This thesis examines how algorithmic pricing is implemented on e-commerce platforms and how it shapes consumer behaviour, market competition, and regulatory challenges. It first analyses the evolution from traditional pricing models to modern AI-driven systems, highlighting techniques such as data-driven forecasting, reinforcement learning, personalization, contextual pricing, and competitive repricing algorithms. The study investigates how dynamic price fluctuations influence consumer psychology, including price sensitivity, reference price instability, perceived fairness, loss aversion, and trust. Real-world cases—such as online grocery markets, Amazon, Uber, and airline ticket algorithms—show how algorithmic pricing affects purchase timing, loyalty, and long-term trust. The thesis also evaluates ethical concerns such as discrimination, transparency, and risks of algorithmic collusion, alongside emerging regulatory responses like the EU DMA/DSA and U.S. state-level transparency laws. Overall, the findings emphasize that while algorithmic pricing increases efficiency and revenue potential, it also creates significant fairness and trust challenges that require careful governance, clearer communication, and responsible AI design.
Questa tesi analizza l’applicazione del pricing algoritmico nelle piattaforme di e-commerce e il suo impatto sul comportamento dei consumatori, sulla concorrenza di mercato e sulle sfide regolatorie. Viene esaminata l’evoluzione dai modelli di prezzo tradizionali ai sistemi moderni basati sull’intelligenza artificiale, includendo tecniche come la previsione della domanda tramite dati, il reinforcement learning, la personalizzazione, il pricing contestuale e gli algoritmi competitivi di repricing. La ricerca studia come le variazioni dinamiche dei prezzi influenzino la psicologia dei consumatori, incidendo su sensibilità al prezzo, instabilità del prezzo di riferimento, percezione di equità, avversione alla perdita e fiducia. Attraverso casi reali — come supermercati online, Amazon, Uber e algoritmi delle compagnie aeree — la tesi mostra come il pricing algoritmico influenzi il momento d’acquisto, la fedeltà al brand e la fiducia nel lungo periodo. Vengono inoltre analizzate le preoccupazioni etiche, tra cui discriminazione, trasparenza e rischio di collusione algoritmica, insieme alle risposte normative emergenti come il DMA/DSA europeo e le leggi statunitensi sulla trasparenza dei prezzi. In conclusione, pur aumentando efficienza e profittabilità, il pricing algoritmico genera rilevanti criticità in termini di equità e fiducia, richiedendo una governance attenta, una comunicazione chiara e un design responsabile dei sistemi di IA.
How E-commerce Platforms Use Algorithmic Pricing to Influence Consumer Behavior.
PALLETI, SHIVA KUMAR
2024/2025
Abstract
This thesis examines how algorithmic pricing is implemented on e-commerce platforms and how it shapes consumer behaviour, market competition, and regulatory challenges. It first analyses the evolution from traditional pricing models to modern AI-driven systems, highlighting techniques such as data-driven forecasting, reinforcement learning, personalization, contextual pricing, and competitive repricing algorithms. The study investigates how dynamic price fluctuations influence consumer psychology, including price sensitivity, reference price instability, perceived fairness, loss aversion, and trust. Real-world cases—such as online grocery markets, Amazon, Uber, and airline ticket algorithms—show how algorithmic pricing affects purchase timing, loyalty, and long-term trust. The thesis also evaluates ethical concerns such as discrimination, transparency, and risks of algorithmic collusion, alongside emerging regulatory responses like the EU DMA/DSA and U.S. state-level transparency laws. Overall, the findings emphasize that while algorithmic pricing increases efficiency and revenue potential, it also creates significant fairness and trust challenges that require careful governance, clearer communication, and responsible AI design.| File | Dimensione | Formato | |
|---|---|---|---|
|
MY THESIS PRO.pdf_pdfA.pdf
accesso aperto
Descrizione: This thesis examines how algorithmic pricing influences consumer behaviour, competition, and fairness in e-commerce, highlighting key techniques, real cases, and regulatory challenges.
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/24495