This thesis examines the effectiveness of the "Artificial Ground Isolation" system within the critical context of the historic center of Castelluccio di Norcia, which was severely damaged by the October 30, 2016, earthquake. The focus is on the effects of the vertical component of seismic action, often overlooked by current regulations but highly relevant in near-fault zones, where vertical accelerations have been observed to exceed expected values significantly. By analyzing the site's characteristics and building on an existing preliminary isolation project, a strategy was developed to optimize the isolated slab, aiming to enhance seismic performance and reduce altitude-related issues. Several design scenarios were modeled (using AutoCAD and SAP2000), involving frictional isolation devices with different friction coefficients, considering both the inclusion and exclusion of the vertical component. Nonlinear dynamic analyses showed that the vertical component heavily influences the overall behavior of the system, affecting its stability, applied forces, and the energy dissipation capacity of the isolation devices. The results suggest that the most effective configuration involves isolators with a friction coefficient between 3% and 4% and a curvature radius of 3.7 meters. An update to the Italian code (NTC 2018) is recommended, given the scientific evidence related to vertical seismic input. This work seeks to contribute to the advancement of seismic design by encouraging a more comprehensive and informed approach, combining structural safety, technological innovation, and preservation of cultural and historical heritage.
Il presente elaborato approfondisce l’efficacia del sistema di "Artificial Ground Isolation" nel contesto critico del centro storico di Castelluccio di Norcia, gravemente danneggiato dal terremoto del 30 ottobre 2016. L’attenzione si è concentrata sugli effetti della componente verticale dell’azione sismica, spesso trascurata nelle normative vigenti, ma rilevante nei contesti near-fault, in cui le accelerazioni verticali possono significativamente superare i valori attesi. Attraverso l’analisi delle caratteristiche del sito, e sulla base del progetto preliminare di isolamento già proposto, è stata sviluppata una strategia di ottimizzazione della piastra isolata al fine di migliorare l’efficienza sismica e ridurre criticità altimetriche. Sono stati modellati diversi scenari progettuali (con l’uso di AutoCAD e SAP2000) che prevedono l’uso di dispositivi di isolamento attritivi caratterizzati da differenti coefficienti di attrito, considerando o escludendo la componente verticale. Le analisi dinamiche non lineari hanno evidenziato come quest’ultima influenzi significativamente il comportamento globale del sistema, incidendo su stabilità, forze agenti e capacità dissipativa del sistema di isolamento. I risultati ottenuti indicano che l’adozione di isolatori con coefficiente di attrito compreso tra il 3% e il 4% e raggio di curvatura di 3.7 m rappresenta la soluzione più efficace in termini prestazionali. Inoltre, si auspica un aggiornamento della normativa italiana (NTC18) alla luce delle evidenze scientifiche in merito alla considerazione dell’input verticale. Il lavoro si propone quindi come contributo all’evoluzione della progettazione sismica, promuovendo un approccio più consapevole alla progettazione, con l’obiettivo di coniugare sicurezza e innovazione strutturale, senza dover rinunciare all’identità storica e culturale del luogo oggetto di intervento.
Ottimizzazione del progetto di Ground Isolation per la ricostruzione di Castelluccio di Norcia
DE FEBIS, FEDERICA
2024/2025
Abstract
This thesis examines the effectiveness of the "Artificial Ground Isolation" system within the critical context of the historic center of Castelluccio di Norcia, which was severely damaged by the October 30, 2016, earthquake. The focus is on the effects of the vertical component of seismic action, often overlooked by current regulations but highly relevant in near-fault zones, where vertical accelerations have been observed to exceed expected values significantly. By analyzing the site's characteristics and building on an existing preliminary isolation project, a strategy was developed to optimize the isolated slab, aiming to enhance seismic performance and reduce altitude-related issues. Several design scenarios were modeled (using AutoCAD and SAP2000), involving frictional isolation devices with different friction coefficients, considering both the inclusion and exclusion of the vertical component. Nonlinear dynamic analyses showed that the vertical component heavily influences the overall behavior of the system, affecting its stability, applied forces, and the energy dissipation capacity of the isolation devices. The results suggest that the most effective configuration involves isolators with a friction coefficient between 3% and 4% and a curvature radius of 3.7 meters. An update to the Italian code (NTC 2018) is recommended, given the scientific evidence related to vertical seismic input. This work seeks to contribute to the advancement of seismic design by encouraging a more comprehensive and informed approach, combining structural safety, technological innovation, and preservation of cultural and historical heritage.File | Dimensione | Formato | |
---|---|---|---|
TESI_definitiva_DE FEBIS FEDERICA.pdf
embargo fino al 10/01/2027
Dimensione
42.69 MB
Formato
Adobe PDF
|
42.69 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/21870