Additive manufacturing (AM) has greatly revolutionized the manufacturing and design landscape over the past few decades, thanks to its ability to produce components with high precision and with a variety of materials. It is an innovative technology characterized by the creation of three-dimensional objects through the addition of layers of material. The ability to produce fast and functional components has made additive manufacturing an important ally for companies that aim to innovate and adapt according to market needs. A very important process of this technology is the "Laser Powder Bed Fusion" (LPBF), a technique that is based on the use of a laser for the fusion and stratification of metal powders. The moldability of brass alloys in LPBF offers significant advantages, but requires careful consideration of mechanical properties and process parameters, such as laser power, scanning speed the thickness of the layer, the type of powder and others. A variation or wrong choice of process parameters can lead to the formation of defects, such as voids and porosity. This technique can be followed by Laser Polishing, which is a surface finishing process used to improve the surface quality of the sample, reducing roughness and imperfections. In this paper we will consider the metallographic analysis of a brass alloy, which plays a crucial role in applications related to the electronic, hydraulic, mechanical, aerospace and automotive sectors. It is an alloy that gives ductility, good machinability, good surface finish and reduced wear.In addition, we will highlight the various steps of metallographic analysis and their importance to understand the microstructural properties of the alloy, evaluating how these properties affect the performance of the material; we will be able to make a distinction into classes of voids by dividing them according to areas in order to study, more accurately, the mean and the standard deviation. Here is how the following paper will be organized: • In the first chapter we will deal with Additive Manufacturing in its generality, exposing the various main techniques. • In the second chapter we will develop a study on the brass alloy and the experimental procedure to be performed, then the metallographic analysis of the sample. • In the third chapter we will elaborate a discussion of the results obtained. • Finally, in the fourth chapter we will report the conclusions of our paper.
La fabbricazione additiva (AM) negli ultimi decenni ha rivoluzionato notevolmente il panorama della produzione e del design, grazie alla sua capacità di produrre componenti con elevata precisione e con una varietà di materiali. Si tratta di una tecnologia innovativa caratterizzata dalla creazione di oggetti tridimensionali attraverso l’aggiunta di strati di materiale. La capacità di produrre componenti rapidi e funzionali ha reso la fabbricazione additiva un alleato importante per le aziende che mirano all’innovazione ed all’adattamento in base alle esigenze del mercato. Un processo molto importante di questa tecnologia è la “Laser Powder Bed Fusion” (LPBF), una tecnica che si basa sull’utilizzo di un laser per la fusione e la stratificazione delle polveri metalliche. La stampabilità delle leghe di ottone nella LPBF offre vantaggi significativi, richiede però un’attenta considerazione delle proprietà meccaniche e dei parametri di processo, quali la potenza laser, la velocità di scansione, lo spessore dello strato, il tipo di polvere ed altri ancora. Una variazione o una scelta sbagliata dei parametri di processo può portare la formazione di difetti, come vuoti e porosità. A questa tecnica può seguire il Laser Polishing, ossia un processo di finitura superficiale utilizzato per migliorare la qualità superficiale del campione, andando a ridurre rugosità ed imperfezioni. In questo elaborato prenderemo in considerazione l’analisi metallografica di una lega di ottone, la quale gioca un ruolo cruciale in applicazioni relative al settore elettronico, idraulico, meccanico, aerospaziale e dell’automotive. Si tratta di una lega che conferisce duttilità, una buona lavorabilità, una buona finitura superficiale e una riduzione dell’usura. Inoltre, metteremo in evidenza i vari step dell’analisi metallografica e la loro importanza per comprendere le proprietà microstrutturali della lega, valutando come queste proprietà influenzano le prestazioni del materiale; arriveremo a fare una distinzione in classi dei vuoti dividendoli in base alle aree in modo da studiarne, in maniera più accurata, la media e la deviazione standard. Ecco come sarà organizzato il seguente elaborato: • Nel primo capitolo tratteremo l’Additive Manufacturing nella sua generalità, esponendo le varie tecniche principali. • Nel secondo capitolo svilupperemo uno studio sulla lega di ottone e sulla procedura sperimentale da eseguire, quindi l’analisi metallografica del campione. • Nel terzo capitolo elaboreremo una discussione dei risultati ottenuti. • Infine, nel quarto capitolo riporteremo le conclusioni del nostro elaborato.
STRUTTURE RETICOLARI PRODOTTE MEDIANTE Additive Manufacturing
SORZE, VALENTINA
2023/2024
Abstract
Additive manufacturing (AM) has greatly revolutionized the manufacturing and design landscape over the past few decades, thanks to its ability to produce components with high precision and with a variety of materials. It is an innovative technology characterized by the creation of three-dimensional objects through the addition of layers of material. The ability to produce fast and functional components has made additive manufacturing an important ally for companies that aim to innovate and adapt according to market needs. A very important process of this technology is the "Laser Powder Bed Fusion" (LPBF), a technique that is based on the use of a laser for the fusion and stratification of metal powders. The moldability of brass alloys in LPBF offers significant advantages, but requires careful consideration of mechanical properties and process parameters, such as laser power, scanning speed the thickness of the layer, the type of powder and others. A variation or wrong choice of process parameters can lead to the formation of defects, such as voids and porosity. This technique can be followed by Laser Polishing, which is a surface finishing process used to improve the surface quality of the sample, reducing roughness and imperfections. In this paper we will consider the metallographic analysis of a brass alloy, which plays a crucial role in applications related to the electronic, hydraulic, mechanical, aerospace and automotive sectors. It is an alloy that gives ductility, good machinability, good surface finish and reduced wear.In addition, we will highlight the various steps of metallographic analysis and their importance to understand the microstructural properties of the alloy, evaluating how these properties affect the performance of the material; we will be able to make a distinction into classes of voids by dividing them according to areas in order to study, more accurately, the mean and the standard deviation. Here is how the following paper will be organized: • In the first chapter we will deal with Additive Manufacturing in its generality, exposing the various main techniques. • In the second chapter we will develop a study on the brass alloy and the experimental procedure to be performed, then the metallographic analysis of the sample. • In the third chapter we will elaborate a discussion of the results obtained. • Finally, in the fourth chapter we will report the conclusions of our paper.File | Dimensione | Formato | |
---|---|---|---|
tesi Sorze Valentina.pdf
accesso aperto
Descrizione: tesi
Dimensione
2.61 MB
Formato
Adobe PDF
|
2.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/19400