Obesity is a chronic disease on the rise and is caused by imbalances in energy homeostasis: an asymmetry between energy intake and expenditure. In this mechanism, the hypothalamus plays a key role, which coordinates hunger/satiety by integrating hormonal signals such as leptin, a hormone produced by adipose tissue that signals energy reserves to the brain. For years, it was thought that appetite was regulated by two types of neurons: AGRP/NPY, which stimulate hunger and POMC/CART, which induce satiety. Leptin reduces the activity of the former and stimulates the latter. The model has limitations: the effect of POMC neurons is slow and weak, while that of AGRPs is rapid and they have a different response to leptin, the need arises for researchers to look for other populations that regulate appetite. Using single-cell RNA sequencing techniques in an experiment on mice, a new population has been discovered: BNC2 neurons. They are GABAergic neurons, express the leptin receptor (LepR) and are conserved in humans. Their activation inhibits AGRP and reduces food intake rapidly. They represent a direct brake on hunger. BNC2 neurons respond to leptin via the JAK2/STAT3 pathway. Under normal conditions, these neurons are activated especially during refeeding and in response to rewarding food stimuli, such as the smell or taste of food. They may be less affected by leptin resistance, which makes them potentially very interesting from a therapeutic point of view. To study BNC2 neurons, the researchers used two neuron activation/inhibition techniques: chemogenetics and optogenetics. Chemogenetics involves the modification of BNC2 so that they express artificial receptors (DREADDs) that can be activated by drugs such as CNO (clozapine-N-oxide). Two types of DREADDs are used: hM3Dq, which activates BNC2 neurons, and hM4Di, which inhibits them. With the CNO, these neurons can then be turned on or off on command. With optogenetics, BNC2 neurons are modified to produce light-sensitive proteins (opsins) such as Chr2, which activates neurons when illuminated with blue light, and GtACR2, which inhibits them. Optogenetics is a very rapid technique with effects that are observed in a few milliseconds, it is ideal for testing the immediate responses of neurons. Chemogenetics is used to evaluate the prolonged effects. Both techniques led to the same results: activation of BNC2 results in the release of GABA and blocking of AGRP neurons with immediate reduction of appetite; in the case of BNC2 inhibition, GABA release is reduced and AGRP neurons are active with a rapid increase in appetite. To understand the role of LepR in BNC2 neurons, the Knock-Out (KO) of the receptor was carried out via CRISPR-Cas9. After the KO, leptin is no longer effective, this shows that LepR in BNC2 neurons is essential to allow the anorectic action of leptin. The knock-out had effects on mice including: hyperphagia, weight gain, glycemic alterations and insulin resistance, which confirms the critical role of BNC2 in energy balance. The discovery of BNC2 opens up new perspectives for the treatment of obesity: the combination of a drug capable of selectively activating BNC2 with a GLP-1 agonist (e.g. semaglutide) could have more potent or synergistic effects in the treatment of obesity. In conclusion, appetite control is a complex mechanism involving many neuronal populations. BNC2 neurons are an important missing piece in the classical model and could become targets for new therapies and their discovery represents a potential clinical turning point in the fight against obesity and associated disorders.
L’obesità è una patologia cronica in crescita ed è causata da squilibri nell’omeostasi energetica: sbilanciamento tra assunzione e spesa energetica. In questo meccanismo hanno un ruolo chiave: l’ipotalamo, che coordina fame/sazietà integrando segnali ormonali come la leptina, un ormone prodotto dal tessuto adiposo che segnala le riserve energetiche al cervello. Per anni si è pensato che l’appetito fosse regolato da due tipi di neuroni: AGRP/NPY: che stimolano la fame e POMC/CART: che inducono la sazietà. La leptina riduce l’attività dei primi e stimola i secondi. Il modello ha dei limiti: l’effetto dei neuroni POMC è lento e debole, mentre quello degli AGRP è rapido e hanno una diversa risposta alla leptina, insorge la necessità dei ricercatori di cercare altre popolazioni che regolano l’appetito. Grazie all’utilizzo di tecniche di sequenziamento dell’RNA a singola cellula in un esperimento sui topi, è stata scoperta una nuova popolazione: i neuroni BNC2. Sono neuroni di tipo GABAergico, esprimono il recettore per la leptina (LepR) e risultano conservati nell’uomo. La loro attivazione inibisce AGRP e riduce l’assunzione di cibo rapidamente. Rappresentano un freno diretto sulla fame. I neuroni BNC2 rispondono alla leptina attraverso la via JAK2/STAT3. In condizioni normali, questi neuroni si attivano soprattutto durante la rialimentazione e in risposta a stimoli alimentari gratificanti, come l’odore o il gusto del cibo. Potrebbero essere meno colpiti dalla leptino-resistenza, questo li rende potenzialmente molto interessanti dal punto di vista terapeutico. Per studiare i neuroni BNC2, i ricercatori hanno utilizzato due tecniche di attivazione/inibizione dei neuroni: la chemogenetica e l’optogenetica. La chemogenetica prevede la modifica dei BNC2 in modo che esprimano recettori artificiali (DREADDs) attivabili da farmaci come il CNO (clozapina-N-ossido). Si usano due tipi di DREADDs: hM3Dq, che attiva i neuroni BNC2 e hM4Di, che li inibisce. Con il CNO si possono quindi accendere o spegnere questi neuroni a comando. Con l’optogenetica i neuroni BNC2 vengono modificati affinchè producano proteine fotosensibili (opsine) come: Chr2, che attiva i neuroni quando viene illuminata con luce blu e GtACR2 che invece li inibisce. L’optogenetica è una tecnica molto rapida con effetti che si osservano in pochi millisecondi, è ideale per testare le risposte immediate dei neuroni. Per valutare gli effetti prolungati si utilizza invece la chemogenetica. Entrambe le tecniche hanno portato agli stessi risultati: l’attivazione dei BNC2 comporta il rilascio di GABA e il blocco dei neuroni AGRP con la riduzione immediata dell’appetito; nel caso dell’inibizione dei BNC2, il rilascio di GABA è ridotto e i neuroni AGRP attivi con un aumento rapido dell’appetito. Per comprendere il ruolo di LepR nei neuroni BNC2 è stato effettuato il Knock-Out (KO) del recettore tramite CRISPR-Cas9. Dopo il KO la leptina non è più efficace, questo dimostra che LepR nei neuroni BNC2 è essenziale per permettere l’azione anoressizzante della leptina. Il knock-out ha avuto sui topi degli effetti tra cui: l’iperfagia, aumento di peso, alterazioni glicemiche e insulino-resistenza, ciò conferma il ruolo critico dei BNC2 nell’equilibrio energetico. La scoperta dei BNC2 apre nuove prospettive per il trattamento dell’obesità: l’associazione di un farmaco capace di attivare selettivamente i BNC2 con un agonista del GLP-1 (ad esempio il semaglutide) potrebbe avere effetti più potenti o sinergici nel trattamento dell’obesità. In conclusione, il controllo dell’appetito è un meccanismo complesso che coinvolge molte popolazioni neuronali. I neuroni BNC2 sono un importante tassello mancante nel modello classico e potrebbero diventare bersaglio per nuove terapie e la loro scoperta rappresenta un potenziale punto di svolta clinico nella lotta all’obesità e ai disturbi ad essa associati.
RUOLO DI UNA POPOLAZIONE DI NEURONI IPOTALAMICI SENSIBILI ALLA LEPTINA NEL CONTROLLO DELL'ASSUNZIONE DI CIBO
BERARDI, SIMONA
2024/2025
Abstract
Obesity is a chronic disease on the rise and is caused by imbalances in energy homeostasis: an asymmetry between energy intake and expenditure. In this mechanism, the hypothalamus plays a key role, which coordinates hunger/satiety by integrating hormonal signals such as leptin, a hormone produced by adipose tissue that signals energy reserves to the brain. For years, it was thought that appetite was regulated by two types of neurons: AGRP/NPY, which stimulate hunger and POMC/CART, which induce satiety. Leptin reduces the activity of the former and stimulates the latter. The model has limitations: the effect of POMC neurons is slow and weak, while that of AGRPs is rapid and they have a different response to leptin, the need arises for researchers to look for other populations that regulate appetite. Using single-cell RNA sequencing techniques in an experiment on mice, a new population has been discovered: BNC2 neurons. They are GABAergic neurons, express the leptin receptor (LepR) and are conserved in humans. Their activation inhibits AGRP and reduces food intake rapidly. They represent a direct brake on hunger. BNC2 neurons respond to leptin via the JAK2/STAT3 pathway. Under normal conditions, these neurons are activated especially during refeeding and in response to rewarding food stimuli, such as the smell or taste of food. They may be less affected by leptin resistance, which makes them potentially very interesting from a therapeutic point of view. To study BNC2 neurons, the researchers used two neuron activation/inhibition techniques: chemogenetics and optogenetics. Chemogenetics involves the modification of BNC2 so that they express artificial receptors (DREADDs) that can be activated by drugs such as CNO (clozapine-N-oxide). Two types of DREADDs are used: hM3Dq, which activates BNC2 neurons, and hM4Di, which inhibits them. With the CNO, these neurons can then be turned on or off on command. With optogenetics, BNC2 neurons are modified to produce light-sensitive proteins (opsins) such as Chr2, which activates neurons when illuminated with blue light, and GtACR2, which inhibits them. Optogenetics is a very rapid technique with effects that are observed in a few milliseconds, it is ideal for testing the immediate responses of neurons. Chemogenetics is used to evaluate the prolonged effects. Both techniques led to the same results: activation of BNC2 results in the release of GABA and blocking of AGRP neurons with immediate reduction of appetite; in the case of BNC2 inhibition, GABA release is reduced and AGRP neurons are active with a rapid increase in appetite. To understand the role of LepR in BNC2 neurons, the Knock-Out (KO) of the receptor was carried out via CRISPR-Cas9. After the KO, leptin is no longer effective, this shows that LepR in BNC2 neurons is essential to allow the anorectic action of leptin. The knock-out had effects on mice including: hyperphagia, weight gain, glycemic alterations and insulin resistance, which confirms the critical role of BNC2 in energy balance. The discovery of BNC2 opens up new perspectives for the treatment of obesity: the combination of a drug capable of selectively activating BNC2 with a GLP-1 agonist (e.g. semaglutide) could have more potent or synergistic effects in the treatment of obesity. In conclusion, appetite control is a complex mechanism involving many neuronal populations. BNC2 neurons are an important missing piece in the classical model and could become targets for new therapies and their discovery represents a potential clinical turning point in the fight against obesity and associated disorders.File | Dimensione | Formato | |
---|---|---|---|
Berardi_Simona_tesi.pdf
non disponibili
Descrizione: Tesi compilativa
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/22515