, lo sviluppo dei prototipi viene portato avanti utilizzando la tecnologia che, considerando gli step precedenti, risulta essere la migliore. Di questi prototipi viene valutato il rispetto delle geometrie e il peso. I risultati che emergono in questa tesi individuano il TPU e le resine simil-TPU come i materiali più appropriati, in quanto flessibili, con una durezza di 55-95 Shore A e la biocompatibilità che va testata sul singolo campione. Da qui, emergono 4 tecnologie: FDM, SLA, DLP, SLS, che sono sottoposte a simulazione, e da cui si ottengono informazioni riguardanti il lotto, il costo del materiale, il tempo di stampa e il post-processing. Inserendo questi dati all'interno dei processi si ricavano tempi e costi dei lotti e dei singoli plantari. L'analisi comparativa tra tecnologie di stampa 3D evidenzia che le tempistiche più corte riguardano SLA e DLP, mentre i costi più bassi FDM e SLA. La seconda analisi comparativa, tra SM e AM, evidenzia la SLA come unica tecnologia comparabile alla manifattura tradizionale in termini di costi e tempi. Per questo motivo, la SLA viene utilizzata per lo sviluppo dei prototipi, che rispecchiano perfettamente le geometrie progettate, ma hanno un peso superiore rispetto al plantare tradizionale. In un'ottica futura è pensabile combinare questo studio con quelli riguardanti il design dei plantari su misura stampati 3D e creare dei prototipi che possano essere testati sui pazienti.
Study and evaluation of additive manufacturing technologies applied to build medical devices like customized orthopaedic insoles
CASACCIA, SARA
2022/2023
Abstract
The work carried out in this thesis takes place within the corporate context of Duna S.r.l. and arises from the company's need to renew business processes through the introduction of additive manufacturing technologies in the production of custom-made orthopaedic insoles. Additive manufacturing, or 3D printing, is taking hold in numerous sectors, including the footwear sector and the biomedical sector, and it is precisely in this context that custom-made orthopaedic insoles fit in. The method used in this thesis requires that selection criteria for materials and technologies are first established. Subsequently, simulations and comparative analyses are carried out and prototypes are developed. In the case study, the previously described method is applied to the specific case of employing additive manufacturing to custom-made orthopaedic insoles. In particular, 4 selection criteria are applied to the material: flexibility, Shore A hardness, durability, biocompatibility. 4 selection criteria are applied to the technologies: a construction volume that can accommodate at least one insole, production times and costs that are, at most, 150% of the traditional ones, production volumes that equal or higher than the traditional ones. From the simulations, information emerge regarding additive manufacturing which, inserted into the process, gives the possibility of evaluating 3D printing technologies in terms of costs and times, both for the entire batch and for the single insole. Subsequently, the information obtained from the simulations is used to carry out two types of comparative analysis: (1) comparing additive manufacturing technologies; (2) comparing subtractive manufacturing and additive manufacturing technologies, placing traditional manufacturing as a threshold. Finally, the development of the prototypes is carried out using the technology which, considering the previous steps, appears to have the best performances. Compliance with the geometries and weight of these prototypes are evaluated. The results that emerge in this thesis identify TPU and TPU-like resins as the most appropriate materials, as they are flexible, with a hardness of 55-95 Shore A and the biocompatibility which must be tested on the individual sample. From here, 4 technologies emerge: FDM, SLA, DLP, SLS, which are subjected to simulation, and from which information is obtained regarding the batch, the cost of the material, the printing time and post-processing. By inserting this data into the processes, the times and costs of the batches and individual insoles are obtained. The comparative analysis between 3D printing technologies highlights that the shortest times concern SLA and DLP, while the lowest costs belong to FDM and SLA. The second comparative analysis, between SM and AM, highlights SLA as the only technology comparable to traditional manufacturing in terms of costs and times. For this reason, SLA is used for the development of prototypes, which perfectly reflect the designed geometries, but have a higher weight than the traditional insole. From a future perspective, it is conceivable to combine this study with those regarding the design of custom-made 3D printed insoles and create prototypes that can be tested on patients.File | Dimensione | Formato | |
---|---|---|---|
Tesi Sara Casaccia 1104247.pdf
accesso aperto
Descrizione: Tesi Sara Casaccia (mat. 1104247)
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/16053