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1. INTRODUCTION 
 

1.1.  ARRHYTHMIAS 
 
Arrhythmias are defined as changes in the heart rhythm. A normal heart beats regularly and 

in a coordinated manner because electrical impulses, generated and propagated by muscle 

cells with specific electrical properties, trigger a series of organized heart muscle 

contractions. Arrhythmias and conduction disorders are caused by abnormalities in the 

formation and/or conduction of these electrical impulses. Any heart disease, including 

structural or functional congenital heart disease, can be associated with arrhythmias. 

Systemic factors that may cause or contribute to arrhythmias include: electrolyte imbalances, 

hypoxia, hormonal imbalances, medications, and toxins. All the following information 

regarding cardiac arrhythmias has been inspired and taken from the MSD manual [1]. 

 

 

1.1.1. ANATOMY OF THE CARDIAC CONDUCTION SYSTEM 
 
There is a group of cells at the junction of the superior vena cava and the upper lateral part 

of the right atrium, called the sinoatrial node or sinoatrial node. The sinoatrial node generates 

the first electrical impulse of each normal heartbeat. The discharges from these pacemaker 

cells propagate to neighboring cells, thereby sequentially stimulating successive regions of 

the heart. Impulses are transmitted through the atria to the atrioventricular node via 

preferentially conducting internodal pathways and nonspecialized atrial myocytes. The 

atrioventricular node is located on the right side of the interatrial septum. It has a slower 

conduction velocity, which delays the transmission of impulses from the atria to the 

ventricles. The conduction time of impulses through the atrioventricular node depends on 

the heart rate, and it is regulated by autonomic tone and circulating catecholamines to 

maximize cardiac output at any given atrial rate. Except for the anteroseptal region, in which 

the atria are electrically isolated from the ventricles by the annulus fibrosus. Here, the bundle 

of His is a continuation of the atrioventricular node and passes through the upper part of the 

interventricular septum, where it bifurcates into left and right branches, which in turn 

terminate in Purkinje fibers. The right branch carries impulses to the apex and anterior 

endocardial region of the right ventricle. The left branch radiates in a fan-shape on the left 

side of the interventricular septum. Its anterior part (left anterior fasciculus) and posterior 

part (left posterior fasciculus) stimulate the left side of the interventricular septum, which is 
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the first part of the ventricle to be electrically activated. The interventricular septum then 

depolarizes from left to right, followed by an almost simultaneous activation of both the 

ventricles from the endocardium, through the ventricular wall, to the epicardium. To trace 

the path of an electrical pulse, see Figure 1. 

 

 

 

Figure 1. | An anatomical image of the cardiac conduction system, highlighting key points where the 
signal originates and is conducted. 

 

The electrical signal begins in the sinoatrial (SA) node, prompting the contraction of both 

the right and left atria. As it reaches the atrioventricular (AV) node, there is a brief delay. 

Afterwards, the signal travels through the bundle of His, which then splits into the right 

bundle branch, extending to the right ventricle, and into the left bundle branch, leading to 

the left ventricle. Subsequently, the impulse spreads through the ventricles, resulting in their 

contraction. 
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1.1.2. CARDIAC ELECTROPHYSIOLOGY 
 
To comprehend cardiac rhythm disorders, it's essential to have a good grasp of normal 

cardiac physiology. The passage of ions through the cell membrane of myocytes is 

meticulously regulated by specific ion channels. These channels orchestrate a cyclic process 

of depolarization and repolarization within the cell, known as an action potential. Figure 2. 

 

 

 

Figure 2. | Depiction of the action potential, its values in millivolts (mV), and ion movements. 
 

The action potential in a healthy myocyte get started when the cell's transmembrane potential 

shifts from its diastolic level of around -90 mV to approximately -50 mV. At this threshold, 

voltage-gated sodium channels open, leading to a swift depolarization driven by the inflow 

of sodium ions along their steep concentration gradient. Soon after, these sodium channels 

inactivate, ceasing the sodium influx. Meanwhile, other time- and voltage-gated ion channels 

open, enabling calcium to enter through slow calcium channels (contributing to 

depolarization), and potassium to exit through potassium channels (contributing to 

repolarization). These processes initially balance each other, sustaining a positive 

transmembrane potential and prolonging the plateau phase of the action potential. During 

this phase, calcium's entry into the cell is responsible for electromechanical coupling and 

myocyte contraction. As calcium entry subsides, potassium outflow increases, rapidly 

repolarizing the cell until it reaches its resting transmembrane potential of -90 mV. When 

the cell is depolarized, it becomes refractory to subsequent depolarizations. Initially, it 

cannot undergo another depolarization (absolute refractory period), and after partial 

repolarization, a subsequent depolarization is possible but slow (relative refractory period). 

There are two types of heart tissue: 
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• Tissues with fast channels 

• Tissues with slow channels 

 

Tissues with fast channels, such as atrial and ventricular conduction tissue and the His-

Purkinje system, possess a high density of fast sodium channels. Their action potentials are 

characterized by: 

 

• Little to no spontaneous diastolic depolarization, resulting in very slow rates of pacemaker 

activity 

• Very rapid initial depolarization rates, leading to rapid conduction velocity 

• Loss of refractoriness coinciding with repolarization, resulting in short refractory periods 

and the ability to conduct repetitive impulses at high frequencies 

 

Tissues with slow channels, like the sinoatrial and atrioventricular nodes, have a low density 

of fast sodium channels, and their action potentials are characterized by: 

 

• Faster spontaneous diastolic depolarization, resulting in a faster rate of pacemaker activity 

• Slow initial depolarization rates, leading to slow conduction velocity 

• Delayed loss of refractoriness after repolarization, resulting in long refractory periods and 

the inability to conduct repetitive impulses at high frequencies 

 

Under normal circumstances, the sinoatrial node exhibits the highest frequency of 

spontaneous diastolic depolarization, making its cells responsible for producing more 

frequent spontaneous action potentials than other tissues. Thus, in a healthy heart, the 

sinoatrial node serves as the dominant automatic tissue (pacemaker). If the sinoatrial node 

fails to generate impulses, the atrioventricular node, typically having the second-highest rate 

of spontaneous diastolic depolarization, takes over as the pacemaker. Sympathetic 

stimulation increases the firing rate of pacemaker tissue, while parasympathetic stimulation 

decreases it. An inwardly directed calcium/potassium current, known as the "funny current," 

flows through hyperpolarization-activated cyclic nucleotide channels (HCN channels) in 

sinus node cells, contributing significantly to their automaticity. Inhibiting this current 

prolongs the time required for critical spontaneous depolarization in pacemaker cells, 

leading to a reduced heart rate. 
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1.1.3. NORMAL CARDIAC RHYTHM 
 
The resting sinus heart rate in adults typically falls within the range of 60 to 100 beats per 

minute. Lower rates, known as sinus bradycardia, are common in young individuals, 

especially athletes, and also during sleep. On the contrary, higher rates, or sinus tachycardia, 

can occur during physical exercise, illness, or intense stress, driven by sympathetic activation 

and the influence of circulating catecholamines. Normally, the heart rate exhibits significant 

variability throughout the day, often with lower rates observed in the morning prior to 

waking. A slight increase in heart rate during inspiration, followed by a decrease during 

expiration (referred to as respiratory sinus arrhythmia), is considered normal. This 

phenomenon is attributed to fluctuations in vagal tone and is particularly prevalent in healthy 

young individuals. While it tends to decrease with age, respiratory sinus arrhythmia never 

entirely disappears. A consistently steady sinus heart rate is abnormal and it is typically 

observed in patients with autonomic denervation, or in cases of severe cardiac disorders that 

reduce parasympathetic tone and activate sympathetic tone. As a result, heart rate variability 

measurements have been suggested as useful indicators of cardiovascular health. Most of the 

cardiac electrical activity is represented on the electrocardiogram (ECG), although the 

depolarizations of the sinoatrial node, the atrioventricular node, and the His-Purkinje system 

involve too little tissue to be directly visible. In the ECG, the P wave represents atrial 

depolarization, the QRS complex signifies ventricular depolarization, and the T wave 

indicates ventricular repolarization. The PR interval, from the beginning of the P wave to 

the beginning of the QRS complex, measures the time it takes for the impulse to pass from 

the atrium to the ventricle. A large part of this interval reflects the slow conduction of the 

impulse through the atrioventricular node. The RR interval, measuring the time between 

consecutive QRS complexes, reflects the ventricular frequency. The QT interval, from the 

start of the QRS complex to the end of the T wave, indicates the duration of the ventricular 

depolarization. Normal QT interval values may vary slightly by gender and are influenced 

by the heart rate; therefore, the corrected QT interval (QTc) is often calculated. Cardiac 

rhythm disorders result from anomalies in the generation and/or conduction of the electrical 

impulse. Bradyarrhythmia occur when the intrinsic pacemaker system functions at a slower 

rate or when there are conduction blocks, in particular at the atrioventricular node or the His-

Purkinje system. Most tachyarrhythmias result from a reentry mechanism, while others stem 

from increased normal automaticity or abnormal automaticity mechanisms. 
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1.1.4. MECHANISM OF TYPICAL REENTRY 
 
Reentry describes the circular spread of an impulse along two interconnected pathways that 

have varying conduction speeds and different refractory periods. In this case, the 

atrioventricular node reentry is being used as an example. These two pathways connect the 

same points. Pathway A has a slower conduction velocity and a shorter refractory period, 

whereas Pathway B conducts normally but has a longer refractory period. As illustrated in 

Figure 3: 

 

I. A normal impulse that arrives at point 1 travels along both pathways A and B. Conduction 

through pathway A occurs at a slower pace and encounters tissue at point 2, which is already 

depolarized and thus is in a refractory state. This scenario represents a typical sinus beat. 

 

II. When a premature impulse encounters pathway B in a refractory state, it doesn't propagate 

through it. However, it can still be conducted along pathway A, which has a shorter 

refractory period. Upon reaching point 2, the impulse continues forward, but it can also 

retrogradely backtrack through pathway B. In here, it gets blocked by the refractory tissue 

at point 3. This situation corresponds to a premature beat (extrasystole) originating above 

the ventricles, resulting in an extended PR interval. 

 

III. If the conduction through pathway A is slow enough, a premature impulse can 

retrogradely traverse the entire length of pathway B. This is possible because pathway B is 

now entirely out of its refractory period. If pathway A has also exited its refractory period, 

the impulse can re-enter pathway A and continue to circulate. This creates a scenario where, 

with each cycle, an anterograde impulse travel to the ventricle (4) and a retrograde impulse 

moves back to the atrium (5). This leads to sustained reentrant tachycardia. 
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Figure 3. | Image illustrating three specific situations: normal heartbeat, premature beat, and sustained 
reentrant tachycardia. 

 

Additionally, the abnormal P wave (P') and the delay in the atrioventricular node (prolonged 

P'R interval) are evident before the onset of tachycardia. Figure 4. 

 

 

 

Figure 4. | Image of an ECG trace at a point of tachycardia. 
 

In certain circumstances, typically following a premature beat (extrasystole), the reentry can 

result in a continuous circulation of the activation wave, leading to a tachyarrhythmia. 

Normally, the reentry is inhibited by refractory tissue during stimulation. However, three 

conditions can promote reentry: 

 

• Reduction of tissue refractoriness 

• Elongation of the conduction pathway 

• Slowing of impulse conduction 

 

From a diagnostic perspective, it is crucial not only to detect the anomaly in heart rate but, 

above all, to understand the localization within the cardiac muscle of the source point of the 

electrical issue. 
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1.2.  CAUSES OF HEART FAILURE 
 
Regarding the causes of heart failure, we can initially distinguish between two major groups 

of causes: ischemic and non-ischemic. In ischemic heart failure, the cause of left ventricular 

dysfunction can be traced back to coronary artery disease. Patients with this condition have 

often experienced one or more myocardial infarctions. The process following a large 

myocardial infarction often leads to progressive left ventricular dilation and the gradual 

onset of heart failure. It is also possible to have left ventricular dysfunction in the presence 

of severe coronary artery disease, even without clear clinical episodes of myocardial 

infarction. Among the causes of non-ischemic heart failure, the most common are related to 

valvular heart disease, long-standing hypertensive heart disease, and cardiomyopathy (both 

dilated and non-dilated), sometimes of genetic origin. Valvular diseases are a frequent cause 

of left heart failure and they can be divided into diseases of the aortic valve and diseases of 

the mitral valve, as well as diseases characterized by valve stenosis and those characterized 

by valve insufficiency. In general, when there is valve insufficiency, the heart undergoes 

what is commonly referred to as volume overload. Let's take aortic insufficiency as an 

example: Suppose that the left ventricle of an 80 kg individual ejects 100 milliliters of blood 

per beat at a rate of 60 beats per minute, resulting in a cardiac output of 6 liters per minute. 

After the ejection phase and the start of diastole, the aortic valve should be tightly closed to 

allow the blood ejected from the ventricle to move forward, perfusing the entire body. 

However, if the aortic valve doesn't close properly and allows blood to regurgitate into the 

ventricle, let's assume half of the systolic volume, i.e., 50 ml, is regurgitated. The effective 

output is then reduced to only 50 ml per beat, which is insufficient for the body, especially 

at a stable heart rate of 60 beats per minute. Additionally, the regurgitation of blood means 

that the left ventricle is overloaded with blood entering from both the aorta and the left 

atrium. To maintain adequate systolic output, the left ventricle undergoes eccentric 

hypertrophy (i.e., it tends to increase the thickness of the muscle outside the normal 

ventricular cavity), and as the condition worsens over the years, it progresses into a 

progressive ventricular dilation, a reduction in contractile force, and overt heart failure. [2] 

The other valvular alteration that leads to heart failure in the context of aortic valve disease 

is aortic stenosis. In this case the aortic valve is narrowed, meaning that the lumen that allows 

blood to be ejected from a ventricle is smaller than normal. This leads to an increased 

difficulty in ejecting blood from the ventricle and a higher need to generate greater systolic 
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pressure within the left ventricle to overcome the pressure difference (referred to as the 

gradient) between the left ventricle and the aorta. In this case, the response is concentric 

hypertrophy. In fact, the left ventricle responds to the need to generate more pressure by 

increasing the thickness of the muscular walls, much like how a weightlifting athlete's 

muscles grow in response to lifting increasing weights. In the initial stages of left ventricular 

hypertrophy, asymptomatic diastolic dysfunction is observed. However, as the condition 

progresses, it results in a typical scenario of heart failure with preserved ejection fraction. 

The left ventricle becomes much stiffer, and the end-diastolic pressure significantly 

increases. In the advanced stages of aortic stenosis (if valve replacement is not performed), 

the hypertrophy that has developed is no longer able to cope with the increased resistance to 

blood ejection, the muscle loses its contractile strength, and sometimes the ventricle dilates. 

Thus, it transitions from heart failure with preserved ejection fraction to heart failure with 

reduced ejection fraction. In these circumstances, aortic valve replacement becomes urgent, 

even at higher risk. [3] In the context of mitral valve diseases, mitral insufficiency causes 

volume overload of the left ventricle with an evolution similar to that described for aortic 

insufficiency; whereas mitral stenosis, by reducing the ease of blood access to the left 

ventricle, does not produce significant ventricular changes, but significantly increases the 

pressure in the left atrium and, therefore, an upstream in the pulmonary circulation, 

ultimately causing a dysfunction of the right heart as described earlier, and tricuspid valve 

insufficiency. Up until twenty or thirty years ago, when mitral stenosis was often caused by 

rheumatic disease in young individuals, this scenario was common and was referred to as 

the "tricuspidalization" of mitral stenosis. Another common cause of heart failure is 

hypertensive heart disease. Prolonged high blood pressure history leads the left ventricle to 

develop a higher pressure, and the disease's progression is similar to what was described for 

aortic stenosis. A more severe increase in ventricular thickness, entirely independent of high 

blood pressure, is seen in hypertrophic cardiomyopathy, a relatively common genetic disease 

that is important to recognize as it is associated with a risk of potentially fatal arrhythmias. 

Sometimes, among young athletes undergoing intense training, it is extremely challenging 

to distinguish whether the observed increase in left ventricular thickness is due to the so-

called "athlete's heart" or if it represents the initial manifestation of hypertrophic 

cardiomyopathy. Because the latter possibility requires the suspension of sports activity and 

the initiation of a therapeutic approach, it is essential that this evaluation is carried out in 

centers with extensive experience. [4] Another cause of heart failure is non-ischemic dilated 
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cardiomyopathy. In this situation, the heart tends to progressively dilate, and its contractile 

strength gradually decreases, leading to a typical picture of heart failure with reduced 

ejection fraction. A subgroup of individuals with heart failure with reduced ejection fraction 

within non-ischemic dilated cardiomyopathy presents a familial predisposition to this 

disease, meaning a first-degree relative affected by the same condition [5]. 

 

 

1.3.  CARDIOMYOPATHIES 
 
A cardiomyopathy is a primary disease of the heart muscle. It distinguishes itself from other 

structural heart diseases such as coronary artery disease, valvular heart disease, and 

congenital heart diseases. Cardiomyopathies are primarily categorized into three main forms 

based on pathological features: 

 

• Dilated 

• Hypertrophic 

• Restrictive 

 

It is worth noting that the term "ischemic cardiomyopathy" refers to a condition that can 

affect patients with significant coronary artery disease, with or without infarcted areas, and 

is characterized by a dilated and hypocontractile ventricular myocardium. This category is 

not commonly included in the above-listed classifications because it does not describe a 

primary myocardial disorder. The clinical manifestations of cardiomyopathies typically 

align with those of heart failure and may vary depending on whether there is systolic 

dysfunction, diastolic dysfunction, or both. Some forms of cardiomyopathy can also lead to 

symptoms like chest pain, syncope, arrhythmias, or even sudden death. The evaluation 

generally involves a family history, blood tests, electrocardiography (ECG), chest X-ray, 

echocardiography, and cardiac magnetic resonance imaging. In some cases, endomyocardial 

biopsy could be necessary. If needed, further diagnostic investigations may be conducted to 

identify the cause of the cardiomyopathy. Treatment will depend on the specific type and 

underlying cause of the cardiomyopathy. [6, 7] 
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1.3.1. DILATED CARDIOMYOPATHY 
 
As a primary myocardial dysfunction, myocardial dysfunction in dilated cardiomyopathy 

occurs in the absence of other disorders that could lead to myocardial dilation, such as severe 

occlusive coronary artery disease or conditions that impose pressure or volume overload on 

the ventricle (e.g., hypertension, valvular heart disease). In most patients, the anomaly 

affects both ventricles, in some cases, it affects only the left ventricle, and more rarely, only 

the right ventricle. As blood stasis becomes significant due to chamber dilation and 

dysfunction, mural thrombi can form. Tachycardic arrhythmias, as well as atrioventricular 

block, often complicate both acute myocarditis and late chronic dilatation phases. Atrial 

fibrillation typically arises when the left atrium has dilated. 

 

  

1.3.2. HYPERTROPHIC CARDIOMYOPATHY 
 
The myocardium exhibits alterations with cellular and myofibrillar disorganization; 

however, this finding is not specific to hypertrophic cardiomyopathy. In the most common 

phenotype, marked hypertrophy and thickening are observed in the anterior septum and in 

the anterior free wall contiguous below the aortic valve, with limited or absent hypertrophy 

in the posterior wall of the left ventricle. Isolated apical hypertrophy is sometimes seen, but 

virtually any type of asymmetric left ventricular hypertrophy may be observed, while 

symmetric hypertrophy is observed in a small minority of patients. Approximately 66% of 

patients exhibit an obstructive pattern, both at rest and during exercise. This obstruction 

results from mechanical obstacles of the left ventricular outflow during systole, caused by 

the anterior systolic motion of the mitral valve. During this anterior systolic motion, the 

mitral valve and the valvular apparatus are aspirated into the left ventricular outflow tract 

due to the Venturi effect, generated by high-velocity blood flow, leading to a flow 

obstruction and a reduced cardiac output. Additionally, mitral regurgitation may develop due 

to distortion of leaflet motion during anterior systolic motion of the mitral valve. These 

factors, namely, obstruction and valvular regurgitation, contribute to the onset of heart 

failure symptoms. Less frequently, hypertrophy of the midventricular region can result in an 

endocavitary gradient at the papillary muscle level, with rare risk of increased stress on the 

left ventricular wall and development of an apical aneurysm of the left ventricle. 

Hypertrophy results in increased stiffness and reduced compliance of the ventricular cavity 

(usually the left ventricle), hindering diastolic filling and leading to an increase in 
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telediastolic ventricular pressure and, consequently, in pulmonary venous pressure. This 

results in a reduced cardiac output, as filling resistance increases, especially when there is a 

gradient in the outflow tract. Tachycardia, by shortening filling time, tends to cause 

symptoms primarily during physical activity or in the presence of tachyarrhythmias. 

 

 

1.3.3. RESTRICTIVE CARDIOMYOPATHY 
 
Restrictive cardiomyopathy is a less common form of cardiomyopathy, which can be divided 

into two main categories: 

 

• Non-obliterative: characterized by the abnormal infiltration of the myocardium by a foreign 

substance. 

• Obliterative: characterized by endocardial and subendocardial fibrosis. 

 

Both of these forms can occur in a diffuse or localized manner, affecting one or both 

ventricles, sometimes irregularly. When the myocardium thickens or becomes infiltrated, it 

can occur in one or both ventricles, usually the left ventricle. This can lead to malfunction 

of the tricuspid and mitral valves, resulting in valvular insufficiency. Furthermore, if nodal 

or conduction tissue is involved, the sinoatrial or atrioventricular node may function 

improperly, causing various degrees of sinoatrial and atrioventricular block. The primary 

hemodynamic consequence of this form of cardiomyopathy is diastolic dysfunction with a 

stiff, non-compliant ventricle and elevated filling pressures, which can lead to the 

development of pulmonary venous hypertension over time. Finally, if the compensatory 

hypertrophy of the infiltrated or fibrotic ventricles is inadequate to handle the workload, the 

systolic function may deteriorate. Additionally, in this condition, mural thrombi can form, 

posing a potential risk of systemic embolism. 

 

 

1.4.  INCIDENCE AND MORTALITY 
 
According to the 2020 Istat data [8], in Italy, there were 63,952 deaths reported due to 

ischemic heart diseases in that year, with 34,095 being males and 29,857 females. 

According to an article published by the Ministry of Health [9], diseases of the circulatory 

system caused 224,482 deaths (97,952 in men and 126,530 in women), accounting for 38.8% 
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of total deaths. Such a high percentage is partially attributed to the aging of the population 

and the low birth rates that have characterized the country in recent years. For ischemic heart 

diseases, there were 75,046 deaths (37,827 in men and 37,219 in women), accounting for 

approximately 33% of all deaths due to circulatory system diseases. In men, mortality is 

negligible until the age of 40, starts to emerge between 40 and 50, and then increases 

exponentially with age. In women, this phenomenon begins around the ages of 50-60 and 

increases rapidly. The disadvantage of men compared to women is more pronounced in the 

reproductive age and tends to decrease with advancing age. The difference in disease 

frequency between the two genders is also associated with differences in clinical 

manifestations, with sudden death and silent heart attacks being more frequent in women. 

The term "incidence" refers to the number of new cases of a disease occurring in a population 

during a specific period, typically one year. Incidence data were derived from longitudinal 

studies conducted as part of the CUORE Project, which enrolled over 21,000 men and 

women aged 35-74 starting from the mid-1980s, with an average follow-up period of 13 

years. The rates showed an incidence of coronary events (6.1 per 1,000 per year in men with 

a 28-day fatality rate of 28% and 1.6 per 1,000 per year in women with a 25% fatality rate). 

The fatality rate was 27.9% in men and 25.4% in women, increasing significantly with age. 

The data is presented in the Table 1. 

 

Table 1. | The project HEART reports a section of the table on incidence and fatality rates. 
 

Age 
(years) 

Coronary events 

Man Women 
Rates of 
incidence 
per year 
per 1,000 

Lethality, 
% 

Rates of 
incidence 
per year 
per 1,000 

Lethality, 
% 

35-44 3,2 9,6 0,5 8,3 

45-54 4,5 15,3 1,2 11,4 

55-64 9,7 33,6 2,8 27,1 

65-74 10,1 54,2 4,5 54,5 

35-74 6,1 27,9 1,6 25,4 
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1.5.  TREATMENT 
 
The treatment of arrhythmia-induced cardiomyopathy primarily focuses on managing the 

arrhythmia. This may involve its elimination or, alternatively, controlling the ventricular rate 

[10, 11], for example, in cases of persistent ventricular fibrillation. The therapeutic options 

mainly include beta-blockers, digitalis preparations, and amiodarone as suitable drugs for 

treating arrhythmia. Other antiarrhythmic agents may be considered only after a careful 

evaluation of the risk-benefit ratio. Therefore, the choice between these treatment 

approaches depends on the patient's age, pre-existing medical conditions, and the specific 

type of arrhythmia. In many cases, catheter ablation is the preferred long-term treatment. 

Additionally, in some instances, implantable cardiac electronic devices are used. 

 

 

1.5.1. IMPLANTABLE CARDIAC DEFIBRILLATOR (ICD) 
 
In recent years, there has been a growing interest in implantable cardiac electronic devices 

(ICDs), with a focus on refining both existing modes of cardiac pacing and defibrillation 

therapy and exploring new therapeutic strategies. The discussion regarding the effectiveness 

of ICD therapy in patients with non-ischemic cardiomyopathy is a topic of recent debate. 

Some studies [12] suggest that patients with right ventricular (RV) insufficiency who receive 

an ICD implant experience, improved survival compared to those without RV insufficiency 

but with baseline systolic dysfunction of the left ventricle. Another area of interest pertains 

to the subcutaneous defibrillator, which offers a less invasive and effective form of 

defibrillation therapy compared to traditional catheter-based devices. This technology has 

prompted investigations into maximizing its efficacy. Even in patients with a high body mass 

index, typically associated with lower success rates in subcutaneous ICD systems, positive 

outcomes have been achieved by optimizing the space between the device and the chest wall, 

positioning the pulse generator more posteriorly, and reducing shock impedance values. [13] 

 

 

1.5.2. ABLATION 
 
Transcatheter radiofrequency ablation has replaced antiarrhythmic drug therapy for the 

treatment of various cardiac arrhythmias. This approach offers several advantages, including 

symptom relief, improved functional capacity, enhanced quality of life, and the elimination 

of the need for long-term antiarrhythmic medication. It can also lead to long-term cost 
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savings. However, it is important to note that the procedure carries risks, which may vary 

depending on the specific ablation technique used and the experience of the healthcare 

provider performing the procedure. Therefore, it is crucial to carefully assess the risk-benefit 

ratio of radiofrequency ablation on an individual basis before proceeding with the 

intervention. 

 

 

1.5.2.1. IMPORTANCE OF MAPPING 
 
Indeed, before proceeding to the actual ablation of cardiac tissue, the procedure begins with 

the electrophysiological study of arrhythmia. This study involves the introduction of special 

diagnostic catheters into the heart chambers to electrically map the activity during atrial 

fibrillation, with the aim of understanding the origin and the extent of the issue. In addition 

to electrical mapping, a three-dimensional (3D) morphological mapping of the atria is 

performed. Before the procedure, various imaging options are available, including computed 

tomography, cardiac magnetic resonance imaging, and echocardiography. All data collected 

through these procedures are subsequently processed by specific programs with 3D 

reconstruction algorithms, which provide a more effective and real-time visualization of the 

heart. A clear and detailed representation of regional anatomy is essential to identify the 

region which to perform the ablation in. [14] Real-time visualization is also crucial for the 

catheter placement. In most ablation laboratories, the catheter manipulation is guided by 

fluoroscopy. However, fluoroscopy has the disadvantages associated with exposure to 

ionizing radiation. Often, cardiac mapping technologies and catheters are used in a 

complementary or even overlapping way to obtain maximum real-time information. There 

are advanced technologies that use a mapping catheter, which, through contact with the 

heart's walls, allows an anatomical reconstruction of the cardiac chambers. This technique 

is known as electroanatomical mapping (EAM). EAM systems also facilitate catheter 

navigation by enabling its three-dimensional localization in almost real-time, based on the 

simultaneous recording of spatial information and electrical activity from electrodes on the 

moving catheter. These systems combine anatomical information with electrophysiological 

data. Maps generated by these systems are extremely precise and allow the accurate 

identification of the areas that need to be treated through ablation, significantly reducing 

radiation exposure and radiation dose. [15] 
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1.5.2.2. PROCEDURE 
 
Catheter ablation procedures are performed in an electrophysiology laboratory. [16] In this 

process, three or four electrode catheters are percutaneously inserted into a femoral, internal 

jugular, or subclavian vein and are positioned inside the heart to enable stimulation and 

recording at crucial sites. The effectiveness of trans-catheter ablation is closely tied to the 

accurate identification of the origin site of the arrhythmia. Once identified, an electrode 

catheter is placed directly in contact with the site, and radiofrequency energy is applied 

through the catheter to destroy it. Radiofrequency energy is delivered with wavelengths 

ranging from 300 to 750 kHz during trans-catheter ablation procedures. This process induces 

resistive heating of the tissue in contact with the electrode. Since the degree of tissue heating 

is inversely proportional to the radius to the fourth power, the lesions created by 

radiofrequency energy are small. Typical ablation catheters, with a diameter of 2.2 mm (7 

French) and a 4 mm long distal electrode, create lesions of approximately 5-6 mm in 

diameter and 2-3 mm in depth. [17, 18] Larger lesions can be achieved with larger electrodes 

or with irrigated catheters using saline solution. Although electrical damage may contribute, 

the primary mechanism for tissue destruction by radiofrequency current is thermal damage. 

Irreversible tissue destruction requires the tissue temperature to reach about 50°C. In most 

ablation procedures, the power supplied by the radiofrequency generator is manually or 

automatically adjusted to maintain a temperature between 60 and 75°C at the electrode-tissue 

interface. [19, 20] If the temperature at the electrode-tissue interface exceeds 100°C, plasma 

clots and dried electrode tissue can form, hindering the effective flow of current, increasing 

the risk of thromboembolic complications, and necessitating the disposal of the catheter to 

allow the removal of the coagulated material from the electrode. 

 

 

1.6.  POTENTIAL PREDICTORS 
 
In medicine, the term "Recurrence" refers to the reappearance of the symptoms of a disease 

in a patient who had previously been affected by it and had recovered. Recurrence is 

generally characterized by symptoms of a similar nature to the previous manifestations, but 

in other cases, it can present a more complex and severe clinical picture. To minimize this 

problem as much as possible, increasingly specific treatments have been developed. For 

example, in the SMASH-VT21 study, 128 patients with post-infarction cardiomyopathy and 

a history of ventricular tachycardia or ventricular fibrillation were randomized to therapy 
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with only an ICD (Implantable Cardioverter-Defibrillator) or therapy with ICD plus 

transcatheter ablation, the latter performed using anatomical substrate mapping in sinus 

rhythm. After a follow-up of approximately 2 years, 33% of patients randomized to ICD 

therapy experienced appropriate ICD interventions for arrhythmia recurrence, compared to 

12% of patients treated with transcatheter ablation. [21] In the literature, there are many 

features that are considered to be correlated with recurrence, for example, Saglietto et al. 

[22] writes that the following pre-procedural, easily available, covariates were considered as 

potential candidate variables for the ML models training: age, gender, body mass index 

(BMI), estimated glomerular filtration rate (CKD-EPI formula were used), smoker status 

(active, former, never), hypertension, diabetes, dyslipidemia, history of heart failure, 

coronary artery disease, structural heart disease (valvular heart disease, dilated 

cardiomyopathy, hypertrophic cardiomyopathy), previous stroke/transient ischemic attack, 

presence of cardiac rhythm device (either pacemaker, implantable cardioverter defibrillator, 

or cardiac resynchronization therapy), hyperthyroidism, peripheral artery disease, chronic 

obstructive pulmonary disease, obstructive sleep apnea, CHA2DS2-VASc score, AF type 

(paroxysmal or persistent), history of atrial flutter, previous failed antiarrhythmic therapy, 

pre-procedural sinus rhythm, abnormal EKG (one or more of the following: atrioventricular 

block, bundle branch block, Q waves, ST-T abnormalities, and corrected QT > 460 ms), type 

of procedure (first ablation or re-do procedure), left ventricular ejection fraction (LVEF; %), 

left atrial (LA) anteroposterior diameter (mm), left ventricular end-diastolic volume 

(LVEDV; mL). While Croin et al. [23] writes that LVEF, the presence and extent of 

myocardial fibrosis evaluated through CMR-LGE, predict ventricular tachyarrhythmias in 

patients with ischemic and non-ischemic left ventricular dysfunction. The predictive value 

of LGE is independent of LVEF and whether the cardiomyopathy was of ischemic or non-

ischemic etiology. Additionally, chronic obstructive pulmonary disease, age, general 

anesthesia, ischemic cardiomyopathy, New York Heart Association Class III or IV, ejection 

fraction, presentation with VT Storm, diabetes mellitus, and incessant VT are predictive 

factors. The non-inducibility of VT through PES after ablation is a predictor of VT 

recurrence.  
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2. OBJECTIVES 
 
The issue with many types of interventions for critical and fatal diseases like these is the 

problem of recurrence. An intervention or treatment (pharmacological or otherwise) is 

performed, but clinicians don't know who will remain stable and who will experience the 

same symptoms again, or possibly even in a more severe form. For conditions like 

arrhythmias and heart diseases, extensive and in-depth studies have already been conducted. 

Pharmacological treatments and targeted interventions have been developed, especially in 

the case of ablation procedures. Furthermore, there are ongoing efforts to identify parameters 

that can predict prognosis. Prevention remains the best approach, but many parameters have 

been found, and there are numerous variables with uncertain correlations. In this situation of 

necessity, the techniques of analysis and prediction through Machine Learning are gaining 

traction. These new technologies can assist researchers in identifying parameters related to 

outcomes, and they can establish how these parameters are correlated with outcomes, often 

through various combinations. These techniques also hold promise for predictive purposes. 

The number of research studies and projects that combine medical knowledge with 

engineering is increasing every year. A single professional's role is no longer sufficient to 

address problems in this field. As a consequence, close collaboration between engineers and 

clinicians is increasingly necessary; this is the role of biomedical engineers. In recent years, 

as discussed previously, scientific articles on Artificial Intelligence applied to medical 

research have significantly increased. The aim of this thesis project is to offer engineering 

support for medical research finalized at addressing one of the most pressing and persistent 

problems. The number of analyzed patients is too low to establish scientific evidence, but a 

preliminary analysis has been conducted to develop a promising prototype to continue this 

research and increase the number of patients. The idea for this work is to use various 

Machine Learning techniques, such as Logistic Regression, Support Vector Machine, and 

Deep Learning, particularly Artificial Neural Networks, to discover which features are most 

correlated with outcomes and in what manner. This involves identifying which parameters 

from a patient's medical record can provide clinicians with insights into the likelihood of 

recurrence and how these parameters should be interpreted for this purpose. Furthermore, in 

this research, efforts have been made to integrate parameters obtained from electroanatomic 

mappings, not just for visual consultation, but to develop a dedicated algorithm capable of 

providing meaningful medical values to add to the patient's medical record and the database 
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used for analysis. The idea is also to compare the results obtained from the various 

methodologies used to provide a better and more accurate outcome, as well as to determine 

which of the proposed methodologies is best suited for this task. 

 

 

3. MATERIALS AND METHODS 
 

3.1.  HARDWARE AND SOFTWARE DEVICES  
 
For this study it has been used a computer with a i9 processor and a 64Gb RAM. As regards 

the software part, the program used was the MATLAB development environment in the 

R2023b version, both in the online and desktop versions. Within this development 

environment many toolboxes were used, including Statistic and Machine Learning Toolbox 

and Experiment Manager Toolbox for the analysis part, MATLAB App Designer for 

configuring the user interface, the MATLAB Compiler package for creating an app (all 

toolboxes inherent to this package are explained below). Moreover, parallel calculation has 

been implemented using the Parallel Computing Toolbox, to fully exploit all the processor 

cores, by performing calculations in parallel the risk of having cores that do not work is 

avoidable. The advantage is certainly reducing the calculation time during the execution of 

a program. In this project, the CARTO 3 System, designed and produced by Biosense 

Webster, was used for electroanatomical mapping. 
 

 

3.2. ELECTROANATOMICAL MAPPING SYSTEM 
 
Electroanatomic mapping, particularly when referring to the heart, is a process used to 

identify and chart the distribution in both time and space of electrical signals occurring 

during a specific cardiac rhythm. This technique is especially valuable during episodes of 

tachycardia, a rapid heart rate, as it helps understand how abnormal electrical activity 

develops, from when it starts to the point where the circuit closes. Furthermore, this process 

enables the identification of key target points for ablation, which involves the cauterization 

of specific cardiac areas to restore a normal heart rhythm. [24] 
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3.2.1. BEGINNING 
 
The first non-fluoroscopic mapping system was introduced in clinical practice and marketed 

by a manufacturer founded by Shlomo Ben-Haim. In the following years, other companies 

introduced different systems, each with their unique features, sizes, and limitations, but all 

based on the same fundamental principles. [25] So all these systems, which have naturally 

evolved over time, share some fundamental principles. Each point sampled by a catheter and 

accepted as valid provides essential information, including its precise position in the 

microspace defined by the system, amplitude expressed in millivolts (mV), impedance, and 

activation time concerning a reference point in the cardiac cycle. The collection of sampled 

points is represented in three-dimensional space and in the temporal domain with static and 

dynamic maps of cardiac activation. In recent years, catheters designed solely for "high-

resolution" mapping have been commercially developed, significantly altering the approach 

to interventional electrophysiology. While these catheters, combined with specific hardware 

and software, have varying construction characteristics, they share some design 

philosophies. The use of multiple electrodes allows a faster reconstruction of chambers and 

maps. Reduced electrode spacing and smaller electrode dimensions enhance spatial and 

temporal resolution of potentials. Finally, the flexibility of these catheter supports improves 

the adherence to the chamber walls. Below, in Figure 5, a comparison is shown between one 

of the early images obtained from these systems and an image from a high-resolution 

mapping system. 

 

 

 

Figure 5. | Comparison between two electroanatomic mapping images: on the left, one of the early 
images, and on the right, an image from one of the currently available high-definition systems. 
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3.2.2. OPERATION 
 
The Carto system consists of a low-intensity magnetic field generator composed of three 

coils positioned beneath the patient's chest Figure 6, six skin patches, three on the back and 

three on the patient's chest. Figure 7, a computer for data processing, and a display. 

 

 

 

Figure 6. | Two images related to the Location Pad of the CARTO 3 system. 
 
 

 

 

Figure 7. | Left image shows the correct placement of patches on the patient's back and chest. The right 
image shows the localization of these patches within the reference system of the Location Pad. 

 

To perform 3D electroanatomic mapping of the cardiac chambers, specialized catheters with 

localization sensors in their tips are required. These sensors consist of spirals positioned 

orthogonally along the three spatial axes. The Carto system uses magnetic fields to determine 

the catheter's position and orientation and records intracavitary electrocardiograms from the 

sensors on the catheter's tip. By collecting spatial and electrical information from different 

points, the system reconstructs the real-time geometry of the cardiac chambers and analyzes 

arrhythmia mechanisms and ablation substrates. This process is based on the principle that 

metal spirals generate electric current when exposed to a magnetic field, with the current's 
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intensity depending on the strength of the magnetic field and the orientation of the spirals 

Figure 8. 

 

 

 

 

Figure 8. | Image of the positioning and arrangement of spirals within the catheter used to generate a 
local reference system. 

 

The Carto system employs a triangulation algorithm similar to that used in GPS. The sensors 

on the catheter's tip measure the current intensity in each spiral (along the x, y, and z axes), 

allowing the system to determine the distance between the catheter and each magnetic field 

source. These distances are then used to create a spherical cap representing the possible 

position of the catheter towards each source. However, the catheter can only be located in 

the area where the spheres intersect, thus determining the three-dimensional position Figure 

9. 

 

 

 

Figure 9. | Superior and lateral images of the triangulation-based localization system. 
 

The Carto system can also calculate the catheter's roll, pitch, and yaw, in addition to the x, 

y, and z coordinates. Intracavitary electrocardiograms are recorded and integrated with 
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position information for each endocardial site reached, enabling the creation of the activation 

and cardiac geometry map. 

 

To compensate for artifacts caused by heart and respiration movements, the Carto system 

makes corrections to the map coordinates, using the surface electrocardiogram as a reference 

and anatomical tags. The surface electrocardiogram is synchronized with the activation data 

recorded by the catheter during the map creation. The anatomical reference, which often is 

a skin patch or a catheter fixed inside the heart, is used to correct distortions due to the 

patient's thoracic movements Figure 10. 

 

 

 

Figure 10. | Explanatory image of the interaction between different patches placed on the patient to 
correct distortions due to breathing. 

 

Additionally, the system requires defining a "window of interest," representing the time 

interval, relative to a reference point on the surface electrocardiogram, in which local 

activation occurs, whether early or late compared to the reference. The total length of the 

window of interest cannot exceed the duration of the cardiac cycle in the case of tachycardia. 

The Carto system offers the option to overlay the electroanatomic map with CT or MR 

images acquired before the procedure, allowing verification of anatomical landmarks, 

improvement of cardiac geometry, and more precise guidance during ablation. In the latest 

version, Carto3, two additional modules are available: the CartoUNIVU module, which 

enables overlaying fluoroscopic images with the real-time electroanatomic map, and the 

CartoSound module, which uses intracardiac echocardiography as a tool for monitoring the 

procedure and providing anatomical support in map creation. [26, 27] 
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3.2.3. EXPORT 
 
At the end of a measurement taken with this system, it is possible to download a file 

containing the results. This export includes various pieces of information for each contact 

point, meaning every point on the inner cardiac wall touched by the catheter. Among the 

many details we have, such as Point Index, catheter ID, the most relevant point-to-point 

values include: 

 

• Position Coordinate, specifically three coordinates, one for each of the previously described 

imaginary axes. These are, of course, useful to determine the point's position. 

 

• Angular Coordinate, meaning the three angles that determine the catheter's orientation 

concerning the fixed reference system at the signal acquisition moment. This specific 

information is not relevant to this project. 

 

• Unipolar Voltage value uses a single electrode to record the electrical activity at a specific 

point within the heart. This type of recording measures the amplitude (intensity) of the 

electrical signal at that point. 

 

• Bipolar Voltage value, on the other hand, uses two electrodes positioned at a certain 

distance from each other to record the electrical activity between them. This recording 

provides information about the direction and sequence of electrical impulse propagation 

between the two electrodes. 

 

• Local Activation Time (LAT) value refers to the precise moment when cardiac cells in a 

specific point within the heart activate during the cardiac cycle. LAT represents the time 

elapsed from the beginning of the cardiac cycle or the onset of the electrocardiographic 

(ECG) wave, to when the cardiac cells in a particular region start contracting in response to 

the electrical impulse. In other words, LAT indicates when the electrical impulse reaches 

that specific point and begins triggering the contraction of cardiac cells in that area. This can 

help determine whether a point or an entire region is delayed or early in its activation. 
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• Impedance value is expressed in Ohms and refers to the voltage difference between two 

points in the electrical circuit (i.e., between the electrodes). This voltage difference is 

influenced by the resistance of cardiac tissues. The higher the impedance, the greater the 

electrical resistance offered by the tissues. This is because when an electrical impulse 

spreads through the heart tissues, it encounters a certain resistance, represented by 

impedance. This resistance affects the shape and amplitude of the electrical signals recorded 

by the electrodes. Impedance is primarily used to assess the quality of contact between the 

electrodes or catheters and the heart tissues. A significant change in impedance could 

indicate a contact issue or a less-than-ideal electrode position, which could affect the 

accuracy of electrical activity measurements. The export is downloaded as a digital file, 

available in various formats, with the most used being text files (.txt) and Excel files (.xlsx). 

 

 

3.2.4. EXTRACTION ALGORITHM 
 
This type of analysis, in addition to the image of the endocardial cavities, provides a type of 

point-to-point information, as described above. This means that all the values that can be 

calculated or estimated are referred to the single point selected each time by the catheter. 

In this study the parameters that we want to calculate, starting from this analysis, are: 

 

• Evaluation of the extension and dispersion of late potentials. 

• Point-to-point difference of the bipolar potential with unipolar potential with possible 

identification of more organized regions, in which multiple points with high differences are 

grouped in the same area. 

• Areas of deceleration, this happens when there is a very early and very late potential in a 

short range, i.e. with a large difference in the timing of activation. 

 

In order to comply with this request, an ad hoc algorithm was created. 

The main problem with these mapping systems is that of the entire image displayed on the 

monitor only some points are measured, other values in between are estimated and calculated 

by the system. The created algorithm works only with the values of the points measured for 

a more accurate analysis. Then there is the problem that each patient's heart is of different 

dimensions and positioned with a slight difference in orientation compared to another, it was 

therefore decided to normalize these values by projecting them onto a sphere. More 
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precisely, a sphere of fixed dimensions is constructed, the entire surface of the sphere is 

divided precisely into 14400 faces of equal area, the centroid of the point cloud resulting 

from the measurements carried out is calculated, the centroid is positioned at the center of 

the sphere, and all points are projected from the centroid to the inner surface of this sphere. 

Each face of the surface of the sphere can have only two values: null value if the face has 

not been hit by any projection, otherwise the face takes on the values corresponding to the 

projected point. The number of faces into which to divide the sphere was chosen following 

many tests and that value was selected for which no more than one projected point 

corresponded to each face, this in order not to reduce the accuracy of the analysis and not 

have to make any kind of approximation. The major advantages of this projection are two: 

one referring precisely to the position problem described above, and the other one to the 

ability to calculate the required values. The first one is because the coordinates of each face 

are known a priori and that the dimensions of both the sphere and the faces are fixed, and 

therefore are the same for each measurement. This allows us to compare all patient mappings 

with each other, which would not have been possible without normalization in terms of space 

and orientation. The second one is because without an algorithm like this the export would 

be difficult to understand and then unusable. In the export many values are reported for each 

point, but being able to interpret the distances and differences between the values simply by 

reading them is too difficult and not at all pleasant. Instead, thanks to this algorithm we can 

automatically extract not only the individual point-to-point values but also values, as in the 

case of the required parameters, which are calculated as iterations between values of 

different points. In particular, for the assessment of the extent and dispersion of late 

potentials, the LAT value is used for all projections. Values below a certain threshold (last 

20% between the maximum and minimum values) are considered late, and adjacent late 

points are part of the same delay area. This allows the calculation of the extension and 

position of late potentials as a percentage relative to non-late ones. Following the same 

criteria, positions, and extensions of areas with early potentials are calculated. This helps 

identify deceleration areas, particularly their value. By applying a similar process, 

amplitudes of point-to-point potentials, both bipolar and unipolar, are calculated. The 

difference is calculated for each individual point, and those with values above a certain 

threshold (last 20% between the maximum and minimum values) are considered critical. 

This way, it is possible to assess the presence of regions where multiple points with 

significant differences, i.e., critical values, are clustered in the same area. From this, we 
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calculate the exemption as a percentage of the total points and their position. Below, in 

Figure 11, two images resulting from an execution of the designed program are shown. In 

addition to useful numerical results for the continuation of this project, it was thought that 

the possibility of visually seeing what is being carried out would also be useful for the 

clinician. Methods for providing the clinician with this algorithm intuitively without having 

to have knowledge of the MATLAB development environment, or other prior programming 

knowledge, are explained below. 

 

 

 

Figure 11. | Two images resulting from the extraction algorithm. The upper image depicts the spatial 
distribution of points in the left ventricle measured during an examination with the CARTO 3 system. 

The lower image represents the spherical distribution of the same points. 
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3.2.5. APPLICATION DIFFUSION 
 
In the MATLAB development environment, there is MATLAB App Designer, a toolbox for 

creating graphical user interfaces. Once a project (.prj) is created, in the "Design View" 

section, you can build the graphical part of the interface, defining window dimensions, 

colors, or adding buttons, progress bars, and other components from the component library. 

In the "Code View" section, you need to insert the program within functions for the selected 

components. Once the interface is complete, you can download it as an application using 

specific toolboxes based on the type of disclosure you want to follow. The types of 

distribution are divided into two groups: sharing with other MATLAB users and sharing 

with non-users. 

 

 

3.2.5.1. FOR MATLAB USERS 
 
If you want to share an application with a MATLAB user, you can do that by downloading 

your interface as a toolbox (.mltbx) or as an executable (.mlapp) that can be shared with 

other users. In this case, there is no need to create or install any additional packages because 

the application will use MATLAB to function. If the user does not have MATLAB installed 

on their computer, it is still possible to use the online version and run the application via a 

web browser. The advantages are that the created application takes up very little space, is 

easy to share, and does not encounter any compatibility or executability issues. The only 

drawback is that the end-user must be a MATLAB user. An intuitive diagram is proposed 

below in Figure 12. 
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Figure 12. | Block diagram summarizing the diffusion methods of an application designed in MATLAB. 
 

 

3.2.5.2. DESKTOP APPLICATION 
 
In case you want to create a version of the application for use on a computer where 

MATLAB is not installed or for someone who is not a user, you can use the Application 

Compiler toolbox, which creates a standalone application from the user interface you've 

designed. This solution allows you to distribute the application to those who do not have 

MATLAB, but they must still download MATLAB Runtime, which contains a set of 

libraries that enable its execution. MATLAB Runtime can be downloaded from the website: 

https://www.mathworks.com/products/compiler/matlab-runtime.html, or it can be added as 

a package during the application installation. The advantage is the ability to create an 

application independent of the MATLAB development environment. The disadvantages are 

compatibility and updates. The first one because creating a Windows executable requires a 

computer with a Windows operating system, and the same applies to macOS for Mac and 

Linux. The second one because any updates to the application require installing the new 

version, and the old one cannot be modified. 

 

 

3.2.5.3. ONLINE VERSION 
 
If you want to share the application online, you can use MATLAB Web App Server. To do 

this, create the application as you would for other methods using MATLAB App Designer 

and the MATLAB Web App Compiler toolbox. You create a package that will be hosted on 
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the MATLAB Web App Server, which can be configured locally or in the cloud. In the local 

option, you can host the apps on a server within the local network and allow access to the 

applications to all users via the generated URL without the need to install MATLAB or other 

components. The main drawback is that the computer running MATLAB Web App Server 

acts as a server for users, so to keep the application active, the PC must remain on at all 

times. MATLAB Web App Server is executed on your local computer, so when you turn off 

your computer, the server is interrupted, and the web page with the application becomes 

inaccessible. Alternatively, you can deploy MATLAB Web App Server in the cloud using 

sites such as Amazon Web Services, Microsoft Azure, or Google Cloud Platform. Each of 

these offers paid packages that allow application sharing. For example, to use Amazon Web 

Services, you need a VPN, which is provided by Amazon for a fee. You also need an EC2 

instance to host the application, and the instance costs vary based on storage space. For added 

security, you must use an encrypted key pair (.pem) to access the instance. You must then 

download a copy of MATLAB onto the instance, transfer the files, and run the application. 

Once you have tested and configured security on the instance, you can share the IP address 

or URL of the configured web app server. There is a free trial period for 12 months for 

Amazon Web Services, but the instances are still paid. The only two free instances have low 

performance and limited memory. The VPN is only paid for specific zones; most available 

zones are free. Much of the procedure is explained in the "help" sections of MATLAB and 

Amazon, but not all steps are well described. 

 

 

3.2.5.4. LIBRARY FOR OTHER SOFTWARE 
 
Alternatively, you can convert the .mat file into a function and use the Library Compiler 

toolbox to create a library compatible with other programming languages like C, C++, 

Python, or Java. This way, you can create the web page or application using another 

programming language. This is an advantage for those who are more familiar with other 

languages, especially for desktop applications. For online cases, the advantage is using a 

programming language compatible with most servers. The significant drawback is that by 

reducing the entire script to a function, you can execute limited functions, and not all 

operations that could be done in another way are compatible. 
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3.2.5.5. PROJECT SHARING 
 
First, we tried to follow a free and user-friendly procedure for an end user who does not 

know a development environment like MATLAB. First, we created a new trial account on 

MATLAB because with an institutional account, no procedures could be followed to upload 

your application online. Once the server was set up, we had to access our license on 

MathWorks and authorize the computer's Host ID hosting the server. However, this is not 

possible if the license is not owned. Afterward, the initial idea was to use MATLAB Web 

App Server locally. However, the issue was not having a computer dedicated exclusively for 

this purpose. We then decided to upload it to the cloud and chose one of Amazon's servers. 

We used all the available free options. For the VPN, there are many choices, and for the 

instance, we chose between the two available ones. We then selected the operating system 

and the update to be downloaded onto the instance, created a key pair for access, and 

performed a test. The connection was very slow because the servers are far from Italy or 

Europe, and the VPN had limited performance. The instance was the second problem 

because the specifications were low. In addition to having only a few cores to rely on, the 

memory was also insufficient, with a portion being used to host the operating system, and 

the remaining part was not able to host MATLAB. The same procedure was followed with 

Microsoft Azure and Google Cloud Platform, but the same problems were encountered in 

each attempt. A desktop application was created, but this could only be run on a computer 

with the same operating system as the source computer. Therefore, we thought that the most 

effective solution was not free. After comparing prices, the most cost-effective and practical 

solution was to create a MathWorks account for the end user and upload the application to 

the "Drive" folder of the same account. A link is then provided to access MATLAB Online, 

and once logged in, you can view and run the application in the "Current Folder" section. 

 

 

 

 

 

 

 

 

 

 

 

 



 - 36 - 

3.3.  STUDY COHORT 
 
We retrospectively collected data from consecutive patients referred to the Clinical 

Cardiology and Arithmology Department of the University Hospital of the Ospedali Riuniti 

di Ancona from September 2018 to July 2023. The patients for this study are selected with 

several inclusion and exclusion criteria. The first inclusion criterion is certainly that of the 

presence of some cardiac disease, ischemic or non-ischemic, in the medical record. 

Moreover, of all the patients in the department, all those who had carried out electroanatomic 

mapping, in addition to the classic clinical tests which we will discuss in depth later, were 

selected for this study. To be included in the study cohort the patient must have undergone 

follow-up, otherwise it would be impossible to predict the outcome. Regarding the exclusion 

criteria, the fundamental thing was relevance; of the entire medical record, the features that 

according to the literature are not indicative for the prediction of heart disease were neglected 

and therefore not included in the database. Those features with an excessive number of 

missing values, i.e., and those parameters not common to all patients, were excluded. The 

features with non-heterogeneous binary logical values were also eliminated, this is because 

it is useless to use a parameter that always contains the same value as input for our model, 

they would have been parameters without any statistical significance. 

 

 

3.4.  CLINICAL TESTS 
 
All the patients present in the database, in addition to the medical history conducted by the 

doctor, conducted some clinical tests from which specific values considered risk factors for 

this field of study were extracted. The clinical tests in question are: echocardiogram, 

electrocardiogram, magnetic resonance imaging, electroanatomic mapping and blood tests. 

Obviously, follow-up was then conducted for each patient to verify the patients who relapsed 

and those who did not. 

 

 

3.5.  DATA PREPARATION 
 
The input values for our models, regardless of the machine learning technique used, are 

always the same. The inputs are numerical or binary values, obviously depending on the type 

of variable, and refer to one or more specific parameters emerged from the anamnesis, 

follow-up, or clinical tests. Numerical values are expressed as a percentage or in a specific 
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unit of muscle, while the binary values 0 and 1 often represent the logical "yes/no" value 

which most often indicates whether that parameter is present in the patient or not. Binary 

values also express belonging to two different classes, such as males and females in the "sex" 

parameter. When there are more than two classes then the variable represents a value ranging 

from one to the number of classes to indicate its membership.  According to the literature, 

there are various parameters that can be indicative of some type of heart disease, which is 

why only a few values considered valid for the study conducted were chosen from the entire 

patient medical records. Specifically, the values in question refer to: risk factors and 

pathological conditions, symptoms, characteristics of heart disease, echocardiogram, 

electrocardiogram, magnetic resonance imaging, electroanatomic mapping, reason for the 

procedure, ablation surgery, blood tests. The "recurrence" parameter of the database is 

instead selected as the expected value, wanting to precisely predict this. The value we want 

as the output of our models is a logical one, where the value 1 corresponds to that patient 

who has relapsed and the value 0 to the patient who has not. Specifically, 223 features were 

initially provided for each patient. Following a careful analysis and having applied the 

inclusion and exclusion criteria, 162 features were discarded and 61 were therefore taken 

into consideration for the analysis. One feature, namely "Recurrence" is the variable to be 

predicted. The other 60 used for the study are summarized in Table 2. The "Variables" 

column shows the names or acronyms of the 60 features used for this study. For a better 

understanding, all acronyms or abbreviations are spelled out in full, are listed below, in Table 

3. The type of variable is indicated in the "Type" column. The letters V, B and C correspond 

respectively to: Value, to indicate whether the variable takes on real values, Binary, where 

the values 0 and 1 generally imply the presence or absence of that parameter, and Class, in 

the event that the variable takes on values for a certain range. In the last three columns there 

are the average values for type V variables, the count of the presence of the parameter in the 

case of type B variables and the number of the most present class in the case of type C 

variables. In "Total" they are reported these values for all 220 patients, in "No" the values 

referring to patients who do not relapse and in "Yes" those referring to patients who relapse. 
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Table 2. | The variables used for the study are reported, indicating the type of variable: N for numerical 
value, B for binary, C for categorical. The average values or the count of the presence or absence of the 

variable are also provided for all subjects and for those who have experienced recurrence and those 
who have not.  

  
          

Variables Type   Total 
(n=220) 

Recurrence 

        No (n=175) Yes 
(n=45) 

Age (years) V   55 54 62 
Sex B  M=180/F=40 M=137/F=38 M=43/F=2 
BMI  V   0,0026 0,0026 0,0028 
Hypertension B   87 62 25 
Diabetes mellitus B   15 10 5 
Smoking B   69 49 20 
Family history of MCI B   14 10 4 
OSAS  B   10 7 3 
BPCO  B   8 5 3 
Vascular disease B   34 22 12 
Prior TIA/STROKE B   14 9 5 
Previous angioplasty B   38 28 10 
Bypass surgery B   13 7 6 
FA  B   35 21 14 
HF B   121 80 41 
NYHA Class C   0 0 2 
HFpEF  B   62 44 18 
HFmEF  B   16 16 0 
HFrEF  B   59 34 25 
COVID19  B   25 22 3 
Anemia  B   7 5 2 
Palpitations B   67 55 12 
Dyspnea B   41 32 9 
Lightheadedness B   23 16 7 
Syncope B   13 9 4 
Chest pain B   28 22 6 
Fatigue B   16 9 7 
Dilated cardiomyopathy B   41 30 11 
Ischemic cardiomyopathy B   46 30 16 
Myocarditis B   20 15 5 
Valvular cardiomyopathy B   24 19 5 
VT Idiopathic  B   61 59 2 
FE (%)  V   49,12 50,98 41,91 
LAV (ml/m2)  V   33,71 32,66 39,04 
RVD (mm)  V   37,48 37,40 37,92 
TAPSE (mm)  V   22,48 22,69 21,62 
Mitral valve insufficiency B   174 137 37 
Tricuspid valve insufficiency B   160 130 30 
Aortic valve insufficiency B   54 43 11 
PAPs (mmHg)  V   28,55 27,87 31,12 
LV aneurysm B   22 15 7 
Rhythm B   39 24 15 
T-wave inversion B   36 33 3 
LVEDV (ml/m2)  V   92,58 92,40 93,80 
LGE B   107 97 10 
BEV  B   118 112 6 
Arrhythmic storm B   49 23 26 
TV Paroxysmal  B   74 57 17 
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Ablation (Yes/No) B   155 113 42 
Presence of late potentials B   94 61 33 
Substrate ablation B   139 102 37 
Bipolar endocardial low-voltage area B   76 55 21 
Bipolar endocardial scar area B   59 39 20 
Inducibility (yes/no) B   13 9 4 
HB (g/dl)  V   13,90 13,97 13,63 
RDW  V   13,37 13,24 13,88 
Blood glucose V   98,87 93,82 118,69 
Creatinine V   1,01 0,97 1,16 
Percentage uni/bi potential (%) V   0,314 0,242 0,547 
Percentage LAT area (%) V   11,400 11,701 10,423 
Gradient value (ms) V   9,238 8,842 10,523 

 

 

Table 3. | The full meaning of the acronyms or abbreviations used to indicate the considered variables 
is provided. In cases where the word 'or' is used between two acronyms, it is because some variables 

are presented in the Italian language. 
 

BMI Body Mass Index 

MCI Unexpected Cardiac Death 
OSAS Obstructive Sleep Apnea Syndrome 
BPCO or COPD Chronic Obstructive Pulmonary Disease 
Prior TIA/STROKE Preceding Transient Ischemic Attack or Stroke 
FA or AF Atrial Fibrillation 
HF Heart Failure 
Classe NYHA New York Heart Association functional classification 
HFpEF Heart Failure with Preserved Ejection Fraction 
HFmEF Heart Failure with Mid-Range Ejection Fraction 
HFrEF Heart Failure with Mid-Range Ejection Fraction 
FE o EF (%) Ejection Fraction 
LAV (ml/m2) Left Atrial Volume 
RVD (mm) Right Ventricular Diameter 
TAPSE (mm) Tricuspid Annular Plane Systolic Excursion 
PAPs (mmHg) Pulmonary Artery Pressure 
LV refered to the Left Ventricol  
LVEDV (ml/m2) Left Ventricular End-Diastolic Volume 
LGE Late Gadolinium Enhancement 
BEV Ventricular Ectopic Beats 
TV or VT Ventricular Tachycardia 
HB (g/dl) concentration of Hemoglobin in the Blood 
RDW Red cell Distribution Width 
Percentage uni/bi 
potential (%) 

expansion of areas with high potential difference Unipolar and Bipolar  

Percentage LAT area (%) extension of Areas with delay 
Gradient value (ms) Gradient Value 
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3.6.  TRAINING, VALIDATION AND TESTING 

 
The database used is made up of 220 patients, the division into training sets and test sets was 

made with a percentage of 80% for training and 20% for testing.  Having few samples 

available, we chose to use K-fold cross-validation to evaluate the model. For the purpose of 

validation, it is standard practice to consciously partition the data into training and testing 

sets. The data in the testing set is not utilized for model training, allowing us to mimic real-

world scenarios where the model encounters previously unseen variables. Cross-validation 

is a widely employed technique that extends this approach. It involves repeatedly dividing 

the data into distinct training and testing (validation) sets, known as "folds," with different 

combinations. This iterative process can be performed as many times as needed to generate 

an averaged assessment of model performance. By doing so, it reduces the risk of overfitting 

the model to the data, thereby enhancing the model's ability to make predictions that 

generalize well to a broader population. [28] The number of folds is 3. The parameters that 

were used to evaluate the performance of the various models are: AUC, Sensibility, 

Specificity, Accuracy and Precision. The Area Under the Receiver Operating Characteristic 

Curve (AUC) is a metric employed in binary classification tasks. The Receiver Operating 

Characteristic (ROC) curve plots the true-positive rate against the false-positive rate, and the 

AUC quantifies the portion of the curve area. An AUC of 0.5 corresponds to random 

classification, while an AUC of 1.0 signifies a model that makes flawless predictions. 

Sensitivity, also known as Recall or True Positive Rate, represents the ability of a 

classification model to correctly identify all positive cases present in the test data. A high 

sensitivity indicates that the model is effective in detecting the presence of the class of 

interest, minimizing false negatives. Sensitivity = TP / (TP + FN). Specificity measures a 

model's ability to correctly identify negative cases. It expresses the percentage of true 

negatives compared to the total negative cases and indicates how accurately the model is 

able to distinguish examples that do not belong to the class of interest. Specificity = TN / 

(TN + FP). Precision is a measure of the fraction of positive instances correctly identified 

by the model out of the total number of instances identified as positive. It is calculated as the 

ratio of the number of true positives to the sum of true positives and false positives. Accuracy 

focuses on the accuracy of positive predictions. Precision = TP / (TP + FP). Accuracy, on 

the other hand, is a general measure of the overall correctness of the model. Represents the 

fraction of all correct predictions out of the total number of predictions. Accuracy evaluates 



 - 41 - 

the overall correctness of the model, taking into account both positive and negative 

predictions. Accuracy = (TP + TN) / (TP + TN + FP + FN). [29] 

 

 

3.7.  MACHINE LEARNING METHODS 
 
Artificial intelligence (AI) has promised to revolutionize medicine for over 30 years, and 

there have been technological breakthroughs in recent years that could make this a reality, 

including exponential increases in computing power, big-data processing technologies, 

access to large clinical data sets using electronic health records, and machine learning (ML). 

[30] In the field of medicine, ML has the potential to improve the accuracy of diagnostic 

algorithms and personalize patient treatment. The fundamental concept of ML is to employ 

algorithms that take in input data, apply computer analysis to predict output values within 

an acceptable range of accuracy, discern patterns and trends within the data, and ultimately 

learn from experience. While ML is not a new concept and has been around since the advent 

of modern computing, the idea of a thinking machine has been proposed to harness the 

computational capacity of computers to uncover patterns and draw conclusions that may be 

challenging to attain through conventional statistical methods. These traditional methods 

often depend on human operators to formulate and provide a rule base or assumptions 

regarding correlations for further computer analysis. [31] ML is either founded upon or 

incorporates statistical foundations to underpin its functioning. [32] 

 

 

3.7.1. REGRESSION 
 
Linear regression is arguably the simplest ML algorithm. The central concept in regression 

analysis is to establish a connection between one or more numeric features and a single 

numeric target. Linear regression is an analytical method employed to address regression 

problems by employing a straight line to characterize a dataset. In the case of univariate 

linear regression, which focuses on predicting a target value using just a single feature, it can 

be represented in a slope-intercept form: 

 

! = #! +	#"& 

 

In this representation, #" serves as the slope weight, describing how much the line rises on 

the y-axis for each increment in x. The intercept, #!, indicates the point where the line 
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intersects the y-axis. [33, 34] Linear regression models a dataset using this slope-intercept 

form, with the machine's task being to ascertain values of a and b that enable the determined 

line to best correlate the provided x values with the y values. To be more precise: 

 

#" =
∑(%&%')()&)')
∑(%&%')!      and     #! =	!' − #"&' 

 

Where &, ! are the detected values and &', !' are the theoretical values. Multiple linear 

regression is similar; however, there are multiple weights in the algorithm, each describing 

to what degree each feature influences the target. Basically, there is rarely a single function 

that fits a dataset perfectly. To measure the error associated with a fit, the residuals are 

measured. Conceptually, residuals are the vertical distances between predicted values, !', 

and actual values, !. For multiple linear regression the model is: 

 

! = #! +	#"&" +	#*&* +⋯+	#+&+ 

 

Logistic regression is a classification algorithm where the goal is to find a relationship 

between features and the probability of a particular outcome. Instead of employing the 

straight line generated by linear regression to estimate class probability, logistic regression 

uses a sigmoidal curve to estimate class probability. This curve is determined by the sigmoid 

function: 

 

+ =
1

1 + -&,
 

 

which produces an S-shaped curve that transforms discrete or continuous numeric features 

(x) into a single numerical value (y) between 0 and 1. The key advantage of this approach is 

that probabilities are bounded within the range of 0 and 1 (i.e., probabilities cannot be 

negative or exceed 1). Logistic regression can be either binomial, where there are only two 

possible outcomes, or multinomial, where there can be three or more possible outcomes. [33, 

34] In statistics, the logistic model (or logit model) is a statistical model that shapes the 

probability of an event taking place by expressing the log-odds for the event as a linear 

combination of one or more independent variables. In regression analysis, logistic regression 

(or logit regression) entails estimating the parameters of a logistic model, which are the 

coefficients in the linear combination. Formally, in binary logistic regression, there is a 

single binary dependent variable, coded using an indicator variable, where the two values 

are labeled "0" and "1," while the independent variables can each be a binary variable (two 
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classes, coded by an indicator variable) or a continuous variable (any real value). The logistic 

function is therefore represented as follows:  

 

./012(4) = #! +	#"&" +	#*&* +⋯+	#+&+ 

 

Notice that the right hand side of the equation above looks like the multiple linear regression 

equation. However, the technique to estimate the regression coefficients in a logistic 

regression model is different from that used to estimate the regression coefficients in a 

multiple linear regression model. In logistic regression the coefficients derived from the 

model (e.g., #") indicate the change in the expected log odds relative to a one unit change in 

&", holding all other predictors constant. Defined p as the probability, the multiple logistic 

regression model can be written as follows:  

 

4 =
--".	-#%#.	-!%!.⋯.	-$%$

1 + --".	-#%#.	-!%!.⋯.	-$%$
 

 

p is the expected probability that the outcome is present; &" through &+ are distinct 

independent variables; and #" through #+ are the regression coefficients. In this thesis work, 

the first machine learning method was chosen to use a model based on multinomial logistic 

regression. The choice of a logistic regression was made because the variable to be predicted 

is binary, so the outputs we expect can only be 0 or 1. Multinomial because the parameters 

used as predictors are multiple. In MATLAB, in the function used for the regression, it was 

specified that the model was linear and that the distribution was binomial. Several models 

equal to all the combinations of five variables were proposed, for each combination the test 

performance was calculated to see which was the best. 

 

 

3.7.2. SUPPORT VECTOR MACHINE (SVM) 
 
Support Vector Machines (SVMs) are one of the cornerstones of machine learning and are 

particularly powerful for binary classification. In this chapter, we will delve into the theory 

behind SVMs, including the details of how to find the optimal hyperplane and the 

optimization problem. Furthermore, we will explore the use of nonlinear kernels, including 

the polynomial and sigmoid kernels. Support Vector Machines (SVMs) are a machine 

learning model used for both classification and regression tasks. The primary goal of an 

SVM is to find an optimal hyperplane in a multidimensional space that can effectively 
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separate different data classes. This hyperplane is chosen to maximize the margin between 

classes, which is the distance between the hyperplane and the nearest data points from each 

class, referred to as "support vectors". The equation of a hyperplane in an N-dimensional 

space is given by: 

 

61# + #! = 0 

 

Where: 

 

• # is a weight vector that determines the orientation of the hyperplane. 

• 6	is an input vector. 

• #!	is the bias term that regulates the position of the hyperplane relative to the origin. 

 

In a Figure 13, the left panel shows the separable case. The decision boundary is the solid 

line, while broken lines bound the shaded maximal margin of width 2M = 2/||#||. The right 

panel shows the non-separable (overlap) case. [33, 34] The points labeled 8"2
∗ 	are on the 

wrong side of their margin by an amount 82
∗	= M82; points on the correct side have 8"

∗
 = 0. 

The margin is maximized subject to a total budget 84 ≤ constant. Hence, 82
∗
 is the total 

distance of points on the wrong side of their margin. 

 

 

 

Figure 13. | Explanatory image of the theory behind the Support Vector Machine method in a linear 
case. 

 

Consider a 4-dimensional real-valued space (e.g., ℝ4). An optimal separating hyperplane is 

essentially an 4-1 dimensional affine space residing within the larger 4-dimensional space. 

For 4=2, this affine space is simply a one-dimensional line, while for 4=3, it is a two-

dimensional plane. For higher dimensions, this affine space is known as a hyperplane. This 



 - 45 - 

is certainly challenging (if not impossible) to visualize, but it can be conceptually grasped. 

Note that "affine" refers to a hyperplane that doesn't necessarily pass through the origin (or 

the zero element) of the larger space. If we consider elements in the 4-dimensional space, 

that is, 6 = (&", … , &*)∈	ℝ4, such an affine hyperplane 4-1 dimensional is defined by the 

following equation: 

 

#! +	#"&" +⋯+	#5&5 = 0 

 

or equivalently:  

 

#! +<#2

5

26"
&2 = 0 

 

We can construct a maximum-margin hyperplane (MMH), which is the separation 

hyperplane that is farthest from any training observations. First, you compute the 

perpendicular distance from each training observation 6! to a given separation hyperplane. 

The closest perpendicular distance from a training observation to the hyperplane is known 

as the margin. MMH is the separation hyperplane where the margin is the largest. This 

ensures that it is the farthest minimum distance from any training observation. The 

classification procedure is then simply a matter of determining which side a test observation 

falls on. Such a classifier is known as a maximum-margin classifier (MMC). We hope that 

a wide margin on the training observations also leads to a wide margin on test observations 

and therefore provides a good classification rate. However, note that we must be cautious to 

avoid overfitting when the number of feature dimensions is high. In this case, overfitting 

means that the MMH fits the training data very well but can perform quite poorly when 

exposed to test data. One of the key features of MMC (and subsequently of SVM) is that the 

position of the MMH depends solely on the support vectors, which are the training 

observations that lie directly on the margin boundary, but not on the hyperplane. See points 

A, B, and C in Figure 14. 
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Figure 14. | Image related to explaining the search for the best hyperplane. 
 

This means that the position of the MMH does NOT depend on other training observations. 

The MMH is the solution to the following optimization procedure:  

 

		
max@
#, #!

 

 

ABCD-E2	2/				+4(64
1# + #!) ≥ @,				1 = 1,… ,G 

 

 

Where: 

 

• # is a weight vector that determines the orientation of the hyperplane. 

• #! is the bias term that regulates the position of the hyperplane relative to the origin. 

• (64 , +4)	are the training points, with 64 	representing the input vector and +4 	the class label 

(+1 or -1). 

 

In many cases, the data is not linearly separable in the original feature space. This is where 

nonlinear kernel functions come into play. A kernel function is a transformation that maps 

the data into a higher-dimensional space where linear separation is possible. An example in 

Figure 15. 
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Figure 15. | Explanatory image on the utility of using nonlinear kernel functions. 
 

Common examples of nonlinear kernel functions include the Radial Basis Function (RBF) 

kernel, the polynomial kernel, and the sigmoid kernel. [33, 34] The Radial Basis Function 

(RBF) kernel is defined as:  

 

H(6", 6*) = expK−
||6" − 6*||*

2N*
O 

 

Where ||6" − 6*|| is the Euclidean distance between points 6" and 6*, and N is a scale 

parameter. 

 

The polynomial kernel is defined as: 

 

H(6", 6*) = 	 (6"
16* + E)7 

 

Where P is a positive integer representing the degree of the polynomial, and c is a constant. 

 

The sigmoid kernel is defined as: 

 

H(6", 6*) = 2QRℎ(#!6"
16* + #") 

 

Where #!	and  #" are parameters that regulate the shape of the sigmoid function. 

 

The analysis using Support Vector Machine was conducted with specific MATLAB 

functions. Specifically, the classification problem has been solved, the output variable to be 

predicted is always of a binary logical type, hence with only the values 0 and 1. The 

"ClassName" is defined and it is used to name the output classes, this helps the algorithm to 

understand that it is a classification and by defining this parameter as “[False True]” it helps 

the algorithm to understand that the variable to be predicted is binary, and that therefore the 

outputs it should expect will be “False ” in the case of patients who do not relapse and “True” 
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in the case of patients who relapse. Another parameter defined was the "BoxConstraint", it 

is a positive number that determines the "rigidity" of the margin. Larger “BoxConstraint” 

values correspond to tighter margins, making the model more sensitive to classification 

errors on training data. Conversely, smaller values of “BoxConstraint“ lead to wider 

margins, making the model more tolerant to misclassification on training data, but 

potentially at the expense of lower generalization ability. The “Solver” parameter is another 

parameter that has been defined, this specifies the algorithm used to solve the optimization 

problem associated with training the SVM. The solver determines how the optimization 

problem underlying the search for support vectors and associated weights is solved. The two 

main values are: “SMO” (Sequential Minimal Optimization), this is the default algorithm. It 

is based on minimal sequential optimization and is particularly effective for moderately sized 

problems. The minimal sequential approach divides the optimization problem into smaller 

subproblems, iteratively optimizing the weights associated with pairs of training examples. 

The second is “ISDA” (Iterative Single Data Algorithm), this solver focuses on a single 

training example at a time. It is useful when working with very large datasets where storing 

the complete kernel matrix might be prohibitive. The “KernelFunction” parameter specifies 

which type of function you want to use, while the “KernelScale” parameter optimizes the 

predictors for the “KernelFunction” specification. First of all, a linear analysis was done 

using Support Vector Machine, the "ClassName" was specified, the "KernelFunction" was 

defined as "Linear" to indicate a linear analysis, "BoxConstraint" was set to 100 to strongly 

penalize the classification errors, trying to obtain a separation hyperplane that separates the 

classes more rigorously. The "Solver" has been left with the default value, this is because 

the chosen variables are only used 5 at a time as predictors so we have no need for 

optimization algorithms that take space into account. The second analysis done with Support 

Vector Machine was not linear. The parameters have all remained as indicated before except 

the "KernelFunction" which was defined as "rbf" because the radial basis function was 

chosen as the kernel. This is a great choice when it comes to capturing complex, non-linear 

relationships in your data. This kernel is flexible and can adapt to a wide range of data 

distributions. Then the "KernelScale" parameter with the value "Auto" was also added 

because we wanted to leave the algorithm the possibility of inserting the most suitable value 

for the type of dataset provided. 
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3.7.3. ARTIFICIAL NEURAL NETWORK (ANN) 
 
The Artificial Neural Networks (ANNs) are computational models inspired by the structure 

and functioning of the human brain. They have become a key tool in machine learning and 

data processing. In this chapter, we will explore how ANNs work, their fundamental 

components, and how they are trained for classification and regression tasks. ANNs are 

comprised of a series of interconnected layers of artificial "neurons" or nodes. The basic 

structure of a neural network includes the following layers Figure 16: 

 

• Input Layer: This layer accepts raw input data and passes it to the rest of the network. 

 

• Hidden Layers: These intermediate layers, which can be one or more, perform complex 

computations to learn intermediate representations of the data. 

 

• Output Layer: This layer produces the final results of the network. 

 

 

 

Figure 16. | Image describing the classical architecture of an Artificial Neural Network and its division 
into layers composed of different interconnected neurons. 

 

Each connection between nodes has an associated weight that models the importance of each 

connection. The functioning of an artificial neuron is similar to that of a biological neuron. 

An artificial neuron receives input from previous neurons, computes a weighted sum of the 

inputs, applies an activation function, and produces an output. The formula for a neuron can 

be expressed as follows: 

 

+ = T U<(V464)

+

46"
+ CW 
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Where: 

 

• y is the output of the neuron. 

• T() is the activation function. 

• 64 	represents the inputs from the previous neuron. 

• V4are the weights associated with the inputs. 

• b is the bias term. 

 

More precisely, [33, 34] the Input 64: Every artificial neuron receives input from one or more 

previous neurons or input data. These inputs are multiplied by the associated weights V4. 

The weights represent the importance of each input in the neuron's computation. The 

weighted sum: the products of the weights V4	and the inputs 64 	are summed. This weighted 

sum represents the level of activation of the neuron, i.e., how "activated" the neuron is based 

on the inputs. The Bias term b: It is an additional parameter that influences the neuron's 

activation. This term allows shifting the neuron's output upward or downward. Basically, the 

bias helps better model the neuron's behavior. Lastly, the Activation Function T(): the 

weighted sum (previous output) is then processed through an activation function. The 

activation function introduces nonlinearity into the neuron's output. Common activation 

functions include the sigmoid function, the Rectified Linear Unit (ReLU) function, the 

hyperbolic tangent (tanh) function, among others, Figure 17. 

 

 

 

Figure 17. | Three graphs related to activation functions for Artificial Neural Networks. On the left, a 
Sigmoid function; in the center, a Hyperbolic Tangent function; and on the right, a Rectified Linear 

Unit (Relu) function. 
 

Activation functions are crucial components of ANNs as they introduce nonlinearity into the 

model. The mentioned activation functions are as follows: 
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• Sigmoid:  

N(X) =
1

1 + -&8
 

 

• ReLU (Rectified Linear Unit): 

T(X) = max	(0, X) 
 

• Hyperbolic Tangent (tanh): 

 

tanh(X) =
-8 − -&8

-8 + -&8
 

 

Training a neural network involves optimizing the weights and biases so that the network 

can make accurate predictions on the data. The most common training algorithm is 

backpropagation with gradient-based optimization, where the weights are updated iteratively 

to minimize a cost function. The cost function measures the error between the network's 

predictions and the actual values. A common cost function for classification is "cross-

entropy," while for regression, mean squared error (MSE) is often used. Artificial Neural 

Networks (ANNs) are known for their ability to learn from complex and nonlinear data. This 

makes them suitable for a wide range of applications, including image recognition, natural 

language processing, financial forecasting, and more. Their adaptability is another strong 

point, as they can be used to solve classification, regression, and clustering problems. A 

distinctive advantage of ANNs is their ability to detect complex patterns in data. They can 

uncover nonlinear relationships and capture subtle details, making them effective in 

situations where other machine learning techniques might fail. Additionally, ANNs exhibit 

a remarkable tolerance to noise in data and a good generalization ability, meaning they can 

make accurate predictions on new data. ANNs can be executed in parallel on specialized 

hardware, speeding up the training and evaluation process. This aspect contributes to their 

efficiency in computationally intensive applications.  However, there are also disadvantages 

associated with the use of Artificial Neural Networks. Firstly, they require significant 

computational resources, including computing power and memory. Training large neural 

networks on extensive datasets can demand expensive hardware. A common issue associated 

with ANNs is overfitting, which occurs when the network fits too closely to the training data 

and does not generalize well to test data. To mitigate overfitting, regularization techniques 

are often necessary. Furthermore, ANNs can lack interpretability. Understanding how a 

neural network makes decisions can be elusive, which can be problematic in applications 

requiring transparency. Another challenge is the need for a large amount of training data to 
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achieve high performance. In some situations, there may not be enough data available to 

train an effective network. Training complex neural networks can be time-consuming, 

especially on large datasets. It's also important to note that ANNs may struggle to handle 

minority classes in imbalanced classification problems if the training dataset has few 

examples for those classes. Finally, the choice of parameters, such as the number of layers, 

the number of nodes, and the activation function, may require a lot of experimentation and 

optimization. In general, Artificial Neural Networks are a powerful and flexible tool, but it's 

essential to carefully consider the specific advantages and disadvantages for the problem at 

hand before deciding to use them as a solution. Specifical functions in MATLAB were also 

used in this case. The output variable is always of the same type. Here the parameters that 

have been specified are the "LayerSize" which specifies how many layers there are and how 

many neurons are contained in each layer; and the “Activation” parameter which indicates 

which activation function you want to use. Experiment Manager Toolbox is a MATLAB 

tool that was used to establish what was the best combination of parameter values to adjust. 

The functionality of the toolbox is very simple and intuitive, you choose the input table, i.e. 

the database you want to provide. You specify which of the variables present is the variable 

to predict and select the number of predictors. In the case of this study, 5 predictors were 

selected at random, the optimization analysis of the parameters was carried out, a new 

combination of 5 predictors was chosen and the optimization analysis was conducted again. 

At the end of the processing, a model was chosen from among those with the highest 

performance for our dataset. The parameters were saved and inserted into the classification 

function. In detail: the “LayerSize” is “[10 10 10] and the “ActivationFunction” chosen was 

“Relu”. 

 

 

4. RESULTS 
 
The results obtained, which follow, include the performance values of the various models 

for each Machine Learning technique adopted. These values are compared, the presence or 

absence of features, the recurrence in the various models and in the different methods used 

are then also compared and discussed. For each model, we then analyze and discuss how the 

features referring to that model affect the predictability of the output, i.e., how much they 

are correlated with it and whether they are negatively or positively correlated. To do this, the 

parameters associated with the various models are analyzed. In the case of linear 
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classifications, you will have a formula, this is for the case of Logistics Regression for both 

the Linear SVM, consisting of an intercept value and five coefficients associated with the 

five featurs taken each time and indicating their weight with respect to the output. Therefore, 

in the case of linear models, the interpretability of the results is guaranteed, i.e., every detail 

of the results obtained is known. In the case of non-linear models, however, we choose to 

observe the non-linearities at the expense of interpretability. Hence, it is not easy to make 

sense of what has been achieved. In the case of the non-linear SVM, since it was not possible 

to assign a weight directly to the individual variables, SHAP Values were used. SHAP, an 

acronym for SHapley Additive exPlanations, is a theoretical approach based on game theory 

and is often used in the interpretation of Machine Learning models. The goal of SHAP is to 

fairly attribute the contribution of each feature to a model's prediction, in order to obtain 

more understandable and transparent explanations. SHAP can be used to explain model 

behavior on a global scale, providing a general understanding of the relationships between 

features and model output, and on a local scale, specifically explaining the prediction for a 

particular observation. Shapley values indicate how much each feature contributes to the 

difference between the model's prediction and its average prediction. They can therefore be 

used to interpret the results even though they are not coefficients; in fact, the coefficients of 

a linear SVM are directly associated with the features, allowing a clearer interpretation. Each 

coefficient represents the effect of the respective feature on the model's decision. A nonlinear 

SVM with Local Shapley Values, on the other hand, can capture complex nonlinear 

relationships between features and model output. Thus, we chose to explore both options 

and evaluate which one provides a better understanding of the model with respect to the 

specific requirements of the problem. 

 

 

4.1.  LINEAR 
 

4.1.1. LOGISTIC REGRESSION 
 
The best six logistic regression models were reported and analyzed. The following table, 

Table 4, shows the variables assigned to each model. This allows us to identify the most 

present parameters and give an idea of the frequency with which they are present. 
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Table 4. | The most recurrent variables in the six selected models among the best results of logistic 
regressions are reported, with "X" indicating the presence of the variable in that model. 

 

  VARIABLE     

    
MODEL 

1 
MODEL 

2 
MODEL 

3 
MODEL 

4 
MODEL 

5 
MODEL 

6   

  NYHA Class X X X X X X   
  PAPs X X X X X X   
  Rhythm X             
  Percentage LAT area          X     
  Gradient value X X X X X X   
  HFrEF       X       
  Hypertension X             
  Sex   X       X   
  Creatinine   X           
  HFmEF     X         
  Arrhythmic storm     X X X X   

 

The performance values of the six selected models are shown in Table 5. 

 

Table 5. | The performance parameters of the models from the analyses conducted with logistic linear 
regression are reported. The performances are expressed in terms of AUC, Accuracy, Precision, 

Sensibility, and Specificity. 

 AUC Train AUC Test Accuracy Precision Sensibility Specificity 
MODEL 1 0,997 0,975 0,881 0,700 0,537 0,960 
MODEL 2 0,980 0,934 0,875 0,696 0,532 0,951 
MODEL 3 0,991 0,925 0,867 0,691 0,529 0,948 
MODEL 4 0,986 0,925 0,848 0,687 0,527 0,945 
MODEL 5 0,986 0,925 0,837 0,685 0,527 0,941 
MODEL 6 0,986 0,925 0,833 0,685 0,525 0,940 
 

Table 6, however, shows the parameters of the equation resulting from the logistic regression 

analysis. In the first line we find the value of intercept, while in the other lines the variables 

for each model are listed. Each column corresponds to a model, and the coefficients of that 

specific model relating to that specific variable are inserted in the intersection between rows 

and columns. This is used to realize the influence of the variable on the output. The various 

weights can be compared within the same model, and it can be verified in which direction 

the variable affects the output. 
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Table 6. | The coefficients of the polynomial resulting from logistic linear regression analyses are 
reported. In the "Variable" column, features are listed, and the values of each feature are inserted in the 

column of the respective model. 
 

  VARIABLE COEFFICIENT   
    MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 MODEL 6   

  Intercept -21,007 -22,114 -12,052 -26,637 -12,457 -21,434   
  NYHA Class 3,889 5,161 1,281 5,060 2,697 2,548   
  PAPs 0,262 0,279 0,144 0,313 0,124 0,383   
  Rhythm -0,944             
  Percentage LAT area          0,043     
  Gradient value 0,492 0,682 0,375 0,441 0,271 0,223   
  HFrEF       2,104       
  Hypertension 2,638             
  Sex   -98,661       -104,115   
  Creatinine   -1,133           
  HFmEF     -98,818         
  Arrhythmic storm     2,808 0,208 1,223 3,089   
 

4.1.2. LINEAR SVM 
 

To study the presence and frequency of features in the linear SVM model, a table, Table 7, 

similar to the one used in the regression results, is reported. Also, in this case the best six 

models were selected. 

 

Table 7. | The most recurrent variables in the six selected models among the best results of linear 
support vector machines are reported, with "X" indicating the presence of the variable in that model. 

 

  VARIABLE    

    
MODEL 

1 
MODEL 

2 
MODEL 

3 
MODEL 

4 
MODEL 

5 
MODEL 

6 
  FE X             
  TAPSE X X X         
  PAPs X X X X X X   
  Arrhythmic storm X X X X X X   
  Gradient value  X X X X X X   
  Rhythm   X           
  T-eave inversion     X X       
  TV Paroxysmal       X       
  Creatinine         X X   

  
Percentage uni/bi 
potential         X     

  Percentage LAT area           X   
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Also in this case, the performance values of the selected models have been reported, Table 

8 

 

Table 8. | The performance parameters of the models from the analyses conducted with logistic linear 
regression are reported. The performances are expressed in terms of AUC, Accuracy, Precision, 

Sensibility, and Specificity. 
 

 AUC Train AUC Test Accuracy Precision Sensibility Specificity 
MODEL 1 0,996 0,992 0,884 0,708 0,538 0,961 
MODEL 2 0,993 0,988 0,871 0,701 0,536 0,956 
MODEL 3 0,993 0,988 0,867 0,692 0,535 0,952 
MODEL 4 0,984 0,979 0,851 0,655 0,532 0,949 
MODEL 5 0,984 0,979 0,821 0,648 0,529 0,942 
MODEL 6 0,984 0,979 0,817 0,619 0,528 0,940 
 

In order to interpret the models, i.e., the equations relating to each model, Table 9 shows the 

intercepts and coefficients of each equation relating to the various models. 

 

Table 9. | The coefficients of the polynomial resulting from linear analyses of support vector machines 
are reported. In the "Variable" column, features are listed, and the values of each feature are inserted 

in the column of the respective model. 
 

  VARIABLE COEFFICIENT   
    MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 MODEL 6   

  Intercept -8,301 -3,474 -1,096 -2,207 -9,353 -1,096   
  FE -0,046             
  TAPSE 0,119 0,04 0,076         
  PAPs 1,963 0,234 0,287 0,179 0,297 0,335   
  Arrhythmic storm 1,963 3,635 4,217 4,906 4,751 3,971   
  Gradient value  0,155 0,148 0,338 0,175 0,288 0,111   
  Rhythm   1,818           
  T-eave inversion     2,573 1,769       
  TV Paroxysmal       0,408       
  Creatinine         -1,268 -2,408   

  
Percentage uni/bi 
potential         0,328     

  Percentage LAT area           0,007   
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4.2.  NON-LINEAR 
 

4.2.1. KERNEL SVM 
 
The best six models were chosen for the analysis carried out with non-linear SVM. Table 10 

shows the variables associated with the chosen models. 

 

Table 10. | The most recurrent variables in the six selected models among the best results of support 
vector machines with radial basis function (rbf) kernel are reported, with "X" indicating the presence of 

the variable in that model. 
 

  VARIABLE    

    
MODEL 

1 
MODEL 

2 
MODEL 

3 
MODEL 

4 
MODEL 

5 
MODEL 

6 

  
Bipolar endocardial 
scar area X X X X X X   

  Gradient value X X X X X X   
  VT Idiopathic X X X X X X   
  LV aneurysm   X           
  Rhythm           X   
  FA X X           
  BPCO X   X X   X   
  HFmEF         X     
  BMI     X         
  Diabetes mellitus       X       
  Family history of MCI         X     

 

In Table 11 you can find the performance results of the models chosen for the non-linear 

SVM. 

 

Table 11. | 11 The performance parameters of the models from the analyses conducted with logistic 
linear regression are reported. The performances are expressed in terms of AUC, Accuracy, Precision, 

Sensibility, and Specificity. 
 

 AUC Train AUC Test Accuracy Precision Sensibility Specificity 
MODEL 1 0,995 0,986 0,889 0,724 0,537 0,969 
MODEL 2 0,994 0,984 0,878 0,711 0,535 0,961 
MODEL 3 0,986 0,967 0,867 0,692 0,534 0,953 
MODEL 4 0,983 0,967 0,854 0,675 0,533 0,949 
MODEL 5 0,967 0,945 0,832 0,644 0,530 0,947 
MODEL 6 0,954 0,945 0,822 0,629 0,528 0,944 
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For the case of non-linear models, it is not possible to have coefficients directly referring to 

the variables, we therefore chose to use the SHAP values. More specifically, the average of 

the absolute value of the SHAP Values is reported for each model. In Figure 18 you can see 

how individual variables influence the output in that specific model. 

 

 

 

Figure 18. | For each model of support vector machine with rbf kernel function, the SHAP values of the 
features are reported. Specifically, the mean of the absolute value. 
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4.2.2. ARTIFICIAL NEURAL NETWORK 
 
As the last method used, we implemented Artificial Neural Networks, built with input layers 

of 10 connections, a hidden layer of 10 and an output layer of 10 connections, and using the 

"relu" activation function. Table 12 shows the best six models built with 5 variables. 

 

Table 12. | The most recurrent variables in the six selected models among the best results of artificial 
neural networks are reported, with "X" indicating the presence of the variable in that model. 

 
  VARIABLE    

    
MODEL 

1 
MODEL 

2 
MODEL 

3 
MODEL 

4 
MODEL 

5 
MODEL 

6 
  Sex X X X X X     
  Diabetes mellitus X     X       
  NYHA Class X X X   X X   
  VT Idiopathic X X X X       
  Gradient value X X X X X X   
  BPCO   X           
  FA     X         
  HFpEF       X       
  PAPs         X X   
  Rhythm         X     
  BMI           X   
  TAPSE           X   

 

Table 13 shows the performances obtained from the chosen models. 

 

Table 13. | The performance parameters of the models from the analyses conducted with logistic linear 
regression are reported. The performances are expressed in terms of AUC, Accuracy, Precision, 

Sensibility, and Specificity. 
 

 AUC Train AUC Test Accuracy Precision Sensibility Specificity 
MODEL 1 0,993 0,986 0,887 0,710 0,537 0,965 
MODEL 2 0,990 0,982 0,874 0,702 0,535 0,963 
MODEL 3 0,986 0,978 0,861 0,686 0,533 0,956 
MODEL 4 0,986 0,978 0,843 0,662 0,531 0,952 
MODEL 5 0,984 0,974 0,817 0,631 0,530 0,950 
MODEL 6 0,984 0,973 0,812 0,612 0,529 0,948 
 

Figure 19 shows the mean(|SHAP|) values. This method was used to provide an 

interpretation to the previously chosen models. As a matter of fact, thanks to these graphs 

we can see the importance that each variable assumes in the model.  
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Figure 19. | For each artificial neural network model, the SHAP values of the features are reported. 
Specifically, the mean of the absolute value. 
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5. DISCUSSION 
 
From Table 4 it can be seen that the most present variables are: NYHA Class, PAPs, Gradient 

value and Arrhythmic storm. In particular, the first three are present in all models, the last is 

present in four out of six models. This means that in the last four models, once the four 

variables listed have been fixed, the fifth variable is interchangeable between the various 

models, these are: HFmEF, HFrEF, Percentage LAT area, and Sex. In models two and six, 

however, the Arrhythmic storm variable (present in model six) is interchangeable with the 

Creatinine variable present in model two. From Table 6 we can obtain a comparison between 

the variables. The coefficients are all comparable to each other because multiplied by the 

assigned variable they have approximately the same orders of magnitude. This is important 

because sometimes the coefficients can be larger than others but then multiplied by the 

values of their variable, they turn out to have a lower impact. For example, in model two the 

coefficient of Creatinine is worth -1.133 and that of the PAPs variable is worth 0.279. In 

absolute value it seems that the variable Creatinine has a greater incidence than PAPs, but if 

we consider that in our dataset Creatinine has a range between [0.06 – 2.4], while PAPs have 

a range between [15 – 60], it is noticeable that the incidence of the PAPs variable is 

approximately five times greater than the Creatinine one. Among the four most recurring 

variables, the first three, i.e., those that are always present, also have a high incidence, while 

Arrhythmic storm, despite being very present, does not have an incidence as great as the 

others. The Sex variable, when present, has a greater impact than the others. The HFmEF 

variable in the model in which it appears has a high incidence compared to the other 

variables. Both the Sex variable and HFmEF are inversely proportional to output. In general, 

all the variables have the same orders of magnitude, so we cannot speak of a greater 

importance than the other variables, the most we can say is that in some models some 

variables matter a little more. Referring to Table 7 we can see that the variables PAPs, 

Arrhythmic storm and Gradient value are present in all six models. The TAPSE variable is 

present half of the time, that is, in three out of six models. In these cases, once these first 

four values have been fixed, we note that the variables FE, Rhythm and T-wave inversion 

are interchangeable with each other, respectively in the first three models. In the last two 

models, however, it is noted that the Percentage uni/bi potential and Percentage LAT area 

variables deriving from the analysis of the electroanatomical mapping system are 

interchangeable. As well as the TAPSE and TV Paroxysmal variables if the variable T-wave 
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inversion is fixed. As regards the coefficients, consider Table 9. First of all, it can be said 

that the PAPs variable is the one with the greatest impact compared to the other variables in 

each model. In the first model in particular, the order of magnitude reached by multiplying 

the range of values [15 – 60] by the assigned coefficient is greater than for the other variables. 

In the other models, however, it takes on approximately the same order of magnitude as the 

other variables, so we cannot speak of excessive relevance even though it is a little more 

influential than the other parameters. The Gradient value coefficients are always low 

compared to the others, as in the case of regressions, but having a range between [0 – 41] it 

is the second most influential variable after PAPs. Even in this case, anyhow, we are talking 

about an incidence that is a little greater than the others but not of greater relevance because 

the order of magnitude achieved is always approximately the same as that of the other 

variables. In the case of linear analyses, we have that six variables: PAPs, Rhythm, 

Percentage LAT area, Gradient value, Creatinine, and Arrhythmic storm, are present in both 

cases. For both regressions and linear SVM there are five non-recurring variables in both 

methods. As regards the variables in common between the two analyses, it can be said that 

they always have approximately the same coefficient values, i.e., between the various 

models if a range is established for the value of the coefficients of each individual variable, 

these are comparable between the two techniques. In addition to the same range, they also 

have the same sign, that is, if the coefficients of a variable are always positive in the 

regressions, they are also always positive in the linear SVM. This means that they always 

influence the output in the same direction and with the same weight. The results of the linear 

SVM therefore confirm those obtained from the regressions but also adding other variables. 

The most frequent variables, analyzing Table 10, are: Gradient value, Bipolar endocardial 

scar area, VT Idiopathic, and BPCO. The first three variables are present in all the selected 

models, while the last one is present in four out of six models. Once these four variables 

have been fixed for models one, three, four and six, the variables FA, BMI, Diabetes and 

Rhythm are interchangeable with each other. In the case of models one and two, if the FA 

variable is fixed, in addition to the three always present, the BPCO and LV aneurysm 

variables are interchangeable. Instead, by analyzing Figure 18 we can get an idea of how 

much these variables weigh on the output. Not having coefficients, it is not possible to have 

an equation that explains the model, but it is still possible to interpret it using the SHAP 

values. These allow us to get an idea of the global importance of the features. Gradient value 

has the greatest weight in all models. The other variables, excluding those with minimum 



 - 63 - 

weight, fluctuate more or less in the same range of values. The Bipolar endocardial scar area 

variable is the one that seems to have the greatest relevance among the variables with an 

intermediate value range. VT Idiopathic, however, always has a fair incidence when it is 

present, only in model 2 does the FA variable appear to have a greater weight than VT 

Idiopathic. Among the variables with minimum weight are BPCO present in four models 

and with low relevance, the variables Family history of MCI and HFmEF also seem to have 

low relevance when they are present. The others have a minimal impact on the output, but 

still proportional to those with slightly higher values. It can be seen that the most present 

variables are: Gradient value, NYHA Class, Sex and VT Idiopathic. In particular, the 

Gradient value variable is present in every model, while Sex and NYHA Class occur in five 

of the six selected models, and VT Idiopathic in four of the six overall. In models one, two 

and three, if we fix the variables Sex, NYHA Class, VT Idiopathic and Gradient value we 

can see that the variables Diabetes, BPCO and FA are interchangeable with each other. If 

we also consider models one and four, we can see that the interchangeable variables are 

NYHA Class and FA. In the last two models the variables NYHA Class, Gradient value and 

PAPs recur while Sex and Rhythm are replaced by BMI and TAPSE. Consider Figure 19, in 

terms of relevance, the variable that prevails most is NYHA Class in the models in which it 

is present (1,2,3,5,6), with a value always close to 0.15. Another variable that is relevant is 

Gradient value which takes on the highest value in model 4, while it is only lower than 

NYHA Class in the others. The PAPs variable in model 5 has a significant impact, although 

still lower than NYHA Class and Gradient value. The Sex variable always takes constant 

values around 0.05. As regards the other variables present, we can note that they take on 

similar values to each other, hence with a similar incidence with respect to the output. We 

decided to implement different ML techniques so as to be able to find not only the 

combinations with the most correlated variables but also which of the different algorithms 

was most suitable for our database and which therefore gave us the best performance. We 

used different indices to evaluate the different performances obtained between the various 

techniques used. In particular, we calculated the AREA UNDER THE CURVE(AUC), 

Accuracy, Precision, Sensibility and Specificity. Each of these indices takes on a specific 

meaning that allows us to understand if the algorithm is working correctly and with good 

results. As we can see from Tables 5, 8, 11 and 13 in the first two columns we have the AUC 

values of testing and training respectively. Initially, we considered all values higher than 0.9 

significant, however we can see that already with the linear regressions the maximum AUC 
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value for the test far exceeds 0.9 reaching up to 0.975. In particular, we achieved up to 113 

combinations with AUC for the test above 0.9. With the linear Support Vector Machine, 

however, we can see that the maximum performance increases up to 0.992, and that we 

obtain around 3000 models with AUC for the test higher than 0.9, indicating a notable 

increase in significant combinations. As regards the non-linear Support Vector Machine and 

Artificial Neural Networks, the maximum AUC value we obtain for the test is 0.986, with 

thousands of models above 0.9. As regards the other indices, Accuracy measures the 

percentage of correct predictions compared to the total predictions made by the model and 

in our case takes values that oscillate between approximately 81% and 89% in each algorithm 

used. This indicates that all the different methodologies are able to correctly predict a good 

part of the database. Precision measures the percentage of predictions identified as positive 

that are actually positive. In our case we have values between 60% and 73%, indicators of 

good correctness in the prediction of positive instances. The Sensibility values are around 

0.3. This indicates that the model is missing many of the true positive instances, producing 

a high number of false negatives. While the Specificity values are very good between 0.94 

and 0.97. A high specificity value means that the model is effective in minimizing false 

positives, i.e., in not misclassifying negative instances as positive. This low sensitivity 

scenario can occur when the model as in our case does not have enough data to learn and 

therefore is unable to effectively discriminate between classes. In conclusion, we can say 

that already with linear regressions we obtain simple and easily interpretable models, with 

excellent performance. Performance which we significantly increase by using the linear 

Support Vector Machine, which is effective and at the same time capable of returning direct 

correlations between input and output variables. The last two techniques that use non-linear 

methods, thus, were tested even though we already had good results, also obtaining good 

performances which can certainly increase as the database increases. Therefore, when 

comparing performances, it is currently preferred to use linear methods since they are 

directly interpretable with the same performances. As a matter of fact, both linear regressions 

and linear Support Vector Machine give us coefficients that directly correlate the variables 

and the output. The non-linear Support Vector Machine and Artificial Neural Networks, 

anyhow, do not provide a direct explanation of the impact of each variable, which is why we 

used the SHAP values to attribute the correct relevance to each variable. The meaning of the 

most relevant features according to this study will be specified below. The NYHA Class, 

acronym for New York Heart Association, is a classification used in medicine to evaluate 
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the severity of symptoms and limitations of heart failure. Heart failure is a condition in which 

the heart is unable to pump enough blood to meet the body's needs. The NYHA classification 

divides patients into four classes based on severity of symptoms and limitation of physical 

activity. Pulmonary arterial pressure (PAP) is the measurement of blood pressure in the 

pulmonary arteries, the blood vessels that carry blood from the heart to the lungs for 

oxygenation. It is important in evaluating heart and lung function, although in itself it is not 

directly related to cardiac arrhythmias. The term " arrhythmic storm " refers to a condition 

in which a person experiences a series of cardiac arrhythmias in rapid succession or 

persistently. In other words, it is a period in which frequent episodes of heart rhythm 

disorders occur, even serious ones. TAPSE is an acronym that stands for " Tricuspid Cancel 

Plane Systolic Excursion ". This is a parameter used to evaluate the function of the right 

ventricle of the heart. The measurement of TAPSE is obtained using echocardiography, 

during an echocardiographic examination, the images of the movement of the tricuspid 

annulus in the right ventricle during contraction are acquired. Hence, it provides information 

on the contraction and movement of the tricuspid annulus, helping to evaluate the function 

of the right ventricle of the heart. The acronym "idiopathic VT" refers to "idiopathic 

ventricular tachycardia". A type of cardiac arrhythmia characterized by abnormally fast 

heartbeats originating from the ventricles of the heart. The designation "idiopathic" indicates 

that the specific cause of ventricular tachycardia is not known or is not clearly identifiable. 

The acronym "BPCO" (BPCO) stands for Chronic Obstructive Pulmonary Disease, a chronic 

lung disease characterized by progressive obstruction of the airways. It is not directly related 

to arrhythmology, but it can affect cardiac function, for example, as pulmonary problems 

can alter pulmonary arterial pressure and blood oxygenation. The acronym Bipolar 

endocardial scar area refers to the “endocardial scar area,” an area of scar or scar tissue that 

develops on the inner surface of the heart. Endocardial scarring can form following several 

events, such as a myocardial infarction or cardiac surgery. When heart tissue is damaged, 

the healing process can lead to the formation of scar tissue, which is stiffer and less 

conductive than normal heart tissue. This can affect the electrical conductivity of the heart 

and contribute to the development of arrhythmias. In particular, the endocardial scar area 

may be involved in the formation of reentrant circuits that are associated with certain 

arrhythmias, such as ventricular tachycardia. The scar can create a pathway through which 

electrical impulses can circulate abnormally, causing irregular heart rhythms. Evaluation of 

the endocardial scar area can be performed through various diagnostic techniques, such as 
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echocardiography, cardiac magnetic resonance imaging or computed tomography. As 

regards the variables extracted from the mapping system, we want to briefly discuss the 

results. A novelty of this project is the insertion of parameters extracted from a mapping 

analysis electroanatomical, the values taken into consideration are not directly analyzed by 

the machine, but have been calculated with a specific ad hoc algorithm. First of all, we want 

to remember the meaning of these values. The variable Percentage LAT area  is expressed 

as a percentage and refers to the extension of the delay area, the variable Gradient value 

expresses in milliseconds the value of the difference between the zone with the greatest delay 

and the zone with the greatest advance when these are sufficiently close, and the variable 

Percentage uni/bi potential, also expressed as a percentage, refers to the extent of the area 

composed of points where the difference between the bipolar and unipolar potential is 

significantly high. Gradient value is present in all the analyzes carried out, and specifically 

in all the best six models for each analysis. The other two are present only in linear 

relationships and disappear in non-linear ones, in particular Percentage LAT area is present 

both in Regressions and in linear SVM, Percentage uni/bi potential only in linear SVM. 

However, we would like to remember that in this study the first six models were taken into 

consideration for each analysis; from the processing carried out, many others emerge with 

similar or slightly lower performances compared to those chosen, in which the variables 

Percentage LAT area and Percentage uni/bi potential are present with greater frequency. We 

cannot therefore exclude the importance of these two variables, even if they were not very 

present in this study. Nonetheless, one cannot fail to notice the great relevance of the 

parameter referring to the gradient. 

 

 

6. CONCLUSIONS 
 
The present thesis aimed to provide engineering support in the search for predictive variables 

for relapse. The goal was to analyze which features could have a greater influence than others 

on prediction, compare the performance of various models obtained, and repeat the entire 

process for multiple machine learning methods to determine the best-suited one in this case. 

A final, even though not less important, objective was to understand the impact of certain 

parameters derived from the electroanatomic mapping system. The models' performances in 

all the machine learning techniques used are good, as all variables included in the study were 

classified as important for this purpose. In this thesis, 220 patients were analyzed, resulting 
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in a low number of observations. For this reason, it is not possible to speak of scientific 

evidence but rather of a promising prototype that, from preliminary analyses, already shows 

good performance values. The AUC and other parameters are good; the only one with low 

values is Sensibility, precisely due to the low number of observations analyzed. Among all 

machine learning techniques, the linear support vector machine is preferred because the 

results are promising, and it remains a method with greater interpretability even with similar 

performance to other techniques. The variables identified as relevant are parameters that can 

be monitored but are difficult or sometimes impossible to intervene upon. It is therefore not 

possible to avoid or prevent a relapse, but rather to predict it. The novelty of this project lies 

in combining these classic analyses, already widely researched, with parameters from the 

mapping system. It is neither possible nor meaningful to include point-to-point values 

obtained from the analysis and identifiable in the export; instead, the focus is on analyzing 

the values of combinations of these parameters. In this case, parameters related to the bipolar 

and unipolar potential difference and two parameters related to delay zones were calculated. 

Specifically, one parameter was related to the extension of the zone, and the other to the 

difference in delay and advance of two adjacent zones. These parameters were extracted and 

calculated with a specially designed algorithm, and many others can still be calculated and 

added. Even in this preliminary analysis, these values have proven to be useful and 

influential for relapse, sometimes with high relevance. We are confident that additional 

parameters will be found to add to the relapse prediction analyses, and many of these will be 

closely related to it, as already demonstrated in this work. The analyses are preliminary, but 

with an increase in the number of patients and thus the number of observations, more 

interesting results will be possible. Nevertheless, it remains a promising prototype for future, 

with more truthful and accurate results. 
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