It is anticipated that the global demand for energy will more than double by the mid-century and perhaps more than triple by the end of the century. Satisfying this demand will be necessary in order to achieve vibrant technological progress, economic growth and most importantly, political stability over the coming decades. Already we are faced with the prospect of catastrophic climate change owing to the release of CO2 into the atmosphere brought about by the burning of fossil fuels. In the short-term, we must exploit all technologies known to us to produce energy while at the same time reduce CO2 emission, and the challenge is also to use energy more efficiently. Here, we can learn from nature, especially natural photosynthesis. The sun is the champion of energy sources and its use is harmless to our environment and climate. The enormous untapped potential of solar energy is an opportunity that should be addressed with urgency. Biology chose this energy source, and there is no reason why the chemical reactions devised by photosynthetic organisms cannot be mimicked by the ingenuity of humans. The scientific challenge is to construct an ‘artificial leaf’ able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Here, we review the molecular details of the energy capturing reactions of natural photosynthesis, particularly the water-splitting reaction of photosystem II and the hydrogen-generating reaction of hydrogenases. We then follow on to describe how these two reactions are being mimicked in physico-chemical-based catalytic or electrocatalytic systems with the challenge of creating a large-scale robust and efficient artificial leaf technology. While some progress has been made in mimicking photosynthesis in artificial systems, researchers have not yet developed components that are both efficient and robust for incorporation into a working system for capturing and storing solar energy in chemical bonds on a large scale as does natural photosynthesis, so the challenge is especially attractive.
Si prevede che la domanda globale di energia è destinata a raddoppiare entro la metà del secolo. Sarà necessario soddisfare questa crescente richiesta per alimentare il progresso tecnologico, la crescita economica, nonché la stabilità politica nei prossimi decenni. Siamo già chiamati a rispondere della catastrofica prospettiva legata ai cambiamenti climatici dovuti al rilascio di CO₂ causato dalla combustione dei combustibili fossili. Nell'immediato futuro dovremo sfruttare tutte le tecnologie a noi note per produrre energia limitando queste emissioni di CO₂, ed utilizzarla in maniera più efficiente. In questo caso possiamo ispirarci alla natura, ed in particolare al processo fotosintetico naturale. Il sole è infatti campione tra le fonti di energia ed il suo utilizzo è innocuo per l'ambiente e per il clima. L'enorme potenziale non sfruttato dell'energia solare è un'opportunità che va colta con urgenza, e l'approccio è quello di imitare artificialmente le reazioni chimiche degli organismi fotosintetici, date le notevoli conoscenze sviluppate a riguardo. La sfida scientifica è dunque quella di costruire una foglia artificiale in grado di catturare e convertire in maniera efficiente l'energia solare e successivamente immagazzinarla nella forma dei legami chimici di un combustibile solare come l'idrogeno, producendo allo stesso tempo ossigeno dall'acqua. Descriveremo i dettagli molecolari delle reazioni di captazione dell'energia nella fotosintesi naturale, in particolare la reazione di scissione dell'acqua del fotosistema II e la reazione idrogeno generatrice dell'idrogenasi. Proseguiamo descrivendo come queste due reazioni vengano imitate. Sebbene siano stati compiuti grandi progressi in questo senso, i ricercatori non hanno ancora sviluppato componenti che risultino efficienti per essere incorporate in un sistema di lavoro su larga scala per l'acquisizione e l'immagazzinamento dell'energia solare come fa naturalmente la fotosintesi, dunque la sfida da affrontare rimane ampia e stimolante.
DALLA FOTOSINTESI NATURALE A QUELLA ARTIFICIALE
MAULONI, CRISTINA
2019/2020
Abstract
It is anticipated that the global demand for energy will more than double by the mid-century and perhaps more than triple by the end of the century. Satisfying this demand will be necessary in order to achieve vibrant technological progress, economic growth and most importantly, political stability over the coming decades. Already we are faced with the prospect of catastrophic climate change owing to the release of CO2 into the atmosphere brought about by the burning of fossil fuels. In the short-term, we must exploit all technologies known to us to produce energy while at the same time reduce CO2 emission, and the challenge is also to use energy more efficiently. Here, we can learn from nature, especially natural photosynthesis. The sun is the champion of energy sources and its use is harmless to our environment and climate. The enormous untapped potential of solar energy is an opportunity that should be addressed with urgency. Biology chose this energy source, and there is no reason why the chemical reactions devised by photosynthetic organisms cannot be mimicked by the ingenuity of humans. The scientific challenge is to construct an ‘artificial leaf’ able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Here, we review the molecular details of the energy capturing reactions of natural photosynthesis, particularly the water-splitting reaction of photosystem II and the hydrogen-generating reaction of hydrogenases. We then follow on to describe how these two reactions are being mimicked in physico-chemical-based catalytic or electrocatalytic systems with the challenge of creating a large-scale robust and efficient artificial leaf technology. While some progress has been made in mimicking photosynthesis in artificial systems, researchers have not yet developed components that are both efficient and robust for incorporation into a working system for capturing and storing solar energy in chemical bonds on a large scale as does natural photosynthesis, so the challenge is especially attractive.File | Dimensione | Formato | |
---|---|---|---|
PRESENTAZIONE TESI.pdf
Open Access dal 21/07/2023
Descrizione: DALLA FOTOSINTESI NATURALE A QUELLA ARTIFICIALE
Dimensione
546.72 kB
Formato
Adobe PDF
|
546.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/2338