In the field of mechanical measurements and biomedical instrumentation, the connection between home automation and support for the frail elderly is becoming stronger and stronger. Specifically in this paper, the eWare project fits into this context through the creation of an ecosystem, including sensors and social robots, which allows you to monitor the lifestyle of elderly people suffering from senile dementia, with the aim of making them more self-employed and lighten the burden of caregivers. This thesis examines the data from the instrumentation of the eWare ecosystem, contained in two databases: one relating to the activations of the sensors that determine the ADL (Activities of Daily Living) and another relating to the activations of the social robot. These data are the starting point of a statistical analysis, which includes the analysis on a monthly basis, the analysis of variability of the activities, the daily analysis of the activities and the daily analysis of normality, and a type analysis predictive, through Supervised Machine Learning. Through the statistical analysis it is possible to observe how in the short and long term the habits of the subject studied and the days in which anomalies are found with respect to normal behavior. The most evident changes are noted in the months of March and April 2020, at the beginning of the Covid-19 pandemic. The prediction through Supervised Machine Learning uses the linear regression method and uses 70% of the previously acquired data for training. Through the development of the model it is possible to calculate the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE), from which an unsatisfactory accuracy emerged that derives from the fact that we don’t have daily indicators yet, essential for this type of study.
Nell’ambito delle misure meccaniche e strumentazione biomedica, la connessione tra domotica e supporto agli anziani fragili si sta facendo sempre più forte. Nello specifico di questo elaborato, il progetto eWare si inserisce in questo contesto tramite la realizzazione di un ecosistema, comprensivo di sensori e robot sociali, che permette di monitorare lo stile di vita di soggetti anziani affetti da demenza senile, con lo scopo di renderli più autonomi e alleggerire il carico dei caregiver. Questa tesi prende in esame i dati provenienti dalla strumentazione dell’ecosistema eWare, racchiusi in due database: uno relativo alle attivazioni dei sensori che determinano le ADL (Activities of Daily Living) e un altro relativo alle attivazioni del robot social. Questi dati sono la base di partenza di un’analisi statistica, che prevede l’analisi su base mensile, l’analisi di variabilità delle attività, l’analisi giornaliera delle attività e l’analisi giornaliera di normalità, e un’analisi di tipo predittivo, attraverso il Machine Learning Supervisionato. Tramite l’analisi statistica è possibile osservare come nel breve e nel lungo periodo cambiano le abitudini del soggetto studiato e i giorni in cui si riscontrano delle anomalie rispetto ad un comportamento normale. I cambiamenti più evidenti si rilevano nei mesi di marzo e aprile 2020, in corrispondenza dell’inizio della pandemia di Covid-19. La predizione tramite Machine Learning Supervisionato sfrutta il metodo di regressione lineare e utilizza il 70% dei dati precedentemente acquisiti per il training. Tramite lo sviluppo del modello è possibile calcolare il Mean Absolute Error (MAE) e il Mean Absolute Percentage Error (MAPE), da cui è emersa un’accuratezza non sodisfacente che deriva dal fatto che ancora non disponiamo di indicatori giornalieri, essenziali per questa tipologia di studio.
Misura del benessere in utenti anziani tramite sensori domotici e tecniche di Machine Learning Supervisionato
CASACCIA, SARA
2019/2020
Abstract
In the field of mechanical measurements and biomedical instrumentation, the connection between home automation and support for the frail elderly is becoming stronger and stronger. Specifically in this paper, the eWare project fits into this context through the creation of an ecosystem, including sensors and social robots, which allows you to monitor the lifestyle of elderly people suffering from senile dementia, with the aim of making them more self-employed and lighten the burden of caregivers. This thesis examines the data from the instrumentation of the eWare ecosystem, contained in two databases: one relating to the activations of the sensors that determine the ADL (Activities of Daily Living) and another relating to the activations of the social robot. These data are the starting point of a statistical analysis, which includes the analysis on a monthly basis, the analysis of variability of the activities, the daily analysis of the activities and the daily analysis of normality, and a type analysis predictive, through Supervised Machine Learning. Through the statistical analysis it is possible to observe how in the short and long term the habits of the subject studied and the days in which anomalies are found with respect to normal behavior. The most evident changes are noted in the months of March and April 2020, at the beginning of the Covid-19 pandemic. The prediction through Supervised Machine Learning uses the linear regression method and uses 70% of the previously acquired data for training. Through the development of the model it is possible to calculate the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE), from which an unsatisfactory accuracy emerged that derives from the fact that we don’t have daily indicators yet, essential for this type of study.File | Dimensione | Formato | |
---|---|---|---|
TesiUNIVPM_Sara_Casaccia.pdf
Open Access dal 31/05/2024
Descrizione: Tesi Sara Casaccia - Misura del benessere in utenti anziani tramite sensori domotici e tecniche di Machine Learning Supervisionato
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/2375