This thesis, developed in collaboration with SAIPEM, explores the numerical analysis of residual stresses in offshore pipeline welds using Finite Element Analysis (FEA) simulations. The work mainly focuses on the study of material properties at high temperatures, welding procedures, and the simulation of thermal and structural stages of the welding process. The materials involved are a carbon steel similar to API 5L X70 for the filler metal and a DNV 450 SAWL for the base metal of the pipe. The simulation was divided into two main steps: thermal simulation and thermo-structural analysis. The thermal simulation was performed using a Heat Transfer model in Abaqus, with the DFLUX subroutine for managing the generated heat. A three-dimensional mesh was adapted to achieve finer resolution in areas of greater interest, such as the bevel zone, and coarser mesh in less critical areas. The structural simulation was conducted considering the thermal effects from welding passes and the relaxation of residual stresses. Simulations were calibrated through sensitivity analysis of material property changes and the effects of elongation, simulating the S-lay launching process. Simulation results were compared with experimental data obtained through the Hole-Drilling Strain-Gauge Method, showing that the simulation of longitudinal and transverse stresses did not always match real-world data perfectly. Finally, the thesis also explores the effect of microstructure variations, although these were not considered in the simulations to simplify the methodological approach.
Questa tesi, svolta in collaborazione con SAIPEM, esplora l'analisi numerica degli stress residui nelle saldature di tubi offshore, utilizzando simulazioni agli elementi finiti (FEA). Il lavoro si concentra principalmente sullo studio delle proprietà dei materiali ad alta temperatura, le procedure di saldatura e la simulazione delle fasi termiche e strutturali del processo. I materiali coinvolti sono un acciaio al carbonio simile all'API 5L X70 per il metallo d'apporto e un DNV 450 SAWL per il metallo base del tubo. La simulazione è stata suddivisa in due passaggi principali: la simulazione termica e l'analisi termo-strutturale. La simulazione termica è stata realizzata con un modello di tipo Heat Transfer in Abaqus, utilizzando la subroutine DFLUX per la gestione del calore generato. La mesh tridimensionale è stata adattata per ottenere una risoluzione più fine nelle aree di maggiore interesse, come la zona del cianfrino, e più grossolana nelle aree meno critiche. La simulazione strutturale è stata condotta tenendo conto degli effetti termici derivanti dalle passate di saldatura e dal rilassamento degli stress residui. Le simulazioni sono state calibrate mediante analisi di sensibilità sui cambiamenti delle proprietà dei materiali e sugli effetti dell'allungamento, simulando il processo di varo in S-lay. I risultati delle simulazioni sono stati confrontati con i dati sperimentali ottenuti tramite la Hole-Drilling Strain-Gauge Method, dimostrando che la simulazione degli stress longitudinali e trasversali non ha sempre portato a una corrispondenza perfetta con i dati reali. Infine, la tesi esplora anche l'effetto delle variazioni della microstruttura, benché queste non siano state considerate nelle simulazioni per semplificare l'approccio metodologico.
Simulazione agli Elementi Finiti degli stress residui su una saldatura di una pipeline offshore
MALVESTITI, ALESSIO
2023/2024
Abstract
This thesis, developed in collaboration with SAIPEM, explores the numerical analysis of residual stresses in offshore pipeline welds using Finite Element Analysis (FEA) simulations. The work mainly focuses on the study of material properties at high temperatures, welding procedures, and the simulation of thermal and structural stages of the welding process. The materials involved are a carbon steel similar to API 5L X70 for the filler metal and a DNV 450 SAWL for the base metal of the pipe. The simulation was divided into two main steps: thermal simulation and thermo-structural analysis. The thermal simulation was performed using a Heat Transfer model in Abaqus, with the DFLUX subroutine for managing the generated heat. A three-dimensional mesh was adapted to achieve finer resolution in areas of greater interest, such as the bevel zone, and coarser mesh in less critical areas. The structural simulation was conducted considering the thermal effects from welding passes and the relaxation of residual stresses. Simulations were calibrated through sensitivity analysis of material property changes and the effects of elongation, simulating the S-lay launching process. Simulation results were compared with experimental data obtained through the Hole-Drilling Strain-Gauge Method, showing that the simulation of longitudinal and transverse stresses did not always match real-world data perfectly. Finally, the thesis also explores the effect of microstructure variations, although these were not considered in the simulations to simplify the methodological approach.File | Dimensione | Formato | |
---|---|---|---|
Thesis_malvestiti_04.pdf
non disponibili
Dimensione
5.49 MB
Formato
Adobe PDF
|
5.49 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/20970