This thesis presents the redesign and performance evaluation of a submersible centrifugal pump with a semi-open impeller through a combined numerical-experimental methodology. The work originates from a commercial reference geometry and is framed within applied research on hydraulic machines, with potential extensions to industrial contexts where efficiency and reliability of pumping systems are crucial. The methodology integrates one-dimensional analytical calculations, conformal transformation techniques for blade profile generation, three-dimensional CAD (Computer-Aided Design) modeling, CFD (Computational Fluid Dynamics) simulations performed in ANSYS CFX, and experimental validation on a dedicated hydraulic test bench. Impeller and volute prototypes were manufactured using FFF (Fused Filament Fabrication) 3D printing in PETG (Polyethylene Terephthalate Glycol-modified) and TPU (Thermoplastic Polyurethane), enabling rapid design iterations but introducing limitations due to surface roughness and tolerances. The main design interventions included reducing blade-shroud clearance, introducing a TPU sealing ring with silicone, adding a PETG back-ring, and redesigning the volute spiral for better flow alignment. CFD simulations systematically overestimated hydraulic efficiency by 15-25% compared to tests, while outlet pressure predictions remained within ±5%. The final version achieved an efficiency increase of about seven percentage points and a discharge pressure rise of about 3 kPa compared with the original geometry. In conclusion, the study demonstrates that an iterative CFD–experiment approach is an effective tool for centrifugal pump optimization. Despite limitations related to URANS (Unsteady Reynolds-Averaged Navier-Stokes) turbulence modeling and the use of 3D-printed prototypes, the proposed methodology is generalizable to centrifugal pumps with different geometries and operating conditions, providing useful guidelines for design improvements and industrial applications.
La presente tesi illustra il processo di riprogettazione e valutazione delle prestazioni idrauliche di una pompa centrifuga immersa con girante semiaperta mediante una metodologia combinata numerico-sperimentale. Il lavoro si sviluppa a partire da una geometria commerciale di riferimento e si colloca nell’ambito della ricerca applicata alle macchine idrauliche, con possibili estensioni a contesti industriali dove efficienza e affidabilità dei sistemi di pompaggio sono prioritarie. La metodologia integra calcoli analitici monodimensionali, tecniche di trasformazione conforme per la generazione dei profili delle pale, modellazione tridimensionale CAD (Computer-Aided Design), simulazioni CFD (Computational Fluid Dynamics) condotte in ANSYS CFX e validazione sperimentale su banco idraulico. I prototipi di girante e voluta sono stati realizzati mediante stampa 3D FFF (Fused Filament Fabrication) in PETG (Polyethylene Terephthalate Glycol-modified) e TPU (Thermoplastic Polyurethane), consentendo rapidi test progettuali ma introducendo limitazioni dovute a rugosità e tolleranze. Gli interventi principali hanno riguardato la riduzione del gioco tra pala e coperchio, l’introduzione di un anello di tenuta in TPU con silicone, l’aggiunta di un back-ring in PETG e il ridisegno della spirale della voluta. Le simulazioni CFD hanno sistematicamente sovrastimato l’efficienza idraulica del 15-25% rispetto alle prove, mentre le previsioni di pressione in uscita si sono mantenute entro ±5%. La versione finale ha mostrato un incremento di efficienza pari a circa sette punti percentuali e un aumento della pressione di mandata di circa 3 kPa rispetto alla geometria originale. In conclusione, lo studio dimostra che un approccio iterativo CFD–esperimenti costituisce uno strumento efficace per l’ottimizzazione di pompe centrifughe. Pur evidenziando i limiti legati ai modelli URANS (Unsteady Reynolds-Averaged Navier-Stokes) e all’uso di prototipi stampati in 3D, la metodologia proposta risulta generalizzabile a pompe con geometrie e condizioni operative diverse, offrendo linee guida utili al miglioramento progettuale e industriale.
Riprogettazione idraulica e ottimizzazione delle prestazioni di una pompa centrifuga utilizzando metodi analitici, CFD e validazione tramite test sperimentali
MENGONI, GREGORIO
2024/2025
Abstract
This thesis presents the redesign and performance evaluation of a submersible centrifugal pump with a semi-open impeller through a combined numerical-experimental methodology. The work originates from a commercial reference geometry and is framed within applied research on hydraulic machines, with potential extensions to industrial contexts where efficiency and reliability of pumping systems are crucial. The methodology integrates one-dimensional analytical calculations, conformal transformation techniques for blade profile generation, three-dimensional CAD (Computer-Aided Design) modeling, CFD (Computational Fluid Dynamics) simulations performed in ANSYS CFX, and experimental validation on a dedicated hydraulic test bench. Impeller and volute prototypes were manufactured using FFF (Fused Filament Fabrication) 3D printing in PETG (Polyethylene Terephthalate Glycol-modified) and TPU (Thermoplastic Polyurethane), enabling rapid design iterations but introducing limitations due to surface roughness and tolerances. The main design interventions included reducing blade-shroud clearance, introducing a TPU sealing ring with silicone, adding a PETG back-ring, and redesigning the volute spiral for better flow alignment. CFD simulations systematically overestimated hydraulic efficiency by 15-25% compared to tests, while outlet pressure predictions remained within ±5%. The final version achieved an efficiency increase of about seven percentage points and a discharge pressure rise of about 3 kPa compared with the original geometry. In conclusion, the study demonstrates that an iterative CFD–experiment approach is an effective tool for centrifugal pump optimization. Despite limitations related to URANS (Unsteady Reynolds-Averaged Navier-Stokes) turbulence modeling and the use of 3D-printed prototypes, the proposed methodology is generalizable to centrifugal pumps with different geometries and operating conditions, providing useful guidelines for design improvements and industrial applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Mengoni.pdf
embargo fino al 24/04/2027
Dimensione
5.13 MB
Formato
Adobe PDF
|
5.13 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/23498