This thesis highlights the practical applications of machine learning in financial markets, showing that while predictions can be valuable, stock movements remain complex and influenced by multiple factors. Moreover, with further refinements, these models could contribute to more data-driven decision-making in stock trading and portfolio management
Questa tesi evidenzia le applicazioni pratiche del machine learning nei mercati finanziari, dimostrando che, sebbene le previsioni possano essere preziose, i movimenti azionari rimangono complessi e influenzati da molteplici fattori. Inoltre, con ulteriori perfezionamenti, questi modelli potrebbero contribuire a un processo decisionale maggiormente basato sui dati nel trading azionario e nella gestione del portafoglio.
Comparing different machine learning models using the stock market dataset
XXX, RAMADASS SHIVESH
2024/2025
Abstract
This thesis highlights the practical applications of machine learning in financial markets, showing that while predictions can be valuable, stock movements remain complex and influenced by multiple factors. Moreover, with further refinements, these models could contribute to more data-driven decision-making in stock trading and portfolio managementFile | Dimensione | Formato | |
---|---|---|---|
FINAL PROJECT - COMPARING MACHINE LEARNING MODELS USING A STOCK MARKET DATASET updated (2) (1).pdf
accesso aperto
Descrizione: This thesis gives a summary of what was the major focus of the internship which was “comparing different machine learning models using a sample stock market dataset" extracted from the internet .
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/22465