Introduction: Cardiovascular diseases represent one of the main causes of morbidity and mortality worldwide. Artificial intelligence (AI) is revolutionizing cardiology, improving early diagnosis, monitoring and personalization of care. In this context, the nursing role takes on an increasing importance in the management of patients and in the integration of new digital technologies. Aim: To examine how artificial intelligence can be integrated into nursing practice for the diagnosis and management of cardiac patients, highlighting related opportunities and challenges. Materials and Methods: A narrative literature review (2015–2025) was conducted by searching PubMed, CINAHL, Cochrane Library, Google Scholar, and ScienceDirect. Studies focusing on AI, telenursing, ECG, echocardiography, and wearable devices were included. Results: The integration of telenursing, AI, and telemonitoring technologies—both wearable and implantable—has been shown to improve therapeutic adherence, self-management, and patient safety among individuals with cardiovascular diseases, reducing hospital admissions and readmissions through early warning systems and automated triage. The application of AI to electrocardiography and echocardiography enhances diagnostic and predictive capabilities and supports task-shifting models, such as AI-POCUS performed by nurses, achieving outcomes comparable to established clinical standards. Conclusions: AI applied to cardiovascular nursing care improves diagnosis, monitoring, and prevention, strengthening telenursing and supporting greater professional autonomy. However, ethical and technical challenges remain, requiring proper training and governance to ensure safe and patient-centered implementation. Keywords: artificial intelligence, predictive models, cardiology, cardiovascular diseases, nursing, telenursing, telehealth, ECG, echocardiography, wearable devices.
Introduzione: Le malattie cardiovascolari rappresentano una delle principali cause di morbilità e mortalità a livello globale. L’intelligenza artificiale (IA) sta rivoluzionando la cardiologia, migliorando la diagnosi precoce, il monitoraggio e personalizzazione delle cure. In questo contesto, il ruolo infermieristico assume un’importanza crescente nella gestione dei pazienti e nell’integrazione delle nuove tecnologie digitali. Obiettivo: Esplorare l’integrazione tra IA e assistenza infermieristica nella diagnosi e gestione del paziente cardiologico, evidenziandone potenzialità e sfide. Materiali e metodi: È stata condotta una revisione narrativa della letteratura (2015–2025), consultando i database PubMed, CINAHL, Cochrane Library, Google Scholar e ScienceDirect, includendo studi su IA, telenursing, ECG, ecocardiografia e dispositivi indossabili. Risultati: L’integrazione del telenursing, dell’intelligenza artificiale e delle tecnologie di telemonitoraggio, sia indossabili che impiantabili, ha dimostrato di migliorare l’aderenza terapeutica, l’autogestione e la sicurezza dei pazienti cardiovascolari, riducendo accessi e riammissioni grazie a sistemi di allerta precoce e triage automatizzato. L’applicazione dell’IA all’elettrocardiogramma e all’ecocardiografia potenzia la capacità diagnostica e predittiva e favorisce modelli di task-shifting, come l’AI-POCUS condotto da infermieri, con risultati sovrapponibili agli standard clinici. Conclusioni: L’intelligenza artificiale generativa (GAI) applicata all’assistenza infermieristica cardiovascolare migliora diagnosi, monitoraggio e prevenzione, potenziando il telenursing e l’autonomia professionale. Restano criticità etiche e tecniche che richiedono formazione e governance per un’adozione sicura e centrata sul paziente. Keywords: artificial intelligence, predictive models, cardiology, cardiovascular diseases, nursing, telenursing, telehealth, ECG, echocardiography, wearable devices.
“L'intelligenza artificiale in cardiologia: nuove prospettive per l'assistenza infermieristica”
TARTABINI, ELISA
2024/2025
Abstract
Introduction: Cardiovascular diseases represent one of the main causes of morbidity and mortality worldwide. Artificial intelligence (AI) is revolutionizing cardiology, improving early diagnosis, monitoring and personalization of care. In this context, the nursing role takes on an increasing importance in the management of patients and in the integration of new digital technologies. Aim: To examine how artificial intelligence can be integrated into nursing practice for the diagnosis and management of cardiac patients, highlighting related opportunities and challenges. Materials and Methods: A narrative literature review (2015–2025) was conducted by searching PubMed, CINAHL, Cochrane Library, Google Scholar, and ScienceDirect. Studies focusing on AI, telenursing, ECG, echocardiography, and wearable devices were included. Results: The integration of telenursing, AI, and telemonitoring technologies—both wearable and implantable—has been shown to improve therapeutic adherence, self-management, and patient safety among individuals with cardiovascular diseases, reducing hospital admissions and readmissions through early warning systems and automated triage. The application of AI to electrocardiography and echocardiography enhances diagnostic and predictive capabilities and supports task-shifting models, such as AI-POCUS performed by nurses, achieving outcomes comparable to established clinical standards. Conclusions: AI applied to cardiovascular nursing care improves diagnosis, monitoring, and prevention, strengthening telenursing and supporting greater professional autonomy. However, ethical and technical challenges remain, requiring proper training and governance to ensure safe and patient-centered implementation. Keywords: artificial intelligence, predictive models, cardiology, cardiovascular diseases, nursing, telenursing, telehealth, ECG, echocardiography, wearable devices.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Tartabini Elisa Definitiva .pdf
embargo fino al 18/11/2028
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/23999