
Facoltà di Ingegneria

Corso di Laurea triennale Ingegneria

Informatica e dell’automazione

ALGORITMO NEAT PER GIOCHI DA

SCACCHIERA: PROGETTAZIONE,

IMPLEMENTAZIONE E ANALISI

COMPARATIVA

NEAT ALGORITHM IN CHESS-LIKE

GAMES: DESIGN, IMPLEMENTATION,

AND COMPARATIVE ANALYSIS

Relatore Candidato

Prof. Simone Fiori Alessandro Sebastianelli

Anno Accademico 2023/2024

Contents

1 Introduction 2
1.1 Project objective and design considerations 2
1.2 Game setting and rules 3
1.3 How AI approach chess 5

2 The NEAT structure 9
2.1 The approach . 9
2.2 The genomic representation of individuals 10
2.3 Crossover and mutation 11
2.4 Speciation . 13
2.5 Topology minimization 14

3 Implementation differences from NEAT 15
3.1 Fitness Calculation . 15
3.2 Loop Handling . 17
3.3 Parents maintaining . 19

4 Implementation of the algorithm 20
4.1 Game and Visualizer programs 20
4.2 The NEAT program . 23

4.2.1 Functions . 23
4.2.2 Genes . 24
4.2.3 Genome . 26
4.2.4 Network . 31
4.2.5 Nodes . 31
4.2.6 Tournament . 32
4.2.7 TrainingProcess 34

4.3 PlothGraph and PlayVsAI programs 38

5 Training parametrization and results 39
5.1 Choosing the parameters 39
5.2 The training process . 40

6 Alternative to NEAT: tournament series 52

7 Conclusions 56

1

1 Introduction

1.1 Project objective and design considerations

The aim of this project is to construct an Artificial Intelligence, ‘AI’,
capable of playing a generic board game, specifically utilizing a neural
network that takes the entire game board as input, including the current
positions of the pieces, and outputs an evaluation on a scale from -1 to
1. This evaluation serves as the basis for decision tree exploration.

When prompted for a move, the AI explores possible positions within a
certain depth, i.e., a number of consecutive moves, and through a call to
the network to evaluate the final positions, it decides the most advanta-
geous move to make.

This AI will be built using a machine learning algorithm capable of au-
tonomously learning the game mechanics and improving its performance,
guided only by the rules for legal moves and feedback on wins or losses.

2

1.2 Game setting and rules

To test the effectiveness of the program, a simplified version of the chess
game was created, taking into account several important considerations:

• The decision tree must be reduced compared to that of the original
chess game to make testing the algorithm feasible within accept-
able timeframes. This led to the elimination of the queen and a
reduction in the size of the board.

• Pawns are essential to avoid situations of stalemate with repetitions
of moves by pieces such as rooks and bishops.

The result is the following composition of the board and pieces:

Figure 1: the chessboard initial setting

The objective of the game is to capture the opponent’s king. ‘Capture’
refers to placing one’s own piece on the square occupied by the oppo-
nent’s piece, thereby removing the opponent’s piece from the board.

3

The movement rules are the same as those of the original game:

• In making a move, the destination square cannot already be occu-
pied by a piece of the same color. If there is an opponent’s piece,
it is captured.

• Bishops can move forward or backward along the diagonals of the
starting square for any number of steps, provided they do not leap
over another piece.

• Rooks can move forward or backward along the row and column
of the starting square for any number of steps, provided they do
not leap over another piece.

• Knights move according to the ‘L’ rule, i.e., one horizontal step
followed by two vertical steps (or vice versa). Unlike bishops or
rooks, there is no requirement for the trajectory to be free of other
pieces.

• Each pawn can move forward along the column one square at a
time. It can move one square forward diagonally only if an oppo-
nent’s piece is present to be captured, otherwise, it cannot capture
while moving along the column.

• The king can move to any adjacent square, including diagonally.

In contrast to chess, in this game:

• If a pawn reaches the last rank, it is immediately promoted to a
rook. This simplification allows us to maintain this characteristic
rule while limiting the high variability that would otherwise result.

• A pawn which has not yet moved from its starting rank cannot
move forward two squares, and it cannot perform en passant cap-
tures.

• If the king is under threat of capture in the next move by an
opponent’s piece, i.e., it is in check, it is not required to move out
of check.

• The king can move to a square where it would be in check.

• Castling is not allowed.

4

1.3 How AI approach chess

The evaluation of a chess position has been the subject of discussion
and study for years. It has long been clear that constructing the tree of
positions from the first move to find the best one is not feasible due to
the high number of possible combinations. The situation is different for
endgames, i.e., the study of positions with few pieces left on the board.

As early as 1912, Leonardo Torres y Quevedo built ‘El ajedrecista’, ‘The
Chess Player’, an automaton capable of delivering checkmate with king
and rook against a king moved by a human [1]. With technological
advancements, a database has been created containing evaluations of
endgames with up to seven pieces on the board [2].

Given the impossibility of constructing a complete tree, in the 1950s,
thoughts began to emerge regarding the creation of functions to evalu-
ate positions [3]. Among the early examples is the ‘Los Alamos chess’,
capable of playing a simplified version of chess, which used a function
to evaluate based on the number and type of remaining pieces and their
positions [4]. The evolution of such functions has led to the development
of modern chess engines.
However, this strategy remains confined to the development of specific
algorithms for the referenced game. With this project, on the other
hand, the aim is to create an AI capable of adapting to the game to
which it is applied, using a neural network and machine learning.

A neural network is a computational model inspired by the structure
and function of the human brain. It consists of interconnected nodes,
the neurons, typically organized into layers and linked together by con-
nections, the synapses. These components of the system work together
to process data and make predictions or classifications.

In a neural network, initial information is converted into numerical val-
ues and put into the first layer through input neurons. It then passes
through one or more hidden layers where computations take place, until
it reaches the output neurons, which express the final result.

5

Each connection is associated with a weight, which is a multiplicative
factor between the starting neuron and the ending one, determining the
strength of the connection. As data progresses through the network,
each neuron calculates the weighted sum of its inputs by multiplying
each one by the corresponding weight and summing these values.

The result is then added to the bias, an offset that allows the network to
implement complex relationships between the data. The resulting value
is then related to the network’s activation function; however, this pro-
cess will be described when discussing the implementation.

Figure 2: how data flows through the network [5]

During the learning process, the network adjusts weights and biases
based on the training system, aiming to minimize the difference between
its predictions and the desired outcomes.

In the field of machine learning, there are various types of training,
among which the main ones are:

• Supervised training

The model is trained with a set of input data that is already la-
beled, meaning the desired output is known. The goal is to con-
figure the model correctly to associate inputs with outputs.

6

• Unsupervised training

The model is trained on a set of unlabeled input data, meaning
the desired output is not known. The objective is for the model
to automatically identify patterns, structures, or groupings in the
data without prior information.

• Semi-supervised training
This type of training combines elements from the aforementioned
two types. It uses a set of labeled input data as a basis and then
works on unlabeled data. It can be a useful approach when there
is an insufficient amount of labeled data.

• Reinforcement training

The model learns to take actions within an environment to maxi-
mize a reward. This occurs through a trial-and-error system with
feedback, where initial data is not always necessary. The goal is
for the model to learn which actions are best to take based on the
purpose for which it was trained.

Regarding the structure and training of the network, various solutions
were evaluated, which can be grouped into three main categories:

• Fixed topology with supervised training and backpropagation

A fixed topology is easy to manage and computationally efficient.
However, supervised training requires a dataset to compare the
obtained results, allowing the modulation of positive or negative
feedback on the network through the loss function. This method-
ology is not applicable in this case because, to maintain the game’s
generic nature, predetermined evaluations of positions and specific
cases cannot be relied upon.

• Fixed topology with reinforcement training

To apply this method an external operator needs to decide which
events to reward or penalize, and a function to assign bonuses or
penalties is required. This activity cannot be performed rigorously
for each individual game position due to the reasons outlined in the
previous point. Alternatively, if feedback were given for individual
games it would be too coarse-grained and could require too much
time to be efficient.

7

• Variable topology based on evolutionary principles

This approach relies on an evolutionary process that mimics nat-
ural selection based on the fitness parameter, i.e., how good the
performance of a particular individual is. A first generation is
formed by networks with minimal topology, which evolve through
mutations and crossovers between individuals with better fitness.
Iterations of this process lead to the exploration of various topolo-
gies while retaining the best ones.

Among the mentioned categories, the decision was made to opt for the
third one, as it is the most feasible for the project.

8

2 The NEAT structure

2.1 The approach

To implement the variable topology, the NEAT technique, ’NeuroEvo-
lution of Augmenting Topologies’, was utilized, referencing the article
Evolving Neural Networks through Augmenting Topologies (Stanley and
Miikkulainen, 2002).

The NEAT method describes a training technique that employs con-
cepts from biological evolution theory to train artificial neural networks.
It represents a unique combination of learning techniques, but among the
four traditional types of training, it aligns most closely with reinforce-
ment learning, although it is somewhat different. For example, NEAT
utilizes an evolutionary approach that allows it to explore, select, and
improve neural networks, enabling them to adapt to the task over time,
whereas in true reinforcement learning, the network interacts with the
environment, seeking to maximize a reward.

The basic ideas of the algorithm are four: the genomic representation of
individuals, crossover and mutation, speciation, and topology minimiza-
tion.

9

2.2 The genomic representation of individuals

Each individual in the population is represented by a genome, which
consists of a series of genes encoding neurons and synapses. Neurons
genes identify the nodes that will constitute the neural network, while
synapses genes determine the connections between these nodes within
the network.

The peculiarity of this methodology lies in the use of a global genome,
where each gene is associated with an innovation number, unique for
each node or connection, which is shared among all individuals in the
population. This approach allows evaluating the difference between two
network structures based solely on the genotype, without the need for
additional topological analysis, and enables crossover between individu-
als with different genomes.

Figure 3: the representation of genotype and phenotype [6]

10

2.3 Crossover and mutation

After selecting the parents, i.e., individuals with the best fitness, the dis-
carded individuals are replaced with offspring generated by crossing over
the genomes of their parents. During crossover, each offspring inherits
the structure of the parent with the highest fitness, while the weights
and biases are randomly chosen from one of the two parents. To ensure
the evolution of the population, a series of random mutations are then
applied to the genomes. There are three main types of mutations:

• Node addition

This mutation involves splitting an existing connection and insert-
ing a new node within it.

Figure 4: the ‘Add Node’ mutation [6]

• Connection addition

In this case, a new connection is established between two nodes
that were previously not connected.

Figure 5: the ‘Add Connection’ mutation [6]

11

• Value mutation

All weight and bias values are modified by a certain amount. This
variation is obtained randomly from a Gaussian distribution with
zero mean and a variance determined by the mutation power.

The first two types of mutations may pose a problem with the concept
of the global genome previously described: it could happen that two
different individuals undergo the same structural mutation, but each as-
signs its own innovation number to the new gene. To prevent this from
happening, it is necessary to ensure that each mutation is immediately
listed uniquely so that the global genome does not explode with dupli-
cates of innovation numbers, which would be detrimental to the proper
functioning of crossover.

12

2.4 Speciation

After a random structural mutation, it’s almost inevitable that the fit-
ness of the new individual decreases, putting it at risk of being discarded
during the subsequent selection before it has had time to optimize. To
prevent new structures from being eliminated prematurely, the specia-
tion process is introduced.

This process involves dividing the population into different species, each
with its own representative. Each new individual compares its genome
with that of the species representative. If the difference between the two
genomes is below a certain threshold, the individual is assigned to the
same species as the representative; otherwise, the comparison is made
with the next representative, and so on. If the individual is not similar
to any of the existing species, a new species is created, and the individual
becomes its representative.
This mechanism is important because, if only the absolute fitness of the
new offspring were considered, their scores would initially be too low for
valid reproduction. However, by being part of a new and therefore small
species, their relative fitness can be considered. This means an adjusted
fitness is used, where species with fewer elements receive a bonus multi-
plier.
In the next phase the fitness of each species is compared with the average
fitness of the entire population, and the number of offspring that can be
created is assigned based on their performance: the better their fitness,
the more offspring they can produce.

Thanks to the adjustment of values described earlier, smaller species
will be protected and have time to optimize and compete fairly with
established individuals belonging to larger species, or potentially become
extinct if they are not evolutionarily improvable.

13

2.5 Topology minimization

NEAT starts from a minimal topology, where the neural network consists
only of input neurons directly connected to outputs. From this starting
point, the algorithm gradually explores increasingly complex topologies,
which are retained only if they have actual positive effects. This ap-
proach ensures that neural networks and their corresponding genomes
remain small in size, thus favoring overall algorithm optimization.

This strategy of gradual and selective growth allows avoiding the in-
troduction of unnecessary complexity. By initially keeping network and
genome topologies simple, the NEAT process can focus on optimizing
existing parameters before exploring new structures. This approach pro-
motes greater computational efficiency and faster convergence towards
optimal or near-optimal solutions, addressing one of the major challenges
of neural network topology for AI.

14

3 Implementation differences from NEAT

During the design and implementation phase, it was necessary to make
some adjustments to the algorithm outlined in the reference document
to adapt it to the specifications of the project.

3.1 Fitness Calculation

The method for evaluating the algorithm’s performance, as described in
the article, revolves around controlling a cart with an inverted pendu-
lum, aiming to keep the pendulum balanced. In this context, fitness is
defined based on the duration of the individual’s performance, meaning
the period during which the network can keep the pendulum balanced
by controlling the cart.
Similarly, this method is echoed in the article Design and Simulation

of a Neuroevolutionary Controller for a Quadcopter Drone [7], where a
neural network is used to control a drone: in this case, performance is
better based on how long and how far the individual remains above the
ground plane.

The common denominator of these methods is that the calculations are
performed on an absolute basis: the network must survive within the
same environment and is evaluated according to the same parameters.
However, in this case a different challenge is faced because the algorithm
must autonomously learn game strategies in a generic gaming context,
where absolute fitness evaluation is not possible. An evaluation environ-
ment, as in the two previous examples, is not present in this situation.

Therefore, an evaluation method based on the position (i.e., the score)
obtained after a double round-robin tournament among all individuals
in the population was opted for. It is important to emphasize that while
this method is relative to the skill of the participants, the high number
of matches and the fact that all individuals compete against each other
approximate the evaluation to an absolute one.

15

It was believed that a double round-robin tournament offers numerous
advantages that can improve the effectiveness of the training process
compared to a classic tournament. Indeed, each network has the oppor-
tunity to compete twice against all other networks in the tournament.
This approach allows them to face a variety of challenges and thus con-
front different opponent strategies, refining their skills over time. This
iterative process of learning and adaptation contributes to greater ro-
bustness and generalization of neural networks, improving their perfor-
mance in new and unexpected scenarios.

The double format instead of the single one seemed most suitable to us,
as it allows for a more fair and accurate evaluation of network perfor-
mance, as each network has the opportunity to play as both white and
black, reducing any disparities related to playing order.

16

3.2 Loop Handling

During the implementation, an issue arose regarding the consistency of
the neural networks generated through mutation: the reference article
does not consider the formation of loops in the network structure.

Figure 6: a network loop

This circumstance needs to be duly considered. In a time-based system,
a loop connection is transformed into a memory connection, referring to
the previous time step. However, in this case using a memory connection
loses its relevance, as the evaluation of the network is based on a spe-
cific game position and there is no reference to previous or subsequent
time steps. Additionally, since the method of exploring possible moves
is based on a decision tree, referring to the previous move is not doable.

To solve this problem a loop-solving function was created: after each
mutation that could potentially generate a loop, it checks for its pres-
ence in the generated phenotype and inhibits the expression of one of
the connection genes causing it. In particular, several implementation
options were considered:

• Elimination of the loop connection from the network genomes

With this option, upon discovering a loop, one of the connections
causing it is selected, and the corresponding gene is removed from
the network genome. The advantage of this choice lies in simplify-
ing the genomes, but on the other hand there is a greater risk that
loops will be recreated in the same position with the addition of a
new connection mutation.

17

• Inhibition of the connection with the possibility of reactivation dur-

ing crossover

Another possibility is to inhibit the gene causing the loop without
eliminating it. Each gene is associated with an active or inactive
status, and the connection responsible for the loop is deactivated
by setting its status to inactive, preventing its expression in the
network phenotype during construction. The status can be reacti-
vated by a mutation, to allow the connection to become functional
again in the network where it may no longer generate a loop. How-
ever, there remains a risk of needing to deactivate it again.

• Permanent inhibition of the connection

In this variant, the active or inactive status is introduced with the
same meaning as the previous one, but the status cannot change
through mutation. Therefore, a connection that becomes inactive
remains so for that network structure and its offspring. This ap-
proach limits the variability of the neural network but addresses
the inconvenience of repeatedly managing the same loop.

Considering minimal disadvantage compared to the benefit obtained, the
third implementation option described was chosen.

18

3.3 Parents maintaining

In the original version of NEAT, the parents of species are removed
during the transition to the next generation after crossover and repop-
ulation. This approach does not pose problems when the benchmark is
defined by the environment itself, but it can be problematic when the
network is trained for a new game without specific references other than
the game rules.
The training process relies on the success rate compared to other players,
determining the most performing neural networks that serve as reference
standards for subsequent iterations. However, if these parent networks
were to be removed, there would be no defined references to establish
whether the new generations of networks are superior or inferior to the
original ones.
For this reason, the decision was made to adapt the algorithm to the
case by retaining the parents of each generation during the transition to
the next generation.

19

4 Implementation of the algorithm

Firstly, it was decided to use the Python programming language, renowned
for its speed and ease of writing, within the PyCharm Integrated Devel-
opment Environment (IDE).
In the initial phase of the project, the user interface of the game was
constructed. Kivy was chosen as the graphical framework, enabling the
creation of dynamic interfaces in Python.

4.1 Game and Visualizer programs

The first programs created were Game, which facilitates loading the
network, playing against it, and providing evaluations of positions, and
Visualizer, which enables loading a game and navigating forward or back-
ward with the visualization of moves.

Figure 7: Visualizer interface

20

Figure 8: Game interface

Here a brief description of the Game classes:

• NetworkManager : it has a method to load a neural network from
a genome string and one to set the depth level of search in the
decision tree. Additionally, it provides a method to display the
evaluation of a specific game position using the neural network, if
available.

• Square: initializes the squares of the chessboard with a correspond-
ing color image and handles their selection.

• Piece: initializes the pieces on the chessboard with the correspond-
ing image.

• Chessboard : manages the state of the chessboard, including the
position of the pieces and user interactions. It has methods to
select a square, update the position of the pieces on the chessboard,
reset the board to the initial position, and save moves to a text file
containing the last played game.

• Translator : provides methods to convert between move sequences
and text strings.

• InputMenu: manages the user interface for input, including but-
tons for loading the neural network and setting the search depth,
as well as displaying the evaluation of the current position.

21

• ChessboardVisual : displays the chessboard on the GUI using a grid
layout.

• PieceBoardVisual : displays the pieces on the chessboard using a
grid layout.

• InputMenuVisual : represents the user interface for input, with but-
tons for actions such as resetting the board and loading the neural
network.

• MainWindow : represents the main window of the application and
contains the widgets for displaying the chessboard, pieces, and
input interface.

• Referee: manages the game rules, including move validity checks
and checking for a winner.

• WindowManager : manages the application’s screen stack.

• Application: starts the application and manages its life cycle.

• VisualPlayApplication: initializes and starts the game with the
user interface.

In the Visualizer program many classes are the same as those present
inGame, with some exceptions. In particular, the Referee class no longer
supervises the validity of moves: assuming that the string representing
the game is consistent with the request, its main function is now to
record and store information about the moves made between one move
and the next. This is essential to allow navigation in the visualization
of the game positions for both subsequent and previous moves.

22

4.2 The NEAT program

Subsequently, the core of the NEAT algorithm was developed, includ-
ing genetic and phenotypic representations, and mutation and crossover
processes.

4.2.1 Functions

Let’s first look specifically at some functions used in the implementation:

• clamp: restricts values to ensure they do not surpass specified lower
and upper bounds

• sigmoid : implements the sigmoid activation function, which maps
an arbitrary value to a range between 0 and the bound up pa-
rameter. The stepness parameter indicates the rate at which the
function approaches its extremes

Figure 9: representation of the sigmoid function [8]

• bilateral sigmoid : calculates the bilateral sigmoid, returning a value
within the range between the -bound up and the bound up param-
eter. It relies on the standard sigmoid function to compute the
value and scales it accordingly

• unilateral sigmoid : is similar to the bilateral sigmoid but with a
minimum value of 0. It ensures that only non-negative values are
returned: it behaves like a sigmoid for values greater than 0 and
equals 0 for negative values

• str to bias, bias to str, str to weight, weight to str : convert bias
and weight values into genome string language using the base func-
tion format str, and vice versa

23

• linear to matrix, matrix to linear : the first one converts a linear
coordinate into a matrix coordinate considering the number of
columns, while the second one performs the opposite operation

• linear range, matrix range: check if the linear or matricial position
is within the acceptable range

4.2.2 Genes

Let’s now delve into the neural network structure. Within the Genes

file, the base class GenericGene is described, containing the innov index

attribute, essential for tracking the innovation number of the global
genome. It also contains two abstract methods, mutate and crossover,
which are implemented by derived classes.

The first derived class is NodeGene, which contains the bias attribute
related to the node’s bias and implements the mutate and crossover
methods.

Figure 10: the NodeGene code

The mutate function introduces random variations within the network
according to a Gaussian distribution with a mean of zero, limiting the
result to acceptable bias values. This allows us to adjust the mutation
rate based on the individual’s performance: the worse the performance,
the higher the mutation rate.

24

The implementation of crossover is slightly different from that described
in the reference articles. It is stated that during the crossover process,
the structure of the most performing parent should be taken, while the
biases should be randomly selected from either parent, gene by gene.

In this case, it was deemed more appropriate to average the values, both
to avoid deviating too much from the performance of the best player
and because the children undergo minimal mutation to continue explor-
ing possible values.

The second derived class is ConnectionGene, containing information such
as the connection weight, the input and output nodes, and a status
attribute used for crossover.

Figure 11: the ConnectionGene code

The mutate and crossover functions are analogous to those of the nodes,
but they act on the connection weight rather than the bias.

Finally, there is the InnovationManager class, which manages the as-
signment and monitoring of innovation numbers for node and connection
genes within evolving neural networks:

• Innovation Number Management

Innovation numbers for node and connection genes are initialized
to INP NUM and INP NUM-1 respectively, where INP NUM rep-
resents the number of input nodes.

25

The get innov index nodes and get innov index conn methods are
responsible for returning the next innovation numbers for node and
connection genes, subsequently incrementing the internal counters.

• Gene Registration

The genes dict conn and genes dict nodes dictionaries allow the
class to keep track of connection and node genes.
The record connection method records a new connection, associat-
ing its innovation number with the input and output node pairs.
The record node method records a new node, associating its inno-
vation number and specifying which connection it originated from.

• Gene Existence Checking

The check connection recorded and check node recorded methods
allow checking if a connection or node has already been recorded
in the respective dictionaries.

• Loading and Resetting

The load and reset methods provide functionality to load initial
values and reset innovation numbers, useful for managing initial-
ization and restart states.

4.2.3 Genome

The Genome file contains the GenomeManager and Genome classes,
responsible for managing species and genome IDs and representing indi-
vidual genomes, respectively.

The GenomeManager class is responsible for managing the IDs of species
and genomes within the system. It provides functionality to obtain new
IDs for species and genomes, reset them according to the game, and load
initial values. Acting as a central handler for generating and assigning
unique IDs, the GenomeManager facilitates organization and control of
coherence and consistency in genome creation and manipulation pro-
cesses within the evolutionary system.

The Genome class represents a single genome in an evolutionary system,
providing methods for initializing, manipulating, and analyzing genetic
information.

26

Each instance contains data such as species and genome IDs, node and
connection genes, as well as core functions such as:

• init by string : initializes a genome from a properly constructed
string. The parameterized structure allows varying the length of
various values as needed.

Figure 12: the init by string code

• get string : returns a string representation of the genome.

Figure 13: the get string code

27

• construct net from genome: create a neural network using the in-
formation contained in the genome. It is constructed in two parts:
the first part contains the neurons and their biases, while the sec-
ond part contains the connections and the neurons they link.

• calculate distance: calculates the distance between the current and
another specified genome. This distance is the result of the sum of
several factors:

– the number of excess genes, i.e., nodes and connections,

– the number of disjoint genes,

– the difference in connection weight values.

According to the reference article [6], it is not necessary to consider
the difference in bias values, despite being a distinctive parameter
of the network. In the implementation, this indication was adhered
to.

• mutate structure: performs a mutation on the genome structure
by adding or removing connections or nodes. This occurs only if
the result of a random function exceeds a parametric probability
threshold.

• mutate values : performs a mutation on the genome values by mod-
ifying connection weights and node biases.

• crossover : performs the crossover operation between the main
genome and another genome specified as the parent.

• loop solver : Solves any loops that may be present in the neural
network represented by the genome.

28

Apart from the core functionalities previously discussed, it is important
to highlight that some of the most substantial functions implemented to
enable the dynamic evolution of the neural network’s structure, namely
the addition of a new node and a new connection.

• add node mutation: adds a node mutation to the genome by split-
ting an existing connection into two and inserting the node inside
with a bias of 0. Uniqueness is ensured by the specificity of the
broken connection.

Figure 14: the add node mutation code

29

• add connection mutation: adds a connection mutation by inserting
a new one between two previously unconnected nodes of the neural
network, which also determines its uniqueness.
This is done by first creating a list of all possible connections, i.e.,
nodes not yet connected to each other, while the choice is made by
a choice function, and the new weight is decided by the uniform
function, which takes a random value between the minimum and
maximum parameters passed to it.

Figure 15: the add connection mutation code

30

4.2.4 Network

The Network class represents a neural network that can be constructed
from a specific genome. Within its constructor, input, hidden, and
output nodes are initialized along with their connections based on the
genome’s specifications. Input nodes are associated with input values
provided to the network, while hidden and output nodes process these
inputs through weighted connections.

• The calculate output method computes the neural network’s out-
put given a list of input values. This method triggers the forward
propagation step in the network, where input values are propa-
gated through nodes and connections to the output, producing the
result. After output calculation, nodes are reset to their initial
states to prepare the network for further computations.

• The loop check method is responsible for detecting any cycles in the
neural network. This is a critical step to avoid infinite loops during
output computation, as they would cause program execution to
stall or fail. If a loop is detected, the method returns a warning
signal and provides information on the connections involved in the
cycle.

4.2.5 Nodes

Now let’s consider the Nodes file, where provided classes represent nodes
in a neural network and are designed to process input, compute inter-
mediate values, and generate output. These nodes are integral to the
neural network’s structure and play a fundamental role in data process-
ing within the system.

• The GenericNode class provides a general base for all node types.
Each node has an ID and a series of flags indicating the node’s
state, which are then used for output calculation and loop detec-
tion. The specific implementation of the calculate method is left
to subclasses, while input nodes have a particular reset method.
Each node has a list of inputs and a list of weights associated with
each input. These weights are used during node value computation
to determine the importance of each input in the final result.

31

Figure 16: the GenericNode code

• The HiddenNode, InputNode, and OutputNode classes extend the
GenericNode class, each with specific behavior. Input nodes di-
rectly receive input values and maintain their value unchanged,
internal nodes process intermediate values using a unilateral sig-
moid activation function, while the output node produces the final
result by applying a bilateral sigmoid activation function.

4.2.6 Tournament

Let’s delve into the section concerning the game structure in the Tour-

nament file. First, there’s the ChessBoard class, which initializes the
game board position and can save moves as string while determining
who starts the game between white and black players.

32

Subsequently, a series of functions serve various purposes:

• pair challengers : implements logic to pair players, enabling the
generation of matches between them. Each pair can play a double
round-robin or a single one, depending on the chosen configuration.

• position after move, check win condition: manage the game state,
such as position, piece promotion, or player turn, and determine if
a game has ended and who the winner is.

• possible moves : handles the movements of various pieces and gen-
erates a list of all possible legal moves from a given position on the
chessboard.

• calculate position: implements a minimax search algorithm with
alpha-beta pruning to determine the best move to make in a given
position on the chessboard considering a certain number of moves
ahead.
The minimax algorithm is a widely used decision-making approach
in turn-based two-player games like chess. It aims to maximize the
current player’s advantage while minimizing the opponent’s advan-
tage, assuming both players play optimally.
The algorithm works recursively, exploring possible moves to the
desired depth and evaluating the effectiveness of each move through
an evaluation function. When it reaches the maximum depth or
a terminal state (such as a win or a draw), the algorithm returns
the position’s value.
Alpha-beta pruning is an optimization technique used to reduce
the number of explored branches of the search tree by eliminat-
ing those that definitely will not affect the final decision. It works
by keeping track of two values, alpha and beta, representing the
guaranteed minimum value for the maximizing player and the guar-
anteed maximum value for the minimizing player, respectively.
During tree exploration, if a move is found that leads to a value
higher than beta for the maximizing player or lower than alpha for
the minimizing player, the branch is eliminated because it would
not influence the final choice.
This potentially significantly reduces the number of explored posi-
tions, improving the algorithm’s efficiency without compromising
the accuracy of the decision made.

33

Figure 17: representation of alpha-beta pruning [9]

• perform match: simulates a match between two players, using
the previously defined logic to determine the best moves for each
player. At the end of the match, it returns the winner, the number
of moves made, and a string representing the entire match.

4.2.7 TrainingProcess

Finally, the implementation includes an algorithm that generates ac-
tual training sessions, incorporating phases of selection, repopulation,
and speciation of individuals, along with logic for recording games and
genomes.

Session Record, Game Recording, and Genome Recording are the files
used for the saving. The first file stores information regarding the train-
ing session (e.g., number of players, search depth, number of games,
etc.). The second file records the matches of a tournament during the
training session and, through parametrization, it allows the selection of
intervals for recording tournaments. The third file preserves the genomes
of networks related to the saved tournaments.

Additionally, a backup functionality is incorporated to resume the train-
ing from where it was left off, achieved through storage in the Ses-

sion Backup file.

34

The main classes within the TrainingProcess program are as follows:

• RecordManager : update res recording and update game recordings

methods respectively record tournament results and game data
information, while the clear recordings method empties the three
recording files. record session store the session information.

• Result : tracks the score of each neural network.

• Session: manages the saving of session information through the
methods save session, load session, and reset session, responsible
for saving the session, loading the saved section, and restoring the
backup to the initial values, respectively.

The core function, training, drives the training process.

It initially loads the previous session or creates a new one. In the case
of a new session, the network is created, and an initial mutation is per-
formed.

Then it creates neural networks from their genomes and organizes tour-
naments with their challenges, utilizing Python’s multiprocessing to ex-
pedite the process and maximize available resources.

It records tournament results, evaluates network performance, and se-
lects a percentage of parents to create the new generation.

Figure 18: evaluation of fitness and the selection of species parents

35

It computes relative fitness and the resulting number of offspring granted.

Due to approximation, maintaining a constant number of elements in
the population emerged as an issue. To address this, the choice function
is utilized to select a random species to reward or cut for rounding up
or down the number of offspring.

Figure 19: calculation of adjusted fitnesses and the new number of elements in each
species

Figure 20: maintaining a constant population

It generates offspring neural networks through crossover and mutates
them according to selected parameters at the beginning of the training.

36

Figure 21: offspring creation and mutation, and reinsertion of parents into species

It manages speciation, the process of classifying networks into species
based on their genetic similarity with species representatives taken from
parents.

Figure 22: selection of species representatives and speciation of offspring

Finally it updates and saves the training session state for the next cycle.

37

4.3 PlothGraph and PlayVsAI programs

Upon completing the training algorithm, two additional programs were
created: PlotGraph, for obtaining graphical visualization of the network,
and PlayVsAI, for playing against a specific network and assessing the
effectiveness of its evaluations. In particular, PlayVsAI allows the se-
lection of both the game color and the depth of move searches that the
neural network must calculate.

Figure 23: PlayVsAI interface

Figure 24: a network representation. The direct connections between the inputs
and outputs are depicted in a separate graph for the sake of readability, while the
transparency of the connection depends on its strength: the weaker the connection,
the more transparent it appears

38

5 Training parametrization and results

5.1 Choosing the parameters

Before starting the training sessions, the characteristic parameters gov-
erning its execution needed to be carefully selected [10].
Firstly, a population consisting of fifty neural networks was opted for,
to optimize the balance between sample size and the number of games
played during each training session. This choice is justified by the struc-
ture of the double round-robin tournament, where increasing the number
of participants would result in an exponential increase in the total num-
ber of matches. As a maximum number of moves per game, forty seemed
to be an appropriate starting point.

Another aspect related to timing concerns the depth of search used by
the algorithm during the training of neural networks. A depth of 1
was adopted for two reasons: firstly, for computational efficiency, and
secondly, because this depth initially proves to be the most effective,
allowing the network to examine up to its next move and receiving pos-
itive feedback in case of capturing the opponent’s piece. Indeed, higher
depths would have been substantially suboptimal as they would require
a longer adaptation period to understand advantageous situations.
Given the population size, it was chosen to select the top quarter of
elements from each species as parents. This decision represents a com-
promise between selecting too few, to maintain sufficient variety, and
selecting too many, which would render the concept of using parents less
meaningful.

The next parameters to determine concern speciation, for which NEAT
articles do not provide specific guidance on the values to assign. To ad-
dress this issue, a strategy was selected as follows.
The maximum difference between species was normalized to a unitary
value. Additionally, the parameter concerning the difference in the num-
ber of excess or deficit nodes was set to 0.1, intentionally a low value.
This choice is motivated by the strong correlation of this parameter with
the number of connections within the neural network, which are typi-
cally more numerous and of greater relevance than the number of nodes.
This approach limits the number of variables to consider, focusing on
the most relevant ones for the optimization process.

39

5.2 The training process

In the succeeding phase of the experimental process, initial training
tests were conducted while keeping the speciation parameters of connec-
tions and their weights constant, while varying the mutation parameters.
These parameters include both the number of nodes and connections to
be introduced during a mutation, and those related to the magnitude of
the bias and connection weight modifications for the new generations.

It is noteworthy that, in cases where the mutation of adding connections
is activated, five attempts are made instead of a single one. This pro-
cedural adaptation was introduced considering that, unlike the specific
examples presented in the NEAT-related articles, the neural networks
involved in this project are characterized by a total of 36 inputs. There-
fore, it was deemed necessary to increase the rate of connection addition
to allow nodes to handle a significant number of incoming connections.

The evaluation of the network involves several steps. Firstly, the net-
works that achieved the highest scores in the last series of tournaments
are selected from the game recording file. Subsequently, using the Vi-

sualizer program, some of their games are observed to assess their per-
formance. After that, the most characteristic games are input into the
Game program to observe the network’s actual evaluation of the position
move by move.
This initial screening allows us to ascertain the extent to which the net-
work has learned the dynamics of the game.

At this point, to quantify the learning of each network, an evaluation
scale was created based on four parameters with respective scores:

• SK: ‘save king’, if the network protects its own king from capture
by the opponent. 0 to 10 points

• MK: ‘mate king’, if the network captures the opponent’s king. 0
to 10 points

• SP: ‘save pieces’, if the network defends its own pieces in hierar-
chical order, for example saving a rook rather than a pawn. 0 to 5
points

40

• MP: ‘mow pieces’, if the network captures opponent pieces in hi-
erarchical order, for example prioritizing the capture of a rook over
a pawn. 0 to 5 points

It was considered that introducing other types of evaluations might risk
diverting from the game’s main objectives.
Scores are assigned based on how often a network reflects the individ-
ual parameter during a series of games played against a human opponent.

The initial assessment was conducted on an untrained network. As ex-
pected, the AI played randomly, without any discernible purpose:

The AI plays as white, it’s its turn It AI moved the bishop in sq. 22, so

black pawn can now take the white

king

Figure 25: the AI moved the bishop in a not useful position instead of
protecting its own king

Figure 26: evaluation of the untrained AI

In the first set of evaluations, three categories of cases were examined,
characterized by low, medium, and high variability, in training sessions
consisting of 1.000 iterations. The parameter values used for each cate-
gory are shown in the figure 27.

41

Figure 27: the first set of training sessions

• ID: the training’s ID

• Iter. (Depth): the number of tournaments and the AI depth of
move search

• Connec. Diff. Spec.: the value attributed to the difference in
the number of connections, as a percentage normalized to 1

• Weight Diff. Spec.: the value attributed to the difference of
connections weights, as a percentage normalized to 1

• Weight Diff. Spec.: the value attributed to the difference of
connections weights, as a percentage normalized to 1

• Add Node: the probability of adding a node, as a percentage
normalized to 1

• Add Conn. - N° try: the probability of adding a connection,
as a percentage normalized to 1, and the number of attempts per
time

• Bias / Weight Mut. Pow.: the variance of the Gaussian muta-
tion for bias and weight

The approximate results are shown in figure 28.

42

Figure 28: evaluation of the first set

It has been observed that the AIs have indeed learned the basics of the
game, although they still make fairly significant errors.
In the figures 29 and 30 are shown some good gameplay behaviors by
the network 35.338 from the session 1:

The AI plays as black, it’s white turn The white bishop is captured after

moving to sq. 8

Figure 29: the AI has chosen to take the bishop instead of the pawn in
sq. 21

43

The AI plays as black, it’s white turn The AI takes the king and wins the

game

Figure 30: even if the white pawn was going to take the rook and be
promoted, the AI recognised the best choice

Figure 31: the network 35.338 from the session 1

However, as said before, there are still some serious errors. An example
is shown in figure 32 by the network 33.919 from the session 9.

44

The AI plays as white, it’s its turn Beside having plenty of possible

moves, it decides to move the king

to sq. 21, where it’s taken from the

black pawn

Figure 32: the AI still not recognising the loss of the king as the worst
move possible

Figure 33: the network 33.919 from the session 9

It’s worth noting that knights seem to be worth very little, perhaps be-
cause their optimal use is quite complex. Since the networks are not
sufficiently trained, they may be unable to exploit it.

45

The focus was on training with low variability, as in this set networks
appear to play better, perhaps because they explore smaller structures
more precisely and mutations are not excessively random.

The parameter values used for the next set category and the results are
shown in figures 34 and 35.

Figure 34: the second set of training sessions

Figure 35: evaluation of the second set

The results haven’t changed significantly; however, there has been a
slight improvement. In particular, network 30.457 from session 16 has
shown some promising behaviors.

46

the AI plays as black, it’s white turn After the white bishop moved to sq.

13, the AI saves the rook moving it

to sq. 9

Figure 36: the AI recognises the importance of the rook

The AI plays as black, it’s white turn After the white rook threatened to

capture the king, the black rook de-

fends it by moving to sq. 8

Figure 37: the AI finds another way to defend the king rather than
moving it

Still, some definitely strong pieces are exchanged with pawns, which are
worth less, as shown in figure 38.

47

The AI plays as black, it’s its turn It decides to move the bishop to take

the pawn at sq. 26, where the king

can capture the bishop in response

Figure 38: the AI takes the pawn for a bishop, not recognising its value

Figure 39: the network 30.457 from the session 16

While the level of play has increased, with an high rate of connection
addition the networks do not seem to play better; indeed, they seem to
perform worse.

Additionally, the problem of loop recognition and elimination cannot be
overlooked, as it significantly increases training times.

48

For these reasons it was decided to focus on parameters with a low rate
of connection addition. After few more tests, the number of training
tournaments was increased from 1.000 to 2.000.

The data is shown in figures 40 and 41, followed by an example.

Figure 40: the sessions with 2.000 iterations

Figure 41: evaluation of the 2.000 iterations set

The AI plays as white, it’s its turn While the bishop is threatened, it

chooses to sacrifice it for a pawn in-

stead of saving it

Figure 42: the AI still appears to struggle with recognizing the mecha-
nism of saving pieces other than the king

49

Figure 43: the network 75.953 from the session 31

The results obtained prompted us to extend the training sessions to 4.000
iterations. However, the outcome achieved was unexpected.

Figure 44: some examples from evaluation of the 4.000 iterations set

After an initial notable improvement curve, an unexpected decline in
the performance of the neural networks was observed as the tournament
iterations increased to 4.000. This outcome suggests that there might be
a limit beyond which the quality of the model is no longer determined
by the number of iterations, but rather by the proper parametrization
of the system.

Two illustrative example are shown in figure 45 by the network 100.342
from session 35, followed by its corresponding representation.

50

The AI plays as white, it’s its turn It moved the rook to sq. 33, where

it can be taken by the black bishop

Few moves later, it’s white turn The AI moved the king to sq. 34,

granting victory to the black

Figure 45: the AI committing very serious errors

Figure 46: the network 100.342 from the session 36

51

6 Alternative to NEAT: tournament series

Given the promising yet cautiously optimistic results, it was decided to
explore a modified algorithmic approach. Rather than advancing the net-
work’s evolution solely through the elimination of underperforming net-
works after each tournament, an alternative strategy was implemented:
an attempt was made conducting multiple tournament sessions, dur-
ing which such networks would undergo only weight and bias mutations
rather than structural alterations, providing them time to adjust these
values.

The objective of this strategy is to prioritize fine-tuning the network
parameters, reducing reliance on optimization that may progress more
rapidly but also more randomly across the various network prototypes.

The new function presents a straightforward and simplified approach to
population management and parent selection during the training pro-
cess. Initially, a training session is created, and a record manager is
initialized to log results and monitor training progress.
During the training loop, tournaments are organized among the neural
networks in the population. Like before, the networks are converted into
game networks and paired to form challenger couples. These challenger
couples participate in tournament series, the outcome of which is then
used to evaluate network performance and assign scores. The genomes
of the neural networks and their scores are then recorded for analysis
and evaluation.

During the tournament series, parents are kept unchanged to serve as
benchmarks, while the children are mutated. At this point, the process
iterates with the next tournament until the completion of the tourna-
ment series.

Only after a series has concluded, for example 10 tournaments, the rank-
ings are compiled, the least performing children are removed, and the
species is repopulated with the children of the parents from the last tour-
nament executed.

52

This new training method is characterized by its simplicity and linear-
ity in approaching population management. While less complex than
the first one, it still provides an effective approach to training neural
networks through controlled reproduction and mutation. However, it
certainly slows down the training times, and it is necessary to under-
stand if and how much it is more effective.

The used parameters and the results are shown in figures 47 and 48.

Figure 47: the sessions with tournaments series algorithm

Figure 48: the series evaluations

An attempt was made to challenge the best performing AI from TT8
session, still trained at a depth of 1, using a depth of 4. The outcome
was an AI capable of playing adequately, and effectively recognizing some
of the best available combinations, as shown in figure 49.

53

The AI plays as black, it looks like

it’s going to lose the rook

The AI answered taking the pawn in

sq. 28, then taking the rook in sq.

33, without leaving white the chance

to save it

Few moves later it appears that the

AI has the bishop trapped

Instead of moving the bishop or sac-

rificing it, the AI manages to save it

by first taking the pawn in sq. 19

Figure 49: some highlights of the match

Figure 50: the network from tournament series representation

54

Observing the outcomes, it becomes evident that this method has re-
sulted in slight yet discernible improvements.

It is noteworthy that conducting a session of 4.000 iterations with series
of 20 tournaments entails 200 eliminations and subsequent replenishment
of the population, equivalent to one-fifth of a session consisting of 1.000
iterations under the original NEAT strategy.

Given these considerations, it can be argued that through appropriate
parametrization of the tournament series algorithm, it is conceivable to
explore effectiveness curves that are likely superior to those observed
previously.

55

7 Conclusions

The training sessions have provided valuable insights into the learning
process of the neural networks within the NEAT framework. Despite
the initial randomness and lack of strategy displayed by the untrained
networks, successive iterations have showcased a gradual improvement
in gameplay quality. Through a meticulous parameter selection process
and careful observation of network behavior, key factors influencing the
training outcome began to be identified.

The introduction of variability categories allowed for a comprehensive
exploration of parameter combinations, revealing various effects on net-
work performance. Lower variability settings appeared to yield more
consistent and promising results, indicating that networks benefit from
focused exploration of smaller structural changes. This insight guided
the decision to prioritize training sessions with low variability, fostering
more precise adaptation and strategic decision-making.

One notable challenge encountered during the training process was the
recognition and elimination of loop structures within network genomes.
The implementation of loop-solving mechanisms proved crucial in main-
taining the integrity and functionality of evolving networks. By inhibit-
ing connections prone to loop formation, potential disruptions to the
training process were mitigated, ensuring continued progress towards
near-optimal network architectures.

Furthermore, the evaluation of network performance revealed promis-
ing developments in strategic gameplay. Networks exhibited a growing
understanding of game dynamics, showcasing improved decision-making
and strategic prioritization. While certain weaknesses persisted, such as
undervaluation of knight pieces, continued training iterations and pa-
rameter adjustments promise further refinement and optimization.

It is also crucial to take into account that for neural networks evaluat-
ing and therefore playing endgame scenarios remains significantly more
challenging. Indeed, as the number of pieces decreases, the potential
moves exponentially increase, resulting in progressively less accurate ex-
plorations from which to learn.

56

Nonetheless, there remains a scope for refinement through comprehen-
sive parametrization investigations.
In particular, delving into the population size and the corresponding per-
centage of parents to select from the top-performing networks warrants
attention. The speciation parameters remain among the most critical to
identify, as they are pivotal for the proper functioning of network pro-
tection and evolution.
On the other hand, it is believed that the frequency and type of muta-
tions depend not only on the NEAT algorithm but also on the type of
game to which it is applied. In this case the high number of inputs has
generated a minimally complex structure initially, making it difficult to
parameterize without adequate study.

In conclusion, through iterative refinement and rigorous evaluation, it
is believed that further increasing the effectiveness of a NEAT-based
algorithm is possible, enabling the creation of an AI capable of efficient
decision-making for generic board games.

57

References

[1] “Les automates”. In: La Nature 2141-2152 (1914), pp. 56–62. url:
https://cnum.cnam.fr/redir?4KY28.87.

[2] Lomosonov Tablebases. url: https://tb7.chessok.com/. (ac-
cessed: 18.04.2024).

[3] Claude E. Shannon. “Programming a Computer Playing Chess”.
In: Philosophical Magazine Ser.7, 41.312 (1959). url: https://
redirect.cs.umbc.edu/courses/graduate/CMSC671/fall15/

resources/ProgrammingaComputerforPlayingChess.pdf.

[4] Herbert L. Anderson. “Metropolis, Monte Carlo, and the MA-
NIAC”. In: Los Alamos Science 14 (1986), pp. 96–108. url: https:
//lib-www.lanl.gov/cgi-bin/getfile?00326886.pdf.

[5] Wei Hu. “Towards a Real Quantum Neuron”. In: Natural Science,
10.3 (2018). doi: https://doi.org/10.4236/ns.2018.103011.

[6] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural
Networks Through Augmenting Topologies”. In: Evolutionary Com-

putation 10.2 (2002), pp. 99–127. url: http://nn.cs.utexas.
edu/?stanley:ec02.

[7] Manuel Mariani and Simone Fiori. “Design and Simulation of a
Neuroevolutionary Controller for a Quadcopter Drone”. In: Aerospace
10.5 (2023). doi: https://doi.org/10.3390/aerospace10050418.

[8] Sigmoid function. url: https : / / en . wikipedia . org / wiki /

Sigmoid_function. (accessed: 18.04.2024).

[9] Alpha–beta pruning. url: https://en.wikipedia.org/wiki/
Alpha%E2%80%93beta_pruning. (accessed: 18.04.2024).

[10] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration
and Exploitation in Evolutionary Algorithms: A Survey”. In: ACM
Computing Surveys 45.3 (2013). doi: https://doi.org/10.1145/
2480741.2480752.

58

