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Sommario

Questa tesi si pone come obiettivo quello di proporre una soluzione semplice ed eco-
nomica, al problema di controllo di carroponti. Come si vedrà in seguito, i carroponti
sono dei sistemi molto complessi sia dal punto di vista del modello matematico, sia
da un punto di vista di controllo di processo. Generalmente il problema di controllo
di carroponti presenta, tra le specifiche più significative, lo spostamento del carico,
tramite il moto del carrello, in una posizione desiderata e simultaneamente la min-
imizzazione delle oscillazioni del carico stesso. La tecnica di controllo presentata in
questa tesi è ad 1 grado di libertà. Il controllore dinamico dall’uscita è progettato
in modo tale da garantire non solo la stabilità a ciclo chiuso e il posizionamento
esatto del carico ma anche il soddisfacimento di vincoli, fissati ”a priori”, su deter-
minate variabili di stato (lo sforzo di controllo, l’angolo di oscillazione del carico).
L’azione di controllo è determinata sulla base della sola misura del posizionamento
del carrello comportando un notevole risparmio economico in termini di sensori.
La realizzazione di tale azione di controllo richiede l’utilizzo di adeguati strumenti
che sono appunto le disuguaglianze lineari matriciali (LMIs) e gli insiemi invarianti
derivanti dalle condizioni di stabilità secondo Lyapunov. Le simulazioni effettuate
confermano la validità dell’ approccio proposto.



Abstract

This thesis has the scope to propose a simple and economic solution to the
gantry cranes control problem. As it will be seen later, gantry cranes are such
complex systems because of their mathematic model and beacuse of the diffi-
culties faced when dealing with the control problem. Commonly crane systems
control problem requires the satisfaction of specifications such as the playload
transition into the desired position by moving the cart, and simultaneously the
playload oscillations minimization. The one proposed in this thesis is a one de-
gree of freedom control technique. The dinamic output feedback controller is
designed in order to grant not only closed loop stability and the exact playload
positioning, but also the satisfaction of ”a priori” fixed constraints on specific
state variables (the control effort and the playload sway angle). The control
effort is determined thanks to the measure of the playload position, implying
money saving in terms of sensors. Its design requires adequate tools such as
the Linear Matrix Inequalities and the invariant sets derived from the Lya-
punov stability conditions. The numerical simulations also prove the proposed
approach worthy.



1 Cranes importance in Factories

Cranes are widely used devices in factories to move heavy loads or hazardous ma-
terial from a place to another; such machines are widespread especially in factories,
shipyards and warehouses.

There are a lot of different type of cranes, such as overhead cranes, gantry
cranes, boom cranes and rotating cranes. These machines can be diversified in
terms of the number of Dof (degrees of freedom) which the support system offers
in the suspension point. The problem when facing such complex systems is about
the necessity to minimize the playload sway angle and to move it in the desired
position by driving the crane itself. On one hand a failure when controlling the
sway angle could imply problems also in the automation of the control system, on
the other hand it could also provide serious damages either to the playload or to
the enviroment.

The aim of this thesis, as said before, is to control gantry cranes, a particular
type of cranes with an unusual strucure. Gantry cranes provide in fact a free to
move cart towards either right or left thanks to particular rails on a suspended
girder, orthogonally built on a bridge supported by steel legs. Because of their
structure, gantry cranes are largely used in shipyards and warehouses.

Figure 1: Model of a Gantry Crane
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1.1 Gantry Cranes Control Problem

In the following sections some control techinques and specifications indications for
the above described systems will be given.

1.1.1 Control Specifications

Gantry cranes control, in the most general case, includes a great amount of problems
such as lots of specification to be fulfilled, in order to grant the desired behavior. In
most of the cases cranes, and expecially gantry cranes, are considered to be under-
actuated systems, this because of the fact that they are given a lower number of
actuators than the number of controlled variables; this in order to decrease their
cost, their complexity, their dimensions and their weight. As a matter of fact this
solution provides issues when trying to control them, even because of cranes complex
dynamics.

As already mentioned, the principal control objective concerns achieving a cor-
rect trolley positioning in the desired location keeping the playload oscillation as
little as possible, in order to move the crane in the minor possible time towards
the destination with less or without sway. It is also important to remind that the
playload itself behaves like a simple pendulum: by this, the operator might need to
slow down and compensate for the crane’s manoeuvres, in order to dampen out the
playload oscillations that may interrupt the crane’s performance; if a severe sway
occurs, the operation could need to be paused until the playload stops swinging.
Moreover, the hoisting functionality of the crane is one of the challenges faced by
operators, as it also hugely affects the swinging of the playload.

1.2 Control Techniques

In order to achieve acceptable performances and to satisfy the control requirements,
there are lots of control techniques devised for gantry cranes, divided into three
categories: open loop techniques, closed loop techniques and closed and open loop
combined techniques.

1.2.1 Open Loop Techniques

Open loop control schemes are widely used when dealing with gantry cranes due to
their skills in facing sway angle problems. Easy to implement, such solutions don’t
require additional sensors to get a measure of the sway angle, and this certainly
saves in terms of the cost; the main issue with this scheme is the high sensitivity
towards external disturbances.

Input shaping
An application an open loop technique is the Input Shaping, based on feedfor-

ward control and implemented in order to minimize vibrations or oscillation induced
movements of the cranes flexible structures. Thanks to this solution the system vi-
brations are reduced by convoluting the input command signal with a pulse sequence
based on the natural frequencies and the damping ratios of the system. Below the
issues about sensitivity towards disturbances and system parameters variations, this
scheme needs the initial value of the sway angle to be null, otherwise it could cause
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an in-load oscillation intensification. Another issue with this technique is that it is
designed using system fixed parameters. This, when dealing either with time vary-
ing systems or systems with parameter uncertainty, in which the natural frequencies
and the dampin ratios change, implies the necessity of an input shaping technique
capable to adapt to such variation. This kind of solution is the so called adaptive
input shaping.

Adaptive Input Shaping
As said before, most of the input shaping based techinques are based on fixed

system parameters; this leads to issues when dealing either with time varing systems
or systems with parameter uncertainty. In an effort to address the effects of playoad
hoisting and the parametere uncertainties in crane systems, adaptive input shapers
have been developed. A possible solution provides a techinque aimed to reduce
systems vibrations based upon flexible mode frequency changes in order to cope
with the parameter uncertainties. The problem with this scheme is that it can be
used only when dealing with linear systems or linearized model of nonlinear systems.

Figure 2: Block diagram of open loop control strategy for a crane system.

1.2.2 Closed Loop Techniques

The disavantages coming from the use of open loop techniques consist in the uncapa-
bility of ensuring external disturbances rejection and in an extremely high sensitivity
towards parameter variations; in order to dampen out this lack closed loop schemes
are introduced. These schemes allow the system to modify his performances basing
on the desired output behavior: they use the measure and the estimation of the
internal state to reduce oscillations and achieve an optimal trolley positioning.

PID Controllers
One of the most commonly used linear feedback control scheme for gantry cranes

is based on the Proportional Integrative Derivative controller (PID). Literature pro-
vides a several amount of methods investigated, including root locus technique;
furthermore, there are also controllers only based on Proportional and Derivative
action (PD) with the scope to control the sway angle, thanks to their skill in op-
posing oscillation issues.

In most of the cases PID controllers are implemented with the aid of other
control techniques, or by using two PID type controllers to control the position and
the load’s sway.

Optimal Control
Optimal Control is known as a strategy in which a control signal optimizes a

certain cost index. The control strategy was first introduced as and open loop
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scheme in order to design an optimal sequence control. There are two optimal
control strategies regularly applied on industries:

• Linear Quadratic Gaussian, widely implemented in order to reduce gantry
cranes sway angle;

• Model Predictive Control, which has become one of the most popuar multi-
variable control algorithm due to its advantages when dealing with constraints.
Most of its implementation focus on the control of the trolley positioning and
on the reduction of the sway angle.

Fuzzy Logic Controller
Fuzzy logic based controllers (FLC) are widely applied thanks to their capability

to adapt to control systems and mainly because it isn’t needed to know the exact
model of the controlled object due to their intelligent method. In fact, as the
systems became more complex, such as gantry cranes with nonlinearities,it was hard
to obtain the mathematical model. Hence, the FLC has a benefit, as it replaces the
role of a mathematical model with a fuzzy model, based on the rules constructed in
an if-then format. What’s more, such controllers are also capable to handle unstable
and complex machines, nonlinear systems and optimal control problems. A FLC
has been widely used in order to control the trolley positioning and the sway angle
using robust feedback controllers, eventually with the aid of sensors.

Figure 3: Block diagram of a feedback control scheme.
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1.2.3 Hybrid Control Techniques

On one hand, open loop schemes hereby presented are extremely sensitive towards
parameters variation, external disturbances and playload oscillation frequency. More-
over, when dealing with input shaping technique, it is required for the intial sway
angle to be 0, else it could cause oscillations intensification. Despite these draw-
backs, this strategy doesn’t need sensors, allowing to decrease the cost. On the
other hand, closed loop control schemes are less sensitive towards parameters vari-
ations and external disturbances; nevertheless such a scheme needs lots of sensors
due to establish the trolley position and the sway angle, which leads to an increase
in term of the cost. Moreover, in the case of feedback control schemes, problems
given by instability and disturbances increase ,implying many risks for a control
system as the gantry crane. Another issue with FB controllers is about a delay in
the feedback loop : an example could be the determination of the playload sway
angle which is required prior to the action of the control scheme in order to dampen
out oscillations. Aiming to deal with the necessity of keeping low costs with the
one of granting steady-state good performances, some hybrid techniques have been
designed, combining several feedback control schemes along with an input shaper.
This combination allows the controller to act in two different ways:

1. A feedback scheme allows to control the trolley position and ensures distur-
bances rejection;

2. An input shaping open loop scheme reduces the playload oscillations.

Figure 4: Block diagram of an hybrid control scheme.
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1.2.4 The Proposed Control Strategy: A Robust Feedback and Con-
strainted Control

As aforementioned, this thesis presents a gantry crane linearized model feedback
control scheme. A linearized model is introduce in order to apply the linear control
knowledge. By choosing this scheme, the control system will be granted all of the
advantages feedback control provides, such as disturbances rejection, low parameters
variations sensitivity, without the necessity to add additional sensors in order to get
the measure of the sway angle and of the velocity signals, decreasing the costs. All
of this thanks to an observer based feedback controller which provides an estimation
of all the state variables. Furthermore, the controller is robustly designed in order
to grant closed loop stability and the constraints satisfaction on the state variables
for every playload value in a fixed uncertainty interval. A preliminar linearization
is needed: in fact the relationship between the cart position and the sway angle is
nonlinear.

1.2.5 Problem Approach

Given a linearized and discretized gantry crane model, endowed with an internal
model of constant signals, according to the namesake principle, a discrete time
observer based feedabck controller is designed, in order to ensure quadratic stability
to the closed loop system. The observer provides an estimation of the sway angle
making the respective sensor superflous, while the internal model grants the playload
positioning into the desired point. The control strategy presented is divided in two
steps:

• This first step is about finding the observer gain matrix L ;

• Once the L matrix is determined, the feedback controller gain matrix is com-
puted by using at first a transformation matrix and then applying some sort
of separation principle. The gain matrix is designed to grant quadratic sta-
bility to the closed loop system and the fulfillment of constraints on the state
variables, using the required LMIs, as it will be clear soon.

The controller design procedure endowed with the constant signals internal
model is based on the observer design and is developed in steps: a first step will
require the fullfillment of quadratic stability for the closed loop system, then it will
be added a constraint over the sway angle; in the end it will be granted quadratic
stability to the closed loop system achieving also the fulfillment of constraints over
the sway angle and the control effort.
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2 Tools Used to Design the Control Law

This section presents some preliminar results of control theory, needed to compre-
hend important following steps.

2.1 Linear Matrix Inequalities

Linear Matrix Inequalities (LMI) are an useful tool to design robust controllers.
Strictly connected to Lyapunov’s theory for dinamical systems, they are defined as
follows:

F (x) := F0 +

N∑
i=1

xiFi > 0, Fi = F T
i ∈ Rmxm, x ∈ Rn

2.2 Schur Complement

It turns a nonlinear inequality into a linear inequality. Given the matrixes Q =
QT > 0, R = RT > 0(

Q S
ST R

)
< 0⇐⇒ Q < 0, R− STQ−1S < 0(

Q S
ST R

)
< 0⇐⇒ R < 0, Q− SR−1ST < 0

2.3 Lyapunov’s Theorem (D.T)

Lyapunov’s theorem states that given a dinamic system x(k+1) = Ax(k), the origin
is an asimptotically stable equilibrium point if and only if

∃Q = QT > 0 : ATQA−Q < 0

2.4 State Feedback Stabilization

The problem of state feedback stabilization can be solved using Lyapunov’s theorem.
The problem consists in finding a control law u = −Kx to grant stability to the
closed loop system. Using LMIs, one has x(k + 1) = (A−BK)x(k) is stable if

∃Q = QT > 0 : (A−BK)TQ(A−BK)−Q < 0

By using Schur complement and defining KY = Q, one has:(
−Q AQ−BY

QAT − Y TBT −Q

)
< 0

The gain matrix K defining the control law is K = Y Q−1
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2.5 Quadratic State Feedback Stabilization (D.T)

If the dynamical matris is affected by parameter uncertainty, the problem of stabi-
lization is called quadratic stabilization: in this case the dynamical matrix is denoted
as A(α), where α identifies a vector of linear indipendent parameters joining the
matrix, defined on an uncertainty domain. The notation will be the following:

x(k + 1) = A(α)x, α =

p1...
pl

 , pi ∈ [p−, p+]

Where p− and p+ are the uncertainty domain extremities of the uncertain pa-
rameter p. This uncertain parameter can be represented as linear combination of
the uncertainty domain extremities:

p = αp− + (1− α)p+, α ∈ [0, 1]

The simplex is defined as follows:

ΛN =

{
α ∈ RN ,

N∑
i=1

αi = 1, αi ≥ 0

}

α is the vector containig the coefficients of the convex combination.
It is said that the system x(k+ 1) = A(α)x+Bu is quadratically stabilizable if

∃Q = QT > 0 : (A(α) +BK)TQ(A(α) +BK)−Q < 0, ∀α ∈ ΛN

The main issue when dealing with politopic uncertainty affected matrix is that
it is impossible to solve the LMIs for the matrix A(α), because one gets infinite
conditions. The solution being adopted here involves using the so called vertices
conditions: instead of solving the LMIs for all α values, it is enough to solve them in
the polytope vertices. In this case the vertices conditions, using Schur complement,
are:

∃Q = QT > 0 :

(
−Q AiQ
QAT

i −Q

)
< 0, ∀i ∈ [1 . . . N ]

2.6 Output Feedback Observer Based Stabilization for a Polytopic
Process (D.T)

Given the process{
x(k + 1) = A(α)x(k) +Bu(k), A(α) =

∑N
i=1 αiAi, αi ∈ ΛN

y(k) = Cx(k)

If che condition of reachability for the pair (A(α), B) and the condition of observ-
ability for the pair (A(α), C) are satisfied ∀α ∈ ΛN , the observer will be described
as follows:

13



{
ξ(k + 1) = Āξ(k) +Bu(k) + L(y(k)− Cξ(k))

u(k) = −Kξ(k)

Where Ā denotes the nominal process matrix, defined as Ā =
∑N

i=1 Ai

N . The space
state representation of the closed loop system is:(

x(k + 1)
ξ(k + 1)

)
=

(
A(α) −BK
LC Ā−BK − LC

)(
x(k)
ξ(k)

)

By using a transformation matrix one has:

(
x(k)

x(k)− ξ(k)

)
=

(
I 0
I −I

)(
x(k)
ξ(k)

)

(
x(k + 1)

x(k + 1)− ξ(k + 1)

)
=

(
A(α)−BK BK
A(α)− Ā Ā− LC

)(
x(k)

x(k)− ξ(k)

)

In this case it is not possible to apply the separation principle, due to the fact
that the dynamical matrix isn’t lower triangular; so it is needed to proceed in
another way, in two steps:

• Step 1: design of the matrix L such that (A(α)−LC) is quadratically stable;

• Step 2: Design of the matrix K which defines the control law u(t), using the
extended matrixes:(
Â−BK LC

A(α)− Â A(α)− LC

)
=

(
Â LC

A(α)− Â A(α)− LC

)
−
(
B
0

)(
K 0

)
= Ã−B̃K̃

At this point the problem il solved by setting suitable LMIs:

• The required LMIs for the design of L are:

∃S = ST > 0 :

(
−S SAi − ZC

AT
i S − ZTCT −S

)
< 0,∀i ∈ [1 . . . N ]

dove L = ZS−1

• Whereas for K̃:(
−Q QÃi

T
+ Y T B̃T

ÃiQ+ B̃Y −Q

)
< 0,∀i ∈ [1 . . . N ]

14



Where it is needed to give an appropriate structure to the matrices:

Q =

(
Q1 0
0 Q2

)
> 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0,

Y =
(
Y1 0

)
, K̃ =

(
K 0

)
= Y Q−1 =

(
Y1Q

−1
1 0

)

15



2.7 Invariant Set and Invariant Ellipsoid

From the Lyapunov theory it is well known that, given a dinamic system

x(k + 1) = Ax(k), x ∈ Rn

it is defined an invariant set
M ⊆ Rn

if
∀x(0) ∈ X =⇒ x(k + 1) ∈ X

holds.
In order to design an appropriate control law, it is needed to enlarge the defini-

tion, introducing Invariant Ellipsoids.
A reachable set for norm bounded inputs is used to study the effect of external

parameters disturbances or to develop controllers ensuring their rejection in steady-
state. The most spread method to calculate the reachable set for a discrete time
system consists in finding the regions the state can reach recursively. However,
such a strategy presents diverse issues; it is needed to approximate the reachable
set from the outside with a set with only few parameters. The reachable set for
bounded inputs is approximated with an ellipsoidal invariant set, due to the fact
that it covers the reachable set and it is represented by few parameters.

Condisering a discrete time system of the tipe

x(k + 1) = Ax(k) +Bω(k), k ∈ Z

con A ∈ Rnxn,B ∈ Rnxm e x ∈ Rn, ω ∈ Rm. A set X is defined invariant for a pair
(A,B) if it satisfies

x ∈ X,
∥∥ω∥∥ ≤ 1 =⇒ Ax+Bω ∈ X

Suppose (A,B) is a pair of a discrete time system, and A ∈ Rnxn, B ∈ Rnxm.
For a positive definite matrix P ∈ Rnxn, the ellipsoid

{
x ∈ Rn : xTQx ≤ 1

}
in an

invariant set of this pair only if exists α ∈ [0, 1− ρ(A)2] satisfying(
ATPA− (1− α)P ATPB

BTPA BTPB − αI

)
≤ 0
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2.8 A Stabilizing constraints Setter State Feedback Control Law

Invariant ellipsoids are chosen for their connection with LMIs. Moreover, using
invariant sets while designing the controller allows to set constraints over the state
variables.

Given the process

x(k + 1) = Ax(k) +Bu(k) +Bωω(k)

y(k) = Cx(k)

con
x ∈ Rn, u ∈ Rm, y ∈ Rp, ω ∈ Rnω

considering euclidean norm bounds on the control input and on the output:∥∥u∥∥
2
≤ umax∥∥y∥∥

2
≤ ymax

furthermore, even the external input vector is norm bounded:

ωTω ≤ 1

defined an invariant ellipsoid as follows:

E =
{
x : xTQx ≤ 1

}
with Q ∈ Rnxn it is possible to determine a stabilizing control law of the type
u = −Kx fulfilling each constraint, which simultaneously ensures the satisfaction
of each bound, while maximizing the invariant ellipsoid by solving the following
semidefinite programming problem:

Q−1 0 αQ−1 Q−1AT
i + Y TBT

i

0 αI 0 BT
ω

αQ−1 0 αQ−1 0
AiQ

−1 +BiY Bω 0 Q−1

 ≥ 0

(
Q−1 Y T

Y u2maxI

)
≥ 0(

Q−1 (AiQ
−1 +BiY )TCT

C(AiQ
−1 +BiY ) y2maxI − CBωB

T
ωC

T

)
≥ 0

∀i ∈ [1 . . . N ]

The gain matrix K has the form K = Y Q−1.
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3 Problem Setup

3.1 Process Model

In this section it is made reference to the gantry crane in Fig.5, where mc is the
trolley mass, l is the rope lenght, mL is the playload mass, x1 is the cart position,
x3 is the sway angle and u is the force applied to the cart. Moreover, it will be
assumed x2 = ẋ1 and x4 = ẋ3.As mentioned before, the relationship between the
playload position and the sway angle is nonlinear, so it is needed a linearization:
assuming the sway angle is small, it can be desumed that cos(x3) ≈ 1, sin(x3) ≈ x3,
sin2(x3) ≈ 0 and x24 ≈ 0. The linearized state space model will have the following
state vector:

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)


Before starting designing the controller, the process requires to be discretized. After
rejecting the Euler method, it has been chosen to use the zero order hold (ZOH)
and a sampler. By denoting with yL(k) the cart position, one has

yL(k) = x1 + lsin(x3) ≈ x1 + lx3 =
(
1 0 l 0

)
x(k)

The state space model of the linearized and discretized process obtained is:

x(k + 1) = Ax(k) +Bu(k)

yL(k) = CLx(k)

ym(t) = Cmx(k)

where

A =


0 1 0 0
0 0 mL

mc
g 0

0 0 0 1

0 0 −ml+mc

mcl
g 0

 , B =


0
1
mc

0
− 1

mcl


CL =

(
1 0 l 0

)
Cm =

(
1 0 0 0

)
yL(k) ∈ Rq, q = 1 is the controlled output, ym(k) ∈ Rs, s = 1 is the measured output
and u(k) ∈ Rm, m=1 is the control effort. Note that the controlled output yL(k) (the
playload position) does not coincide with the measured output ym(k) = x1(k) (the
trolley position) because it is assumed that the sway angle isn’t measured. To deal
with this, a dinamic output feedback controller will be designed using the virtual
measure ŷL(k) = x1(k) + lξ3(k), where ξ3(k) will be provided by the observer.
The following parameters values are assumed: l = 10m, mc = 1000 kg e g =
9.81m/s2. The playload mass mL takes values in [1500,2000] kg. As a consequence,
the politopic uncertainty affected process version will have the following dynamical
matrix:

A(α) ∈ A =

{
A(α) =

N∑
i=1

αiAi, αi ≥ 0,

N∑
i=1

αi = 1

}
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with

A1 =


0 1 0 0
0 0 14.7150 0
0 0 0 1
0 0 −2.4525 0

 , A2 =


0 1 0 0
0 0 19.6200 0
0 0 0 1
0 0 −2.9430 0


It can easily be verified that the linearized politopic uncertainty affected gantry

crane model Σ ≡ (A(α), B,Cm, CL) satisfies the following properties:

• Σ can be quadratically stabilized with an output feedback dinamic controller;

• The triplet (A(α), B,CL) has no transmission zeros in z = 1 in the Z plane
∀α ∈ Λ2.

The second property also guarantees that the quadratic controller ensures null
steady-state tracking error thanks to the constant signals internal model.

Figure 5: Gantry Crane Model
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3.2 Control Scheme

Figure 6: The Control Scheme Used

The 1DoF control scheme proposed in this thesis is shown in Fig.6. Σf denotes
the feedback loop to the politopic linearized model Σ ≡ (A(α), B,Cm, CL) with a
dynamic output quadratic stabilizing feedback controller based on the observer Σo

of x(k) and on the constant signals internal model Σc. The observer Σo has the
form

ξ(k + 1) = Āξ(k) +Bu(k) + L(ym(k)− Cmξ(k))

Where ξ(k) ∈ Rn and Ā =

∑N
i=1Ai
N is the nominal dynamical matrix for Σ.

Recalling that ŷL(t) = x1(t) + lξ3(t) is the virtual measure of the controlled output
provided by Σo, the state space rapresentation of Σc is

xc(k + 1) = Acxc(k) +Bc(r(k)− ŷL(k)) (1)

where Ac = Bc = Iq, xc ∈ Rnc=q. The input u(k) forcing Σ is u(k) = −Kξ(k) +

Kcxc(k). Denoting the extended state vector xe(k) =
(
xT (k), xTc (k), ξT (k)

)T
, the

triplet (Af (α), Bf , Cf ) of the closed loop system Σf is:

xe(k + 1) =

 A(α) BKc −BK
−BcCm Ac −Bc

(
0 0 l 0

)
LCm BKc Ā− LCm −BK

xe(k) +

 0
Bc

0

 r(k)
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yL(k) =
(
CL 0 0

)
xe(k)

where, as for the process dynamical matrix A(α), also

Af (α) ∈ Af =

{
Af (α) =

2∑
i=1

αiAfi, αi ≥ 0,

2∑
i=1

αi = 1

}

The problem of designing a quadratically stabilizing controller is divided into
three subproblems:

1. Design of the quadratically stabilizing controller;

2. Design of the quadratically stabilizing controller with a bounded sway angle;

3. Design of the quadratically stabilizing controller with a bound on the sway
angle and on the control effort.

3.3 Bounded Parameters and Invariant Sets for Politopic Processes

An invariant feasible set for Σf is a convex set X containing the origin such that,
for every r(k) which satisfies

rT (k)r(k) =
∥∥r(k)

∥∥2
2
≤ γ,∀k > 0, γ > 0

one has x(k) ∈ X =⇒ Af (α)x(k) + Bfr(k) ∈ X,∀α ∈ Λ2 and satisfying the
following constraint:

|x3(k)| =
∥∥x3(k)

∥∥
2
≤ x̄3

where x3 is the third component of the state vector, the sway angle, while x̄3
is its upper bound, γ is the maximum allowable for r(k). In this case X is an
ellipsoid defined as ε(P, γ) =

{
x(k) : xT (k)Px(k) ≤ γ

}
, with P = Q−1, simmetric

and positive definite.
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3.4 Controller Design

As aforementioned, this thesis aimes to design a dynamic output quadratically sta-
bilizing controller in order so fulfill the control requirements. In addition to the
correct steady-state tracking for constant signals, granted by the internal model,
the specifications to satisfy are:

1. Quadratic stability of Σf ;

2. The existence of an invariant set X such that xe(k) ∈ X =⇒ Af (α)xe(k) +
Bfr(k) ∈ X,∀α ∈ Λ2, as well as the fulfillment of constraints over the control
effort and the sway angle for every feasible r(k) of Σf .

Using the usual transformation matrix on the state vector xe(k) and choosing

as new vector xf (k) =
(
ξT (k), xTc (k), xT (k)− ξT (k)

)T
the closed loop system state

space representation is:

xf (k + 1) =

 Ā−BK BKc LCm

−Bc(Cm + CL) Ac −BcCm

A(α)− Ā 0 A(α)− LCm

xf (k) +

 0
Bc

0

 r(k)

y(k) =
(
CL 0 CL

)
xf (k)

Since it is needed to set a bound over the third component of the process state
vector, it is needed to extract it from the extended state vector xf (k).

In order to do this two row vectors are introduced, defined as: Iz =
(
0 0 1 0

)
and Cz =

(
I 0 I

)
such that one has:

x3(k) =
(
0 0 1 0

) (
I 0 I

)
xf (k)

By observing the closed loop dynamical matrix, it can be noticed it isnt’t a
lower triangular matrix so it isn’t possible to apply the separation principle; so it is
proposte a two step procedure:

• Step 1: Design of the observer gain matrix L such that A(α)−LCm is quadrat-
ically stable ∀α ∈ Λ2;

• Step 2: Once L is fixed, the feedback gain matrix K̃ defining the control law
can be computer observing that the politopic uncertainty affected dynamical
matrix of the closed loop system Af (α) can be rewritten as Af (α) = Ã(α) +
B̃K̃, with

Ã(α) =

 Ā 0 LCm

−Bc(Cm + CL) Ac −BcCm

A(α)− Ā 0 A(α)− LCm

 , B̃ =

B0
0


As a consequence, the controller design problem can be seen as the problem to

determine the matrix K̃ in order to satisfy:

• Σf = (Af (α), Bf , Cf ) ≡ (Ã(α) + B̃K̃, Bf , Cf ) quadratically stable ∀α ∈ Λ2;
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• Fulfillment of the constraint over x3 for every initial condition xf (0) ∈ X,
∀α ∈ Λ2 and for every r(k) satisfying∥∥r(k)

∥∥2
2
≤ γ,∀k > 0, γ > 0

Given the pair (Ã(α), B̃) and defining η = γ−1, a solution can be found by
solving the following semidefinte programming problem:

Q 0 βQ QÃT
i + Y T B̃T

0 βI 0 BT
f

βQ 0 βQ 0

ÃiQ+ B̃Y Bf 0 Q

 ≥ 0, i = 1, 2

(
Q Y T

Y ū2maxη

)
≥ 0(

Q (QÃT
i + Y T B̃T )CT

z I
T
z

IzCz(ÃiQ+ B̃iY ) x̄23η − IzCzBfB
T
f C

T
z I

T
z

)
≥ 0, i = 1, 2

using the variables 0 < β < 1, Q = QT = diag {Q1, Q2} ∈ Rnxn, n = 2n + 1 e
Y =

(
Y1 0

)
∈ Rmxn, Y1 ∈ Rmx(n+1), in the vertices

Ãi =

 Ā 0 LCm

−Bc(Cm + CL) Ac −BcCm

Ai − Ā 0 Ai − LCm

 ,∀i = 1, 2.

If there exists a solution to the LMIs, the stabilizing controller gain matrix is
K̃ = Y Q−1 =

(
Y1Q

−1
1 0

)
. The maximum feasible value for r(k) is γ = η−1 and

the maximum invariant set X ≡ ε(P, γ), with P = Q−1, is found for Σf .
Note: The presence of β makes the LMI a BMI, which can be turned into an

LMI by doing a gridding over the interval (0, 1) where β is defined. Moreover, the η
variable is fixed, and its value equals the playload positioning chosen value (η = 1).
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4 Numerical Results

The results of the three numerical simulations of Σf are reported in this section.
For each simulation the following parameters values are assumed: η = 1, β = 0.001
and x̄3 = 0.03. It is also important to recall that the playload mass mL takes
values in the interval [1500, 2000] kg. Referring to the gantry crane model shown
in section 3.1, the control scheme hereby proposed is designed in order to take the
controlled output yL(t), (the playload position), from 0 to 1 achieving a perfect unit
step steady-state tracking. Furthermore, α ∈ Λ2 will assume the following values
for each simulation:

• α1 =
(
0.8 0.2

)T
• α2 =

(
0.6 0.4

)T
• α3 =

(
0.4 0.6

)T
• α4 =

(
0 1

)T
• α5 =

(
0.2 0.8

)T
In addition, each of the three simulation has been conducted using at first null

initial conditions, with xf (0) =
(
ξT (0), xTc (0), xT (0)− ξT (0)

)T
=
(
0 0 0 0 0 0 0 0 0

)T
,

then using non-zero initial condition, stil belonging to the invariant set: xf (0) =(
ξT (0), xTc (0), xT (0)− ξT (0)

)T
=
(
0 0 0 0 0 0 0 0.001 0

)
To be more specific, x3(0) = 0.001 has been chosen to be an initial non-zero sway

angle value, in order to simulate possible initial disalignment between the playload
and the cart. In order to make the presentation simplier, the three simulations will
be identified in the reported graphics as S1, S2, S3, respectively representing the
simple quadratic stabilization, the norm bounded sway angle quadratic stabilization
and the norm bounded sway angle and control effort quadratic stabilization. Note:
when reporting the matrix Q defining the invariant set, in order to save space it has
been decided to write the elements until the third decimal digit. This is the reason
why all the elements containig zeros until (and even below) that digit have been
written keeping the established number of digits, in order to be diversified from the
other null elements.

4.1 Quadratic Stabilization

The first of the three simulations is the one requiring quadratic stabilization only.
Using LMIs presented in section 2.5, the following matrices have been found: L =(
1.1176 3.8770 0.5754 −0.2144

)T
, K̃ = 108

(
0.1610 0.1412 1.4218 1.3998 −0.0010 0 0 0 0

)
.

After checking the fulfillment of the quadratic stabilization requirement, the
playload sway angle and the controlled output have been computed, in order to
check the null steady state tracking error for different values of α, as depicted in
Figure 7 and 8.

As can be seen from the simulations, as far as the playload sway angle is con-
cerned, by moving towards the polytope vertices (α = [0, 1]T ) or close to each of
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Figure 7: Playload sway angle for different values of α using null initial conditions
referring to S1 simulation.

Figure 8: Controlled output yL(k) for different values of α using null initial condi-
tions referring to S1 simulation.

them (α = [0.2, 0.8]T ), the transient state behavior presents evident oscillations.
Looking at the controlled output it can be easily noticed that, thanks to the con-
stant signals internal model, the unit step steady state tracking specification has
been satisfied; in spite of presenting oscillations on the transient state while ap-
proaching the polytope vertices.

The sway angle and the controlled output using non-zero initial conditions
(x3(0) = 0.001) are depicted in Figure 9 and 10.

It is remarkable that Σf provides similar performances both in the case with
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Figure 9: Playload sway angle x3(k) using different values of α with non-zero initial
conditions referring to S1 simulation.

Figure 10: Controlled output yL(k) using different values of α with non-zero initial
conditions referring to S1 simulation.

null initial conditions and in the non-zero initial condition case.
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4.2 Quadratic Stabilization fulfilling the constraint over the sway
angle

A requirement regarding the constraint over the sway angle is introduced in this
section, as aforementioned in section 3.3, assuming x̄3 = 0.03. Note that the pa-
rameters values hereby assumed are the same used in the previous section. In order
to fulfill the specification about the constrainted angle, the X invariant set will be
introduced using suitable LMIs, according to section 3.4.

In this case the matrices L and K̃ defining the control law are L =
(
1.1176 3.8770 0.5754 −0.2144

)T
and K̃ = 108

(
0.1298 0.1842 0.4421 1.8277 −0.005 0 0 0 0

)
. The matrix

P = Q−1 defining the invariant set X ≡ ε(P, γ) = ε(Q, 1) for Σf ≡ (Ã(α) +
B̃K̃, Bf , Cf ) is

P = 105



0.001 −0.000 −0.000 −0.000 0.005 0 0 0 0
−0.000 0.596 0.000 −0.059 0.009 0 0 0 0
−0.000 0.000 0.000 −0.000 0.000 0 0 0 0
−0.000 −0.059 −0.000 0.0059 −0.000 0 0 0 0
0.005 0.009 0.000 −0.0001 5.072 0 0 0 0

0 0 0 0 0 0.000 0.0000 0.00 −0.000
0 0 0 0 0 0.000 0.000 0.000 −0.000
0 0 0 0 0.000 0.0000 0.000 0.000
0 0 0 0 0 −0.000 −0.000 0.000 0.000



The playload sway angle x3(k) and the controlled output yL(k) of Σf for differ-
ent values of α, using null initial conditions, are depicted in Fig 11 and 12

As it can be concluded by looking at the graphics, especially at Figure 11, the

optimal performance are achieved choosing α =
(
0.8 0.2

)T
; in fact approaching

to the polytope vertices (α =
(
0 1

)T
the transient state shows an oscillating be-

havior. Moreover, it is also derivable that the constraint requirement regarding
x3(k) is satisfied: as Fig 12 shows, the sway angle is norm bounded to 0.03, so the
specification

|x3(k)| =
∥∥x3(k)

∥∥
2
≤ x̄3

is satisfied. As far as the controlled output yL(k) is concerned, even in this case the
presence of the internal model Σc grants the closed loop system Σf correct steady
state tracking, following the unit step with no tracking error. The non-zero initial
conditions (still belonging to X) case graphics, with x3(0) =

(
0.001

)
are provided

in Fig. 13 and 14.
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Figure 11: Playload sway angle x3(k) for many α values in the null initial conditions
case, referring to S2 simulation.

Figure 12: Forced output yL(k) for many α in the null initial conditions case,
referring to S2 simulation.

Despite the fact that the performances provided are the same, analogously
with the previous case, it appears that the optimal performances are gained with

α =
(
0.8 0.2

)T
; in fact they undergo a little deterioration when approaching the

polytope vertices. Even in this case the playload sway angle requirement is fulfilled,
as well as the steady state tracking requirement.
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Figure 13: The sway angle x3(x) for different values of α using non-zero initial
conditions, referring to S2 simulation.

Figure 14: The forced output yL(k) for different values of α using non-zero initial
conditions, referring to S2 simulation.
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4.3 Quadratic Stabilization Including the Constrainted Sway An-
gle and the Constrainted Control Effort

As disclosed before, the third simulation regards the setting of an upper bound
to the control effort u(k). Even in this case the parameters values assumed are
the same as the previous sections. As mentioned in section 4.2, the problem is
solved by introducing the suitable LMIs. The observer gain matrix L and the
feedback matrix K̃ of the control law are L =

(
1.1176 3.8770 0.5754 −0.2144

)
,

K̃ = 105
(
0.2121 0.3556 0.4182 3.0061 −0.0006 0 0 0 0

)T
.

The matrix P = Q−1 defining the invariant set X = ε(P, 1) for Σf ≡ (Ã(α) +
B̃K̃, Bf , Cf ) is

P = 105



0.001 −0.000 −0.000 −0.000 0.0065 0 0 0 0
−0.000 0.001 0.000 0.000 −0.000 0.005 0 0 0 0
−0.000 0.000 0.000 −0.000 0.000 0 0 0 0
−0.000 −0.000 −0.000 0.000 −0.000 0 0 0 0
0.006 0.004 0.000 −0.000 4.230 0 0 0 0

0 0 0 0 0 0.000 0.000 0.000 −0.000
0 0 0 0 0 0.000 0.000 0.000 −0.000
0 0 0 0 0 −0.000 −0.000 0.000 0.000
0 0 0 0 0 −0.000 −0.000 0.000 0.000



The specification this sections aims to add concerns the norm bounded control
effort. Fig. 15 and 16 depict the control effort u(k) behavior befor setting the
constraint:

Figure 15: The control effort u(k) for Σf for different values of α reffering to S2
simulation, with null inizial conditions
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Figure 16: The control effort u(k) for Σf for different values of α reffering to S2
simulation, with null inizial conditions

According to what said before, in order to satisfy the norm bounded control
effort requirement, it is needed to satisfy the condition:∥∥u∥∥

2
≤ umax

Where it has been chosen to use umax = 700 as a suitable upper bound. Analo-
gously to the previous cases, the numerical simulations have been computed using
both null initial conditions and non-zero initial conditions, still in the invariant set.
Fig. 17 depicts the control effort u(k) after norm bounding it.
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Figure 17: The norm bounded control effort u(k) for different values of α, reffering
to S3 simulation with null initial conditions.
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As far as the non-zero initial conditions (xf (0)T =
(
0 0 0 0 0 0 0 0.001 0

)T
)

simulations ar concerned, Fig. 18 depicts the norm bounded u(k) for different values
of α:

Figure 18: Norm bounded control effort u(k) for different values of α and non-zero
initial conditions, referring to S3 simulation

It is evident that the control effort behavior is the same both in the null initial
conditions and in the non-zero initial conditions; moreover, as Fig 17 and 18 show,
the constraint requirement is satisfied: the control effort u(k) is norm bounded to
700, as it shows a similar behavior for all of the α values hereby considered. To
conclude this last simulation, the following Fig. 19 and Fig. 20 depict respectively
the sway angle and the controlled output:
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Figure 19: Sway angle for different values of α and non-zero initial conditions,
referring to S3 simulation.

Figure 20: The controlled output for different values of α and non-zero initial con-
ditions, referring to S3 simulation.
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5 Conclusions

In the hereby presented thesis the Gantry Crane control problem has been solved
introducing a control strategy easily implementable, with the advantages both in
terms of the cost, not requiring additional sensors to get the sway angle and velocity
signals measurements. Such strategy is based to the linearized gantry crane model
and takes into account uncertainties on the playload value. The numerical results
also prove the approach worthy, showing the fulfillment of each specification. To
sum up, the satisfying result of the simulations regarding non-zero initial conditions
demonstrates the approach versatility even with an initial misalignment between the
cart and the playload.
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