The comfort of the occupants is one of the main aspects to consider in the design and renovation of buildings. The internal environment, in fact, has a significant impact on health and work productivity. The comfort of the indoor environment is a very broad concept as it concerns multiple aspects, such as acoustic, thermal and visual comfort. In particular, acoustic comfort is a complex topic due to its dependence on both physical and physiological variables. Despite being an important concept, acoustic comfort is an often underestimated aspect in the redevelopment of existing buildings. In this thesis we will apply a method for estimating the acoustic comfort linked to the performance of the envelope, or rather of the building facade, developed by the Mechanical and Thermal Measurements Group of the DIISM. This method is also called soft-sensor because it allows you to calculate the internal noise of a building using experimental, simulated, or hypothesized and subjective data as input data, related to the surrounding external noise level and the acoustic performance of the building envelope. In particular, acoustic comfort is assessed on the basis of equivalent sound pressure levels inside the home. The evaluation system is represented by a Key Performance Indicator (KPI), which expresses acoustic comfort, making it possible to quickly compare different existing buildings. The Key Performance Indicator therefore works as a tool to support design and decisions, providing the designer with quick and clear feedback on the performance achieved and, moreover, it can be compared to identify the best renovation option. The method was initially applied on two simplified case studies to verify its functionality. The second part of the thesis focuses on the integration of the acoustic comfort calculation procedure with the Building Information Model (BIM) of a real building. The general procedure for calculating acoustic comfort, described in chapter 3, is not practical in the specific case in which the data is obtained directly from the BIM model of the building. In fact, in the BIM models of buildings, especially referring to existing buildings and to be redeveloped, various information is missing, among which, mainly, the soundproofing power of the various facade elements. It is therefore necessary to develop an ad hoc procedure for this specific application. Therefore, some changes were made in the input data required by the original calculation module, with the aim, in fact, of facilitating the integration of this with the BIM of the buildings. Furthermore, again in order to pursue the idea of BIM, that is to make the project more streamlined and optimal along the entire life cycle of a building, a software envelope has been created for the calculation module, so that the format with which send the data to the server is as user-friendly as possible and specifically JSON was used. This is because CSV files, the format on which the general procedure was based, are difficult to manage and interpret. Furthermore, compared to the general procedure, the calculation module is now executable through any local clientweb file. A case study of an entire building was created, for which the BIM model was available, to verify the applicability and reliability of the new procedure developed and highlight the problems. The main problem, as we will see, is due to the fact that the property of the envelope stratigraphy relative to the density of the materials is not included in the BIM of the building studied. In conclusion, an assessment of the reliability of the procedure developed was carried out through an analysis of uncertainty and sensitivity to the uncertainty of the various inputs.
Il comfort degli occupanti è uno degli aspetti principali da considerare nella progettazione e ristrutturazione degli edifici. L'ambiente interno, infatti, incide notevolmente sulla salute e sulla produttività lavorativa. Il comfort dell’ambiente interno è un concetto molto ampio poiché riguarda molteplici aspetti, come il comfort acustico, termico e visivo. In particolare, il comfort acustico è un argomento complesso a causa della sua dipendenza da variabili sia fisiche che fisiologiche. Nonostante sia un concetto importante, il comfort acustico è un aspetto spesso sottovalutato nella riqualificazione degli edifici esistenti. In questa tesi si applicherà un metodo per la stima del confort acustico legato alle prestazioni dell’involucro, ovvero della facciata dell’edificio, sviluppato dal Gruppo di Misure Meccaniche e Termiche del DIISM. Questo metodo è anche chiamato soft-sensor perché permette di calcolare il rumore interno di un edificio utilizzando come dati in input dati sperimentali, simulati, o ipotizzati e soggettivi, correlati al livello di rumore esterno circostante e alle prestazioni acustiche dell’involucro edilizio. In particolare, il comfort acustico viene valutato sulla base dei livelli di pressione sonora equivalenti all'interno dell'abitazione. Il sistema di valutazione è rappresentato da un Key Performance Indicator (KPI), che esprime il comfort acustico, rendendo possibile il rapido confronto tra diversi edifici esistenti. Il Key Performance Indicator funziona, quindi, come strumento di supporto alla progettazione e alle decisioni, fornendo al progettista un feedback rapido e chiaro sulle prestazioni raggiunte e, inoltre, può essere confrontato per identificare la migliore opzione di ristrutturazione. Il metodo è stato applicato inizialmente su due casi di studio semplificati per verificarne le funzionalità. La seconda parte della tesi si focalizza sull’integrazione della procedura di calcolo del comfort acustico con il Building Information Model (BIM) di un edificio reale. La procedura generale di calcolo del comfort acustico, descritta nel capitolo 3, non risulta essere pratica nel caso specifico in cui i dati vengano reperiti direttamente dal modello BIM dell’edificio. Infatti nei modelli BIM degli edifici, soprattutto riferiti ad edifici esistenti e da riqualificare, mancano diverse informazioni tra le quali, principalmente, il potere fonoisolante dei vari elementi di facciata. Risulta quindi necessario sviluppare una procedura ad “hoc” per questa applicazione specifica. Sono state, quindi, eseguite alcune modifiche nei dati di input richiesti dal modulo di calcolo originale, con l’obiettivo, appunto, di facilitare l’integrazione di questo con i BIM degli edifici. Inoltre, sempre allo scopo di perseguire l’idea del BIM, cioè di rendere più snello e ottimale il progetto lungo l’intero ciclo di vita di un edificio, è stato realizzato un involucro software al modulo di calcolo, così che il formato con cui inviare i dati al server sia il più user-friendly possibile e nello specifico è stato utilizzato il JSON. Questo perché i file CSV, formato su cui si basava la procedura generale, sono di difficile gestione e interpretazione. Inoltre rispetto alla procedura generale ora il modulo di calcolo è eseguibile tramite un qualsiasi clientweb file locale. E’ stato realizzato un caso di studio di un intero edificio, di cui era disponibile il modello BIM, per verificare l’applicabilità e l’affidabilità della nuova procedura sviluppata ed evidenziarne le problematiche. La principale problematica come vedremo è dovuta al fatto che nel BIM dell’edificio studiato non è inserita la proprietà della stratigrafia dell’involucro relativa alla densità dei materiali. In conclusione è stata effettuata una valutazione dell’affidabilità della procedura sviluppata mediante una analisi di incertezza e di sensibilità all’incertezza dei diversi input.
Calcolo del comfort acustico degli edifici integrato al Building Information Model
APPOLLONI, NICOLÒ
2020/2021
Abstract
The comfort of the occupants is one of the main aspects to consider in the design and renovation of buildings. The internal environment, in fact, has a significant impact on health and work productivity. The comfort of the indoor environment is a very broad concept as it concerns multiple aspects, such as acoustic, thermal and visual comfort. In particular, acoustic comfort is a complex topic due to its dependence on both physical and physiological variables. Despite being an important concept, acoustic comfort is an often underestimated aspect in the redevelopment of existing buildings. In this thesis we will apply a method for estimating the acoustic comfort linked to the performance of the envelope, or rather of the building facade, developed by the Mechanical and Thermal Measurements Group of the DIISM. This method is also called soft-sensor because it allows you to calculate the internal noise of a building using experimental, simulated, or hypothesized and subjective data as input data, related to the surrounding external noise level and the acoustic performance of the building envelope. In particular, acoustic comfort is assessed on the basis of equivalent sound pressure levels inside the home. The evaluation system is represented by a Key Performance Indicator (KPI), which expresses acoustic comfort, making it possible to quickly compare different existing buildings. The Key Performance Indicator therefore works as a tool to support design and decisions, providing the designer with quick and clear feedback on the performance achieved and, moreover, it can be compared to identify the best renovation option. The method was initially applied on two simplified case studies to verify its functionality. The second part of the thesis focuses on the integration of the acoustic comfort calculation procedure with the Building Information Model (BIM) of a real building. The general procedure for calculating acoustic comfort, described in chapter 3, is not practical in the specific case in which the data is obtained directly from the BIM model of the building. In fact, in the BIM models of buildings, especially referring to existing buildings and to be redeveloped, various information is missing, among which, mainly, the soundproofing power of the various facade elements. It is therefore necessary to develop an ad hoc procedure for this specific application. Therefore, some changes were made in the input data required by the original calculation module, with the aim, in fact, of facilitating the integration of this with the BIM of the buildings. Furthermore, again in order to pursue the idea of BIM, that is to make the project more streamlined and optimal along the entire life cycle of a building, a software envelope has been created for the calculation module, so that the format with which send the data to the server is as user-friendly as possible and specifically JSON was used. This is because CSV files, the format on which the general procedure was based, are difficult to manage and interpret. Furthermore, compared to the general procedure, the calculation module is now executable through any local clientweb file. A case study of an entire building was created, for which the BIM model was available, to verify the applicability and reliability of the new procedure developed and highlight the problems. The main problem, as we will see, is due to the fact that the property of the envelope stratigraphy relative to the density of the materials is not included in the BIM of the building studied. In conclusion, an assessment of the reliability of the procedure developed was carried out through an analysis of uncertainty and sensitivity to the uncertainty of the various inputs.File | Dimensione | Formato | |
---|---|---|---|
TESI DEFINITIVA!.pdf
accesso aperto
Dimensione
3.7 MB
Formato
Adobe PDF
|
3.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/8021