The microvascular complications of diabetes mellitus, such as neuropathy, nephropathy, and retinopathy, pose a critical challenge in the management of this chronic condition because they are often diagnosed late due to their asymptomatic nature in the early stages, significantly impacting patients' quality of life. This thesis explores the use of machine learning algorithms for the classification and prevention of these complications, leveraging data from continuous glucose monitoring systems. By employing metrics extracted from this data using the dedicated software called AGATA (Automated Glucose dATa Analysis), predictive models were developed to identify the presence of such complications in a timely manner, thereby supporting clinical decision-making. The selected algorithms include decision tree, random forest, logistic regression, and SVM, evaluated based on metrics such as accuracy, sensitivity, F1-score, and the area under the ROC curve (Receiver Operating Characteristic). The results obtained, although limited by their generalizability, underscore the potential of machine learning, combined with metrics derived from continuous glucose monitoring data, to capture patterns present in training data, serving as a starting point for enhancing early diagnosis and personalizing patient therapies. This approach may represent a significant step forward in more effective and proactive diabetes management.
Le complicanze microvascolari del diabete mellito, quali neuropatia, nefropatia e retinopatia, rappresentano una sfida cruciale nella gestione di questa patologia cronica poichè, spesso, vengono diagnosticate tardivamente a causa della loro asintomaticità nelle fasi iniziali, con un impatto significativo sulla qualità della vita dei pazienti. Questa tesi esplora l’utilizzo di algoritmi di machine learning per la classificazione e la prevenzione di tali complicanze, sfruttando dati provenienti da sistemi di monitoraggio continuo del glucosio. Attraverso l’impiego di metriche estratte da questi dati tramite l’uso del software dedicato denominato AGATA (Automated Glucose dATa Analysis), sono stati sviluppati modelli predittivi con l’obiettivo di identificare tempestivamente la presenza di tali complicanze, supportando così il processo decisionale clinico. Gli algoritmi selezionati includono albero decisionale, random forest, regressione logistica e SVM, valutati sulla base di metriche quali precisione, sensibilità, F1- score e area sotto la curva ROC (Receiver operating characteristic). I risultati ottenuti, pur presentando limitazioni nella capacità di generalizzazione, sottolineano il potenziale del machine learning, integrato con metriche estratte da tracciati di monitoraggio continuo del glucosio, nel catturare i pattern presenti nei dati di training, rappresentando una base di partenza per migliorare la diagnosi precoce e per personalizzare le terapie per i pazienti. Questo approccio può rappresentare un passo avanti significativo verso una gestione più efficace e proattiva del diabete mellito.
Sviluppo di approcci di machine learning basati su metriche di monitoraggio continuo del glucosio per l’identificazione della presenza di complicanze del diabete
RECCHIUTI, ANDREA
2023/2024
Abstract
The microvascular complications of diabetes mellitus, such as neuropathy, nephropathy, and retinopathy, pose a critical challenge in the management of this chronic condition because they are often diagnosed late due to their asymptomatic nature in the early stages, significantly impacting patients' quality of life. This thesis explores the use of machine learning algorithms for the classification and prevention of these complications, leveraging data from continuous glucose monitoring systems. By employing metrics extracted from this data using the dedicated software called AGATA (Automated Glucose dATa Analysis), predictive models were developed to identify the presence of such complications in a timely manner, thereby supporting clinical decision-making. The selected algorithms include decision tree, random forest, logistic regression, and SVM, evaluated based on metrics such as accuracy, sensitivity, F1-score, and the area under the ROC curve (Receiver Operating Characteristic). The results obtained, although limited by their generalizability, underscore the potential of machine learning, combined with metrics derived from continuous glucose monitoring data, to capture patterns present in training data, serving as a starting point for enhancing early diagnosis and personalizing patient therapies. This approach may represent a significant step forward in more effective and proactive diabetes management.File | Dimensione | Formato | |
---|---|---|---|
tesi_andrea_recchiuti (1).pdf
embargo fino al 12/12/2027
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/20317