In recent years, the digital transformation promoted by the Industry 4.0 paradigm has radically changed the organization of production systems, requiring a profound revision of maintenance strategies. This thesis aims to systematically and critically analyze the evolution of maintenance policies, exploring the transition from traditional approaches (corrective, preventive, predictive and proactive) to advanced models based on the integration of digital technologies and asset engineering. The first part of the work presents the theoretical and technological context of Industry 4.0, focusing on the strategic role of maintenance as a lever for competitiveness, efficiency and sustainability. Subsequently, the main maintenance policies are explored in depth, highlighting their advantages, limits and critical issues, also in light of the PF curve and the most recent needs of complex industrial contexts. The heart of the thesis is represented by an extensive analysis of the enabling technologies that constitute the maintenance 4.0 infrastructure: Internet of Things (IoT), Big Data and Data Analytics, Artificial Intelligence, Machine Learning, Cyber-Physical Systems, Digital Twin, Cloud and Edge Computing. These technologies not only improve the ability to diagnose and predict failures, but enable new forms of intelligent and prescient maintenance, capable of anticipating future scenarios and optimizing plant management in real time. The last part of the thesis critically analyzes the achievable advantages - such as the reduction of downtime, the increase in asset reliability and the optimization of costs - in the face of the challenges related to technological integration, required investments, staff training and data governance. Finally, the future prospects of maintenance from a 4.0 perspective are outlined, including the adoption of autonomous, collaborative and generative artificial intelligence-driven systems. The work, of a compilation nature, is based on a solid multidisciplinary bibliographic base and offers an in-depth and updated overview of maintenance practices in the context of the fourth industrial revolution, proposing useful ideas for further research and operational applications in the industrial sector.
Negli ultimi anni, la trasformazione digitale promossa dal paradigma dell’Industria 4.0 ha modificato radicalmente l’organizzazione dei sistemi produttivi, imponendo una revisione profonda anche delle strategie di manutenzione. Questa tesi si propone di analizzare in maniera sistematica e critica l’evoluzione delle politiche manutentive, esplorando il passaggio da approcci tradizionali (correttivi, preventivi, predittivi e proattivi) a modelli avanzati basati sull’integrazione tra tecnologie digitali e ingegneria degli asset. Nella prima parte del lavoro viene presentato il contesto teorico e tecnologico dell’Industria 4.0, soffermandosi sul ruolo strategico della manutenzione come leva di competitività, efficienza e sostenibilità. Successivamente, si approfondiscono le principali politiche manutentive, evidenziandone vantaggi, limiti e criticità, anche alla luce della curva PF e delle più recenti esigenze dei contesti industriali complessi. Il cuore dell’elaborato è rappresentato da un’analisi estesa delle tecnologie abilitanti che costituiscono l’infrastruttura della manutenzione 4.0: Internet of Things (IoT), Big Data e Data Analytics, Intelligenza Artificiale, Machine Learning, Sistemi Cyber-Fisici, Digital Twin, Cloud ed Edge Computing. Queste tecnologie non solo migliorano la capacità di diagnosi e previsione dei guasti, ma abilitano nuove forme di manutenzione intelligente e presciente, in grado di anticipare scenari futuri e ottimizzare in tempo reale la gestione degli impianti. L’ultima parte della tesi analizza in maniera critica i vantaggi ottenibili – come la riduzione dei tempi di fermo, l’aumento dell’affidabilità degli asset e l’ottimizzazione dei costi – a fronte delle sfide legate all’integrazione tecnologica, agli investimenti richiesti, alla formazione del personale e alla governance dei dati. Infine, si tracciano le prospettive future della manutenzione in ottica 4.0, tra cui l’adozione di sistemi autonomi, collaborativi e guidati da intelligenza artificiale generativa. L’elaborato, di natura compilativa, si fonda su una solida base bibliografica multidisciplinare e offre una panoramica approfondita e aggiornata sulle pratiche manutentive nel contesto della quarta rivoluzione industriale, proponendo spunti utili per ulteriori ricerche e applicazioni operative nel settore industriale.
“Stato dell'arte sulle politiche di manutenzione in ottica Industria 4.0”
MORETTI, MARTINA
2024/2025
Abstract
In recent years, the digital transformation promoted by the Industry 4.0 paradigm has radically changed the organization of production systems, requiring a profound revision of maintenance strategies. This thesis aims to systematically and critically analyze the evolution of maintenance policies, exploring the transition from traditional approaches (corrective, preventive, predictive and proactive) to advanced models based on the integration of digital technologies and asset engineering. The first part of the work presents the theoretical and technological context of Industry 4.0, focusing on the strategic role of maintenance as a lever for competitiveness, efficiency and sustainability. Subsequently, the main maintenance policies are explored in depth, highlighting their advantages, limits and critical issues, also in light of the PF curve and the most recent needs of complex industrial contexts. The heart of the thesis is represented by an extensive analysis of the enabling technologies that constitute the maintenance 4.0 infrastructure: Internet of Things (IoT), Big Data and Data Analytics, Artificial Intelligence, Machine Learning, Cyber-Physical Systems, Digital Twin, Cloud and Edge Computing. These technologies not only improve the ability to diagnose and predict failures, but enable new forms of intelligent and prescient maintenance, capable of anticipating future scenarios and optimizing plant management in real time. The last part of the thesis critically analyzes the achievable advantages - such as the reduction of downtime, the increase in asset reliability and the optimization of costs - in the face of the challenges related to technological integration, required investments, staff training and data governance. Finally, the future prospects of maintenance from a 4.0 perspective are outlined, including the adoption of autonomous, collaborative and generative artificial intelligence-driven systems. The work, of a compilation nature, is based on a solid multidisciplinary bibliographic base and offers an in-depth and updated overview of maintenance practices in the context of the fourth industrial revolution, proposing useful ideas for further research and operational applications in the industrial sector.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI MORETTI MARTINA DEFINITIVA PDFA.pdf
non disponibili
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/22724