This thesis presents an experimental analysis of the winter thermal behavior of two opaque envelopes with similar transmittance but different thermal mass. The first is a lightweight wall insulated with wood wool panels; the second is a heavyweight monolithic wall made of perforated clay blocks with micropores and air cavities, which provide low thermal conductivity and high thermal inertia. The tests were carried out in two adjacent test rooms, identical in geometry and orientation and without transparent openings, in order to isolate the behavior of the opaque envelope. Two heating strategies were simulated: continuous and intermittent. Monitoring, performed using sensors and heat flux meters, focused on surface temperatures and heat flows. The results show that the heavyweight wall is more effective in damping thermal oscillations and maintaining stable indoor conditions, especially under intermittent heating. The lightweight wall responds more quickly to thermal changes but has a lower capacity to maintain comfort in the absence of active heating. Despite slightly higher energy consumption (+6% in the two-phase and +8% in the three-phase heating configuration), the heavyweight wall ensures better comfort performance: during the night phase, it releases up to 83% more heat to the indoor environment compared to the lightweight wall, helping to reduce internal temperature fluctuations. In the most efficient configuration (three-phase intermittent heating), the range of indoor air temperature is reduced by 29%, from 14 °C (12–26 °C) in the lightweight room to 10 °C (15–25 °C) in the heavyweight room. This study confirms the strategic role of thermal inertia in the passive regulation of indoor climate and highlights the potential of heavyweight wall solutions for high energy-efficiency buildings.
La presente tesi propone un’analisi sperimentale del comportamento termico invernale di due pareti opache con trasmittanza simile ma massa differente. La prima è una parete leggera, isolata con pannelli in lana di legno; la seconda è una parete massiva monostrato, realizzata in laterizio alveolato con micropori e cavità d’aria, caratterizzata da bassa conducibilità e alta inerzia termica. Le prove sono state condotte in due ambienti adiacenti, identici per geometria e orientamento e privi di aperture trasparenti, al fine di isolare l'effetto delle pareti opache. Sono state simulate due strategie di riscaldamento: continuo e intermittente. Il monitoraggio, effettuato tramite sensori e flussimetri, ha riguardato temperature superficiali e flussi termici. I risultati evidenziano che la parete massiva smorza in modo più efficace le oscillazioni termiche e mantiene condizioni interne più stabili, soprattutto in regime di riscaldamento intermittente. La parete leggera, pur reagendo più rapidamente alle variazioni di temperatura, presenta una minore capacità di conservare il comfort in assenza di apporto termico. Nonostante consumi energetici leggermente superiori (+6% nella configurazione a due sezioni e +8% in quella a tre), la parete massiva offre migliori prestazioni in termini di comfort: nella fase notturna cede all’ambiente fino all’83% di calore in più rispetto alla parete leggera, contribuendo a ridurre l’escursione termica interna. Nel funzionamento intermittente a due sezioni, considerato il più efficiente, la variazione della temperatura dell’aria interna si riduce del 29%, passando da un range di 14 °C nel box leggero a 10 °C nel box massivo. Lo studio conferma così il ruolo strategico dell’inerzia termica nella regolazione passiva del microclima e il potenziale delle soluzioni massive per edifici ad alta efficienza energetica.
CONFRONTO SPERIMENTALE TRA PARETI AD ALTA E BASSA INERZIA TERMICA DURANTE LA STAGIONE INVERNALE
DE PADOVA, ANDREA
2024/2025
Abstract
This thesis presents an experimental analysis of the winter thermal behavior of two opaque envelopes with similar transmittance but different thermal mass. The first is a lightweight wall insulated with wood wool panels; the second is a heavyweight monolithic wall made of perforated clay blocks with micropores and air cavities, which provide low thermal conductivity and high thermal inertia. The tests were carried out in two adjacent test rooms, identical in geometry and orientation and without transparent openings, in order to isolate the behavior of the opaque envelope. Two heating strategies were simulated: continuous and intermittent. Monitoring, performed using sensors and heat flux meters, focused on surface temperatures and heat flows. The results show that the heavyweight wall is more effective in damping thermal oscillations and maintaining stable indoor conditions, especially under intermittent heating. The lightweight wall responds more quickly to thermal changes but has a lower capacity to maintain comfort in the absence of active heating. Despite slightly higher energy consumption (+6% in the two-phase and +8% in the three-phase heating configuration), the heavyweight wall ensures better comfort performance: during the night phase, it releases up to 83% more heat to the indoor environment compared to the lightweight wall, helping to reduce internal temperature fluctuations. In the most efficient configuration (three-phase intermittent heating), the range of indoor air temperature is reduced by 29%, from 14 °C (12–26 °C) in the lightweight room to 10 °C (15–25 °C) in the heavyweight room. This study confirms the strategic role of thermal inertia in the passive regulation of indoor climate and highlights the potential of heavyweight wall solutions for high energy-efficiency buildings.File | Dimensione | Formato | |
---|---|---|---|
TESI_ANDREA+DEPADOVA_1077917.pdf
embargo fino al 10/01/2027
Descrizione: Documento finale tesi Andrea De Padova completo di frontespizio non firmato
Dimensione
18.64 MB
Formato
Adobe PDF
|
18.64 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/21871