An oscillating water column system uses wave energy to compress and decompress the air inside a pneumatic chamber. The pressurized air is then conveyed to a turbine, where the mechanical energy is converted into electrical energy. Like all industrial systems, an OWC system has its own operating range. If the system were to operate outside of these conditions, excessive pressures could be generated, risking damage to the pneumatic chamber or even causing it to explode, with serious consequences both structurally and for operator safety. The purpose of the bypass valve is to open automatically by gravity in the event of a power failure. The idea is that, in rough seas or other abnormal situations, the power supply is interrupted, allowing the valve to open and vent the air, preventing damage to system components. The main components of the bypass valve are: the bulkhead, the drive system, and sensors. The movable bulkhead, hinged at one end, is moved by a cable: under normal operating conditions, the valve remains closed and the bulkhead is held in place by two electromagnets. In the event of abnormal situations or power outages, the bulkhead falls by gravity, allowing air to be vented and preserving the integrity of the system. Particular attention was paid to the sensor design: inductive sensors with a range of 4 mm were chosen to precisely monitor the valve’s two operating configurations, open or closed. Finally, a casing was also designed, made by folding sheet metal, to protect the entire system from dust and splashes of water, considering that the valve will be installed in a marine environment. The complete CAD project includes both components designed and modeled by me and appropriately sized commercial components. All 3D modeling was performed using CATIA V5 software. Finally, some components were analyzed using Ansys software to verify that the stresses were below critical values and thus ensure the system’s safety. Returning to the thesis, I decided to structure it into seven chapters, of which I provide a brief overview below: • The first chapter explains in detail what an OWC system is, from the system’s main components to safety aspects and the role of the valve in this context. • The second chapter introduces the basic concepts of bending, a process used for most of the modeled components. The main phases of the process andthe techniques employed to reduce the typical problems associated with this process are described. • The third chapter analyzes the pressures and temperatures that develop in an OWC system. Subsequently, the preliminary sketches drawn in the early design phases and the load estimates are shown. • The fourth chapter illustrates the bypass valve, with a focus on the overall system rather than individual components. • The fifth chapter goes into detail about the choice of components, which were appropriately selected and sized. • The sixth chapter presents the component checks using FEM analyses, conducted to confirm the system’s strength and safety. This thesis was written based on an internship at 4D Engineering.
Un impianto a colonna d’acqua oscillante è un sistema che sfrutta l’energia del moto ondoso per comprimere e decomprimere l’aria presente all’interno di una camera pneumatica. L’aria in pressione viene poi convogliata verso una turbina, dove l’energia meccanica viene trasformata in energia elettrica. Come tutti i sistemi industriali, anche un impianto OWC ha un proprio range di funzionamento. Se il sistema dovesse operare al di fuori di tali condizioni, potrebbero generarsi pressioni troppo elevate, con il rischio di danneggiare la camera pneumatica o addirittura causarne l’esplosione, con gravi conseguenze sia strutturali che per la sicurezza degli operatori. L’obiettivo della valvola di by-pass è di aprirsi automaticamente per gravità in caso di mancanza di corrente.L’idea è che, in condizioni di mare mosso o altre situazioni anomale, venga interrotta l’alimentazione elettrica, permettendo così alla valvola di aprirsi e consentire lo sfiato dell’aria , evitando danni ai componenti dell’impianto. I componenti principali della valvola di by-pass sono: paratia, sistema di azionamento e sensori La movimentazione della paratia mobile, incernierata a un estremo, avviene tramite una fune: in condizioni di normale funzionamento, la valvola resta chiusa e la paratia viene mantenuta in posizione grazie a due elettromagneti. In caso di situazioni anomale o interruzione dell’alimentazione elettrica, invece, la paratia cade per gravità, consentendo lo sfiato dell’aria e preservando l’integrità dell’impianto. Particolare attenzione è stata dedicata allo studio dei sensori: sono stati scelti sensori induttivi con una portata di 4 mm, così da poter monitorare con precisione le due configurazioni operative della valvola, ossia aperta o chiusa. Infine, è stato progettato anche un carter, realizzato tramite piegatura di lamiera, per proteggere l’intero sistema da polveri e schizzi d’acqua, considerando che la valvola verrà installata in ambiente marino. Il progetto CAD completo comprende sia componenti da me progettati e modellati, sia componenti commerciali opportunamente dimensionati. Tutta la modellazione 3D è stata svolta sul software CATIA V5. Infine, alcuni componenti sono stati analizzati con il software Ansys per verificare che le sollecitazioni fossero inferiori ai valori critici e garantire così la sicurezza del sistema. Tornando all’elaborato, ho deciso di strutturare la tesi in 7 capitoli, dei quali fornisco di seguito una breve panoramica:• Nel primo capitolo viene spiegato nel dettaglio cos’è un impianto OWC, dai componenti principali del sistema fino agli aspetti di sicurezza e al ruolo della valvola in questo contesto. • Nel secondo capitolo vengono introdotti i concetti base della piegatura, lavorazione utilizzata per la maggior parte dei componenti modellati. Si descrivono le principali fasi del processo e le tecniche impiegate per ridurre le problematiche tipiche di questa lavorazione. • Nel terzo capitolo vengono analizzate le pressioni e le temperature che si sviluppano in un impianto OWC. Successivamente vengono mostrati gli schizzi preliminari elaborati nelle prime fasi progettuali e la stima dei carichi. • Nel quarto capitolo è illustrata la valvola di by-pass, con un focus sul sistema complessivo piuttosto che sui singoli componenti. • Nel quinto capitolo si entra nel dettaglio della scelta dei componenti, che sono stati opportunamente selezionati e dimensionati. • Nel sesto capitolo si presentano le verifiche dei componenti tramite analisi FEM, svolte per confermare la resistenza e la sicurezza del sistema. La tesi è stata scritta in merito al tirocinio svolto presso l’azienda 4D Engineering.
Progettazione di un sistema by-pass di sicurezza per impianti energetici a colonna d’acqua oscillante
CICCHETTI, LORENZO
2024/2025
Abstract
An oscillating water column system uses wave energy to compress and decompress the air inside a pneumatic chamber. The pressurized air is then conveyed to a turbine, where the mechanical energy is converted into electrical energy. Like all industrial systems, an OWC system has its own operating range. If the system were to operate outside of these conditions, excessive pressures could be generated, risking damage to the pneumatic chamber or even causing it to explode, with serious consequences both structurally and for operator safety. The purpose of the bypass valve is to open automatically by gravity in the event of a power failure. The idea is that, in rough seas or other abnormal situations, the power supply is interrupted, allowing the valve to open and vent the air, preventing damage to system components. The main components of the bypass valve are: the bulkhead, the drive system, and sensors. The movable bulkhead, hinged at one end, is moved by a cable: under normal operating conditions, the valve remains closed and the bulkhead is held in place by two electromagnets. In the event of abnormal situations or power outages, the bulkhead falls by gravity, allowing air to be vented and preserving the integrity of the system. Particular attention was paid to the sensor design: inductive sensors with a range of 4 mm were chosen to precisely monitor the valve’s two operating configurations, open or closed. Finally, a casing was also designed, made by folding sheet metal, to protect the entire system from dust and splashes of water, considering that the valve will be installed in a marine environment. The complete CAD project includes both components designed and modeled by me and appropriately sized commercial components. All 3D modeling was performed using CATIA V5 software. Finally, some components were analyzed using Ansys software to verify that the stresses were below critical values and thus ensure the system’s safety. Returning to the thesis, I decided to structure it into seven chapters, of which I provide a brief overview below: • The first chapter explains in detail what an OWC system is, from the system’s main components to safety aspects and the role of the valve in this context. • The second chapter introduces the basic concepts of bending, a process used for most of the modeled components. The main phases of the process andthe techniques employed to reduce the typical problems associated with this process are described. • The third chapter analyzes the pressures and temperatures that develop in an OWC system. Subsequently, the preliminary sketches drawn in the early design phases and the load estimates are shown. • The fourth chapter illustrates the bypass valve, with a focus on the overall system rather than individual components. • The fifth chapter goes into detail about the choice of components, which were appropriately selected and sized. • The sixth chapter presents the component checks using FEM analyses, conducted to confirm the system’s strength and safety. This thesis was written based on an internship at 4D Engineering.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI_MAGISTRALE_CICCHETTI_LORENZO.pdf
non disponibili
Descrizione: Tesi magistrale Cicchetti Lorenzo
Dimensione
8.78 MB
Formato
Adobe PDF
|
8.78 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/23489