Cast irons represent a family of ferrous materials that remain of great interest for engineering applications, due to their excellent balance of cost, strength, and machinability. Among them, spheroidal (or ductile) cast irons stand out for their superior mechanical properties, which enable their use in critical fields such as the automotive, energy, and structural industries.This thesis focuses on the mechanical and dynamic characterization of an innovative silicon-strengthened spheroidal ductile iron (SSFDI), through an extensive experimental campaign conducted on specimens of varying geometry and subjected to different strain rates. Tensile, compression, and torsion tests were performed with the goal of assessing the evolution of the material’s behavior as the deformation speed increases. To support the analysis, advanced technologies were employed, such as Digital Image Correlation (DIC) using high-speed cameras, infrared thermography for the observation of thermomechanical effects, and numerical data processing using MatchID and MATLAB software. The integration of these techniques allowed for accurate stress-strain curves and a deeper understanding of the yielding phenomenon and strain-rate effects. The thesis is structured into four chapters. The first presents the fundamental concepts on which the work is based: the characteristics of cast irons, the main mechanical tests, and the supporting technologies used. The second chapter delves into the materials and methods applied, focusing on the studied cast iron and how the introduced techniques were implemented during experimental testing. The third chapter is dedicated to the analysis of results, with a critical evaluation of the conducted tests and collected observations. Finally, the last chapter summarizes the overall conclusions of the work, offering a synthesis of the main findings and some ideas for future developments. This work is part of a broader research effort aimed at understanding and optimizing the behavior of innovative metallic materials. The contribution provided seeks to open new perspectives for the use of SSFDI cast iron in high-performance structural components, where strength, reliability, and dynamic responsiveness are required.
Le ghise rappresentano una famiglia di materiali ferrosi ancora oggi di grande interesse per le applicazioni ingegneristiche, grazie al loro eccellente rapporto tra costo, resistenza e lavorabilità. Tra queste, le ghise sferoidali si distinguono per le loro proprietà meccaniche superiori, che ne rendono possibile l’impiego in ambiti ad alta criticità come l’industria automobilistica, energetica e strutturale. Questa tesi si concentra sulla caratterizzazione meccanica e dinamica di una ghisa sferoidale innovativa rafforzata al silicio (SSFDI), attraverso un’estesa campagna sperimentale condotta su provini di diversa geometria e sottoposti a strain rate variabili. Sono state eseguite prove di trazione, compressione e torsione, con l’obiettivo di valutare l’evoluzione del comportamento del materiale all’aumentare della velocità di deformazione. A supporto dell’analisi, sono state impiegate tecnologie avanzate come la Digital Image Correlation (DIC) tramite telecamere ad alta velocità, termografia a infrarossi per l’osservazione degli effetti termomeccanici e l’elaborazione numerica dei dati mediante i software MatchID e MATLAB. L’integrazione di queste tecniche ha consentito di ottenere curve sforzo-deformazione accurate e una lettura più profonda del fenomeno di snervamento e dell’effetto strain-rate. La tesi è articolata in quattro capitoli. Nel primo vengono presentati i concetti fondamentali su cui si basa il lavoro: le caratteristiche delle ghise, le principali prove meccaniche e le tecnologie di supporto utilizzate. Il secondo capitolo approfondisce invece i materiali e i metodi impiegati, concentrandosi sulla ghisa oggetto di studio e sul modo in cui le tecniche introdotte sono state applicate nelle prove sperimentali. Il terzo capitolo è dedicato all’analisi dei risultati, con una lettura critica delle prove condotte e delle osservazioni raccolte. Infine, l’ultimo capitolo raccoglie le conclusioni generali del lavoro, offrendo una sintesi dei principali risultati e alcuni spunti per sviluppi futuri. Questo lavoro si inserisce in un più ampio percorso di studio volto alla comprensione e all’ottimizzazione del comportamento dei materiali metallici innovativi. Il contributo fornito punta ad aprire nuove prospettive per l’impiego della ghisa SSFDI in componenti strutturali ad alta prestazione, dove sono richieste resistenza, affidabilità e reattività dinamica.
Prove meccaniche e caratterizzazione del comportamento dinamico di una ghisa sferoidale innovativa
MANGONI, MARCELLO
2024/2025
Abstract
Cast irons represent a family of ferrous materials that remain of great interest for engineering applications, due to their excellent balance of cost, strength, and machinability. Among them, spheroidal (or ductile) cast irons stand out for their superior mechanical properties, which enable their use in critical fields such as the automotive, energy, and structural industries.This thesis focuses on the mechanical and dynamic characterization of an innovative silicon-strengthened spheroidal ductile iron (SSFDI), through an extensive experimental campaign conducted on specimens of varying geometry and subjected to different strain rates. Tensile, compression, and torsion tests were performed with the goal of assessing the evolution of the material’s behavior as the deformation speed increases. To support the analysis, advanced technologies were employed, such as Digital Image Correlation (DIC) using high-speed cameras, infrared thermography for the observation of thermomechanical effects, and numerical data processing using MatchID and MATLAB software. The integration of these techniques allowed for accurate stress-strain curves and a deeper understanding of the yielding phenomenon and strain-rate effects. The thesis is structured into four chapters. The first presents the fundamental concepts on which the work is based: the characteristics of cast irons, the main mechanical tests, and the supporting technologies used. The second chapter delves into the materials and methods applied, focusing on the studied cast iron and how the introduced techniques were implemented during experimental testing. The third chapter is dedicated to the analysis of results, with a critical evaluation of the conducted tests and collected observations. Finally, the last chapter summarizes the overall conclusions of the work, offering a synthesis of the main findings and some ideas for future developments. This work is part of a broader research effort aimed at understanding and optimizing the behavior of innovative metallic materials. The contribution provided seeks to open new perspectives for the use of SSFDI cast iron in high-performance structural components, where strength, reliability, and dynamic responsiveness are required.File | Dimensione | Formato | |
---|---|---|---|
PROVE DINAMICHE E CARATTERIZZAZIONE DI UNA GHISA SFEORIDALE INNOVATIVA_UFFICIALE_rev3.pdf
accesso aperto
Descrizione: Frontespizio non firmato e tesi completa
Dimensione
5.5 MB
Formato
Adobe PDF
|
5.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/22194