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1- Introduction 
 

          Air is a mixture formed by gas, mainly nitrogen and oxygen, and particles of 

various nature and dimensions, which constitute the earth's atmosphere. 

Nitrogen (𝑁2) represents about 78% of the total molecules of the Earth's atmosphere 

and oxygen (𝑂2) about 21%. The remaining part of the atmosphere consists of 0.93% 

argon (Ar), 0.03% carbon dioxide (𝐶𝑂2) and other gases in much lower percentages. 

99% of the earth's atmosphere mass is included in the first 30 km. This air mass 

protects us from ultraviolet radiation, from the impact of high-energy particles from 

space and from temperature changes that could make the environmental conditions 

of the surface prohibitive. 

Most of the pollutants emitted, which can have harmful effects on human health or 

the environment as a whole, are detected in the lower part of the atmosphere, called 

the troposphere. 

           Air pollution is an environmental issue of public health concern. Exposure to 

air pollutants in urban areas, emitted by different sources, can cause severe health 

problems such as increased morbidity and mortality and alterations in the 

respiratory, cardiovascular and cerebrovascular systems.  

 

 

 

 

 

 

 



6 
 

1.1 Sources and emissions of air pollutants 

Fig 1: Spatial distribution of 𝑁𝑂2in different weather conditions evidence pollutants different 

origin and diffusion. (Ielpo et al. 2019) 

               

  

Air pollutants may be categorised as primary or secondary. 

 Primary pollutants are directly emitted to the atmosphere, whereas secondary 

pollutants are formed in the atmosphere from precursor pollutants through reactions. 

Air pollutants may have a natural, anthropogenic or mixed origin, depending on their 

sources or the sources of their precursors. 

          Key primary air pollutants include PM, 𝑁𝑂𝑥 (which includes both NO and 

𝑁𝑂2), methane (𝐶𝐻4), non-methane volatile organic compounds (NMVOCs) 

including 𝐶6𝐻6, certain metals and polycyclic aromatic hydrocarbons (PAH, 

including BaP). 

          Key secondary air pollutants are PM (formed in the atmosphere), 𝑁𝑂2 and a 

number of oxidised VOCs. Key precursor gases for secondary PM are 𝑆𝑂2, 𝑁𝑂𝑥, 

𝑁𝐻3 and VOCs. The gases 𝑁𝐻3, 𝑆𝑂2 and 𝑁𝑂𝑥  react in the atmosphere to 

form 𝑁𝐻4
+, 𝑆𝑂4

2−and 𝑁𝑂3
−compounds. These compounds form new particles in the 

air or condense onto pre-existing ones to form secondary PM (also called secondary 

inorganic aerosols). Certain NMVOCs are oxidised to form less volatile compounds, 

which form secondary organic aerosols. Ground-level (tropospheric) 𝑂3 is not 

directly emitted into the atmosphere. Instead, it is formed from chemical reactions 

in the presence of sunlight, following emissions of precursor gases, mainly NOx, 

NMVOCs and 𝐶𝐻4. These precursors can be of both natural (biogenic) and 
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anthropogenic origin. 𝑁𝑂𝑥  also depletes tropospheric 𝑂3 as a result of the titration 

reaction with the emitted NO to form 𝑁𝑂2  and oxygen  

1.2 Airborne pollutants (𝑵𝑶𝒙  , PM) 

The growing industrial development, the increase in emissions of combustion 

products, the increasingly large urban agglomerations are only some of the causes 

of one of the most serious problems of modern society: air pollution. 

The EEA (European Environment Agency) defines pollution as the alteration, 

directly or indirectly caused by man, of the biological, physical, chemical properties 

of the environment, when a risk or potential risk to the health of the environment is 

created man or the safety and well-being of every living species. Air pollution is the 

alteration of the natural air conditions due to the emission of polluting compounds 

into the atmosphere. 

The sources of pollution can be natural (volcanic eruptions that release 𝑆𝑂2, fires in 

which 𝑃𝑀10 is released) or anthropogenic (activities of human origin). 

The principals airborne pollutants are: 

1.2.1- Nitrogen oxides (𝑵𝑶𝒙), Potential Source both Natural And 

Anthropogenic 

 generated in the combustion processes of motor vehicles, in power plants and in 

heating systems. They cause respiratory diseases, photochemical smog and acid rain. 

The main compounds that contain nitrogen are:𝑁2𝑂, NO, 𝑁𝑂2, 𝑁𝐻3, 𝐻𝑁𝑂3, 𝐻𝑂𝑁𝑂, 

𝑁2𝑂5and the salts of 𝑁𝑂3, 𝑁𝑂2, 𝑁𝐻4. The most abundant of these in the atmosphere 

is 𝑁𝑂2 

Fig 2: The Electronic Dot Structure for mono-nitrogen di- oxygen.  (Lian et al. 1998) 
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          Nitrogen dioxide (𝑁𝑂2): is one of a group gases called nitrogen oxides (𝑁𝑂𝑥). 

While all of these gases are harmful to human health and the environment, where 

𝑁𝑂2 is greater concern. Other nitrogen oxides include nitrous acid and nitric acid. 

𝑁𝑂2 is used as the indicator for the lager group of nitrogen oxides. It is consider into 

chemical compound with formula 𝑁𝑂2. It is one of these gases created their main 

causes is from the burning of fossil fuels like gas and coal. Nitrogen dioxides occurs 

when nitrogen molecules or 𝑁2 and oxygen molecules or 𝑂2 to combine in situations 

that happen in an extremely hot environment this means that everything that uses 

gas like electricity in the cars produce nitrogen dioxide. 

          Nitrogen dioxide (𝑁𝑂2) plays a fundamental role in the formation of 

photochemical smog as it is the intermediary for the production of dangerous 

secondary pollutants such as ozone, nitric acid and nitrous acid. 

These, once formed, can be deposited on the ground wet (for example acid rain) or 

dry causing damage to vegetation and buildings. 

Nitrogen oxides, in particular dioxide, are also gases harmful to human health as 

they can cause acute health effects, in particular: 

    - acute such as respiratory dysfunction and bronchial reactivity (mucosal 

irritations); 

    - chronic such as changes in lung function and increased risk of cancer. 

The subjects most at risk are children and people already suffering from diseases of 

the respiratory system (asthmatics), as well as those living near roads with high 

traffic density due to long-term exposure. 

           On a global scale, emission of nitrogen oxides from natural sources far 

outweigh those generated by human activities. Natural sources include intrusion of 

stratospheric nitrogen oxides, bacterial and volcanic action, and lightning. Because 

natural emission are distributed over the entire surface of the earth, however, the 

resulting background atmospheric concentration are very small. The major source of 

anthropogenic emissions of nitrogen oxides into the atmosphere is the combustion 

of fossil fuels in stationary sources (heating, power generation) and in motor vehicles 

(internal combustion engines).  
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Other contributions of nitrogen dioxide to the atmosphere comes from specific non-

combustion industrial processes, such as the manufacture of nitric acid, the use of 

explosives and welding. 

Indoor sources include tobacco smoking and the use of gas fired appliances and oil 

stoves.    

Fig 3: Anthropogenic sources of 𝑁𝑂2 (Volkamer et al. 2006) 

 

                                     

 

                                                     

1.2.2 Particulate Matter (PM) 

          Fine dust: they can be compared to a slow and silent killer, they are so small 

that they can be inhaled and gradually accumulate in the respiratory system. When 

we talk about fine dust we usually refer to the so-called 𝑃𝑀10, but in the last ten 

years scientists have highlighted another form of pollution related to fine dust with 

a smaller diameter, 𝑃𝑀2.5 the abbreviation particulate matter (PM) identifies 

material that is present in the atmosphere in the form of microscopic particles. PM, 

whose aerodynamic diameter is equal to or less than 10 µm, is termed 𝑃𝑀10. 
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It consists of dust, smoke, micro-drops of liquid substances called in aerosol 

technical jargon: in fact, it is a set of particulates, or solid and liquid particles 

dispersed in the air with relatively small dimensions. These particles present in the 

atmosphere are indicated by many common names: dust and soot for solid ones, mist 

and fog for liquid ones. 

𝑃𝑀2.5- fine particulate with a diameter less than 2.5 µm (a quarter of a hundredth of 

a millimeter), is a thoracic powder, that is able to penetrate deeply into the lungs, 

especially during breathing from the mouth. 

Therefore 𝑃𝑀2.5 is a subset of 𝑃𝑀10, which in turn is a subset of the coarse 

particulate, etc. 

Airborne particle matter (PM) is one of the air pollutants of primary health concern. 

Over the past two decades, PM mass metrics (e.g., particles with aerodynamic 

diameter 10 μm, 𝑃𝑀10, and particles with aerodynamic diameter 2.5 μm, 𝑃𝑀2.5) 

have received much attention, and many studies have shown that high concentrations 

of PM are associated with increased risks of mortality and morbidity. More recently, 

the evidence derived from studies of long- and short-term exposure has been judged 

sufficient to infer causality for fine particles (EPA, 2012; WHO/Europe, 2013 cited 

by Pirani et al. 2015). 

1.3- Air pollution exposure with children’s health 

In an increasingly urbanized world, more children are living in cities. Indeed, 

demographic trends indicate that the world’s urban population will double by 2050. 

In spite of a number of socioeconomic benefits, urbanization has been associated 

with adverse health effects mainly due to increasing exposure to air pollution. 

Children are particularly vulnerable to the impacts of environmental exposures 

because childhood is a period of rapid growth and development and because children 

breathe more per body kilogram and are more physically active than adults. 

Environmental factors play an important role in the worldwide increasing prevalence 

of respiratory and allergic diseases observed during the last decades. In particular, 

asthma and rhino-conjunctivitis largely contribute to the global burden of disease, 

with a global prevalence in schoolchildren ranging from < 5 to > 20% and from 0.8 

to 39.7%, respectively. (cited by Cilluffo et al. 2018) 
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Because of increasing urbanization, there is growing interest in factors affecting 

environmental exposures within urban settings, such as traffic intensity, household 

density and natural and green space. All these factors were taken into account. The 

role of both residential surrounding greenery and proximity to green spaces (i.e. 

‘greenery’) on respiratory and allergic symptoms in schoolchildren has so far yielded 

inconsistent results, likely due to differences in exposure timing or in greenery type 

among different studies. 

The built environment in urban areas (i.e. ‘grey’ surfaces, which comprise industrial, 

transport and urban features) appears to have side effects on children’s health, 

mainly due to increasing exposure to air pollution, noise and high temperatures, 

lower access to natural environments, and accentuated sedentary life. Apart from air 

pollution, there have been few investigations on the association between 

“urbanicity” and respiratory and allergic symptoms in childhood. 

Land Use Regression (LUR) models have been used for estimating outdoor air 

pollution concentrations at the home addresses in order to analyze their association 

with respiratory health. Significant associations between 𝑁𝑂2, LUR and non-atopy 

related asthma and wheezing were found in aged 6–7 years girls and 13–14 years 

female adolescents from randomly selected schools in Hamilton, Canada. Notably, 

the association between 𝑁𝑂2 exposure and health outcomes has been shown not to 

depend on the type of model used to estimate exposure. 
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2-DISCUSSIONS 
 

2.1- The effect of 𝑵𝑶𝟐 emissions on different urban sites 

Fig 4: Slight decrease or no change in 𝑁𝑂2 concentrations at the studied sites. (Casquero-Vera et 

al. 2019)  

                                      

          A large part of the population lives in urban areas, therefore, the failure of EU 

emission control measures to reduce 𝑁𝑂2 ambient concentrations in urban areas has 

important implications for public health. 𝑁𝑂2 is a toxic gas, mainly formed in the 

atmosphere by reactions of NO and ozone, although direct 𝑁𝑂2 emissions by traffic, 

especially diesel fueled vehicles, can also contribute to ambient 𝑁𝑂2 concentration. 

          High ambient 𝑁𝑂2 concentrations can cause inflammation of the airways and 

cardiovascular, and even morbidity and mortality. 

According to the last European Environment Agency report, 𝑁𝑂2 was responsible 

for 71,000 premature deaths in EU and for 4,280 premature deaths in Spain in 2013. 

Also, 𝑁𝑂2 contributes to the formation of secondary aerosols and tropospheric ozone 

in the atmosphere, which also have adverse impacts on human health. 

Several studies have shown that 𝑁𝑂2 yearly and hourly exceedances are caused by 

road traffic emissions (e.g., Degraeuwe et al., 2016; Querol et al., 2014; Wild et al., 

2017 cited by Casquero-Vera et al. 2019). Some studies in the UK, Switzerland, 

Finland and Germany have attributed the weaker downward trends of 𝑁𝑂2 and the 

non-compliance of 𝑁𝑂2 air quality standards in urban areas to the significant 

increase of the number of diesel-fueled vehicles together with the increase of 

primary 𝑁𝑂2 fraction in the 𝑁𝑂𝑥 exhaust from diesel vehicles fitted with modern 

after exhaust treatment technologies.  
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          The 𝑁𝑂2 fraction in the total 𝑁𝑂𝑥 emitted (f- 𝑁𝑂2) by diesel vehicles not 

fitted with modern exhaust treatment technologies is about 10-12% and can reach 

up to 70% for those fitted with particle traps and oxidation catalysts like EURO III, 

IV, V, VI (Carslaw et al., 2016 cited by Casquero-Vera et al. 2019). Using an urban 

𝑁𝑂2 pollution model with various 𝑁𝑂𝑥 emission scenarios, found that the reduction 

in 𝑁𝑂𝑥 emissions of diesel cars is more relevant than the 𝑁𝑂2 fraction in the total 

𝑁𝑂𝑥 emissions for the reduction of regional and urban 𝑁𝑂2 concentrations. 

However, Henschel et al. (2015 cited by Casquero-Vera et al. 2019) could not draw 

any clear conclusion concerning the role of primary 𝑁𝑂2 emissions or other factors 

in the observed 𝑁𝑂2 trends at 9 European cities, recommending further research to 

explore the potential factors affecting the observed trends in ambient 

𝑁𝑂2 concentrations in urban areas. 

 

2.1.1- The impact of air pollution on human health long- and short-term 

The impact of air pollution on human health is well documented through long- and 

short-term epidemiological cohort studies.  Air pollution from 𝑁𝑂2 in the cities has 

important effects on public health, summarized in two types of conditions. On the 

one hand, air pollution results in increased morbidity, especially by cardiovascular 

and respiratory diseases. McConnell et al. (2003 cited by Casquero-Vera et al. 2019) 

studied the long-term exposure to 𝑁𝑂2 and the appearance of bronchitis symptoms 

in asthmatic children, while Anderson et al. (2007 cited by Casquero-Vera et al. 

2019) studied the associated short-term exposure to 𝑁𝑂2 and hospital admissions for 

respiratory diseases. 

However, despite the identified relationship between health effects and air pollution, 

recent epidemiological studies emphasized the difficulties in interpreting any health-

related dataset when information on the intra-urban variability of pollution is not 

available. 
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Table 1: Resume of principal information about the work by Casquero-Vera et al. 2019 

 

Sites Method Aim Period Limit 

 

 

 

Barcelona, 

quantify the 

contributions 

of primary 

𝑁𝑂2 

emissions, 

photo-

chemically 

formed 

𝑁𝑂2 and 

background 

concentrations 

estimate of 

the 

concentration 

of 𝑁𝑂𝑥 that 

needs to be 

reduced to 

comply 𝑁𝑂2 

limits. 

 

 

2003 -

2014 

 

 

40 µg/m³ 

 Madrid, 

Granada 

 

Table 1 shows the Resume of principal information used for the study of 𝑁𝑂𝑥 

concentration in the three cities of Spain and the effect of 𝑁𝑂2 emissions on different 

urban sites. In order to determine f- 𝑁𝑂2 (fraction of 𝑁𝑂2 in the total 𝑁𝑂𝑥  

emissions) at the studied traffic sites from ambient monitoring data was use the 

model developed by Abbott (2005 cited by Casquero-Vera et al. 2019). This method 

has the advantage that it is based on a mathematical representation of the physical 

and chemical processes involving NO, 𝑁𝑂2 and 𝑂3 in the atmosphere. It requires 

ambient measurements of NO, 𝑁𝑂2 and 𝑂3 concentrations at traffic and at nearby 

background site. This method removes the effect of background pollution by 

considering the difference in the 𝑂𝑥 (𝑂3 + 𝑁𝑂2) and 𝑁𝑂𝑥 (NO + 𝑁𝑂2) concentrations 

between an urban traffic station and a nearby background station. A more detailed 

description of the model is provided in Supplementary Material; although, a brief 

description is given below. 

     In Abbott (2005 cited by Casquero-Vera et al. 2019) model, f- 𝑁𝑂2 is obtained 

from the following regression 

equation: 
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[𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 = 𝒂[𝑵𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 + 𝒃                                                                                            (1) 

                                                                                                                                                                                                 

Where [𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 and [𝑵𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 are defined as follow:  

 

 

[𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 = ⌈𝑵𝑶𝟐⌉𝑻𝑹 + [𝑶𝟑]𝑳𝒐𝒄𝒂𝒍 − [𝑵𝑶𝟐]𝑹𝑩 − [𝑶𝟑]𝑹𝑩                           (1.1)                                    

                                                                                                                     

 

[𝑵𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 = [𝑵𝟎]𝑻𝑹 + [𝑵𝒐𝟐]𝑻𝑹 − [𝑵𝑶]𝑹𝑩 − [𝑵𝑶𝟐]𝑹𝑩                           (1.2)                                        

                                                                                                      

 

where [NO]TR, [𝑁𝑂2]𝑇𝑅 and [𝑂3]𝑇𝑅 are the concentrations of NO, 𝑁𝑂2 and 𝑂3 (in 

ppb) at the traffic station and [NO]RB, [𝑁𝑂2]𝑅𝐵 and [𝑂3]𝑅𝐵 are the 

corresponding concentrations in the nearby background station.  

 

The regression parameter a provides the fraction of 𝑁𝑂2 in the total 𝑁𝑂𝑥 emissions 

(f- 𝑁𝑂2), and b is the intercept parameter which is expected to be close to zero. The 

parameter b excludes the background oxidant concentrations and represents the net 

effect of deposition and other chemical and photochemical reactions (different of 𝑂3 

+NO − > 𝑁𝑂2 and photodissociation of 𝑁𝑂2) that contribute to a lesser extent to 

ambient 𝑁𝑂𝑥 and 𝑂3 concentrations. It is worth noting that both parameters a and b 

are relatively insensitive to the choice of background monitoring site as was showed 

by Abbott (2005 cited by Casquero-Vera et al. 2019).  

In this study, linear regression analysis on each annual set of hourly [Ox]local and 

[NOx]local data was done to retrieve f- 𝑁𝑂2 for each year at BCN(TR), GRA(TR) 

and MAD(TR) sites using BCN(RB), GRA(RB) and MAD(RB) as nearby 

background sites. The results show that for all analysed sites, despite the scatter, 

there is a good correlation between [𝑂𝑥]local and [𝑁𝑂𝑥]local in each dataset. Also, 

the values of intercept parameter b are, as expected, very small and close to zero, 

suggesting that BCN(RB), GRA(RB) and MAD(RB) sites are representative of 

background conditions for BCN(TR), GRA(TR) and MAD(TR )sites, respectively.  

After the estimation of f- 𝑁𝑂2 we determined the primary and secondary 𝑁𝑂2 

concentrations at each traffic station (Anttila et al., 2011 cited by Casquero-Vera et 

al. 2019). In this calculation we assumed that the total 𝑁𝑂2 concentration observed 



16 
 

at each station is composed of primary 𝑁𝑂2 emission ([𝑁𝑂2]𝑝𝑟𝑖𝑚𝑎𝑟𝑦), secondary 

𝑁𝑂2 formed by NO-𝑂3 reaction ([𝑁𝑂2]𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) and regional background 

([𝑁𝑂2]𝑅𝐵):  

 

[𝑵𝑶𝟐] = [𝑵𝒐𝟐]𝑷𝒓𝒊𝒎𝒂𝒓𝒚 + [𝑵𝑶𝟐]𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚 + [𝑵𝑶𝟐]𝑹𝑩                                     (2)                                           

                                         

Where  

                                                                                                    

[𝑵𝑶𝟐]𝑷𝒓𝒊𝒎𝒂𝒓𝒚 = 𝒂 ⋅ [𝑵𝑶𝒙]𝑳𝒐𝒄𝒂𝒍                                                            (2.1) 

                                                                               

 

[𝑵𝑶𝟐]𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚 = (𝟏 − 𝒂) ⋅ [𝑵𝑶𝒙]𝑳𝒐𝒄𝒂𝒍 + [𝑵𝟎]𝑹𝑩 − [𝑵𝑶]𝑻𝑹             (2.2) 

 

Finally, to estimate the required 𝑁𝑂𝑥 reduction to achieve the 𝑁𝑂2 European 

standard limits at BCN(TR), MAD(TR) and GRA(TR) stations we used the roll-back 

model (De Nevers and Morris, 1975; Lu, 2004; Chaloulakou et al., 2008 cited by 

Casquero-Vera et al. 2019): 

 

                                                                                                

 R(%) =
(CA−CR)

(CA−B) 
                                                                        (3)                                                          

 

where R (%) is the necessary 𝑁𝑂𝑥 emission reduction, CA is the actual 𝑁𝑂𝑥 mean 

annual concentration (2014 in this work) and CR is the NOx mean concentration 

corresponding to the necessary reduction level (𝑁𝑂𝑥 objective level). Finally, B is 

the NOx background concentration at traffic station. The background concentration 

in this equation corresponds to the concentration at traffic site when nearby source 

emissions that influence the 𝑁𝑂𝑥 concentration at this site are switched off. The 

values of B in this case were estimated from the concentrations observed at the three 

studied traffic stations. For this we calculated the mean hourly annual diurnal 

𝑁𝑂𝑥concentrations at each studied traffic station for 2014. The minimum 𝑁𝑂𝑥 

hourly concentration observed at each studied traffic station was taken as 𝑁𝑂𝑥 
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background concentration at this site. The 𝑁𝑂𝑥 background concentrations of 47,39 

and 30 μg/m³ were obtained for BCN(TR), MAD(TR) and GRA(TR), respectively. 

The roll-back model is widely used due to its simplicity and because it requires very 

little input data. This model assumes that the spatial distribution of emission sources, 

meteorological conditions and species are conservative. The 𝑁𝑂𝑥 can be considered 

stable for roll-back modelling, since the transformations are mainly internal to the 

cycle NO/ 𝑁𝑂2/𝑂3. The value of R (%) calculated by this model becomes 

indeterminate when the actual NOx annual mean concentration (CA) is similar to 

the 𝑁𝑂𝑥 background concentration (B). Therefore, this method is limited to those 

situations where CA is higher than B. In addition, CR should be higher than B due 

to the impossibility to reduce 𝑁𝑂𝑥 concentration below the background 

concentration.  

 

2.1.2- Results  

 

Table 2: Details of the traffic and regional background stations with availability of NO, 𝑁𝑂2and 

O3 data in the period 2003–2014.( Casquero-Vera et al. 2019) 
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Table 3: Results of the Theil-Sen trend analysis for the 2003–2014 period. The symbols shown 

for the p values for each trend estimate relate to how statistically significant the trend estimate is: 

p < 0.001 = *** (highest statistical significance), p < 0.01= **, p < 0.05 = * and p < 0.1 = +; no 

symbol stands for no significant trend (p > 0.1). Units are μg m¯³yr¯1 for NO, NO2 and NOx, and 

yr−1 for NO/O3. (by Casquero-Vera et al. 2019) 

 

 
 

2.1.2.1- Levels of atmospheric pollutants 

Fig. 5 shows the annual NO, 𝑁𝑂2 and 𝑁𝑂𝑥 concentrations and the NO/𝑂3 annual 

mixing ratio at TR stations and Table 3 summarizes trend analysis results at TR and 

RB station.  

          As expected, NO and 𝑁𝑂𝑥 concentrations at MAD(TR) and BCN(TR) stations 

were higher than those registered at GRA(TR) station during the whole studied 

period, due to their larger population and vehicles fleet. However, these differences 

in NO and 𝑁𝑂𝑥 concentrations between Madrid/Barcelona and Granada traffic 

stations decreased significantly along the study period (Fig. 5). These results show 

that there was significant reduction in NO and 𝑁𝑂𝑥 concentrations at Madrid and 

Barcelona traffic stations along the studied period in comparison to GRA(TR) 

station. Local/regional emission control measures to improve air quality started early 

in Madrid and Barcelona (e.g., ELCACM, 2006; PCACM, 2012, 2012; ECACCCM, 

2014; and references therein cited by Casquero-Vera et al. 2019), however, in 

Granada these measures started in 2014. 

          High and statistically significant downward trends were observed for NO and 

NOx concentrations in Madrid and Barcelona cities, especially at traffic stations 

(Table 3), probably due to the implemented control measures, both local/regional 

control measures and EU directives. The NO and 𝑁𝑂𝑥 concentrations decreased by 

approximately 45% and 55%, respectively, between 2003 and 2014 in both 

MAD(TR) and BCN(TR) stations. In contrast, the reduction of NO and 𝑁𝑂𝑥 

concentrations in GRATR was smaller and not statistically significant (Table 3). 
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          As a result of the economic recession, the consumption of fuel oil used in 

diesel vehicles in Madrid, Barcelona and Granada in 2008–2014 decreased by 19%, 

23% and 23%, respectively, with respect to 2003–2007 period. This high decrease 

in the consumption of fuel oil used by diesel vehicles, which are the main important 

source of 𝑁𝑂𝑥 in urban areas, was associated with a significant decrease in NO and 

𝑁𝑂𝑥 concentrations in MAD(TR) and BCN(TR) stations during the economic 

recession. The NO concentrations in MAD(TR) and BCN(TR) decreased by 45% 

and 30%, respectively, while the 𝑁𝑂𝑥 decreased by 35% and 20%, respectively, in 

2008–2014 compared to 2003–2007. However, although the percentage of reduction 

of the fuel oil consumption in Granada in 2008–2014 was similar to the recorded in 

BCN(TR) and MAD(TR), reductions of NO and 𝑁𝑂𝑥 concentrations in GRA(TR) 

were much smaller (22% and 10%, respectively) than those observed at MAD(TR) 

and BCN(TR). Granada is medium size and non industrialised city and, thus, the 

high reduction of the NO and 𝑁𝑂𝑥 in MAD(TR) and BCN(TR) stations during 

economic recession in comparison to GRA(TR) could be attributed to the reduction 

of 𝑁𝑂𝑥 emissions from industrial activities in Madrid and Barcelona cities. 

 

Fig 5:  2003–2014 trends of mean annual (a) NO, (b) 𝑁𝑂2  and (c) 𝑁𝑂𝑥   concentrations (μg m¯³) 

and annual (d) NO/O3 mixing ratio recorded at BCNTR, GRATR and MADTR. (Casquero-Vera 

et al. 2019) 
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         𝑁𝑂2 concentrations over MAD(TR) and BCN(TR) stations showed clear 

statistically significant downward trends along the analysed period, decreasing by 

30% and 25% over MAD(TR) and BCN(TR), respectively, from 2003 to 2014. 

However, the decrease in 𝑁𝑂2 concentrations observed over MAD(TR) and 

BCN(TR) stations was much less pronounced than the decrease in 𝑁𝑂𝑥 (55%) 

concentrations over both stations. By contrast, the annual 𝑁𝑂2 concentrations at 

GRA(TR) station were almost constant during the studied period (ranging from 40 

to 47 μg m¯³) and don't show any statistically significant trend. It is worth to note 

that the annual 𝑁𝑂2 concentrations observed over MAD(TR) and BCN(TR) as well 

as over GRA(TR) stations is still exceeding the annual 𝑁𝑂2 standard limit of 40 μg 

m¯³ established by EU for the human health protection in force since 2010 (Fig. 5). 

Therefore, the regulatory efforts done were insufficient and thus more stringent 

emission controls and efficient measures are still needed to improve air quality and 

to meet the European limit. The possible cause of the unexpectedly stabilization of 

𝑁𝑂2 concentrations at GRA(TR) and of the weaker decreases of 𝑁𝑂2 concentrations 

at MAD(TR) and BCN(TR) stations and non-compliance of 𝑁𝑂2 air quality 

standards at these stations are investigated in the following sections. 

 

2.1.2.2- Contributions of primary and secondary 𝑵𝑶𝟐 to ambient 

          One of the possible reasons of the stabilization of 𝑁𝑂2 concentrations and the 

weaker decrease of 𝑁𝑂2 concentrations could be attributed to the increase of primary 

𝑁𝑂2 fraction in the 𝑁𝑂𝑥  exhaust emissions from diesel vehicles fitted with modern 

after-exhaust treatment technologies. Primary 𝑁𝑂2 fraction in the total 

𝑁𝑂𝑥 emissions (f- 𝑁𝑂2) at the studied traffic stations was estimated from Ambient 

monitoring data using the total oxidant method and the results are shown in Fig. 6. 

Primary 𝑁𝑂2 fraction values ranged from 8%, 11% and 3% in 2003 to 14%, 20% 

and 12% in 2006/2007 at MAD(TR), BCN(TR) and GRA(TR), respectively. 

Primary 𝑁𝑂2 fraction values obtained in this study are comparable to those found in 

other European cities. For example, Grice et al. (2009 cited by Casquero-Vera et al. 

2019) estimated f- 𝑁𝑂2 values in the range 1.5–24% for various European sites in 

the period 2000–2005. Anttila et al. (2011 cited by Casquero-Vera et al. 2019) 

reported f- 𝑁𝑂2 values ranging from 7% to 20% in Helsinki for the period 1994–

2008. 
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          The largest f- 𝑁𝑂2 values were obtained at BCN(TR) station probably due to 

the influence of ship emissions from the Barcelona port. At GRA(TR) and 

MAD(TR) stations very similar f- 𝑁𝑂2 values were observed. As can be seen in Fig. 

6, the f- 𝑁𝑂2 clearly increased from 2003 to 2006/2007 in all the studied traffic 

stations and slightly decreased or remained almost stable from 2007/2008 onwards. 

The main conclusion drawn from these results is that the increase of the f- 𝑁𝑂2 

observed over the studied stations is, at least partly, one of the causes of the observed 

stabilization and the weaker decrease of 𝑁𝑂2 concentrations during the analised 

period. Another possible reason, supported by the decrease of the NO/𝑂3 (Fig. 5), 

could be the smaller reduction of the concentrations of secondary 𝑁𝑂2 compared to 

the NO, probably due to the change in the photo stationary state (e.g., Henschel et 

al., 2015 cited by Casquero-Vera et al. 2019). 

 

Fig 6: The evolution of the annual f- 𝑁𝑂2 (%) in BCNTR, GRATR and MADTR stations during 

2003–2014. The mean annual f- 𝑁𝑂2 (%) over the three studied sites is also included in 

the figure.  (Casquero-Vera et al. 2019) 

                 

 

The estimated primary, secondary and background 𝑁𝑂2 concentrations at each 

station are shown in (Fig 7) As can be seen, the primary and secondary 𝑁𝑂2 

concentrations at GRA(TR) remained fairly constant during the analysed period, 

with mean primary and secondary 𝑁𝑂2 concentrations (±standard diviation) of 8 ± 

2 and 33 ± 2 μg m¯³, respectively. This result evidences that neither the primary nor 

the secondary 𝑁𝑂2 concentrations have decreased over the analysed period and 

points out that, in addition to the European control measures, the implementation of 

local/regional measures is necessary to improve air quality with respect to 𝑁𝑂2 in 
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this city. Since the annual ambient 𝑁𝑂2 concentrations at GRA(TR) (around 42 μg 

m¯³ in 2013 and 2014) are very close to the 𝑁𝑂2 European standard limit, it would 

be expected that with additional local/regional abatement measures the annual 

standard limit would be achieved in the near future. 

 

Fig 7: The estimated primary, secondary and background 𝑁𝑂2 concentrations at Barcelona, 

Granada and Madrid. Note that values are not integrated.  (cited by Casquero-Vera et al. 2019) 
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Primary  𝑁𝑂2 concentrations at BCN(TR) and MAD(TR) stations increased slightly 

from about 14 μg m¯³ in 2003 to 22–26 μg m¯³ in 2005 and then decreased slightly 

to about 12 μg m¯³ in the last years (Fig 7). In contrast, secondary 𝑁𝑂2 

concentrations at BCN(TR) and MAD(TR) decreased significantly over the period 

2003–2014. At BCN(TR) station 𝑁𝑂2 concentrations decreased from 54 to 38 μgm¯³ 

(by 30%) while MAD(TR) station decreased from 60 to 32 μgm¯³ (by 45%). The 

strong 𝑁𝑂2 concentration decrease observed at BCN(TR) and MAD(TR) reveals the 

important role of local/regional control measures in improving air quality with 

respect to 𝑁𝑂2. However, despite the large decrease observed in the last years in 

secondary 𝑁𝑂2 concentrations at BCN(TR) and MAD(TR) stations, the ambient 

𝑁𝑂2 concentrations (around 50 μg m¯³ at both stations in 2014) still exceding the 

𝑁𝑂2 European annual standard limit and therefore more stringent control measures 

at local/regional level are still needed to comply with the standard limit established 

by the EU for this pollutant in both cities. These results highlight the significant 

impact of primary 𝑁𝑂2 emissions on the measured 𝑁𝑂2 concentrations in BCN(TR), 

MAD(TR) and GRA(TR), especially when compared with the threshold value for 

compliance with the European 𝑁𝑂2 annual limit of 40 μg m¯³. Since no drastic 

changes are expected in the after-exhaust treatment technology that can reduce 

primary 𝑁𝑂2 emissions to zero in the near future, and given that the secondary 𝑁𝑂2 

concentrations constituted the large fraction of total ambient 𝑁𝑂2 measured in 

BCNTR, MADTR and GRATR (N70%), only a substantial reduction in 𝑁𝑂𝑥 

emissions (and, therefore, in secondary 𝑁𝑂2  levels) will help to achieve lower 𝑁𝑂2  

concentrations and comply with the European air quality standards. 
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 2.2- CFD modeling of air quality in the city of Pamplona (Spain), assessment 

of health impacts 

Fig 8:  CFD modelling of annual average 𝑁𝑂2  and 𝑁𝑂𝑥   maps throughout an entire city (Rivas et 

al. 2019) 

                      
   

                

                          (a)                                                                     (b)                                                                                         

          A methodology based on CFD-RANS simulations (WA CFD-RANS, 

Weighted Averaged Computational Fluid Dynamic-Reynolds–Averaged Navier–

Stokes simulations) which includes appropriate modifications, has been applied to 

compute the annual, seasonal, and hourly average concentration of 𝑁𝑂2 and 𝑁𝑂𝑥 

throughout the city of Pamplona (Spain) at pedestrian level during 2016. 

Urban air quality can be simulated by means of mesoscale models, however their 

spatial resolution (around 1 𝑘𝑚2) makes not possible to resolve the high pollutant 

gradients observed in the streets. Therefore, microscale models are necessary. 

Parameterized microscale models such as OSPM ((Berkowicz, 2000), SIRANE 

(Soulhac et al., 2011) or ADMS-URBAN (Di Sabatino et al., 2008) cited by Rivas 

et al. 2019) has been applied to simulate urban air quality. They are based on semi 

empirical assumptions about the relation between the flow and dispersion of 

pollutants, within and out of the streets, and the urban morphology. Nevertheless, 

CFD models solve momentum and transport equations around complex geometries, 

as urban environments. The advantage of CFD models versus parameterized models 

is their capability to deal with complex shaped walls or boundaries using flexible 

fine-scale grids. 
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          The developed CFD methodology for this purpose makes possible to resolve 

hypothetical meteorological conditions using the existing CFD simulations, 

avoiding the handicap of the associated computational costs. 

 

Table 4: Resume of principal information about the work by Rivas et al. 2019 

 

Site Sampling 

Model/method 

Aim Period 

city of 

Pamplona 

(Spain) 

CFD-RANS 

simulations. 

The results 

have been 

evaluated using 

measurements 

provided both 

by the city's 

network of air 

quality 

monitoring 

stations and by 

a network of 

mobile 

microsensors 

 

obtain the 

annual and 

seasonal 

average 

concentration 

maps of 𝑁𝑂2 

and 𝑁𝑂𝑥 and 

the time-

evolution of 

the annual 

and seasonal 

averaged 

days at 

pedestrian 

level 

2016 

 

2.2.1- measured pollutant concentrations at air quality monitoring Stations 

Table 4 Resume the principal information used in this study, In Fig 9 the comparison 

between PC, Rotxapea and Iturrama monitoring stations of the average daily 

evolutions of 𝑁𝑂𝑥, 𝑁𝑂2, NO and 𝑂3 concentrations for 2016 are shown. Two peaks 

of primary pollutant concentration (𝑁𝑂𝑥, 𝑁𝑂2 and NO) were observed, one at early 

morning (7 AM–8 AM local solar time) and another in the late afternoon (7 PM–8 

PM)( Fig 9 ). As expected, higher concentrations were measured in the traffic station. 

These peaks were related to rush hour of traffic, photochemistry activity and 

planetary boundary layer (PBL) height. Unlike NO and 𝑁𝑂𝑥, the late afternoon peak 

of 𝑁𝑂2 at the traffic station was higher than that recorded in the early morning, 
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probably due to a greater 𝑂3 availability to produce 𝑁𝑂2 by titration (Leighton, 1961 

cited by Rivas et al. 2019). After 8 AM, concentrations decreased until they reached 

their lower levels between 3 PM and 4 PM. As it is well known, 𝑂3 concentrations 

are relatively low in the early morning, increase about midday and peak at around 3 

PM, when the NO concentrations are low. The times for the maxima of nitrogen 

oxides were the result of the combination of high emissions from traffic during the 

rush hours with shallow mixing layers or low-height thermal inversion. Chemical 

reactions such as titration also play a significant role in increasing the 𝑁𝑂2 

concentrations depending on the availability of 𝑂3. Differences could be found 

between the summer and winter averages of the daily cycles of nitrogen oxides (Fig 

9 b and c).  

 

Fig 9: Average daily evolution of 𝑁𝑂𝑥, NO, 𝑁𝑂2 and 𝑂3 concentrations at monitoring stations 

for 2016: a) annual, b)winter and c) summer. Note that data of 𝑁𝑂2 and NO concentrations at 

Iturrama station were not available during 2016. (by Rivas et al. 2019) 

      
 

(a)                                                                         (b) 
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                                                               (c) 

 

2.2.2- CFD model description  

Fig 10 : Details of: a) CFD mesh model (buildings shaded in pink) and b) longitudinal plane 

section zoom and typical dimensions as function of the Zmax. (Rivas et al. 2019) 
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Fig 11: topographic map of Pamplona's City and the 13 main neighbourhoods (limited by means 

of continuous red lines), GN, 2016, meteorological stations (green points), air quality monitoring 

stations (blue and yellow points, traffic and background stations respectively). (Rivas et al. 2019) 

 

                            

 

         Table 5: Neighbourhoods characteristics of Pamplona (Rivas et al. 2019). 

                       

      

  The numerical domain has about 42 𝐾𝑚2(Fig 11), about 7.7 km × 5.4 km, and 

covers in excess the whole city (approx. 25.3 𝐾𝑚2). A 3D full-scale geometrical 

model has been constructed, which considers the actual average height of each 

building separately. 

          The computational grid is a combination of polyhedral (between zH= 

[0, 1.5 · Zmax], Fig 10 b) and tetrahedral (between zH = [1.5 · Zmax, 7 · Zmax], 

Fig 10 b) cells. The tetrahedral region is generated from the polyhedral core, as an 

extrusion in the direction zH, using a hyperbolic stretching law to compute the cell 

distribution growth in the direction of the extrusion (10 layers with a stretching 
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factor 1.3). This type of combination allows saving computational costs and is a 

good compromise when it comes to solving the atmospheric flow in the highest part 

of the domain. Instead, the polyhedral region is divided in two control volumes, 

CV_1(between zH = [0, 1.25 · Zmax], Fig 10 b) and CV_2(between zH = [1.25 

·Zmax, 1.5 · Zmax], Fig 10 b), whose typical resolutions are 5 m (in built-up zones) 

and 10 m (far from buildings) respectively, Fig 10 a. In CV_1, the mesh includes 

further refinements in the narrowest streets and a prismatic layer of 1maround all 

urban surfaces (ground and buildings), to capture the influence of those obstacles. 

The transition between the prismatic layer and the core is carried out gradually, 

maintaining a growth factor of 1.3. The vertical and horizontal dimensions, Fig 10 

b, have been set following the recommendations given by Franke et al. (2007 cited 

by Rivas et al. 2019) and Di Sabatino et al. (2011 cited by Rivas et al. 2019). The 

total number of cells is 44.6 × 10*6. 

          In order to improve air quality, and meet the air quality standard limits in the 

European countries, the European Commission (EC) has implemented several 

stringent emission control measures along the last decades. Various EC control 

measures focused on vehicle emissions, such as EURO III, IV, V and VI emission 

standards, entered in force from 2000 to now on for restrictions of road traffic 

emissions, and 1999/32/EC for shipping emission restrictions. Numerical 

simulations are based on a steady state RANS approach with the Realizable k − ε 

Two Layer model. The commercial software STAR CCM+9.04.011® has been used 

(Siemens, 2018 cited by Rivas et al. 2019). To simulate the dispersion of primary 

pollutants inside the city, transport equations for passive scalars have been included, 

i.e., no chemical reactions of the primary pollutants are assumed. These equations 

consider both the advection and diffusion terms. And, the diffusivity is proportional 

to the turbulent viscosity (μt), computed by the Realizable k−ε model, and inversely 

proportional to the turbulent Schmidt number (Sct).  

          Therefore, the pollutant is assumed to be a passive scalar emitted by the traffic 

close to the ground in roads of the streets and avenues. The pollutant source at each 

road has been assumed as a proportional value to its Annual Average Daily Traffic, 

AADT (Fig. 10), and its length, and inversely proportional to the volume of the 

traffic emissions in such road. Then, CFD simulations do not provide the real 

concentrations but proportional values to real concentrations. In order to transform 

the computed values into real concentrations, a numerical methodology is applied. 
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Boundary conditions at buildings and ground surfaces are modelled considering the 

All Y+ wall hybrid treatment. Ground is considered a roughness wall with 

z0=0.05m. 16 different wind directions are simulated. Inlet profiles for wind speed 

are logarithmic and for turbulent kinetic energy (k) and turbulence dissipation rate 

(ε) are computed by the following equations (Richards and Hoxey, 1993 cited by 

Rivas et al. 2019): 

              

𝑈(𝑧) =
𝑈∗

𝑘
⋅ 𝑙𝑛 {

(𝑧+𝑧0)

𝑧0
} , 𝑘 =

𝑈∗2

√𝐶𝜇
,  ε=

U*3

k⋅(z+z0)
                                   (4)                                                                         

 

where u∗ is the friction velocity, z₀ is the roughness length, Cμ is a model constant 

(=0.09) and κ is von Karman's constant (κ = 0.4). For these simulations, 

u∗=0.24m·𝑠−1 is used. This value indicates a velocity logarithmic profile at inlet 

with 3.2 m·𝑠−1 at 10 m. 

These neutral atmospheric conditions (isothermal conditions) are usually used in 

CFD simulations. In these conditions, simulated pollutant concentrations are 

inversely proportional to wind speed, however, u∗ value has no influence in the 

final results because the WA CFDRANS methodology transforms simulated 

pollutant concentrations taken from CFD model at this velocity to modelled 

pollutant concentrations considering the measured wind speed. Several CFD-

RANS studies have analysed the dependence of the pollutant concentration levels 

with the turbulent Schmidt number used in the turbulent mass transport equation. 

Typical values range from 0.7 to 0.9 (Delaunay, 1996; Baik et al., 2003 cited by 

Rivas et al. 2019), although Tominaga and Stathopoulos (2007 cited by Rivas et al. 

2019) pointed out that the optimum values range from 0.2 to 1.3 depending on the 

geometry and flow properties. For the set of CODACS experiments, Vranckx et al. 

(2015 cited by Rivas et al. 2019) observed that the optimum Sct depended on the 

case and, in general, ranged from 0.3 to 1.0. Before this work, a sensitivity analysis 

about the turbulent Schmidt number has been carried out (not showed here). The 

optimal value for this case was 0.7, which agrees other works (Spalding, 1971; Li 

and Stathopoulos, 1997; Wang and McNamara, 2006 cited by Rivas et al. 2019). 

 

2.2.3 - Methodology to estimate health effects  

The estimation of the damage caused by air pollution required a complete 

methodological process known as the impact pathway developed in the framework 

of the Externe project series (Bickel and Friedrich, 2005 cited by Rivas et al. 2019). 
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This methodology offers an analytical framework capable of transforming the 

information related to the emission of different pollutants into a common unit: 

monetary units. The process consists in following the pollutants throughout all the 

phases, from their emission until they reach the receptors, causing them damage. 

The following stages can be distinguished: 

 

a. Emission of pollutants. 

      b. Atmospheric concentration: estimating the concentrations of pollutants in the 

area of study. 

      c. Exposure of the population to the concentrations of 𝑁𝑂2 produced. A 

requirement is knowing the spatial and age distribution of the city's population. 

     d. Environmental impact. The estimation is carried out through the application of 

exposure-response functions that allow determination of the increase in the health 

endpoints caused by an increase in the atmospheric concentration of the pollutant. 

     e. Damage caused, which consists in estimating the value that the population 

attributes to the impacts caused by pollution. This estimation allows determining the 

deterioration of the wellbeing of the population because of the variation in the 

atmospheric quality induced by the pollution emitted by road traffic in the urban 

environment. 

  

We followed the above methodology using the 𝑁𝑂2 concentration maps obtained 

through our modelling; the data of the Municipal Census of Inhabitants as the age-

specific distribution of the population of the city of Pamplona in a grid of 100 × 100 

m cells; and information from the literature about the incidence of diseases related 

to exposure to 𝑁𝑂2. 

The health impacts were quantified through the exposure-response functions 

proposed by the World Health Organization (WHO, 2013b cited by Rivas et al. 

2019), by applying the following formula to each cell in the domain: 

 

𝑰 = 𝑪 × 𝑷 × 𝑹 × 𝑪𝑹𝑭 × 𝑽                                                                        (5) 

                                                                                             

Where, 

 

I: Impact expressed as number of additional cases 
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C: Concentration of the pollutant 

P: Population at risk 

R: Incidence ratio 

CRF: Concentration Response function or change in incidence per unit of 

concentration 

V: Monetary valuation of the impact on health. 

 

The exposure concentration response functions used were those proposed by the 

WHO in the HRAPIE project (WHO, 2013b cited by Rivas et al. 2019): 

 

1) Effects of long-term exposure to 𝑁𝑂2 on mortality in the population over 

30 years of age. The WHO experts recommend the application of a linear 

CRF function that corresponds to a relative risk (RR) of 1.055 (confidence 

interval 1.031–1.08) for every 10 μg·m³ of annual mean concentration of 

𝑁𝑂2. This RR value was obtained from a meta-analysis by Hoek et al. (2013 

cited by Rivas et al. 2019) and considers a threshold concentration of 20 

μg·m³. The mortality rate was obtained from the Statistical Institute of 

Navarra for the entire province of Navarra and was 0.89% for the year 2015 

(NA-STAT, 2018 cited by Rivas et al. 2019). 

 

2) Effects of long-term exposure to 𝑁𝑂2 on the onset of bronchitis symptoms 

in asthmatic children between ages 5 and 14. The WHO recommends the 

use of the results of McConnell et al. (2003 cited by Rivas et al. 2019), 

which calculate a RR of 1.021 (confidence interval 0.99–1.06) for every 1 

μg·m³ of 𝑁𝑂2. The percentage of asthmatic children in the city of Pamplona 

was obtained from the data of the Primary Care Service of the Navarra 

Health Service for each of health district of the city. The prevalence of 

bronchitis symptoms in asthmatic children was considered as the average 

of the values in Migliore et al. (2009) and McConnell et al. (2003) (cited by 

Rivas et al. 2019), being 21.1% and 38.7% respectively. 

 

3) Effects of short-term exposure to increased levels of 𝑁𝑂2 in mortality.    

WHO recommends using the results of the APHEA-2 project (Samoli et al., 

2006 cited by Rivas et al. 2019) covering 30 European cities and obtaining 
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an RR value of 1.0027 (confidence interval 1.0026–1.0038) for every 10 

μg·m3 of daily maximum 1 hour mean maximum concentration of 𝑁𝑂2. 

 

4) Effects of short-term exposure to increased concentrations of 𝑁𝑂2 in 

hospital admissions for respiratory diseases. The WHO recommends the 

use of RR values from the study by Anderson et al. (2007 cited by Rivas et 

al. 2019) of 1.018 (confidence interval 1.0115–1.0245) per 10 μg·m³ of 

average 24-hour mean daily maximum concentration. The base value for 

hospital admissions for respiratory diseases was obtained from the WHO 

European Hospital Morbidity Database (WHO, 2013a cited by Rivas et al. 

2019) and is 1.26% for Spain. 
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2.3- the effect of short-term of 𝑵𝑶𝟐 on daily mortality in Spanish cities  

Table 6: Resume of principal information about the work by Linares et al. 2018. 

Site Sampling 

Method 

Aim Period 

Spanish estimate RRs and 

ARs, we used 

generalised linear 

models with a 

Poisson link, 

controlling for 

maximum and 

minimum daily 

temperature, trend 

of the series,ol’[ 

seasonalities, and 

the autoregressive 

nature of the 

series. A meta-

analysis with 

random effects 

was used to 

estimate RRs and 

ARs nationwide. 

quantify the 

relative risks 

(RRs) and 

attributable risks 

(ARs) of daily 

mortality 

associated with 

𝑁𝑂2 

concentrations 

recorded in Spain 

and calculate the 

number of NO2- 

related deaths. 

2000–2009 

 

          Ambient air pollution was a leading risk factor for the global disease burden 

in 2015, and its contribution remained relatively stable from 1990 to 2015 (GBD, 

2015 cited by Linares et al. 2018). The US Environmental Protection Agency, the 

World Health Organisation (WHO), and a number of literature reviews have shown 

that long- and short-term exposure to ambient air pollution increases mortality and 

morbidity due to cardiovascular diseases, respiratory diseases and lung cancer, and 

shortens life expectancy (Cohen et al., 2017 cited by Linares et al. 2018). Motor 

vehicles are the most significant source of urban air pollution. 𝑃𝑀2,5 is the air 

pollutant whose health effects have been most closely studied (Basagaña et al., 2015 
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cited by Linares et al. 2018), and is the variable most commonly used as a proxy 

indicator of exposure to air pollution, whereas evidence on 𝑁𝑂2 concentrations is 

still under study. There are several reasons for this but; in essence, it is more difficult 

to judge the independent effects of 𝑁𝑂2 in studies because, in such research, the 

correlations between concentrations of 𝑁𝑂2 and other pollutants are often high, so 

that 𝑁𝑂2 might actually be representing a mix of traffic-related air pollutants. 

 

At this point in time, this fact is particularly important in Europe, since 𝑁𝑂2 

concentrations have not been decreasing at the same pace as PM emissions (probably 

reflecting the impact of the Euro 4 and 5 vehicle standards on reducing diesel PM). 

This change in ratio has implications for the interpretation of 𝑁𝑂2 as a quantitative 

proxy for PM vehicle pollution, and highlights the need to understand the effects of 

𝑁𝑂2 per se. Moreover, in Spain -the country which is the focus of this study- 

statutory and WHO guideline values are currently being complied with in the case 

of PM but not in that of 𝑁𝑂2. 

          In Spain, the Spanish Multicentre Study on the Relationship between Air 

Pollution and Mortality (Estudio Multicéntrico Español sobre la Relación entre la 

Contaminación Atmosférica y la Mortalidad/EMECAM) (cited by Linares et al. 

2018) analysed data on atmospheric concentrations of black smoke, 𝑆𝑂2,, 𝑁𝑂2, CO 

and 𝑂3, temperature and other aspects in 14 Spanish cities, and reported the existence 

of an association between 𝑁𝑂2 and cardiovascular and all-cause mortality, though 

based on data from only 7 and 3 cities respectively. The studies undertaken to date 

in Spain linking 𝑁𝑂2 exposure to short-term mortality have been rendered obsolete 

by the fact that they were based on information which dated from the beginning of 

the 1990s and included only a few cities due to the lack of monitoring data, with no 

study having yet been conducted that includes all of the country's provinces. This 

study therefore set out to update the impact of daily mean 𝑁𝑂2 concentrations on 

population mortality at a national level. 

 

2.3.1- Variables used in the study 

          Used daily mean 𝑁𝑂2 concentrations measured in μg/m³ as the measure of 

mean population exposure to this pollutant. The readings, as supplied by the Ministry 

of Agriculture & Environment (Ministerio de Agricultura, Alimentación y Medio 

Ambiente/MAGRAMA), were taken across the period 2000–2009 at monitoring 
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stations, which, according to available data, were validated mainly for urban traffic 

and were situated in each provincial capital. All the monitors used were of urban 

type and placed in the capital of the province. When there is more than one station, 

was calculate the mean of the total monitors. In case of lack of data in one monitor, 

the missing values were calculated through the rest of the monitors. As the dependent 

variable, It used daily mortality due to natural (all causes except accidents) 

(International Statistical Classification of Diseases and Related Health Problems, 

10th Revision (ICD-10): A00- R99), circulatory (ICD-10: I00-I99) and respiratory 

causes (ICD-10: J00- J99) registered in 52 Spanish provinces across the period 

2000–2009. In the case of Madrid, the data corresponded exclusively to the Madrid 

metropolitan area, and were not provincial in scope. These data were furnished by 

the National Statistics Institute (Instituto Nacional de Estadística/INE). 

          As control variables, it used different variables related to the designated 

study objective, namely: 

          Accordingly, the aim was: to analyse the short-term association between 𝑁𝑂2 

concentrations and all-cause, circulatory-cause and respiratory- cause mortality in 

all Spanish provinces; and to update the impact and attributable mortality in the 

country as a whole. 

 

- Daily mean 𝑃𝑀10  concentrations (μg/m³), measured at the same stations as those 

which obtained the 𝑁𝑂2 values, and likewise supplied by the MAGRAMA. 

- Maximum temperatures (Tmax) and maximum temperatures (Tmin) at each 

reference observatory situated in each provincial capital. These data were furnished 

by the State Meteorological Agency (Agencia Estatal de Meteorología/AEMET). 

- We controlled for the presence or absence of influenza epidemics. This variable 

was introduced dichotomously, with a value=1 when there was an epidemic and a 

value=0 when there was no epidemic. This information was supplied by the National 

Centre of Epidemiology (Carlos III Institute of Health). 

- Trend of the series and annual, six-monthly, four-monthly and three monthly 

seasonalities were taken into account, using the sine and cosine functions of the 

periods of 365, 180, 120 and 90 days respectively. In addition it also controlled for 

the autoregressive nature of the dependent variable. 
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2.3.2- Impact models 

          To quantify the impact of daily mean 𝑁𝑂2 concentrations on mortality, 

constructed generalised linear models (GLMs) with the Poisson regression link, with 

appropriate control for overdispersion (negative binomial). Bipollutant models (𝑁𝑂2 

and𝑃𝑀10), when it was possible, have been performed. In these models, as indicated 

above, included the parametrized variables along with their corresponding lags. The 

procedure used to determine significant variables was «Backwards-Step», beginning 

with the model that included all the explanatory variables and gradually eliminating 

those which individually displayed least statistical significance, with the process 

being reiterated until all the variables included were significant at p < 0.05. This 

methodology makes it possible to calculate the relative risks (RRs) associated with 

given increases in the significant independent variables, so that in this case the RRs 

were calculated for every 10 μg/m³ increase in 𝑁𝑂2 concentrations. 

          RRs were calculated for natural-, circulatory- and respiratory cause mortality 

in each province. The RRs for each province yielded by the Poisson regression 

models were combined by means of a meta-analysis of random effects, which 

incorporates an estimate of inter-study variability (heterogeneity) in the weighting 

(Sterne, 2009 cited by Linares et al. 2018), thereby obtaining a measure of the RR 

(95% CI), not only at an Autonomous Region level, but also at that of all the 

provinces which proved to be statistically significant. 

 

2.3.3- Attributable mortality 

          To ascertain the number of deaths attributable to 𝑁𝑂2 concentrations in each 

province shown to be statistically significant, used the methodology published in 

Tobías et al., (2015 cited by Linares et al. 2018). This methodology is based on the 

fact that the previously calculated value of the attributable risk (AR) represents the 

percentage increase in daily mortality for every 10 μg/m³ increase in the pollutant 

studied. The population attributable risk (AR) is calculated based on the RR 

associated with this same increase, via the following equation:  

AR=((RR−1) / RR)×100 (Coste and Spira, 1991 cited by Linares et al. 2018). 

          The percentage increase in daily mortality associated with a given 

concentration is thus calculated by multiplying it by this AR and dividing by 10. The 

number of daily deaths attributable to this concentration is then obtained by 

multiplying this percentage increase in mortality by the number of daily deaths, and 
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dividing by one hundred. In this way, the mortality associated with the concentration 

of this pollutant (in this case, 𝑁𝑂2) in a given town/city can be calculated for each 

day. 

          Finally, to estimate the percentage of attributable mortality due to annual 𝑁𝑂2 

concentrations above the WHO recommendations has been calculated considering 

annual mean with 𝑁𝑂2 concentrations above 20 μg/m³. This value represent half of 

the current guideline value of WHO. 

          The computer software programmes used for all statistical analyses 

were IBM SPSS Statistics 22 and STATA v 14.1. 

 

2.3.4- Results 

          The overall RRs obtained for Spain, corresponding to increases of 10 μg/m3 

in 𝑁𝑂2 concentrations were 1.012 (95% CI: 1.010 1.014) for natural-cause 

mortality, 1.028 (95% CI: 1.019 1.037) for respiratory-cause mortality, and 1.016 

(95% CI: 1.012 1.021) for circulatory-cause mortality. This amounted to an annual 

overall 6085 deaths (95% CI: 3288 9427) due to natural causes, 1031 (95% CI: 466 

1585) due to respiratory causes, and 1978 (95% CI: 828 3197) due to circulatory 

causes. 
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2.4-exposure to air pollution in relation to socio-economic indicators in 

European metropolitan areas 

          A limited number of studies have addressed environmental inequality, using 

various study designs and methodologies and often reaching contradictory results. 

Following a standardized multi-city data collection process within the European 

project EURO-HEALTHY, we conducted an ecological study to investigate the 

spatial association between nitrogen dioxide (𝑁𝑂2), as a surrogate for traffic related 

air pollution, and ten socioeconomic indicators at local administrative unit level in 

nine European Metropolitan Areas. 

          Mixed models was apply for the associations under investigation with random 

intercepts per Metropolitan Area, also accounting for the spatial correlation. The 

stronger associations were observed between 𝑁𝑂2 levels and population density, 

population born outside the European Union (EU28), total crimes per 100,000 

inhabitants and unemployment rate that displayed a highly statistically significant 

trend of increasing concentrations with increasing levels of the indicators. 

Specifically, the highest vs the lowest quartile of each indicator above was 

associated with 48.7% (95% confidence interval (CI): 42.9%, 54.8%), 30.9% 

(95%CI: 22.1%, 40.2%), 19.8% (95%CI: 13.4%, 26.6%) and 15.8% (95%CI: 9.9%, 

22.1%) increase in 𝑁𝑂2 respectively. 

 

The association with population density most probably reflects the higher volume in 

vehicular traffic, which is the main source of 𝑁𝑂2 in urban areas. Higher pollution 

levels in areas with higher percentages of people born outside EU28, crime or 

unemployment rates indicate that worse air quality is typically encountered in 

deprived European urban areas. Policy makers should consider spatial 

environmental inequalities to better inform actions aiming to lower urban air 

pollution levels that will subsequently lead to improved quality of life, public health 

and health equity across the population. 
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Fig 12: Metropolitan areas included in the study. (Samoli et al. 2019) 

 

 
 

             

2.4.1- Data and methods used  

          Collected data on environmental and socioeconomic indicators in the 

framework of the European project EURO-HEALTHY that aimed to characterize 

health equity across Europe using a standardized protocol procedure under an 

ecological study design. Data were collected at a comparable administrative spatial 

level, roughly corresponding to municipalities. Following the EUROSTAT's 

hierarchical system of Local Administrative Units (LAU) focal points from each MA 

collected the data for one of the following levels: the upper LAU level (LAU level 

1) and the lower LAU level (LAU level 2). For most European countries, LAU-2 

corresponds to municipalities (Sohn and Stambolic, 2013 cited by Samoli et al. 

2019). Therefore, collected data at municipality level for nine MA across Europe for 

the period 2001-14 (Fig 12) considering the following LAU level: Athens, Greece, 

including 40 LAU 1; Barcelona, Spain, including 23 LAU 2; Berlin- Brandenburg, 
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Germany, including 23 LAU 1; Brussels, Belgium, including 91 LAU 2; Lisbon, 

Portugal, including 18 LAU 1; London, UK, including 33 LAU 1; Paris, France, 

including 150 LAU 2); Stockholm, Sweden, including 26 LAU 2 and Turin, Italy, 

including 49 LAU 2. 

          For the present analysis, considered SES indicators with available data from 

at least five MA in 2001 - 14. These are presented and included: unemployment and 

youth (aged 15 - 24 years old) unemployment rate, disposable income of private 

households per capita, number of crimes per 100,000 inhabitants, population aged 

25 - 64 with upper secondary or tertiary education attainment, early leavers from 

education and training and population born in non EU28 countries. further 

considered daily smokers aged above 15 years and population density as indirect 

SES indicators and finally the area's ageing index as an indicator of the health 

susceptibility and vulnerability of the population. Different MA collected data for 

different years, within the period 2001 - 14, depending on the indicator and its 

availability from the census or other sources of data, such as police records (for 

crimes) and representative population surveys (for smoking prevalence data). 

Furthermore, some indicators were provided annually, while others in 3- and 4-years 

intervals.  considered indicators that were available for the period 2010 - 14 in order 

to have a time correspondence with 𝑁𝑂2 data availability but also because data for 

this period were more complete compared to previous years. When indicators were 

provided annually, we assigned to each LAU the average of the indicator's levels for 

the available years within 2010 - 14. In cases that an indicator was not available at 

LAU level, the value of an upper administrative level was assigned to all LAUs 

within that city for descriptive purposes but the MA was excluded from further 

analysis of the specific variable (as was the case for the income and crimes indices 

in Athens, or percent of daily smokers in Paris). 

          Initially performed the analysis separately by MA. And then calculated the 

Spearman correlation coefficients between 𝑁𝑂2 and SES indicators and applied 

linear regressions, accounting for each indicator separately. Estimated the spatial 

autocorrelation of the residuals by Moran's I to assess model assumptions (Havard 

et al. 2009 cited by Samoli et al. 2019). In the second stage of the analysis, data from 

all MA were pooled and analyzed together by applying mixed models for the 

associations under investigation with random intercepts per MA and accounting for 

the spatial correlation by the introduction of a bivariate thin plate regression spline 
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for the centroid's geographic coordinates of each LAU, as implemented by Wood 

(2003 cited by Samoli et al. 2019). In all analyses 𝑁𝑂2 was log-transformed as its 

original distribution deviated from the normal. The indicators were entered in the 

models one at a time using MA specific quartiles to account for linearity deviations. 

We tested the sensitivity of our findings by using quartiles for the indicators as 

estimated by the overall distribution across the 9 MA, acknowledging as drawback 

in this analysis that in the overall distribution different MA contribute to different 

levels.  

          Finally assessed the consistency of the associations in models adjusting for 

population density. 

 

2.4.2- Results    

          All cities except London, the highest correlation across the indicators was 

observed with population density, ranging from 0.70 in Turin to 0.96 in Berlin 

Brandenbourg. In London the highest correlation was observed with the crime rate 

(r = 0.85). Negative correlations were also observed, which were especially high in 

Berlin-Brandenbourg for the association with income (r=0.69) and population aged 

25-64 years with upper secondary or tertiary education (r=0.68). MA-specific linear 

regression models indicated low to moderate spatial autocorrelation for the great 

majority of the indicators, ranging from 0.07 in Athens for most indicators to 0.42 

in Brussels for the association with the aging index. In all analyses, addressed this 

spatial autocorrelation by adding a smooth bivariate term for each municipality's 

geographic coordinates in the mixed models analysis with the pooled data over all 

MAs. All indicators presented positive associations with 𝑁𝑂2 concentrations 

indicating increases for levels above the lowest quartile of the indicator distribution. 

Among the indicators analyzed, the stronger associations were observed between 

𝑁𝑂2 levels and population density, population born outside the EU28, crimes per 

100,000 inhabitants, and unemployment rate, which displayed a highly statistically 

significant trend of higher 𝑁𝑂2 concentrations with increasing levels of the 

indicators. Specifically, the highest vs the lowest quartile of each of these four 

socioeconomic indicators was associated with 48.7% (95% confidence interval (CI): 

42.9%, 54.8%), 30.9% (95%CI: 22.1%, 40.2%), 19.8% (95%CI: 13.4%, 26.6%) and 

15.8% (95%CI: 9.9%, 22.1%) increase in 𝑁𝑂2 respectively. A statistically 

significant increasing trend was observed for areas with a higher ageing index, where 
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the areas at the highest quartile of the ageing index had 11.9% higher 𝑁𝑂2 levels. 

The association with youth unemployment rate and the percentage of smokers over 

15 years indicated that the middle levels of the indicators presented the highest 

increases in 𝑁𝑂2 levels, rather than the highest. Income and higher education 

attainment indices were not significantly associated with 𝑁𝑂2 levels. The models 

using pooled data quartiles for the indicators identified the same statistically 

significant indicators that followed the same patterns as in the analysis with the MA-

specific quartiles, while the magnitude of the effects increased in all cases except for 

the population born in non EU28 (decreased) and the ageing index (identical). 

Models adjusting for population density also revealed the same patterns although the 

magnitude of the effects decreased. 
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2.5- the health effects of exposure to physical and chemical properties of 

airborne particles 

Table 7: Resume of principal information about the work by Pirani et al. 2015 

 

Site Sampling 

Method 

Aim Period 

London (UK) Dirichlet process 

mixture models 

cluster time points 

with similar 

multipollutant and 

response 

profiles, while 

adjusting for 

seasonal cycles, 

trends and 

temporal 

components. 

2002–2005 

 

          Airborne particles are a complex mix of organic and inorganic compounds, 

with a range of physical and chemical properties. Estimation of how simultaneous 

exposure to air particles affects the risk of adverse health response represents a 

challenge for scientific research and air quality management. In this paper, we 

present a Bayesian approach that can tackle this problem within the framework of 

time series analysis. 

 

          To gain better insight into the features of air pollution mixtures and their 

effect, there is a consequent need to explore new statistical methods able to integrate 

standard methodological tools for a better understanding of these complex systems. 

In a recent review of techniques for estimating health effects of multiple air 

pollutants. 

 

2.5.1- Measurements of PM and Data of Mortality 

Daily average concentrations of particle metrics included: particle number 

concentration (PNC), inorganic anions such as chloride, nitrate and sulphate, black 

smoke (BS) and gravimetric measurements of PM, such as 𝑃𝑀10, 𝑃𝑀2.5 and PM 
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coarse fraction (that is, 𝑃𝑀10−2.5 obtained by subtraction). With the exception of 

BS, the daily concentrations were obtained from a single background monitoring 

station in central London (North Kensington). BS was an average across several 

urban and suburban stations. PNC was measured using a TSI 3022A condensation 

particle counter, where particles are enlarged by condensation of saturated butanol 

vapour which are then counted using a laser and optical detector. The 𝑃𝑀10 24-hour 

filter samples were collected at 16.7 l per minute on quartz fibre filters using Partisol 

2025 (Thermo) instruments and these filters were analysed by ion chromatography. 

Finally, daily average gravimetric 𝑃𝑀10 and 𝑃𝑀2.5 were sampled using a Partisol 

sampler and measured using methods in EN12341 and EN14907. 

          The data set also included PM apportioned into primary and nonprimary 

sources (Fuller et al., 2002; Fuller and Green, 2006 cited by Pirani et al. 2015), 

giving modelled primary 𝑃𝑀10 (P 𝑃𝑀10), and non-primary PM subdivided by size 

fraction: non primary 𝑃𝑀10 (NP 𝑃𝑀10), non-primary 𝑃𝑀2.5 (NP 𝑃𝑀2.5), and non-

primary PM coarse fraction (NP coarse). The source apportionment model assumed 

that primary 𝑃𝑀10 was associated with nitrogen oxide (𝑁𝑂𝑥) sources and the non-

primary component was the fraction of PM not associated with 𝑁𝑂𝑥. 𝑁𝑂𝑥 is 

generally considered a robust marker for traffic pollution. 

 

          To better quantify the average health impact of these particles, was measured 

the same set of metrics in 2012, and computed and compared the posterior predictive 

distributions of mortality under the exposure scenario in 2012 vs 2005. 

          For the year 2012, the PM measurements (except BS) were collected at the 

same background monitoring station in central London. Between 2005 and 2012, 

gravimetric filter substrates were changed from quartz fibre to PTFE coated glass 

fibre (Emfab, Pall). Because BS is no longer measured in London, daily mean of BS 

was computed from equivalent measured black carbon by aethalometer (Magee 

Scientific) at two background monitoring sites, and applied an adjustment factor of 

0.27 following Heal and Quincey (2012 cited by Pirani et al. 2015). 

 

          Daily count of deaths from respiratory diseases of London residents (2002 

2005) were obtained from the Office for National Statistics and coded using the 

International Classification of Diseases, 10th Revision (ICD-10: Chapter J). 
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2.5.2- Profile regression model for time series of multiple particles and health  

   The data of exposure were normalised to be on a comparable scale adopting the 

modified z-score recently proposed by Austin et al. (2012 cited by Pirani et al. 2015) 

Let 𝑥𝑡,𝑝 be the measurement on day t of particle metric p, for t = 1,…,T and p = 

1,…,P. transformed the original measurements as 𝑧𝑡,𝑝 = (𝑥𝑡,𝑝 − 

Median(𝑥𝑝))/(Median(|𝑥𝑡,𝑝− Median(𝑥𝑝)|)). 

          In the previous analysis, observed associations for respiratory mortality with 

1–day lag secondary PM masses. The estimated regression coefficients were 

obtained fitting separate univariate log-linear Poisson models. To study the value 

added by this new approach, it was considered the previous study of Atkinson et al. 

(2010 cited by Pirani et al. 2015) as benchmark and thus the 1day lag was chosen as 

the exposure window for particles. 

 

          The proposed model is based on the DP, a popular tool for Bayesian 

nonparametric analysis, which relies on mixtures to represent distributions in the 

data. Symbolize by t=1,…,T a series of temporal points. Let the data consist of 

realizations of a response data vector y = (𝑦1,…,𝑦𝑇), a set of (normalised) covariates 

(i.e., predictors) 𝑧𝑡,𝑝, p=1,…,P, and a collection of confounding factors u𝑡,ℎ, 

h=1,…,H. In this study, yt denotes the count number of deaths for respiratory 

diseases on day t, 𝑧𝑡=(𝑧𝑡,1,…, 𝑧𝑡,P)′ represents a daily covariate profile of air 

particles, and u𝑡=(u𝑡,1,…, u𝑡,H)′ is a B-spline basis matrix for natural cubic splines 

of calendar time and temperature. 

 

Assumed a joint probability model for the data, which takes the following form: 

 

 𝑃(𝑦𝑡 , 𝑧𝑡|Θ, u𝑡 ) = ∑ wk p(𝑦𝑡|Θ𝑘 , Θ0, u𝑡)p(𝑧𝑡|Θ𝑘 , Θ0)
∞

𝑘=1
          (6)                             

 

where wk are the mixture probabilities satisfying ∑ wk = 1 ∞
𝑘=1  almost surely and 

indicating the probability of belonging to the kth component. Θ denotes the 

collection of model parameters, that includes component specific parameters Θ𝑘 ,  

and global parameters Θ0, that is, Θ = (Θ𝑘, Θ0). 
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          The inference for such mixture models can be simplified by introducing latent 

variables that indicate the group memberships of objects (i.e., the cluster to which 

day t belongs to). These latent group labels define as: g = (𝑔1,…, 𝑔𝑡), such that p (𝑔𝑡 

= k) =𝑤𝑘. Thus, 𝑔𝑡 is chosen using a multinomial distribution parameterised by the 

mixing probabilities, 𝑔𝑡 |w ~ Multinomial(w). 

 

          Rather than specifying a parametric distribution for the mixture probabilities, 

𝑤𝑘, modelled them as unknown quantities to be estimated by the data. Specifically, 

assumed that 𝑤𝑘 are generated using a stick breaking representation of the DP 

given by Sethuraman (1994 cited by Pirani et al. 2015). The name of this 

construction derives from an analogy given by breaking pieces off from a stick of 

unit length, where the breakpoints are randomly sampled from the Beta 

distribution. The mixture probabilities break the stick into a potentially infinite 

number of pieces, such that ∑ wk = 1 ∞
𝑘=1 . The first mixture probability is equal to 

V1, i.e., w1=V1, where V1 ~ Beta(1,α) and for k ≥ 2 the k ‐th mixture probabilities 

are given by V𝑘𝛱𝑖=1
𝑘−1(1 −  Vi). A Gamma distribution was used to specify prior 

uncertainty for the precision parameter of DP (following Escobar and West (1995)) 

(cited by Pirani et al. 2015), namely α ~ Gamma(a,b), where a = 2 and b = 1 are the 

shape and the inverse scale (rate) parameter respectively.  

A multivariate normal distribution was assumed for the P covariates: 

 

p(𝑧𝑡| Θ𝑘, Θ0) = (2𝛱)−
𝑝

2|𝛴𝑘|−
1

2 exp {−
1

2
 (𝑧𝑡 − 𝑚𝑘)′ ∑ (𝑧𝑡 − 𝑚𝑘)−1

𝑘 }                    (7) 

                 

where mk = (mk,1,…,mk,p) is the mean vector for component k (i.e., location 

parameters), and 𝛴𝑘 is the P × P symmetric positive definite variance covariance 

matrix. 

          Specified hyperpriors for mk and 𝛴𝑘  similar to Molitor et al. (2011 cited by 

Pirani et al. 2015), adopting an empirical Bayesian approach. A normal distribution 

was assumed for the location parameters, that is, mk ~ N(m0, 𝛴0) (with m0 equal to 

the empirical mean of each covariate, and 𝛴0 having a diagonal structure with 

elements equal to the square of empirical range of each covariate). specified a 

Wishart distribution for the precision matrix 𝑄𝑘 = ∑−1
𝑘 (i.e., inverse variance–

covariance matrix), that is, 𝑄𝑘 ~W(Φ,ν), where Φ is a symmetric (non-singular) 
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matrix parameter (set equal to the inverse of the empirical variance multiplied by 

1/P) and v is the degrees of freedom parameter (set equal to P). 

The response was modelled as a Poisson: 

 

𝑃(𝑦𝑡|Θ𝑘, Θ0, 𝑢𝑡) =
𝜆𝑡

𝑦𝑡

𝑦𝑡!
𝑒𝑥𝑝(−𝜆𝑡)                                                                              (8) 

                                                                                 

where 

 

𝜆𝑡 = 𝐸𝑡 𝑒𝑥𝑝(𝑢𝑡)                                                                                                      (8.1) 

 

and 

 

𝜇𝑡 = 𝜇𝑘 + ∑ 𝑓ℎ(𝑈𝑡,ℎ, ⅆ𝑓ℎ)
𝐻

ℎ=1
+ 𝜀𝑡                                                                            (8.2) 

                                                                           

assuming ε𝑡 be normal distributed with zero mean and variance σ𝜀
2. Here µ𝑡 is the 

mean response for day t and 𝐸𝑡 is the expected offset given by the average number 

of deaths for respiratory diseases in the full period in study. 

          The parameter of interest is µ𝑘, which represents the log relative risk for the 

outcome of interest associated with the kth cluster, were each cluster includes days 

with similar multipollutant profile. The functions f(⋅,ⅆ𝑓ℎ) denote smooth functions 

of confounding factors, with smoothing parameters ⅆ𝑓ℎ. The basis functions are 

associated with the relative coefficients𝛽1,…,𝛽𝐻, that assumed follow a weakly 

informative Student-t prior distribution, with location, scale and degree of freedom 

set to 0, 2.5 and 7 respectively, that is β ~ 𝑡7(0,2.5).  

 

2.5.3- Results 

          Precis statistics for deaths for respiratory-related diseases and ambient air 

particles measured in London in the period shown in table 7 are given in Table 8.  

          The correlations between the daily concentrations of pollutants showed 

different degrees of interdependence in these metrics, as shown in Table 9. 

           The representative clustering separated the days into three main clusters, 

which included respectively 1156, 63 and 242 days. Fig.13 shows the posterior 
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distributions for the particle metrics by cluster, while Table 10 displays a summary 

of the cluster multipollutant profiles on their original scale. 

 

Table 8: Descriptive statistics of respiratory mortality and airborne particle metrics. London, 

2002–2005.( Pirani et al. 2015) 

 

 
 

 

Table 9: Correlation between pairs of airborne particle metrics. London, 2002–2005. (Pirani et 

al. 2015) 

 

 
 

 

          Compared to clusters 1 and 3, cluster 2 had larger posterior errors as the 

number of days included was lower. The risk of mortality for respiratory diseases 

varied according to these cluster profiles.  
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          Cluster 1 was characterized by low posterior estimates for most of the particles 

(except chloride), and had the lowest risk of mortality when compared to the average 

mortality in 2002 - 2005. The posterior relative risk of mortality, 𝜇1, associated with 

this cluster was 0.98 (95% credible intervals (CI): 0.96,1.00). 

          Cluster 2 was characterized by low posterior estimates of inorganic anions and 

secondary particles and higher posteriors for primary emissions, with a posterior 

relative risk of mortality, 𝜇2, equal to 1.00 (95% CI: 0.97, 1.03). This cluster 

included mainly winter days. 

           Finally, cluster 3 was dominated by secondary aerosol, especially nitrate and 

sulphate, with high posteriors of non-primary airborne particles. Found a posterior 

relative risk of mortality, 𝜇3, equal to 1.02 (95% CI: 1.00, 1.04). This third cluster 

included mainly spring and autumn days. 

          Fig. 14 displays the heatmap of the posterior probabilities that the days 

(period: 2002–2005)(table 7) were included in a cluster. For this data set, It was 

found that the days exhibited a high probability of being assigned to a specific 

cluster.  

          Also it was analysed the posterior estimates for the coefficients associated 

with the design matrices of B-splines of time and temperature for controlling for 

seasonal and long-term trend and weather conditions. The posterior mean and the 

95% CI of the estimated coefficients are displayed in Fig. 15, showing the effective 

capability of the model to depict the non-linear effect of these factors. 

 

Fig 13: Box plots showing the distribution of the posteriormeans for each particle component (on 

normalised scale) for the three clusters that form the representative clustering (A = cluster 1; B = 

cluster 2; C = cluster 3).  (Pirani et al. 2015) 
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Table 10: Summary of cluster profiles (on original scale): distribution means (95% CI) for 

characteristics of clusters from the representative clustering. (Pirani et al. 2015) 

 

 
 

on primary PM and BS, consistent with the earlier findings of Fuller and Green (2006 

cited by Pirani et al. 2015). The large decrease in PNC was most likely due to a 

decrease in the sulphur content of diesel in 2008 which also contributed to decreased 

sulphate concentrations.  

          Comparing the predictive distribution of the deaths for 2012 vs 2005, a 

reduction in respiratory mortality was found, corresponding to an average 

percentage change in the posterior predictive distributions of −3.51% (95% CI: 

−0.12%, −5.74%). Based on the observed number of deaths for respiratory-related 

diseases which occurred in 2005, expect an average reduction in mortality of 

approximately 270 subjects. 
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Fig 14: Heatmap of posterior probability that day t belongs to one of the three representative 

clusters.  (Pirani et al. 2015) 

 

           
 

 

Fig 15: Posterior estimates (mean and 95% CI) for the coefficients of the natural cubic spline of 

time (left panel) and natural cubic spline of temperature (right panel). (Pirani et al. 2015) 
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2.6- Saharan dust and mortality in Emilia-Romagna (Italy)  

 

Fig 16: Saharan dust spreading to Emilia-Romagna as captured by the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument on the NASA Aqua satellite. The boundaries of 

the Emilia-Romagna region and the location of the Monte Cimone station (CMN) are shown. 

(Sajani et al. 2011) 

                                           
 

          Desert dust is one of the greatest sources of natural aerosols in the atmosphere, 

representing about 37% of the total (natural and anthropogenic) emission of 

atmospheric primary aerosols (cited by Penner et al.2001).    

          Saharan events can also contribute to exceedances of the 𝑃𝑀10 daily European 

Union limit (and WHO guideline value) of 50 mg/m³. 

          Saharan dust mobilisation has a great impact on the environment climate 

variability and, perhaps, human health. 

          A previous study focused on paediatric asthma accident and emergency 

admissions in the Caribbean island of Trinidad (cited by Sajani et al. 2011), showing 

an increase in respiratory health effects in association with Saharan dust days (SDD). 

An analysis of morbidity in Cyprus (Middleton et al. 2008 cited by Sajani et al. 2011) 

showed an increased risk of hospitalisation on Saharan dust storm days, particularly 

due to cardiovascular causes.  
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Table 11: Resume of principal information about the work by Sajani et al. 2011 

 

Site Aim Period Method 

Barcellona Spain investigate SDD 

effect modification 

on the particulate 

matter-mortality 

concentration 

response 

function, and assess 

the effects of SDD 

on natural, 

cardiovascular and 

respiratory 

mortality. 

18 months Case crossover 

design 

        

          This study aimed at assessing the effects of SDD on mortality in Emilia 

Romagna, a region in the Po basin of northern Italy (fig. 16). In this vast flat area 

surrounded by mountains and often experiencing high levels of air pollution, 

Saharan dust episodes have been regularly monitored since 2002 at the Italian 

National Research Council (CNR) ‘O. Vittori’ background station on Monte Cimone 

(CMN), the highest peak in the northern Apennine mountains (2165 m above sea 

level). This station belongs to the Global Atmosphere Watch programme of the 

World Meteorological Organisation.      

 

2.6.1- METHODS 

 

       The specific objectives of the study were: (i) to investigate SDD effect 

modification on the particulate matter-mortality concentration – response function, 

and (ii) to assess the effects of SDD on natural, cardiovascular and respiratory 

mortality. 

       Exposure to particulate matter was expressed in term of particles with 

aerodynamic diameter ˂10 mm (𝑃𝑀10). Population exposure to Saharan dust 

transport was expressed in terms of a dichotomous variable classifying the study 
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period in days affected (SDD) and not affected by Saharan dust transport (non-

SDD). 

 

2.6.2- statistical analysis 

        The epidemiological approach was based on a time-stratified Case - crossover 

design which is an adaptation of the common retrospective case control design. It 

was proposed by Maclure (cited by Sajani et al. 2011) to study the effects of 

transient, intermittent exposures on the subsequent risk of rare acute-onset events in 

close temporal proximity to exposure. This approach compares exposures during the 

period of time of death (case period) with one or more periods when death did not 

occur (control periods). Various sampling strategies were used to select control 

periods to estimate the effect of air pollution exposures on the health outcome of 

interest. Referent sampling schemes specific to air pollution epidemiology use 

reference periods both before and after the time of the event (bidirectional referent 

sampling) as a method to reduce bias due to temporal trends in exposure and 

outcome variables. In this study, control days were selected from the same day of 

the week, month and year as case days, following the time-stratified design which 

has been demonstrated to be the most appropriate for case e crossover studies of 

acute air pollution effects. The association of Saharan dust outbreaks and 𝑃𝑀10 

concentration with mortality was estimated using conditional logistic regression, 

adjusted for apparent temperature, holidays, summer population decrease (7-22 

August), flu epidemic weeks and heat wave days. An apparent temperature 

confounding effect was considered following the approach already adopted within 

an Italian country-wide study on the health effects of 𝑃𝑀10. Heat wave days were 

defined as those days with mean apparent temperature above 308C for at least the 2 

preceding days. This definition is very similar to that adopted in the Barcelona study 

and it corresponds to the definition of the alert level of the regional heat warning 

system. Influenza epidemics were defined on the basis of the weekly estimates of 

influenza incidence, as reported by the influenza surveillance system of the Italian 

National Institute of Health. Flu epidemics weeks were defined as the weeks with 

regional incidence higher than two new well-diagnosed flu cases/week/1000 

patients. 

          Basically, two models were applied to analyse the data. First a model applied 

without insertion of the SDD variable. Then applied a model including, in addition 

to 𝑃𝑀10 and SDD as principal variables, an interaction term between them to test 
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for effect modification induced by SDD on the 𝑃𝑀10-mortality concentration e 

response function. Finally, 𝑃𝑀10 and SDD were inserted in a model as independent 

variables, that is, without 

interaction. 

          Because of the higher risks associated with 𝑃𝑀10 exposures during the hot 

season reported in several studies (Nawrot et al. 2007),( Peng et al. 2005) (cited by 

Sajani et al. 2011), separate estimates were undertaken for the period May e 

September (hot season) and October e April (cold season).  

      The statistical package R was used for the analyses. 

 

2.6.3- RESULTS 

Eighty-two Saharan events (ie, consecutive days affected by Saharan dust transport) 

were identified in the study period, accounting for 16% of the total days with 

available SDD classification. Classification of dust events was available for 77% of 

the total days, with missing classifications much more frequent during the cold 

season. The frequency of dust days according to the more restrictive definition of 

SDD was 11%. This definition will be used in the presentation of results unless 

otherwise specified. The dust events showed a marked seasonal pattern, with 72% 

of the dust events occurring between April and September.  

          The annual 𝑃𝑀10 average concentration in the study area was 41 µg/m³, with 

approximately 25% of days exceeding the EU limit. A brief description of 𝑃𝑀10 

distributions for the different time periods (whole year, cold and hot seasons) as well 

as for SDD and non-SDD is reported in table 12. Similar average concentrations 

were found for 𝑃𝑀10 during the SDDs and non-SDDs even though higher particulate 

concentrations for the SDDs were found for the hot season. The Wilcoxon 

ManneWhitney U test was applied to compare averages of 𝑃𝑀10 concentrations on 

SDDs and non-SDDs. No significant differences were found for whole year and cold 

season averages. Significantly higher 𝑃𝑀10 average concentrations on SDDs were 

found for hot season averages.  

     These results focus on the elderly because, as expected (Pope III et al. 2006) 

(cited by Sajani et al. 2011), they were found to be at greater risk in relation to both 

𝑃𝑀10 and SDD. In particular, unless otherwise stated, the results are presented for 

people aged 75 or older to allow comparison with the Barcelona study.  
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          First a model was applied to assess the association between mortality and 

𝑃𝑀10 exposure without the insertion of the SDD variable. ORs were estimated for 

the same day (lag 0) to 4 days after exposure (lag 4). It found strongest effects at lag 

1 and declining effects towards lag 4 (fig. 16). 

 

Table 12 : Summary statistics for 𝑃𝑀10 mass concentration distributions (mg/m³) for Saharan 

and non-Saharan dust days (Sajani et al. 2011) 

                                   

                           
 

The rise in natural mortality per 10 µg/m³ 𝑃𝑀10 concentration increase (lag 1) was 

0.4% (95% CI -0.2% to 1%) for the whole year model and 4.6% (95% CI 1.8% to 

7.3%) for the hot season model. Also was tested lag 1 and obtained similar results. 

On the other hand, applying the same model only to the days when dust classification 

was available raised the risk per 10 µg/m³ 𝑃𝑀10 concentration increase to 0.7% 

(95% CI _0.1% to 1.6%). It was not find heterogeneity among towns (p for 

heterogeneity with regard to natural mortality=0.67). 

          Table 13 shows the findings of models including, in addition to SDD and 

𝑃𝑀10 as principal variables, the interaction term between them. No evidence of 

effect modification of SDD on the 𝑃𝑀10-mortality relationship was found for any 

season or natural, cardiovascular or respiratory mortality (p value for interaction 

term>0.22).  
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          Table 14 shows the results of the models with SDD and 𝑃𝑀10 considered as 

independent variables. Various combinations was tested of lags for both 𝑃𝑀10  and 

SDD (from lag 0 to lag 3). The strongest associations were found at lag 1 for both 

variables even though SDD was significantly associated with respiratory effects up 

to lag 3. The mean difference in exposures between cases and controls was -0.4 

µg/m³ for the whole year, -0.6 µg/m³ for the hot season and -0.2 µg/m³ for the cold 

season. The average number of deaths per day was similar during the SDDs (21.6, 

9.8 and 2.1 for natural, cardiovascular and respiratory deaths, respectively) and non-

SDDs (22.0, 10.1 and 2.1, respectively). 

          An influence of dust outbreaks on mortality for all aggregated causes for both 

the whole year models and the hot season models was found. Dust effects were 

particularly evident for respiratory mortality, which increased by 22.0% (95% CI 

4.0% to 43.1%) on the SDDs in the whole year model and by 33.9% (8.4% to 65.4%) 

in the hot season model. No additional risk was found during the cold season. The 

rise in natural mortality per 10 µg/m³ 𝑃𝑀10 concentration increase was 0.8% (95% 

CI 0% to 1.6%) for the whole year model and 4% (95% CI 0.6% to 7.4%) for the 

hot season model. 

      Additional analyses were also carried out for other age groups. Models applied 

to people of all ages, those aged 65 or older and those aged 85 or older gave very 

similar results. Models applied to the <75-year-old age group confirmed a higher 

risk for respiratory mortality during dust days (table 14) even though the associations 

were not statistically significant and the confidence intervals were very large (OR 

1.428 (95% CI 0.934 to 2.185) for the whole year model and 1.734 (95% CI 0.981 

to 3.062) for the hot season model. Overall, no effect was found in this age group 

for cardiovascular and natural mortality.  
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Table 13: OR and 95% CIs for the association of daily exposure to Saharan dust and 𝑃𝑀10 with 

natural, cardiovascular and respiratory mortality for people aged 75 or above (Sajani et al. 2011) 

 
 

Table 14 : OR and 95% CIs for the association of daily exposure to Saharan dust and 𝑃𝑀10 with 

natural, cardiovascular and respiratory mortality (Sajani et al. 2011) 

 

 
 

 

      Results were qualitatively similar using the broader definition of SDDs, even 

though the increase in mortality associated with dust events was generally lower. 

Particularly, compared to the most restrictive SDD definition, the ORs associated 

with SDD with respect to natural mortality decreased from 1.042 to 1.001 for the 

whole year model and from 1.050 to 1.014 for hot season model.  
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2.7- 𝑷𝑴𝟐.𝟓exposure and health impacts 

          Air pollution is one of the biggest environmental health risks. In Finland, fine 

particles (𝑃𝑀2.5) were recently evaluated to be the most harmful ambient air 

pollutant Several health outcomes are related to 𝑃𝑀2.5 exposure. The associations 

are typically quantified as relative risks or hazard ratios in epidemiological studies. 

Traditionally, concentration response relationships for 𝑃𝑀2.5exposure have been 

assumed to be linear or log-linear. These mainly work for low-exposure levels but 

lead to unrealistically large impacts in areas where the concentrations are very high. 

 

Table 15: Resume of principal information about the work by Korhonen et al. 2019 

 

Site Sampling 

Method 

Aim Period 

Finland The atmospheric 

chemical transport 

model SILAM 

systematically 

quantify the 

impact of the 

spatial resolution 

on population-

weighted mean 

concentration 

(PWC), its 

variance, and 

mortality 

attributable to fine 

particulate matter 

(𝑃𝑀2.5) exposure 

2015 

 

 

   Table 15 shows the principal information used for the methods of evaluating 

exposures to 𝑃𝑀2.5 and estimate the health effect.      

 

           Apply the method used by Punger and West (2013 cited by Korhonen et al. 

2019) on two modelled air quality datasets for Finland in 2015. And then study the 

sensitivities of predicted population-weighted 𝑃𝑀2.5 concentrations, originated (i) 

from the national Finnish sources and dispersion and the long-range transport 
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modelled with SILAM, and (ii) from local Finnish sources modelled with FRES. 

The chemical and physical transformation of particulate matter and gaseous 

pollutants are included in the computations by the SILAM model, but these are not 

allowed for by the FRES model. Also investigate the influences of the spatial 

resolution on the associated predicted health impacts. 

          It was used predicted fine-resolution concentration datasets and spatial 

population distributions as input datasets in this analysis. Based on these fine-

resolution datasets, It was produced aggregated datasets at coarser resolutions (1, 5, 

10, 30, and 50 km), simply by spatially averaging the modelled concentrations. The 

results of this study therefore include the impacts of the spatial averaging of the 

dispersion simulations with 1-km grid cell size computed with a combination of 

high-resolution emission fields (250 m) and coarse resolution of meteorological data 

(15 km). Therefore, the results present the lower limits of the influence of model 

resolution. For actual model computations that would also use finer scale 

meteorological data, the influence of the coarser resolution on the population-

weighted concentrations and the associated health impacts (in comparison with a 

finer resolution) would most likely be relatively larger 

 

Fig 17: Total annual primary 𝑃𝑀2.5emissions (22 Gg) by sources in Finland in 2015 calculated 

with FRES model at 250-m resolution. (Korhonen et al. 2019) 

 

                  
                       

2.7.1- regional particle emissions and concentrations 

          The high-resolution modelling relied on the national 𝑃𝑀2.5 emission data, 

calculated at the Finnish Environment Institute (SYKE) with the FRES model 



62 
 

(Karvosenoja 2008 cited by Korhonen et al. 2019), at 250-m spatial resolution for 

area sources and an exhaustive list (n = 581) of point sources in Finland. The total 

annual primary 𝑃𝑀2.5 emissions in 2015 in Finland were 22 Gg (point sources 3.4 

Gg; area sources 18.7 Gg) (Fig 17). 

          Two separate modelling systems were used to estimate the 

𝑃𝑀2.5 concentrations and the impacts of the Finnish emission sources.  

These were (i) the chemical transport model SILAM, which was used to estimate the 

𝑃𝑀2.5 concentrations originated both from the local and the regional sources and (ii) 

the source-receptor matrices (SRMs) included in the FRES model to estimate the 

concentrations caused by local primary 𝑃𝑀2.5 sources. The computations using the 

SILAM model include also the secondary particulate matter, whereas the FRES 

computations include only the local primary particulate matter emissions up to 10 

(traffic) and 20 km (residential combustion) distances.  

          The SILAM v5.5 dispersion model developed at the Finnish Meteorological 

Institute (FMI) (Sofiev et al. 2015 cited by Korhonen et al. 2019) was used to 

estimate the 𝑃𝑀2.5 concentrations, including also the LRT contributions. It is 

currently exploited on a daily basis in the national operational services, providing 

the air quality forecasts in global, European, and Fennoscandian domains. The set-

up used for the SILAM model computations in this study contains four 

computational domains. The largest domain is global. The second largest domain is 

European, including the whole Europe, parts of the Northern Africa, and the western 

parts of Asia. The third domain includes Northern Europe, and the fourth domain 

includes the geographical area of Finland. Large-scale computations over the globe 

and Europe (1.44 degree and 0.5 degree, respectively) were required to generate 

physically realistic boundary conditions for the nested model runs for the Finnish 

domain. For the computations in the highest-resolution domain, the internal model 

time step was selected to be 1.5 min and 1 h for the model output. The spatial 

resolutions of the model output were 0.02° in longitudinal and 0.01° in latitudinal 

dimensions (these correspond to distances of the order of 1.1 km). 

          In vertical direction, the model considered 11 layers of different thickness 

from 20 m near the ground up to 2000 m outside of planetary boundary layer (Sofiev 

2002; Sofiev et al. 2010 cited by Korhonen et al. 2019). The chemical 

transformations of atmospheric constituents were taken into account, and wet and 

dry depositions from the atmosphere to the underlying surfaces were calculated on 

every time step. The meteorological fields were extracted from the European Centre 
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of Medium-Range Weather Forecast (ECMWF) integrated forecast system (IFS). 

These data had the spatial resolution of about 15 km, with an update frequency of 3 

h. 

          The primary fine particulate matter (P 𝑃𝑀2.5) concentrations originating from 

Finnish sources were estimated with the FRES model, using SRMs that were based 

on computations using a Gaussian dispersion model UDM-FMI. For computing the 

SRM’s, meteorological data for ten different locations in Finland, for a period of 5 

to 6 years (2000–2005) were used. The emissions and dispersion were taken into 

account on a resolution of 250 m× 250 m. Separate SRMs were created for emission 

sources with release heights of 2 m, dispersion extending to 20 km × 20 km area 

from each emission grid cell (vehicular traffic exhaust and dust and machinery), and 

7.5 m release height extending to 40 km × 40 km area (residential combustion and 

other area sources, e.g., agriculture, peat production, small heating plants). The 

source-receptor matrices were evaluated separately on a monthly level, for ten 

spatial domains which correspond to the abovementioned locations in Finland. The 

computation of the previously used coarser SRMs at 1-km resolution has been 

presented in Karvosenoja et al. (2011 cited by Korhonen et al. 2019). 

 

2.7.2- Population data and exposures 

Population grid data at 1-km resolution presented in ETRS-TM35FIN coordinate 

reference system were obtained from Statistics Finland for December 31, 2015 

(Statistics Finland 2017 cited by Korhonen et al. 2019). The number of total 

population is available for all inhabited cells (100,338). Population-weighted 

concentrations were calculated for (i) whole of Finland and divided into (ii) urban 

and (iii) rural areas, using 200 inhabitants per square kilometre as a threshold value 

between urban and rural areas. Population count at 1-km resolution was used to 

calculate PWC of 𝑃𝑀2.5 and local P 𝑃𝑀2.5 to all areas at 1- to 50-km resolution. 

Population data at 1-km resolution was also used to calculate PWC of primary 

𝑃𝑀2.5 for five emission sectors divided to urban and rural areas at resolutions 

ranging from 250 to 50 km. In addition, Building and Dwelling Register 2014 (BDR) 

population data was used to calculate PWC of overall local and source-specific 

P 𝑃𝑀2.5 to whole of Finland at 250-m resolution to get more accurate estimate of 

exposure. PWCs in Finland in 2015 for 𝑃𝑀2.5  were estimated with Eq. (9). 
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PWC =
∑ 𝐶𝑚,𝑖𝑃𝑖

𝑁

𝑖=1

∑ 𝑃𝑖
𝑁
𝑖=1

                                                                          (9)                                                                       

 

  

where N is the number of population in each grid cell, 𝐶𝑚,𝑖 is the modelled 

concentration in ⅈ𝑡ℎcell and 𝑃𝑖 is the population in ith cell.  

        

2.7.3- Comparison of health impacts 

Deaths attributable to 𝑃𝑀2.5  exposure in the whole of Finland were evaluated using 

PWCs from SILAM and FRES models. For both models, the PWCs were evaluated 

on the following resolutions: 1 km, 5 km, 10 km, 30 km, and 50 km. For the FRES 

results, 250-m resolution was used as well. Attributable deaths were estimated using 

log-linear concentration-response function (relative risk (RR): 1.062) from Heroux 

et al. (2015 cited by Korhonen et al. 2019). In addition, Used supra-linear integrated 

exposure response functions (IER) for ischemic heart disease, stroke, chronic 

obstructive pulmonary disease, and acute lower respiratory infections (children) for 

SILAM estimates. Due to the non-linearities in the IER functions, was take into 

account the exposure distribution by assuming a normal distribution. Deaths 

calculated with IER functions were summed up and the total attributable deaths were 

presented. Deaths attributable to 𝑃𝑀2.5  are calculated using attributable incidence 

(AI) approach shown in Eq. (10). 

 

𝐴𝐼 = 𝑃𝐴𝐹 × 𝐼 =
𝑓⋅(𝑅𝑅𝐸−1)

𝑓⋅(𝑅𝑅𝐸−1)+1
× 𝐼                                                                  (10)                                                                       

                                                                               

where AI is deaths attributable to 𝑃𝑀2.5 exposure, PAF is the population attributable 

fraction, I is the background incidence rate (in this case, mortality), and f is the 

fraction of the target population exposed to 𝑃𝑀2.5 (100%), 𝑅𝑅𝐸  is the relative risk 

of the population at the prevailing exposure level, calculated as 𝑅𝑅𝐸 = exp.(E × ln 

(𝑅𝑅1)) in which RR1 is the relative risk estimate per unit of exposure and E is the 

mean population exposure. 
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2.7.4- Population-weighted concentrations 

Annual population-weighted concentration (PWC) of 𝑃𝑀2.5calculated with the 

SILAM model was 5.1 μg/m³ at 1-km resolution.  

         Population weighted primary fine particulate concentration originated from 

local emission sources, calculated with the FRES model concentrations at 250-m 

resolution was 1.6 μg/ m³. Difference to the corresponding results computed on 1-

km resolution was modest, but decrease of estimated concentration was substantially 

larger for the results computed on coarser resolutions. Exposure estimate calculated 

with 50-km resolution was 70% lower than estimation done with 250-m resolution. 

Maximum concentration of P 𝑃𝑀2.5in populated grid cells decreased with coarser 

resolution and was about 80% lower at 50 km resolution compared with 1 km.  

          Residential combustion had the highest contribution to the overall 

concentration of primary 𝑃𝑀2.5 at all resolutions. With the exception of 

P 𝑃𝑀2.5 concentrations originating from machinery and other traffic sources (ca. 

15%decrease), there was no great difference in exposures between 250-m and 1-km 

resolutions. Population-weighted concentration originated from traffic dust was least 

affected to resolution change between 1- and 5-km resolution and PWC of residential 

combustion at resolutions coarser than 5 km. Population-weighted primary 𝑃𝑀2.5 

concentration of residential combustion calculated at 50-km resolution was about 

40% of those estimated with 250-m resolution. PWCs originated from traffic sources 

at 50-km resolution were only ca.15–20% of those calculated at original 250-m 

resolution. Decrease of maximum concentrations in populated grid squares was also 

greater from traffic sources compared with residential combustion and other sources. 

          When resolution was changed to be coarser, the exposure distribution shifted 

towards lower concentrations (Fig. 18). Number of people (ca. 1.3 million) exposed 

to 𝑃𝑀2.5 concentrations that were, e.g., over 6.0 μg/m3 calculated at 1-km resolution 

was considerably higher, when compared with the corresponding results computed 

using averaged 50- km resolution (ca. 100 k). Averaging the local primary fine 

particle exposures to coarser resolution had much greater influence to exposure 

distribution compared with the results for particulate matter (𝑃𝑀2.5) exposure 

distribution. At 50-km resolution, almost whole population was exposed to 

P 𝑃𝑀2.5 levels under 1 μg/m³, whereas at the resolution of 1 km, the highest 

exposures were over 4 μg/m³ and at 5-km resolution over 3 μg/m³. 
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Fig 18: Exposure distributions of a 𝑃𝑀2.5 and b local primary 𝑃𝑀2.5 in 2015, modelled with 

SILAM and FRES at 1-km and 250-m resolution, respectively and averaged to coarser resolutions 

of 1 km, 5 km, and 50 km.  (Korhonen et al. 2019) 

 

 
(a) SILAM                                                     (b)    FRES 

 

 

 

2.7.5- Results 

 

Sensitivities of PWCs of 𝑃𝑀2.5 and primary 𝑃𝑀2.5 and attributable mortality to 

resolution change were studied. Concentrations modelled with SILAM at 0.02° 

longitudinal × 0.01° latitudinal resolution and FRES with 250 m resolution were 

averaged to coarser resolutions (1–50 km). 
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2.8- Study on particulate matter, and human health risk based of 𝑷𝑴𝟏𝟎 

(Volos) 

Air pollution has been a prominent feature in large cities and urban areas for at least 

two centuries now, mainly due to industrialization. Nowadays, air pollution is 

characterized by a number of primary (sulphur oxides, nitrogen oxides, CO, volatile 

organic compounds) and secondary pollutants (ozone, non-sea-salt sulphate, and 

secondary organic aerosols) which contribute each to the observed atmospheric 

quality. 

 

Table 16:  Resume of principal information about the work by Emmanouil et al. 2017 

Site Sampling 

Method 

Aim Period 

Volos Samples were 

collected for 24 h 

on conditioned 

and 

pre-weighed by 

means of low-

volume 

samplers  at a rate 

of 2.3 m3 h¯1, 

Loaded filters 

were conditioned 

again before 

weighing. 

A microbalance 

with a resolution 

of 0.01 mg was 

used. 

Filter samples 

were stored in a 

cool and dark 

place until 

analysis. 

Assess the PM 

pollution profile in 

Volos for the last 

half decade and, 

based on a small 

current campaign, 

to investigate 

possible 

correlations 

between sources 

and observed 

levels. 

5-year between 

2009 and 2014. 
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Table 16 shows the Resume of the principal information about a 𝑃𝑀10 sampling, 

and metals and other elements in the 𝑃𝑀10  mass in Volos City.  

 

Fig 19: Map of sampling area (Volos, Greece); black spot is the sampling station area. 

(Emmanouil et al. 2017) 

 

                            
 

 

The City of Volos is the capital of Magnesia Prefecture in the administrative region 

of Thessaly, Greece (Fig 19). Volos is the third largest commercial port of mainland 

Greece towards the Aegean Sea, with two industrial parks in its outskirts as well as 

one of the largest cement factories in Northern Greece. The current population 

(2011) of the city of Volos is 144,449 inhabitants (Hellenic Statistical Authority 

2015 cited by Emmanouil et al. 2017). The presence of circumferential mountainous 

terrain creates local air turbulences making air exchange problematic. Similar 

circumstances (concomitant port, industrial, and commercial activities, traffic 

congestion, mountain obstruction) prevail also in other middle-sized Greek cities 

(Pikridas et al. 2013 cited by Emmanouil et al. 2017). 
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2.8.1- Ambient 𝑷𝑴𝟏𝟎 sampling and Elemental analysis in collected PM 

particles 

𝑃𝑀10 sampling was carried out during 22 May 2014–11 June 2014 at the University 

of Thessaly, Department of Planning and Regional Development, in the city center.  

 

Samples were collected for 24 h on conditioned (48 h at 20 ±1 ⁰C and 50 ± 5% 

relative humidity) and pre-weighed PTFE Whatman filters ( Ø 47 mm, 1 µm pore 

size) by means of low-volume samplers (Leckel SEQ 47/50 Sequential Gravimetric 

Sampler, Enviro Technology Services PLC, London, UK) at a rate of 2.3 m³ℎ−1, in 

accordance with the sampling procedure standardized in EN 12341 (1998 cited by 

Emmanouil et al. 2017) Loaded filters were conditioned again before weighing. A 

microbalance (Sartorius, Göttingen, Germany) with a resolution of 0.01 mg was 

used. Filter samples were stored in a cool and dark place until analysis. 

          The collected samples’ filters were cut into halves. One half was used for the 

determination of V, As, Co, Cr, Cd and Sb by means of an electrothermal atomic 

absorption spectroscope (ET-AAS), the other half was analyzed by X-ray 

fluorescence (XRF) for Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Ga, 

Ge, Br, Sn, Cs, Ba, Pt, Hg, Sr, and Rb. 

 

2.8.1.1- ET-AAS and XRF 

          Wresting of total metal content was experienced through microwave digestion 

of the half filters with 2 mL concentrated HNO3 (65%, suprapure, Merck, 

Darmstadt, Germany) and 1 mL HF (40%, suprapure, Merck). All digestions were 

performed in a microwave oven (M625EG, Miele, Gütersloh, Germany). The oven 

is programmable, with a time resolution of 5 s, and has a maximum power of 1000 

W. The following program settings were followed: 4 min at 300 W, 2 min at 450 W, 

and 2 min at 600 W. Pd (suprapure, Merck) was used as matrix modifier for Pb, Cd, 

As, and Sb, and Mg (suprapure, Merck) for V. 

          The digests were diluted to 10 mL by adding Milli-Q ultrapure water and 

analyzed by ET-AAS. Hollow single-element cathode lamps were used as radiation 

sources for all elements. The ET-AAS instrument was calibrated according to 

Karanasiou, Siskos, and Eleftheriadis (2005 cited by Emmanouil et al. 2017). 

Standards for calibration were obtained from Merck and Carlo Erba (Milano, Italy) 

and solutions were prepared by use of a Millipore Milli-Q System. 
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          The analysis by XRF was performed on one half of the filter samples, without 

any processing. The secondary target-XRF spectrometer consisted of a side window 

low-power X-ray tube with a W anode (spot size 1.8–2.1 cm, max voltage 100 kV, 

current 6 mA, maximum power consumption 600 W). The characteristic X-rays 

emitted from the sample were detected by a Ge X-ray detector (PAN-32). 

 

2.8.2- Calculation of contribution of sea salt and soil dust, and impact of 

desert dust to 𝑷𝑴𝟏𝟎  

The contribution of sea salt (µg m¯³) to 𝑃𝑀10 was calculated through stoichiometry, 

assuming that Cl originates solely from sea salt. Non-sea salt sodium (nss Na) was 

calculated based on the crustal ratio Na/Al and total sea salt mass was calculated as 

the sum of Cl, ss Na and fractions of the concentrations of Mg and K (ss Mg and ss 

K), based at a standard sea water concentration of these species with respect to Na. 

          The contribution of soil dust (µg m¯³) was calculated on the basis of  the sum 

of Al, Si, Ca, Ti and Fe plus the non-sea salt proportions (nss) of Na, Mg and K 

according to Karanasiou, Siskos, and Eleftheriadis (2009 cited by Emmanouil et al. 

2017) and Amato et al. (2016 cited by Amato et al. 2015), with Ca being multiplied 

by a factor of 1.95 to account for CaO and 𝐶𝑎𝐶𝑂3as most abundant forms:  

 

Minerals = [𝑛𝑠𝑠 Na ] × 1,35 + [𝑛𝑠𝑠 𝑀𝑔] × 1,66 + [𝐴𝐼] × 1,89 × [𝑆ⅈ] × 2,14 +

[𝑛𝑠𝑠 𝑘] × 1,2 + [𝐶𝑎] × 1,95 + [𝑇ⅈ] × 1,67 + [𝐹𝑒] × 1,43 .                                 (11) 

 

The impact of desert dust transport to the measured 𝑃𝑀10  was examined based on 

calculated ratios of Ca/Fe, Ti/Fe and Mn/Fe which have been shown to demonstrate 

typical values during long-range dust transport events. When the actual data were 

similar to the published values, air mass backward trajectories were calculated for 

verification, for 160 h, using the hybrid single-particle Lagrangian integrated 

trajectory model (HYSPLIT) (Air Resources Laboratory 2015, cited by Emmanouil 

et al. 2017) for arrival heights of 300, 700 and 1000 m a.m.s.l. at 8.00 and 18.00 h 

UTC each day. 
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2.8.3- Human risk  

Non-carcinogenic risk assessment for elements bound on 𝑃𝑀10  was calculated via 

the hazard quotient (HQ) approach, which compares the actual exposure of humans 

(Cexp, µg m¯³) to a predefined reference toxicity value. The sum of HQs for each 

element is giving the cumulative hazard index (HI) which, when less than 1, shows 

that the risk is acceptable (Li et al. 2013 cited by Li et al. 2012). Exposure 

concentration has been calculated when an oral reference dose is available via the 

formula (Li et al. 2013 cited by Emmanouil et al. 2017): 

 

𝐶𝑒𝑥𝑝 = 𝐶𝐴 × 𝐼𝑅 × 𝐸𝑇 × 𝐸𝐹 × 𝐸𝐷 ∕ 𝐵𝑊 × 𝐴𝑇   ,                            (12)                                                  

 

  

or when an inhalation reference dose is available via the formula (Industrial 

Economics Incorporated 2009 cited by Emmanouil et al. 2017): 

 

  

 

𝐶𝑒𝑥𝑝 = (𝐶𝐴 × 𝐸𝑇 × 𝐸𝐹 × 𝐸𝐷) ∕ 𝐴𝑇,                                                        (13)                                                      

 

where CA is the concentration of the metal in the air (µg m¯³), IR is the inhalation 

rate (m³ⅆ−1), ET is the exposure time (h ⅆ−1), EF is the exposure frequency (d 𝑎−1), 

ED is the exposure duration (a), BW is the body weight (kg), and AT is the averaging 

time (h).  

           The ‘local residents’ (Industrial Economics Incorporated 2009 cited by 

Sandiford et al. 2009) parameters have been chosen as a worst case scenario and as 

such exposure is considered to be continuous with 

                                            

                                                             IR = 0.55 m³ℎ−1, 

                                                               BW = 70 kg. 

 

          Reference concentration values (RfCs) were extracted following a step-wise 

approach (Industrial Economics Incorporated 2009 cited by Emmanouil et al. 2017) 
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with endpoints preferentially chosen from the USEPA IRIS database (USEPA 2016 

cited by Emmanouil et al. 2017).  

 

 

 

2.8.4- Results 

 

2.8.4.1- 𝑷𝑴𝟏𝟎  levels 

Average annual 𝑃𝑀10  values for the years 2009–2014 are shown in Fig 13. There is 

no exceedance of the 40 µg m¯³ average annual limit set by Directive 

2008/50/EC(cited by Emmanouil et al. 2017).  

          The mean seasonal 𝑃𝑀10  concentrations for the period 2009 2014 are shown 

in Fig 21. The cold months January, February, November and December are 

characterized by higher 𝑃𝑀10  concentrations than all the other months. 

           Days when exceedance of the EU set limit of 50 µg m¯³ was noted are shown 

in Fig 22 (A). The percentage of days with concentrations above the EU daily limit 

value exceeded the maximum allowed value of 9.6% (35 out of 365 days) for almost 

all years (Fig 22 (B)). No repeating pattern was observed for each day within the 

week (data not shown). 

 

2.8.4.2- Elemental concentrations 

The most abundant elements measured were Na, S, Ca, Si, Fe, Al, K, Mg, Cl and 

Zn. Those of toxicological concern, i.e. As, Ni, Cd, Hg and Pb, were noted at lower 

concentrations than the former, abundant elements (mean values of 1.9, 3.0, 1.3, 0.1 

and 37 μg m¯³, respectively).  
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Fig 20: Annual average 𝑃𝑀10  concentrations during 2009–2014.  (Emmanouil et al. 2017) 

 

                                 
          PCA correlations were explored for the elements of inhalation toxicological 

concern, namely As, Cd, Cr, Co, Mn, Ni, Pb, and V (Fig16). Hg and Sb were not 

included due to low number of valid samples. Three factors comprised 82% of total 

variance: Pb, Cd, Mn and Cr are grouped as first component (38.1%), V, Ni and As 

as second component (28.5%), Co as third component (15.6%). 

 

 

Fig 21: Mean seasonal 𝑃𝑀10concentrations for the period 2009–2014. (Emmanouil et al. 2017) 

 

 

 

Fig 22: (A) Numbers of days at which mean daily 𝑃𝑀10 concentrations exceeded the EU limit 

value relative to the numbers of days at which 𝑃𝑀10 measurements were taken, from 2009 to 2014; 

(B) percentages of days at which the mean daily 𝑃𝑀10 concentrations exceeded the EU limit. 

(Emmanouil et al. 2017) 
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                      (A)                                                                             (B)  

          Non-carcinogenic risk of elements can effectively be assessed as the HI, the 

sum of all HQs of each element. Monte Carlo simulation has been performed for the 

HQ of each element of toxicological concern and the HI resulting from all the eight 

elements considered for the samples collected during 22 May 2014–11 June 2014. 

HQ values greater than 1 indicated an unacceptable risk for V and Co. HI for all 

eight elements was also greater than 1. 

          Comparison of the ratios of Ca/Fe, Ti/Fe and Mn/Fe calculated during the 

present measurement campaign with those published by Eleftheriadis et al. (1999 

cited by Emmanouil et al. 2017) as indicative of Sahara aerosol revealed seven days 

with similar ratios. For these dates, the HYSPLIT model was run; only on the 28th 

of May 2014 at 18:00 UTC, air masses passed over Sahara and ultimately reached 

Volos at arrival heights of 300 m a.m.s.l. (Fig 24). Thus, contribution of desert dust 

to measured PM10 through long-range transport was possible. 
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Fig 23: Three-dimension plot of PCA for eight elements of toxicological concern. (Emmanouil 

et al. 2017)  

 

                                  

 

Regarding the other natural sources that may affect 𝑃𝑀10 levels, i.e. sea salt and soil 

dust (Fig 25), the latter contributes on average 8.4% to the total 𝑃𝑀10  mass, the 

former 12.4%. 

 

 Fig 24: Backward trajectories on 28 May 2014 at 08.00 and 18.00 UTC when long-range dust 

transport was possible.  (Emmanouil et al. 2017) 
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Fig 25: The % contribution of sea salt and soil dust in the mass of 𝑃𝑀10  during the sampling 

period.  (Emmanouil et al. 2017) 
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3-Conclusions 
 

After reading about twenty articles related to the topic on the effect of pollutants on 

health, I analyzed a dozen of them concerning 𝑃𝑀10 , 𝑃𝑀2.5 and 𝑁𝑂𝑥   specifically 

𝑁𝑂2. The articles analyzed refer to studies in the urban area of some European 

countries, specifically Greece, Spain, Italy, Finland and the United Kingdom. 

In these studies, various methodologies have been used to evaluate the effect of 

pollutants on the health of the population exposed to these types of pollutants. 

𝑁𝑂𝑥 has a negative effect on both health and the environment. The attributable risk 

(AR) represents the percentage increase in daily mortality for every 10 μg/m³ 

increase in the pollutant studied. The population AR is calculated based on the risk 

assessment methodology. 

To better quantify the average health impact of PM on health, the Dirichlet process 

mixture models enables the better understanding of hidden structures in 

multipollutant health effects within time series analysis. This approach allows the 

identification of exposure metrics associated with respiratory mortality and provides 

a tool to assess the changes in health effects from various policies to control the 

ambient particle matter mixtures. 

Finally, air pollution remains a global environmental threat and a public health risk. 
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