The shoulder is the most mobile and complex joint in the human body. Its remarkable range of motion, essential for carrying out daily functions, is counterbalanced by an intrinsically limited stability, entirely dependent on the dynamic equilibrium between bony and muscular structures. This anatomical and biomechanical delicacy makes the shoulder particularly vulnerable to traumatic and degenerative injuries which, in advanced cases, can severely compromise joint function and patient quality of life. When pain and loss of mobility can no longer be managed with conservative treatments, shoulder arthroplasty becomes the most appropriate therapeutic option. The purpose of this procedure is to restore joint function and relieve pain; however, the anatomical complexity of the joint and the variability of pathological conditions make it especially challenging. Inaccuracies in selecting or positioning the prosthetic components may in fact result in complications, early failures, or the need for revision surgeries. In this context, preoperative planning is a key step to ensure surgical accuracy and to minimize the risk of complications. Traditional methods based on two-dimensional imaging, although long considered the gold standard, show significant limitations in terms of precision and reproducibility. In recent years, the introduction of dedicated three-dimensional software has opened new perspectives, enabling the reconstruction of the patient’s individual anatomy from imaging data, the simulation of different surgical strategies, and a more accurate prediction of prosthetic component orientation and size. This thesis addresses the development and certification process of biomedical software for three-dimensional preoperative planning in shoulder arthroplasty. The main objective is the preparation of a Technical File compliant with Regulation (EU) 2017/745, an essential dossier for obtaining CE marking and for the subsequent commercialization of the device. The documentation produced integrates clinical, engineering, and regulatory dimensions: from the definition of General Safety and Performance Requirements (GSPR), to risk management in accordance with ISO 14971, through to clinical evaluation and post-market surveillance (PMS and PMCF). Particular attention was devoted to usability and data protection, issues of growing importance for digital medical devices. Finally, the thesis explores future perspectives related to the integration of artificial intelligence algorithms within the software. Automatic anatomical segmentation, prediction of optimal prosthetic component sizes, and bone quality analysis are among the most promising applications, capable of making planning faster, more precise, and increasingly personalized. The evolution towards intelligent and predictive systems paves the way for orthopedic surgery that, while keeping the surgeon at the center of the decision-making process, can rely on digital tools designed to further enhance safety and effectiveness. In conclusion, the work demonstrates how a structured and traceable approach to certification does not merely represent a regulatory requirement, but rather constitutes a real guarantee of patient safety and clinical reliability of the software, laying solid foundations for future innovation in the orthopedic field.
La spalla rappresenta l’articolazione più mobile e complessa del corpo umano. La sua straordinaria libertà di movimento, essenziale per lo svolgimento di funzioni fondamentali per la vita quotidiana, è controbilanciata da una stabilità intrinseca estremamente ridotta, affidata esclusivamente all’equilibrio dinamico tra strutture ossee e muscolari. Tale delicatezza anatomica e biomeccanica rende la spalla particolarmente vulnerabile a lesioni traumatiche e degenerative che, nei casi più avanzati, compromettono in modo significativo la funzionalità articolare e la qualità di vita del paziente. Quando il dolore e la perdita di mobilità non possono essere più gestiti con trattamenti conservativi, l’impianto di una protesi di spalla diventa la soluzione terapeutica più indicata. L’artroplastica ha lo scopo di ripristinare la funzionalità articolare e alleviare la sintomatologia dolorosa, ma la complessità anatomica del distretto e la variabilità delle condizioni patologiche rendono questo intervento particolarmente impegnativo. Errori di valutazione nella scelta e nel posizionamento delle componenti protesiche possono infatti tradursi in complicanze, fallimenti precoci o necessità di revisioni chirurgiche. In questo contesto, la pianificazione preoperatoria rappresenta un passaggio essenziale per garantire accuratezza chirurgica e ridurre il rischio di complicanze. I metodi tradizionali basati su immagini bidimensionali, pur avendo costituito a lungo il gold standard, mostrano limiti significativi in termini di precisione e riproducibilità. Negli ultimi anni, l’introduzione di software tridimensionali dedicati ha aperto nuove prospettive, permettendo di ricostruire l’anatomia individuale del paziente direttamente dalle immagini, simulare differenti strategie chirurgiche e prevedere con maggiore accuratezza l’orientamento e le dimensioni delle componenti protesiche. La presente tesi affronta lo sviluppo e il percorso di certificazione di un software biomedicale per la pianificazione preoperatoria tridimensionale dell’artroplastica di spalla. Scopo principale del lavoro è la redazione di un fascicolo tecnico conforme al Regolamento (UE) 2017/745, documento imprescindibile per l’ottenimento della marcatura CE e per l’immissione sul mercato del dispositivo. La documentazione elaborata integra dimensioni cliniche, ingegneristiche e regolatorie: dalla definizione dei requisiti generali di sicurezza e prestazione (GSPR), alla gestione dei rischi secondo ISO 14971, fino alla valutazione clinica e alla sorveglianza post-commercializzazione (PMS e PMCF). Particolare rilievo è stato attribuito anche agli aspetti di usabilità e alla tutela dei dati sensibili, elementi di crescente centralità nei dispositivi digitali in ambito sanitario. Infine, la tesi esplora le prospettive future legate all’integrazione all’interno del software di algoritmi di intelligenza artificiale. L’automatizzazione della segmentazione anatomica, la predizione delle dimensioni ottimali dei componenti protesici e l’analisi della qualità ossea sono alcune delle applicazioni più promettenti, in grado di rendere la pianificazione sempre più rapida, precisa e personalizzata. L’evoluzione verso sistemi intelligenti e predittivi apre la strada a una chirurgia ortopedica che, pur mantenendo centrale il ruolo del chirurgo, potrà contare su strumenti digitali capaci di elevare ulteriormente sicurezza ed efficacia. In conclusione, il lavoro svolto dimostra come un approccio strutturato e tracciabile alla certificazione non rappresenti soltanto un adempimento normativo, ma costituisca un reale strumento di garanzia per la sicurezza del paziente e per l’affidabilità clinica del software, ponendo solide basi per l’innovazione futura in ambito ortopedico.
FROM DEVELOPMENT TO CERTIFICATION: THE PROCESS OF DRAFTING THE TECHNICAL FILE OF A SOFTWARE FOR SURGICAL PLANNING IN SHOULDER ARTHROPLASTY IN ACCORDANCE WITH THE REGULATION (EU) 2017/745
FRATANGELO, MARTINA
2024/2025
Abstract
The shoulder is the most mobile and complex joint in the human body. Its remarkable range of motion, essential for carrying out daily functions, is counterbalanced by an intrinsically limited stability, entirely dependent on the dynamic equilibrium between bony and muscular structures. This anatomical and biomechanical delicacy makes the shoulder particularly vulnerable to traumatic and degenerative injuries which, in advanced cases, can severely compromise joint function and patient quality of life. When pain and loss of mobility can no longer be managed with conservative treatments, shoulder arthroplasty becomes the most appropriate therapeutic option. The purpose of this procedure is to restore joint function and relieve pain; however, the anatomical complexity of the joint and the variability of pathological conditions make it especially challenging. Inaccuracies in selecting or positioning the prosthetic components may in fact result in complications, early failures, or the need for revision surgeries. In this context, preoperative planning is a key step to ensure surgical accuracy and to minimize the risk of complications. Traditional methods based on two-dimensional imaging, although long considered the gold standard, show significant limitations in terms of precision and reproducibility. In recent years, the introduction of dedicated three-dimensional software has opened new perspectives, enabling the reconstruction of the patient’s individual anatomy from imaging data, the simulation of different surgical strategies, and a more accurate prediction of prosthetic component orientation and size. This thesis addresses the development and certification process of biomedical software for three-dimensional preoperative planning in shoulder arthroplasty. The main objective is the preparation of a Technical File compliant with Regulation (EU) 2017/745, an essential dossier for obtaining CE marking and for the subsequent commercialization of the device. The documentation produced integrates clinical, engineering, and regulatory dimensions: from the definition of General Safety and Performance Requirements (GSPR), to risk management in accordance with ISO 14971, through to clinical evaluation and post-market surveillance (PMS and PMCF). Particular attention was devoted to usability and data protection, issues of growing importance for digital medical devices. Finally, the thesis explores future perspectives related to the integration of artificial intelligence algorithms within the software. Automatic anatomical segmentation, prediction of optimal prosthetic component sizes, and bone quality analysis are among the most promising applications, capable of making planning faster, more precise, and increasingly personalized. The evolution towards intelligent and predictive systems paves the way for orthopedic surgery that, while keeping the surgeon at the center of the decision-making process, can rely on digital tools designed to further enhance safety and effectiveness. In conclusion, the work demonstrates how a structured and traceable approach to certification does not merely represent a regulatory requirement, but rather constitutes a real guarantee of patient safety and clinical reliability of the software, laying solid foundations for future innovation in the orthopedic field.I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/23365