The design of hospital structures in seismic areas represents a complex and multidisciplinary challenge, in which structural safety must be integrated with the operational continuity of healthcare services even under emergency conditions. In a context such as Italy, characterized by high seismic hazard, the adoption of advanced protection techniques becomes essential to ensure high performance not only of structural elements but also of non-structural components and medical equipment, which are particularly sensitive to earthquake-induced accelerations. Among the most effective strategies is base isolation, which is capable of significantly reducing the seismic demand transmitted to the superstructure and ensuring the building’s operability after an earthquake. This work focuses on the analysis of the structural solutions adopted and of the loads acting on the building, on the design of the base isolation system, and on the evaluation of its effectiveness in reducing seismic forces and floor accelerations for a new healthcare facility located in a medium-to-high seismic hazard area. After verifying the compliance of the isolation system with current regulations, nonlinear dynamic analyses were performed with the aim of validating the design model and assessing the effectiveness of the isolation system. These analyses were carried out by adopting a double calibration of the isolators, performed at the first and third loading cycles, in order to capture the initial response and compare it with the stabilized behaviour of the device. The results show that base isolation leads to a significant increase in the building’s seismic resilience, reducing the seismic demand on both structural and non-structural components and ensuring high standards of safety and operational continuity even after an earthquake of intensity corresponding to SLC.
La progettazione delle strutture ospedaliere in zona sismica rappresenta oggi una sfida complessa e multidisciplinare, nella quale la sicurezza strutturale deve integrarsi con la continuità operativa dei servizi sanitari anche in condizioni di emergenza. In un contesto come quello italiano, caratterizzato da elevata pericolosità sismica, il ricorso a tecniche avanzate di protezione diviene fondamentale per garantire prestazioni elevate non solo degli elementi strutturali, ma anche di quelli non strutturali e delle apparecchiature medicali, particolarmente sensibili alle accelerazioni indotte dal sisma. Tra le strategie più efficaci si colloca l’isolamento alla base, capace di ridurre significativamente le sollecitazioni trasmesse alla sovrastruttura e assicurare la funzionalità dell’edificio dopo un evento sismico. Il lavoro si focalizza sull’analisi delle soluzioni strutturali adottate e dei carichi agenti sulla struttura, sulla progettazione del sistema di isolamento alla base e sulla valutazione della sua efficacia in termini di riduzione delle sollecitazioni e delle accelerazioni di piano, riferita a una nuova struttura sanitaria ubicata in un’area a pericolosità sismica medio–alta. Dopo aver verificato la conformità del sistema di isolamento alle normative vigenti, sono state eseguite analisi dinamiche non lineari con l’obiettivo di validare il modello progettuale e di valutare l’efficacia del sistema di isolamento. Le analisi sono state eseguite adottando una doppia calibrazione degli isolatori, effettuata al primo e al terzo ciclo di carico, così da cogliere la risposta iniziale e confrontarla con il comportamento stabilizzato del dispositivo. I risultati evidenziano come l’isolamento alla base consenta un significativo incremento della resilienza dell’edificio, riducendo la domanda sismica sulle componenti strutturali e non strutturali e garantendo standard elevati di sicurezza e continuità operativa anche a seguito di un evento sismico di intensità corrispondente allo Stato Limite di Collasso.
Progettazione di strutture ospedaliere e tecniche di protezione sismica per il mantenimento della completa funzionalità
MANARI, LUCIA
2024/2025
Abstract
The design of hospital structures in seismic areas represents a complex and multidisciplinary challenge, in which structural safety must be integrated with the operational continuity of healthcare services even under emergency conditions. In a context such as Italy, characterized by high seismic hazard, the adoption of advanced protection techniques becomes essential to ensure high performance not only of structural elements but also of non-structural components and medical equipment, which are particularly sensitive to earthquake-induced accelerations. Among the most effective strategies is base isolation, which is capable of significantly reducing the seismic demand transmitted to the superstructure and ensuring the building’s operability after an earthquake. This work focuses on the analysis of the structural solutions adopted and of the loads acting on the building, on the design of the base isolation system, and on the evaluation of its effectiveness in reducing seismic forces and floor accelerations for a new healthcare facility located in a medium-to-high seismic hazard area. After verifying the compliance of the isolation system with current regulations, nonlinear dynamic analyses were performed with the aim of validating the design model and assessing the effectiveness of the isolation system. These analyses were carried out by adopting a double calibration of the isolators, performed at the first and third loading cycles, in order to capture the initial response and compare it with the stabilized behaviour of the device. The results show that base isolation leads to a significant increase in the building’s seismic resilience, reducing the seismic demand on both structural and non-structural components and ensuring high standards of safety and operational continuity even after an earthquake of intensity corresponding to SLC.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI_MANARI_PDFA.docx.pdf
accesso aperto
Descrizione: Documenti tesi Manari
Dimensione
26.94 MB
Formato
Adobe PDF
|
26.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/24528