Sweet chestnut, a key resource for the central Apennines, is currently severely threatened by ink disease, a lethal decline caused by the soilborne pathogen Phytophthora. This study investigates the role of the soil microbiome in disease dynamics within a chestnut stand located in Acquasanta Terme (AP), comparing soils associated with healthy trees, symptomatic trees showing signs of recovery, and dead trees. Through total DNA extraction and shotgun sequencing, bioinformatic analyses enabled the characterization not only of the taxonomic composition but also of the functional profile of the microbial community. The aim was to identify genes and ecological processes influencing plant resilience or vulnerability to infection. Principal Coordinates Analysis (PCoA) revealed that the health status of chestnut trees strongly shapes microbiome structure: soils from recovering symptomatic trees (S-R) and dead trees (S-M) share several features and remain distinct from soils associated with healthy trees (S-S). In diseased trees, Phytophthora infection and root necrosis trigger rhizospheric acidification, as indicated by the recruitment of the acidophilic archaeon Nitrosotalea and the dominance of Bradyrhizobium japonicum, acting as an “emergency” symbiont for nitrogen fixation. Tissue degradation is driven by specialist fungi such as Hyaloscypha and saprotrophic oomycetes (Saprolegnia), while the virome exerts a top-down control through a viral shunt that recycles nutrients from lysed bacterial biomass. From a functional perspective (COG/KEGG), soils associated with dead trees appear ecologically impaired: secretion systems, nitrogen fixation, and cell-to-cell communication are suppressed, allowing opportunistic colonization by phototrophic cyanobacteria. In contrast, soils from recovering symptomatic trees (S-R) display signs of an ecological recovery that is not yet fully achieved. Recolonization is driven by the ectomycorrhizal fungus Cenococcum spp., which enhances both water and nutrient resilience. During this phase, the microbiome invests heavily in DNA protection mechanisms and immune memory systems (CRISPR) to stabilize the emerging equilibrium. However, the persistent shortage of efficient nitrifiers and key symbionts such as Phyllobacterium indicates that ecological and functional soil recovery is a slow process, requiring substantially longer timescales than the visible recovery of canopy symptoms.
Il castagno, risorsa chiave per l'Appennino centrale, è oggi gravemente minacciato dal mal dell’inchiostro, un deperimento letale causato dal patogeno terricolo Phytophthora. Questo studio indaga il ruolo del microbioma tellurico nella dinamica della malattia presso un castagneto ad Acquasanta Terme (AP), confrontando i suoli di piante sane, sintomatiche in via di miglioramento e morte. Attraverso l'estrazione del DNA totale e il sequenziamento shotgun, l'analisi bioinformatica ha permesso di mappare non solo la tassonomia, ma anche il profilo funzionale della comunità microbica. L'obiettivo è identificare i geni e i processi ecologici che influenzano la resilienza o la vulnerabilità della pianta all'infezione. L’analisi delle coordinate principali (PCoA) rivela che lo stato sanitario del castagno definisce la struttura del microbioma: i suoli di piante sintomatiche in miglioramento (S-R) e di piante morte (S-M) condividono diverse caratteristiche comuni, restando distinti dai suoli di piante sane (S-S). Nelle piante malate, l'infezione da Phytophthora e la necrosi radicale innescano un'acidificazione rizosferica, evidenziata dal reclutamento dell'archeo acidofilo Nitrosotalea e dalla dominanza di Bradyrhizobium japonicum, simbionte "di emergenza" per la fissazione dell'azoto. La degradazione dei tessuti è guidata da funghi specialisti come Hyaloscypha e oomiceti saprotrofi (Saprolegnia), mentre il viroma esercita un controllo top-down tramite uno "shunt virale" che ricicla i nutrienti dalla biomassa batterica lisata. Dal punto di vista funzionale (COG/KEGG), il suolo della pianta morta appare paralizzato: i sistemi di secrezione, la fissazione dell'azoto e la comunicazione cellulare sono repressi, lasciando spazio a colonizzazioni opportunistiche di cianobatteri fototrofi. Al contrario, i suoli delle piante sintomatiche in miglioramento (S-R) mostrano i segni di una ripresa ecologica non ancora del tutto raggiunta. La ricolonizzazione è guidata dal fungo ectomicorrizico Cenococcum spp., che migliora la resilienza idrica e nutrizionale. In questa fase, il microbioma investe massicciamente nella protezione del DNA e in sistemi di memoria immunitaria (CRISPR) per stabilizzare il nuovo equilibrio. Tuttavia, il persistente deficit di nitrificatori efficienti e di simbionti come Phyllobacterium indica che la ripresa ecologica e funzionale del suolo è un processo lento, che richiede tempi più lunghi rispetto al recupero della sintomatologia rilevabile in chioma.
MAL DELL'INCHIOSTRO DEL CASTAGNO E CARATTERIZZAZIONE METAGENOMICA DEL MICROBIOMA DEL SUOLO
PACIOCCO, FRANCESCA
2024/2025
Abstract
Sweet chestnut, a key resource for the central Apennines, is currently severely threatened by ink disease, a lethal decline caused by the soilborne pathogen Phytophthora. This study investigates the role of the soil microbiome in disease dynamics within a chestnut stand located in Acquasanta Terme (AP), comparing soils associated with healthy trees, symptomatic trees showing signs of recovery, and dead trees. Through total DNA extraction and shotgun sequencing, bioinformatic analyses enabled the characterization not only of the taxonomic composition but also of the functional profile of the microbial community. The aim was to identify genes and ecological processes influencing plant resilience or vulnerability to infection. Principal Coordinates Analysis (PCoA) revealed that the health status of chestnut trees strongly shapes microbiome structure: soils from recovering symptomatic trees (S-R) and dead trees (S-M) share several features and remain distinct from soils associated with healthy trees (S-S). In diseased trees, Phytophthora infection and root necrosis trigger rhizospheric acidification, as indicated by the recruitment of the acidophilic archaeon Nitrosotalea and the dominance of Bradyrhizobium japonicum, acting as an “emergency” symbiont for nitrogen fixation. Tissue degradation is driven by specialist fungi such as Hyaloscypha and saprotrophic oomycetes (Saprolegnia), while the virome exerts a top-down control through a viral shunt that recycles nutrients from lysed bacterial biomass. From a functional perspective (COG/KEGG), soils associated with dead trees appear ecologically impaired: secretion systems, nitrogen fixation, and cell-to-cell communication are suppressed, allowing opportunistic colonization by phototrophic cyanobacteria. In contrast, soils from recovering symptomatic trees (S-R) display signs of an ecological recovery that is not yet fully achieved. Recolonization is driven by the ectomycorrhizal fungus Cenococcum spp., which enhances both water and nutrient resilience. During this phase, the microbiome invests heavily in DNA protection mechanisms and immune memory systems (CRISPR) to stabilize the emerging equilibrium. However, the persistent shortage of efficient nitrifiers and key symbionts such as Phyllobacterium indicates that ecological and functional soil recovery is a slow process, requiring substantially longer timescales than the visible recovery of canopy symptoms.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI Paciocco-30-1-26 DEF OK PDF_A.pdf
accesso aperto
Dimensione
2.34 MB
Formato
Adobe PDF
|
2.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/25109