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Nella tesi, redatta in lingua inglese, vengono studiati gli schemi di firma digitale,

in particolare quelli basati sugli schemi di identificazione a conoscenza zero (ZKID).

Sono anche analizzati i cosiddetti Information Set Decoders (ISD), dei risolutori

generici per il Syndrome Decoding Problem (SDP). Dal più semplice Prange fino ai

più performanti Stern e BJMM, sono approfondite le modalità con cui essi risolvono

il problema SDP.

Viene introdotta una variante del problema SDP basata su insiemi di elementi

ristretti, R-SDP. Nuovi risolutori ISD vengono inoltre sviluppati, in modo da per-

mettere l’uso della tecnica delle rappresentazioni. Sfruttando la struttura algebrica

del set ristretto è infatti possibile aumentare il numero delle rappresentazioni pur

mantenendo contenute le dimensioni delle liste. I set di cardinalità particolarmente

ridotta possiedono inoltre più struttura, perciò la complessità degli attacchi si riduce

ulteriormente in questi casi. Ne consegue che cardinalità pari o molto basse vanno

evitate.

Vengono discussi diversi algoritmi di firma già esistenti basati su ZKID, come

CVE, GPS e BG. Applicando loro il problema R-SDP, si denotano riduzioni delle

dimensioni di firma. Ciò è dovuto alla minore occupazione in bit degli elementi

ristretti, come vettori o trasformazioni monomiali, rispetto alle loro controparti non

ristrette. In aggiunta, la restrizione implica l’esistenza di un numero minore di

soluzioni, perciò si possono raggiungere pesi di valore massimo per cardinalità ab-

bastanza basse. Nel caso di istanze con peso massimo, le trasformazioni si possono

rappresentare col solo vettore di scaling, risultando in un ulteriore risparmio sulle

dimensioni di firma e in una velocizzazione dei calcoli, dal momento che sono neces-

sarie delle semplici moltiplicazioni component-wise. Oltretutto, pesi più alti rendono

gli ISD più difficili, quindi si possono usare codici di dimensioni minori. Questo è

il fattore dominante che provoca la riduzione delle dimensioni di firma. Lo schema

R-GPS ottiene dimensioni dell’ordine di 12 kB, ovvero da 8 a 10 kB inferiori rispetto
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a GPS. Questo sottolinea la validità della restrizione applicata.

Viene realizzata una proof-of-concept in Python di R-GPS, che dimostra che

lo schema funziona pur richedendo l’implementazione di funzioni complesse per la

gestione dei Merkle Tree e degli alberi binari. I tempi di firma e verifica ottenuti

sono elevati ma in linea con quanto aspettato da una proof-of-concept in Python.

Ciò accade a causa dell’elevato numero di hash che lo schema deve calcolare, nu-

mero che cresce con la dimensione del campo finito. Ad ogni modo, una versione

completamente ottimizzata e scritta in linguaggio C avrebbe sicuramente dei tempi

migliori. Gli schemi considerati verranno implementati in maniera ottimizzata, dal

momento che saranno oggetto di una submission NIST nel quarto round del contest

di standardizzazione per schemi di firma digitale.

Per instanze full-weight, un nuovo problema può essere impiegato. R-SDP(G) è

basato su di un’ulteriore restrizione del set di matrici diagonali con elementi in E

e risulta in firme ancora più contenute quando viene applicato sugli schemi prece-

dentemente discussi. Le risultanti dimensioni di firma nell’ordine di 7 kB sono

notevolmente competitive rispetto alle alternative dello stato dell’arte.
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Introduction

In recent years, a considerable amount of research on quantum computers has been

made. Quantum computers are machines that use complex quantum mechanical

phenomena to solve difficult mathematical problems, having much greater compu-

tational power than classical computers. If large-scale quantum computers are ever

built, they will be able to break many of the public-key cryptosystems currently in

use. As almost every digital communication system relies on these cryptosystems,

such a breakthrough would seriously compromise the confidentiality and integrity

of modern communications. The goal of post-quantum cryptography (PQC) is to

develop cryptographic systems that are secure against quantum computers (by ex-

tension, also against classical computers) and can interoperate with existing com-

munication systems and networks.

As for now, no large-scale quantum computer exists. The question of when it

will be built is a complicated one, but many scientists agree on the fact that it is just

a matter of time, as they believe it is now a mere engineering challenge. Therefore,

regardless of when this scenario will become a reality, we must begin now to prepare

our systems to be able to resist quantum computing. For this reason, NIST (National

Institute of Standards and Technology, part of the U.S. Department of Commerce)

announced in 2013 a PQC standardization contest. regarding Public-key Encryption

(PKE) schemes, Key-establishment algorithms and Digital Signature schemes. The

standardization contest for each category has been carried out in three rounds.
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Introduction

However, the contest for digital signatures is currently in its fourth round. This

additional round aims to find alternatives to the lattice-based schemes, as they were

the only ones that went through until the third round. Code-based cryptography,

i.e. cryptosystems based on coding theory, represents a promising alternative.

Thesis contribution

This thesis is the outcome of a six-month Research Internship period, from Septem-

ber 2022 to March 2023, hosted by the Coding and Cryptography (COD) group of

the Technical University of Munich (TUM), under the supervision of the Informa-

tion Engineering department of the Polytechnic University of Marche. During the

internship, I studied signature schemes based on the Restricted Syndrome Decoding

Problem (R-SDP) and analyzed Information Set Decoding (ISD) solvers for R-SDP.

I realized a SageMath proof-of-concept implementation of one of the studied signa-

ture schemes in order to preliminarily assess its performances. I contributed to the

realization of two different scientific submissions, that will be presented throughout

the thesis. In the accepted IEEE ISIT (International Symposium on Information

Theory) submission [4], generic decoding based on ISD for R-SDP with small mul-

tiplicative orders has been studied. The results showed that, for low orders of the

restricted set, security levels decrease with respect to the ones found in literature. In

the Crypto submission [5], we analyzed how R-SDP can be applied to build ZKID-

based signature schemes, with a focus both on the protocols and on the ISD attacks.

We have also introduced a new version of the problem, called R-SDP(G), that leads

to much more compact signatures.
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Introduction

Thesis organization

In Chapter 1 we will define the notation and introduce some useful preliminary

notions. Digital signatures and how to build a signature scheme will be discussed

in Chapter 2. In Chapter 3 we will dive into the complexity classes of the problems

we will build our schemes on and we will explore some existing solvers for the well-

known SDP problem. In Chapter 4 we will introduce our restricted SDP idea and

present solvers for the new problem. In Chapter 5 we will explore some ZKID-

based existing signature schemes and apply our problem to them in order to study

their performances. An even newer problem will then be proposed and applied to

previous schemes and the results will be compared to other existing schemes. The

implementation of the R-GPS scheme and its results are shown in Chapter 6. Finally,

the conclusion and future work are presented in Chapter 7. The entire source code

of the implementation is reported in the Appendix.
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Chapter 1

Notation and preliminaries

Throughout the thesis, we use [a, b] to denote the set of all reals x ∈ R such that

a ≤ x ≤ b. For a finite set A, the expression a
$←− A means that a is chosen

uniformly at random from A, while a
seed←−− A analogously means the same but with

randomness source seed. In addition, we denote by |A| the cardinality of A, by AC

its complement and by A0 = A ∪ {0}. As usual, for q being a prime number, we

denote by Fq = Zq the finite field of order q and by F∗
q its multiplicative group. For

g ∈ F∗
q, we denote by ord(g) = min{i ∈ Z \ {0} | gi = 1 (mod q)} ≤ q − 1 its

multiplicative order.

We use uppercase and lowercase letters to indicate matrices and vectors, respec-

tively. If J is a set, we use AJ to denote the matrix formed by the columns of A

that are indexed by J and we refer to the entry of A in the i-th row and j-th column

as ai,j. Analogous notation will be used for vectors. The identity matrix of size m

is denoted as Im. We use 0k×n and 0k to denote the null matrix of size k × n and

the null vector of length k, respectively.

Let Sn be the symmetric group on n elements, i.e. the group whose elements

are all the bijections from the set [0, n − 1] to itself. We call an element σ of Sn a
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Chapter 1 - Notation and preliminaries

permutation and its action on a vector a ∈ Fn
q as

σ(a) = (aσ(0), . . . , aσ(n−1)).

Let Mn be the set of monomial transformations or isometries, i.e. all linear

functions that permute the entries of an input vector and multiply them by a non-

null element of Fq. In other words, such transformations can be represented through

a permutation vector π ∈ Sn and a vector v ∈ (F∗
q)

n of non-zero scaling factors. The

action of the monomial transformation τ on an input vector a ∈ Fn
q can then be

expressed as

τ(a) =
(︁
vπ(0)aπ(0), . . . , vπ(n−1)aπ(n−1)

)︁
.

We denote by hq : [0, 1]→ [0, 1] the q-ary entropy function:

hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x),

of which the binary entropy function h2 is a special case for q = 2:

h2(x) = −x log2(x)− (1− x) log2(x).

For n ≥
∑︁m

i=1 ki we denote by

(︃
n

k1, . . . , km

)︃
=

m∏︂
i=1

(︃∑︁i
j=1 kj
ki

)︃(︃
n

n−
∑︁m

i=1 ki

)︃

the multinomial coefficient, for which the binomial coefficient is a special case for

m = 1. Recall that for large n the multinomial coefficient can be approximated as

lim
n→∞

(︃
f(n)

f1(n), . . . , fm(n)

)︃
= 2

f(n)·gm
(︃
f1(n)
f(n)

,...,
fm(n)
f(n)

)︃
= 2

n·F ·gm
(︃
F1

F
,...,

Fm

F

)︃
,

10



Chapter 1 - Notation and preliminaries

where

gm(x1, . . . , xm) = −
m∑︂
i=1

xi log2(xi)−

(︄
1−

m∑︂
i=1

xi

)︄
log2

(︄
1−

m∑︂
i=1

xi

)︄

and F = lim
n→∞

f(n)
n

, Fi = lim
n→∞

fi(n)
n

for all i ∈ {1, . . . ,m}. Notice that g1 = h2

corresponds to the binary entropy function, thus for large n the binomial coefficient

can be approximated as:

lim
n→∞

(︃
f(n)

f1(n)

)︃
= 2n·F ·h2(F1

F ).

A linear code C is a k-dimensional linear subspace of Fn
q . A linear code can be

represented either through a generator matrix G ∈ Fk×n
q or through a parity-check

matrix H ∈ F(n−k)×n
q , which have the code as image or as kernel, respectively. We

say that a linear code has rate R = k/n. We define CJ as CJ = {cJ | c ∈ C}. For any

x ∈ Fn
q , we call s = xH⊤ ∈ Fn−k

q a syndrome. A set I ⊆ {1, . . . , n} of size k is called

an information set for C, if |C| = |CI |. We say that a generator matrix, respectively

a parity-check matrix, is in systematic form (with respect to a set J of size ℓ), if the

columns of G indexed by J form Idℓ, respectively, if the columns of H not indexed

by J form Idn−ℓ. We endow the vector space Fn
q with the Hamming metric: the

Hamming weight of a vector x ∈ Fn
q is given by the number of its non-zero entries,

i.e.,

wtH(x) = |{i ∈ {1, . . . , n} | xi ̸= 0}| ,

which then induces a distance, as dH(x,y) = wtH(x− y), for x,y ∈ Fn
q .

Given a q-ary code (not necessarily linear) of block length n and minimum dis-

tance d, it is important to estimate which is the largest possible size Aq(n, d), i.e.

the maximum number of codewords, that a code can have.

First, we construct a code C with minimum distance d and maximum size through

11



Chapter 1 - Notation and preliminaries

a greedy procedure: starting from a codeword, we keep on adding codewords that

have a distance at least d from the previously chosen ones, until we cannot add more

of them. When this happens, the Hamming balls of radius d − 1 centered in every

codeword must cover the whole space. Indeed, otherwise we could pick one more

codeword whose distance from the others is at least d, thus the procedure would not

have stopped. By defining the volume of a Hamming ball of radius ℓ ∈ N centered

in any of the codewords as

Volq(n, ℓ) =
ℓ∑︂

j=0

(︃
n

j

)︃
(q − 1)j,

when the greedy procedure stops it holds that

Aq(n, d) · Volq(n, d− 1) ≥ qn.

This inequality represents the so-called Gilbert-Varshamov bound (in short, GV

bound), expressed in Lemma 1.

Lemma 1. Gilbert-Varshamov bound

Let d ≤ n and q be positive integers and let C be a code over Fq. It must hold

Aq(n, d) ≥
qn

Volq(n, d− 1)
=

qn∑︁d−1
j=0

(︁
n
j

)︁
(q − 1)j

. (1.0.1)

If C is linear, then Aq(n, d) = qk for a k ≤ n positive integer and it holds

k ≥ n−
⌊︁
logq (Volq(n, d− 1))

⌋︁
= n−

⌊︄
logq

(︄
d−1∑︂
j=0

(︃
n

j

)︃
(q − 1)j

)︄⌋︄
.

While usually other bounds, like the Singleton bound, provide upper bounds on

the size of a code, the GV bound represents a lower bound as a function of the

12



Chapter 1 - Notation and preliminaries

field size q, the block length n and the minimum distance d. These results can

be obtained in the asymptotic version, i.e. considering exponential approximations

with regard to n of the used quantities. First, the following lemma can be proven:

Lemma 2. Let n and q ≥ 2 be positive integers and δ ∈ [0, 1−1/q] be a real number.

It holds

q(hq(δ)−o(1))n ≤ Volq(n, δn) ≤ qhq(δ)n.

In other words, for n big enough, the asymptotic volume of the Hamming ball

of radius δn can be approximated to

1

n
logq (Volq(n, δn)) = hq(δ). (1.0.2)

The rate of a generic code C of size |C| is defined as

R =
1

n
logq(|C|), (1.0.3)

which becomes the well known

R =
k

n

if the code is linear. We want to take the asymptotic values of (1.0.1). To do so,

we use the result in (1.0.2) and the definition (1.0.3) and we obtain the asymptotic

formulation of GV bound, expressed in Lemma 3.

Lemma 3. Asymptotic Gilbert-Varshamov bound

Let q be a positive integer and δ ∈ [0, 1− 1/q] be a real number. For every q and δ

there exists an infinite family C of q-ary codes with rate

R ≥ 1− hq(δ) (1.0.4)

13



Chapter 1 - Notation and preliminaries

The asymptotic GV bound states the existence of such codes, but it does not

say anything about which ones they are.

Consider a random linear code [n, k] over Fq, i.e. a code where each entry of

its parity-check matrix (or, equivalently, generator matrix) is picked uniformly at

random. The number of vectors of weight t in Fn
q is

(︁
n
t

)︁
(q − 1)t. A vector c is a

codeword if it satisfies the parity-check equations, i.e. cH⊤ = 0. Given that H

is a random matrix, that happens with a qk−n probability. Therefore, the average

number of codewords of weight t is

(︃
n

t

)︃
(q − 1)tqk−n. (1.0.5)

If this quantity is greater than 1, then a codeword with weight t exists on average.

Then, by definition the minimum distance d is the minimum value for which the

(1.0.5) is greater than 1:

d = min

{︃
t

⃓⃓⃓⃓(︃
n

t

)︃
(q − 1)tqk−n ≥ 1

}︃
. (1.0.6)

By taking the asymptotics of (1.0.6) we obtain the relative distance

δ = min

{︃
T

⃓⃓⃓⃓
hq(T )− (1−R) ≥ 0

}︃
,

where T = t/n is the relative weight. Considering that hq(T ) grows monotonically

from 0 to 1 for T ∈ [0, 1− 1/q], we can consider only this interval of weights. Then,

the minimum relative distance is the one for which

hq(δ) = (1−R) (1.0.7)

Therefore, random linear codes attain the asymptotic GV bound with high proba-

14



Chapter 1 - Notation and preliminaries

bility. Then, when using a random linear code we can assume its relative distance

as the solution of (1.0.7).
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Chapter 2

Digital signature schemes

A signature is a piece of information that guarantees the legitimate origin of an

object. Specifically, a digital signature applies to objects intended as digital messages

or documents. We refer to the origin of the signature as the Signer and to the

destination as the Verifier. The requirements a (digital) signature must possess are:

• Authenticity : the origin must be legit;

• Integrity : the message cannot be altered after it has been signed;

• Non-repudiation: the origin cannot deny the signing of the message.

Every digital signature scheme consists of three steps:

1. Key generation;

2. Signing;

3. Verification.

The first two steps are carried out by the Signer. After creating a pair of keys,

one being secret (sk) and one being public (pk), he proceeds to sign a message m

16



Chapter 2 - Digital signature schemes

through a public-key cryptographic primitive, obtaining a signature σ. The last step

is performed by the Verifier, which, after receiving the signed message (m,σ), checks

its validity through the same primitive.

As with every other cryptographic scheme, also digital signature schemes are

subject to attacks. For instance, an impersonator could produce a forged signature

to try to convince the Verifier that he is a legitimate Prover, even without knowing

its private key.

The performance of a digital signature scheme is measured by these parameters:

• Signature size;

• Public key size;

• Signing and verification times.

The size of an object is intended as the total number of bits that are used to represent

such an object. Clearly, small sizes and short times are preferred.

2.1 Digital signature schemes based on PKE

schemes

Asymmetric PKE schemes can be used to build digital signature schemes by simply

swapping the encryption and decryption phases. That means applying the secret

key to the (ciphertext) message to obtain the (plaintext) signature and then applying

the public key to get the message. In practical cases, to attain smaller signature

sizes, a hash-and-sign approach is much more used, where the ciphertext is the hash

digest of the message.

In 1978, McEliece proposed a public-key encoding system [27] based on algebraic

coding theory. In McEliece, the private key is the generator matrix G ∈ Fk×n of a

17



Chapter 2 - Digital signature schemes

Goppa code with an error correction capacity of t and the public key is a scrambled

version G′ = SGP ∈ Fk×n of the private key, where S ∈ Fk×k and P ∈ Fn×n are

a secret invertible matrix and a secret permutation matrix, respectively. The aim

of such scrambling is to make G′ indistinguishable from a random matrix. The

sender uses this public matrix to encode a secret message, or plaintext, m (or, more

likely, its hashed version) and then adds t intentional errors to the codeword, thus

obtaining a ciphertext

c = mSGP+ e.

The legitimate receiver inverts the action of the permutation by computing

cP−1 = mSG+ eP−1,

obtains mS through the decoding algorithm and then recovers the message m by

post-multiplying it by s−1. In order to recover the message without knowing the

secret key, an eavesdropper is forced to decode a seemingly random code, which is a

known hard problem even for quantum computers. Therefore, the trapdoor used by

McEliece is the t-error correcting procedure for the Goppa code. Anyway, the use

of the trapdoor implies the need for a security assumption, which is assuming that

the scrambled matrix is not distinguishable from a random one. So far, no known

polynomial-time distinguisher exists, so the assumption still holds. However, if such

an assumption was proven wrong, the security of McEliece would be compromised.

In 1986, Niederreiter proposed a variant [28] of McEliece cryptosystem, equivalent

but from the parity-check matrix H ∈ F(n−k)×n
q point of view. In this case, the

plaintext is an error vector e ∈ Fn
q of weight t and the ciphertext is a syndrome

s = eH⊤ ∈ F(n−k)
q . In [25], it has been proven that McEliece and Niederreiter are

equivalent from a security point of view.

18



Chapter 2 - Digital signature schemes

In order to get post-quantum signature schemes, it could make sense to use

McEliece/Niederreiter encryption schemes. However, in such cases, the hashed mes-

sage does not lie in the ciphertext space. For example, considering the Niederreiter

scheme (same applies to McEliece), the ciphertext is an error vector e of weight t,

where t is the correcting capability of the used Goppa code. Since a hash digest

can be considered as a random string, it is very likely that such a random syndrome

will result in an error vector of weight greater than t. Such a syndrome is then not

correctable and the signature scheme cannot properly work.

For some time, it was widely believed that McEliece/Niederreiter schemes could

not be used for signature schemes. However, in 2001 Courtois, Finiasz and Sendrier

showed in [14] that is possible to build a signature scheme based on the Niederreiter

scheme by accomplishing complete decoding, i.e. decoding syndromes corresponding

to errors of weight greater than t, let us say t + δ. To do so, they add δ random

columns of the parity-check matrix to the syndrome (they work over F2). If such

columns correspond to one of the t + δ error positions, the new syndrome will

correspond to an error vector of weight t, which is decodable. However, this process

is probabilistic. This makes signing very slow, since multiple attempts need to be

made, and furthermore leads to parameter choices for the underlying linear codes

that yield very large public keys (approximately 1 MB for less than 128 security

bits). Moreover, the use of trapdoors forces the scheme to rely on a hard problem

through a security assumption.
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2.2 Digital signature schemes based on ZKID

schemes

A valid code-based alternative to PKE schemes can be found in Zero-Knowledge

Identification Schemes (ZKID). An identification scheme aims to guarantee an user’s

knowledge of a secret object. We talk about zero-knowledge if the user is able to do

so while not revealing any piece of information about the secret.

2.2.1 Zero-Knowledge Identification Schemes

The properties of an ideal ZKID scheme are:

• Completeness: an honest user must always be correctly identified;

• Soundness: a dishonest user must never be accepted;

• Zero Knowledge (ZK): the Prover must not leak information about the

secret key.

An example, however general, of an identification scheme is the one briefly shown

below. The user that wants to be identified, i.e. the Prover, creates a pair of keys

(sk, pk), respectively private and public. The identifier, i.e. the Verifier, wants to

check that the public key has indeed been created by the Prover. Then, the Prover

has to provide to the Verifier the so-called Proof of Knowledge, which is the proof

of the Prover’s knowledge of the secret key sk linked to pk. Such proof is provided

following the generic protocol shown in Figure 2.1:

• The Prover chooses a random value s and keeps it secret;

• The Prover computes the commitment c as a function of the random value s

and other additional data: c = f(s,Data);
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PROVER VERIFIER
Choose a random value s
Compute c = f(s,Data)

c−−−−−−→
Choose a random value b

b←−−−−−−
Compute r = g(s, sk, b)

r−−−−−−→
Check r using c and pk

Figure 2.1: General ID scheme

• The Verifier chooses a random challenge b;

• The Prover computes the response r as a function of s, b and the secret key

sk: r = g(s, sk, b);

• The Verifier checks r using c and pk.

The function f(·) must be one-way in order to hide the random value s, while

g(·) must not leak information about sk.

The property that is evaluated to estimate the security level of a scheme is sound-

ness. In practice, it is highly difficult to attain perfect soundness, so it is expected to

have a non-zero probability that a dishonest user could be accepted by the identifier.

Such probability is called soundness error (ε). In order to get an arbitrarily low

cheating probability, i.e. the success probability of the attacker, the identifier could

require to perform the single protocol multiple times. For instance, to get a security

level of at least λ, that is a cheating probability of 2−λ, N repetitions (rounds) are

necessary, where N > λ
log2(1/ε)

. Indeed, it holds that εN < 2−λ. Therefore, it is clear

that for a required cheating probability, the lower the soundness error ε, the smaller

the number of necessary rounds, thus the communication cost of the protocol.
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The value c is called commitment because it represents the commitment that

the Prover makes to identify himself using that value, regardless of the challenge

chosen by the Verifier. In other words, by communicating a (supposedly honest)

c = f(s,Data) before b has been chosen, the only way the Prover has to get identified

is by knowing the secret key, since no other input parameter of g(·) is left unchosen.

Then, it is clear that the order we use to communicate the parameters c and b is

crucial. Indeed, assuming that b is communicated to the attacker before he sends

c, he could choose an appropriate c for which he is able to compute a valid answer,

even without knowing the secret key.

If the correct exchange order of parameters is enforced, an attacker could try to

guess the challenge that will be chosen and then send a ”prepared” commitment.

Such a strategy could lead to a victory only in the case the Verifier will choose the

b that the attacker foresaw. If, as usually happens, b is chosen uniformly at random

in the {0,1} set, the soundness error is likely to be ε = 1/2.

2.2.2 Fiat-Shamir transform

An identification scheme is an interactive protocol between two actors, the Prover

and the Verifier, at the end of which the Verifier outputs the answer about the

validity of the Prover identity. Starting from a ZKID scheme it is possible to get a

digital signature scheme by applying the so-called Fiat-Shamir trasform . This

method allows adapting the protocol used in ZKID schemes such that it is executable

by a single actor (signer), in order to get the digital signature of a message. In other

words, the transform allows the signer to get rid of the interactivity by simulating

both the Prover and the Verifier of a ZKID scheme, thus obtaining a digital signature

from the transcripts of their simulated communication.

Figure 2.2 describes how the Fiat-Shamir transform is applied to a generic ZKID
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SIGNER VERIFIER
Choose N random values s1, ...sN
For i = 1, .., N :
1. Compute ci = f(si,Data)

Compute B = h(m||c1||...||cN)
For i = 1, .., N :
1. Compute ri = g(si, sk, bi)

{(c1,...,cN ),(r1,...,rN )}−−−−−−−−−−−−→
Compute B = h(m||c1||...||cN)

For i = 1, .., N :
1. Check ri using ci, bi and pk

Figure 2.2: Fiat-Shamir transform for a generic ZKID scheme

scheme. The signer is the actor that has to sign a message m and the Verifier is the

actor that has to check the validity of such a signature. Notice that the signature

Verifier is a different actor from the ZKID Verifier, as the latter is just simulated

from the signer execution in this scenario. The signer generates the N commitments

ci, one for each round, then he computes the hash digest h(·) of the message m

concatenated with the N commitments. The first N bits of the resulting digest are

then used as challenge bits B (ZKID Verifier simulation). Then, the N responses ri

are computed according to the underlying ZKID scheme. The digital signature of the

message m consists of the list of commitments (c1, ..., cN) and responses (r1, ..., rN).

Therefore, once he receives the signature, the Verifier is able to recompute the

challenge bits as the hash digest of the message and the commitments and, then,

perform the verification of each ri as established from the ZKID scheme.

In ZKID protocols the challenge bits are randomly generated. For this reason, the

Fiat-Shamir transform uses an appropriate hash function to get such bits. Indeed,

some hash functions are random oracles, i.e. functions that are able to produce

(apparently) random bits from varying inputs. The hash function also guarantees
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that the declared message and commitments will not be modified afterward. Indeed,

being a one-way function, the hash univocally ties the stringmessage||commitments

to the challenge bits B. In such a way, once the challenge bits are computed, it

is not possible to change the message or the commitments, because every small

variation of the hash input would lead to an unpredictable change of B. Therefore,

if the signer computes its challenge bits B and computes the responses according

to B, but sends different commitments or a different message to the Verifier, then

its signature would (probably) not be accepted, as the Verifier will use different

challenge bits B′ than the ones used by the signer to compute the responses. The

one-way property of the hash function guarantees the correct creation order of the

commitments and challenges. In order to commit cheating, an attacker should guess

all N random challenge bits and prepare appropriate commitments, therefore the

cheating probability is εN .

The use of ZKID protocols in digital signature schemes leads to several advan-

tages. First, the public and private keys are not tied together through a trapdoor.

Indeed, ZKID schemes do not perform decryption, then it is not necessary to make

a security assumption that justifies the hardness of the underlying problem even

using a trapdoor. For example, RSA is an asymmetric cryptosystem that, as it has

to allow decryption, uses a trapdoor. It is based on the ”hard” problem of factoring

a large integer number (it is not NP-hard, but no efficient non-quantum attack is

known). Although, in order to allow decrypting, a trapdoor has to be used, that

is limiting the number of possible integers only to the semiprime integers n = pq,

with p and q primes. It is assumed (security assumption) that also the problem of

factoring a large semiprime integer is hard, even if this could not be true. There-

fore, the security assumption is a possible vulnerability of a cryptosystem, because

its security would be compromised as soon as the assumption is proven wrong.

Finally, the multiple executions of rounds can be parallelized, thus increasing
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the execution speed of the schemes. However, the necessity of multiple repetitions

leads to bigger signature sizes, even if public keys could be very small.
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Security Analysis

The security of every asymmetric cryptographic scheme relies on an underlying

problem, which is supposedly hard to solve. This problem is used to hide the private

key of the cryptosystem behind its public key (or the message behind the ciphertext).

Therefore, an attacker could try to solve the problem in order to find the private key.

Considering that there might be different ways of solving the problem, the attacker

will choose the most efficient algorithm, i.e. the one that has the lower cost. Let

such a cost be 2λ1 . In case of success, he would be able to cheat at every execution of

the scheme by using a valid private key. Although, the security of the cryptosystem

also depends on the protocol that uses such a problem. For example, an attacker

could try to break the protocol by exploiting its structure without finding a valid

private key. For example, as we saw for ZKID schemes and the signature schemes

obtained from them, the attacker is successful with a certain (cheating) probability,

that we call 2−λ2 . If such a probability is high enough, it could be more convenient

for the attacker to use this kind of attack, as it would be less costly than solving the

underlying problem. Indeed, the average number of protocol executions required to

successfully cheat, which is the cost of the attack if we neglect the cost of the single
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protocol execution, is 2λ2 . The security level of the cryptographic scheme is then

computed considering the least costly approach between the two:

λ = log2min
(︁{︁

2λ1 , 2λ2
}︁)︁

We will now focus on the security analysis of the underlying problems of the

schemes. Security analysis of a cryptographic scheme generally takes into account

two different attack approaches:

1. structural attacks;

2. non-structural attacks.

Structural attacks exploit the known algebraic structure of the scheme (i.e. the

Goppa code for McEliece cryptosystem), instead of the non-structural attacks that

aim to recover the message or secret key regardless of the algebraic structure. As

we will use actual random codes, we will only focus in Section 3.2 on non-structural

attacks, for which no information about the structure is used.

Code-based cryptography is traditionally based on the hardness of decoding a

random linear block code. Being a linear block code defined by a generator matrix

G, the problem can be formalized in the following way:

Problem 1. Decoding Problem (DP)

Let Fq be a finite field of size q and k ≤ n be positive integers. Given G ∈ Fk×n
q ,

c ∈ Fn
q and t ∈ N, are there two vectors x ∈ Fk

q and e ∈ Fn
q with wtH(e) = t such

that c = xG+ e?

Analogously, the problem can be expressed using the parity-check matrix H:

Problem 2. Syndrome Decoding Problem (SDP)

Let Fq be a finite field of size q and k ≤ n be positive integers. Given H ∈ F(n−k)×n
q ,

s ∈ F(n−k)
q and t ∈ N, is there a vector e ∈ Fn

q with wtH(e) = t such that eH⊤ = s?
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The two problems are equivalent, thus we will exclusively refer to SDP from now

on. The number of solutions to the SDP problem depends on the weight t. Since

the code is random, assuming the syndrome is obtained from a vector e of weight t,

i.e. eH⊤ = s, the average number of solutions is

1 +

(︁
n
k

)︁
(q − 1)t − 1

qn−k
≃ 1 +

(︁
n
k

)︁
(q − 1)t

qn−k
.

If there is more than one solution, it is intuitive that the SDP problem gets easier

to solve. Thus, it is always required to have (on average) a unique solution. That

happens when
(︁
n
k

)︁
(q − 1)tqk−n ≤ 1, or, asymptotically

hq(T )− (1−R) ≤ 0. (3.0.1)

Therefore, if the target relative weight T is less than the minimum relative distance

δ of the random code, i.e., the one that satisfies (1.0.7), we expect to have on average

a unique solution.

3.1 Complexity classes

It is important to notice that, as we defined them, DP and SDP ask if a solution to

the system of equations exists, but they do not ask to find it. The problems for which

the existence of a solution has to be asserted are called decisional problems, while

the ones that specifically ask to find the solution are called computational problems.

DP and SDP can be also defined as computational problems. For the computational

SDP, the solution is the vector e that satisfies the parity-check equations, while

for the decisional SDP, the solution is ”YES” or ”NO”, according to whether an

appropriate vector e exists or not. For the security analysis, the computational

versions of the problems have to be considered, since an attacker that wants to find
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the private key has to solve a computational problem.

In order to determine if a cryptographic system can be built on a given problem

(for example, SDP), its hardness has to be asserted. To do so, we briefly introduce

some basics of complexity theory. The following dissertation will not be rigorous,

as the fundamental concepts will be presented in an intuitive way.

Definition 1. P is the class of (decisional) problems that can be solved in polynomial

time in the size of the input.

In other words, the problems that belong to P are the easiest ones.

Definition 2. NP is the class of (decisional) problems whose solutions can be

checked in polynomial time in the size of the input.

Clearly, P is a subset of NP, because every problem that can be solved in poly-

nomial time can also be checked in polynomial time. In fact, if a problem P1 lives

in P, it exists a polynomial solver that outputs a binary solution s of P1. Given

a candidate solution c ∈ {”YES”, ”NO”}, we can run the polynomial solver and

verify if s = c, thus checking the solution c in polynomial time.

A way to compare the hardness of two different problems is polynomial-time

reductions.

Definition 3. Let R and P be two (decisional) problems. A polynomial-time reduc-

tion from R to P is composed of the following steps:

1. take any instance I of R;

2. transform I to an instance I ′ of P in polynomial-time;

3. assume that P can be solved in the instance I ′ and its solution is s′;

4. transform s′ to a solution s of R in the instance I in polynomial time.
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In other words, the existence of a polynomial-time reduction from R to P means

that if we solve P then we also solveR by appropriately transforming an instance and

a solution. Notice that the opposite does not hold in general, therefore this means

that in this case P is at least as hard to solve as R. The definition of polynomial-

time reduction allows us to define the class of problems that are interesting from a

post-quantum security point of view.

Definition 4. NP-hard is the class of (decisional) problems to which it exists a

polynomial-time reduction from every problem in NP.

Following the intuitive meaning of polynomial-time reduction, the problems in

NP-hard are at least as hard as every problem in NP, even the hardest ones. Thus,

NP-hard problems are considered to be the hardest problems to solve and, for this

reason, they are studied for security applications. From the definition, to prove that

a problem is NP-hard we would have to find a reduction to it from every problem in

NP. Luckily this is not necessary, as it is enough to find a reduction to our problem

from a problem that is already known to be NP-hard. Notice also that the NP-hard

class is only defined for decisional problems. However, the computational version of

a problem is clearly at least as hard as its decisional version, so, being unrigorous,

it is safe to state that if the decisional problem is NP-hard, also the computational

problem is. It is conjectured that NP-hard problems are quantum-resistant, there-

fore they are used as underlying problems for post-quantum cryptosystems.

An NP-hard problem is a hard problem that, in general, does not live in NP. It

would be nice to work with problems that are hard to solve and easily verifiable at

the same time, so that when we are given a solution to the problem we are able to

quickly check its validity.

Definition 5. NP-complete is the class which results from the intersection of NP-

hard and NP classes.
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Berlekamp, McEliece and Van Tilborg demonstrated in [9] that SDP for binary

linear codes embedded with Hamming metric is NP-complete. Successively, Barg

in [7] generalized such a demonstration to finite fields of arbitrary size. Therefore,

SDP has been proven to be a valid candidate for the underlying problem of a post-

quantum cryptographic scheme.

3.2 ISD algorithms for SDP

As already seen, solving SDP means solving the NP-complete decoding problem of

a random linear code. Therefore, the security level of the SDP-based cryptographic

scheme depends on the best decoding algorithm for random linear codes. If SDP

has few solutions, the most efficient strategies are the so-called Information Set

Decoding (ISD) algorithms. Before presenting the main members of this family

of algorithms, we notice that the definition of information set can also be expressed

from the G matrix (or, equivalently, H) point of view:

Lemma 4. Let k ≤ n be positive integers and let C be a [n, k] linear code over

Fq, with generator matrix G ∈ Fk×n
q and parity check matrix H ∈ F(n−k)×n

q . If I

is an information set of C, then it exists simply a generator matrix G′ of C where

G′
I = Idk and it exists another parity check matrix H′ of C where H′

IC = Idn−k.

Proof. Let us consider the CI code, obtained through puncturing from C. CI ⊆ Fk
q

is a [k × k] code with generator matrix GI .

By hypotesis, it holds that |CI | = |C| = qk. That means that for every u ∈ Fk
q it

exists one and only one corresponding codeword cI = uGI ∈ Fk
q . In other words,

columns of GI are linearly independent, so GI is invertible.

Let U = G−1
I , we can obtain an identity matrix from UGI = Idk. So, defining

G′ = UG (which is still a valid generator matrix of C since we obtained it through
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linear combinations of G rows) it holds that G′
I = UGI = Idk. For the parity check

matrix, we have G′H′⊤ = H′
I +G′

ICH
′⊤
IC = 0, where one of the possible solutions is

H′
I = −G′

IC and H′
IC = Idn−k.

Every ISD algorithm aims to solve the SDP problem. Each one of them considers

a certain error distribution in relation to an information set, but, in broad terms,

all of them follow the same procedure:

1. Choose an information set I;

2. Bring parity check matrix H in systematic form in relation to I, that is finding

an invertible matrix U ∈ F(n−k)×(n−k)
q such as (UH)I = A for some A ∈

F(n−k)×k
q and (UH)IC = Idn−k;

3. For every e ∈ Fn
q with weight t and the supposed error distribution:

(a) Verify if parity check equations (in systematic form in relation to I)

eH⊤U⊤ = sU⊤ are satisfied;

(b) If they are satisfied, return e.

4. If no valid e has been found, restart with a new information set I.

Here we want to stress out why I has to be an information set. Let us define I

as a generic set of size k. The parity check equations are:

eH⊤ = eIH
⊤
I + eICH

⊤
IC = s

Given a certain eI , in order to get the solution eIC we have to invert H⊤
IC and,

according to Lemma 4, this is possible if and only if I is an information set. This

is how every ISD algorithm carries Step 3.a out: they find ways of enumerating

eI vectors of a certain weight, they calculate eIC as
(︁
s− eIH

⊤
I

)︁
(H⊤

IC )
−1 and they
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check that eIC has the remaining weight. Therefore it is mandatory for I to be an

information set, because, otherwise, it would be more difficult to find eIC , thus the

whole solution e. The cost in binary operations of the algorithm is given by the

product of the single iteration cost by the average number of necessary iterations to

find the SDP solution. Such a number is the reciprocal of the success probability

of one iteration, which is uniquely determined by the supposed error distribution.

The more likely the distribution, the higher the success probability. For this reason,

the main differences between ISD algorithms are the supposed error distribution

and the ways of executing one single iteration. Usually, the main term of the cost

expression is the average number of repetitions, so the first proposed improvements

on ISD algorithms aimed to reduce the number of iterations.

Before presenting the main ISD algorithms, we briefly introduce some computa-

tion techniques that may be used to reduce the cost of operations.

• Early Abort. In some of the algorithms a computation is carried out and

the result of this computation will determine the execution of the following

computations. The condition is usually that the weight of the result cannot

exceed a certain value. This condition can be checked either by computing

the result and then checking its weight or by computing one result entry at

a time and immediately checking the weight of the partial result obtained so

far. With this second strategy, as soon as the weight exceeds the maximum

value we can stop the computation, thus saving on cost. We refer to this as

early abort technique.

For example, let us consider an algorithm that computes xA, for x ∈ Fk
q ,

wtH(x) = t and A ∈ Fk×n
q , and then proceeds if wtH(xA) = w. The naive

strategy would require
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nt
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁ (3.2.1)

binary operations. However, with early abort we compute one entry at a

time. Assuming it is uniformly distributed over Fq, the probability that this

entry contributes to the weight of the result vector is q−1
q
. Thus, we expect

the partial result vector to have a weight w on average after q
q−1

w computed

entries. The computation stops when the weight becomes w + 1, so on av-

erage after q
q−1

(w + 1) entries. Considering that computing one entry costs

t
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁, using early abort leads to a cost of

q

q − 1
(w + 1)t

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁ , (3.2.2)

which is clearly lower than (3.2.1) as soon as q
q−1

(w + 1) < n;

• Intermediate Sums. In some algorithms a computation has to be carried

out for all vectors in a certain set, namely all the possible vectors of a certain

weight. Intermediate sums technique does so by starting from performing the

computation with lower weight vectors and using the results to carry out the

computations for higher weight vectors.

For example, let us consider an algorithm that has to compute xA, with A ∈

Fk×n
q , for all x ∈ Fk

q of weight t. We could normally perform the multiplication

for every possible vector, and that costs

(︃
k

t

)︃
(q − 1)tnt

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁ (3.2.3)

binary operations. However, using intermediate sums we start by multiplying

A by all the possible vectors of weight 1, that is multiplying all the rows of
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the matrix by every non-zero element of Fq. That costs (q − 1)kn ⌈log2(q)⌉
2

binary operations. We continue by multiplying A by all the possible vectors

of weight 2, that is computing linear combinations of two multiples of rows

of A, obtained from the last step. This costs
(︁
k
2

)︁
(q − 1)2n ⌈log2(q)⌉. We then

iterate this process until we get to weight t, obtaining a cost of

Lq(k, t)n ⌈log2(q)⌉+ (q − 1)kn ⌈log2(q)⌉
2 (3.2.4)

binary operations, where we defined

Lq(k, t) =
t∑︂

i=2

(︃
k

i

)︃
(q − 1)i.

This is clearly lower than (3.2.3) since Lq(k, t) <
(︁
k
t

)︁
(q − 1)tt.

3.2.1 Prange

Prange’s algorithm [29] assumes that errors are outside of a generic information set

I, that is I ∩ Supp(e) = ∅.

For the sake of clarity, we initially assume that the chosen information set is

I = {1, .., k}. Let us bring the parity check matrix H ∈ F(n−k)×n
q in systematic

form by multiplying it by an appropriate matrix U ∈ F(n−k)×(n−k)
q . We refer to this

procedure as Gaussian Elimination. The assumed error distribution allows us to

separate the e vector in two parts: e =
(︂
0k eIC

)︂
. The first part (where the chosen

information set is) has no errors, while the second part has wtH(eIC ) = t errors.

Parity check equations can be expressed in the following way:

eH⊤U⊤ =
(︂
0k eIC

)︂⎛⎝ A⊤

Idn−k

⎞⎠ = sU⊤
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Therefore it means that eIC = sU⊤. If the supposed error distribution in respect to

the information set I is right, it follows that wtH(sU
⊤) = t. So, to verify the eIC

we found is valid, it is enough to check that sU⊤ has weight t.

Algorithm 1 shows Prange’s algorithm for a generic information set. In prac-

tice, to randomly choose an information set means finding a permutation matrix

P ∈ Fn×n
q such as HP =

(︂
A B

)︂
, with A ∈ F(n−k)×k

q and B ∈ F(n−k)×(n−k)
q , which

permutes the columns ofH and, accordingly, the entries of e. The parity check equa-

tions do not change due to this procedure, as permutation matrices are orthogonal

(H⊤ = H−1). Finally, U is computed as B−1 and used to bring H into systematic

form, as usual:

eH⊤U⊤ = (eP)P⊤H⊤U⊤ =
(︂
0k eIC

)︂⎛⎝ A⊤

Idn−k

⎞⎠ = sU⊤.

This procedure will be implied throughout the rest of the thesis.

Algorithm 1 Prange’s algorithm over Fq for SDP

Input: H ∈ F(n−k)×n
q , s ∈ F(n−k)

q , 0 < t ≤ n.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k;
2: Compute U ∈ F(n−k)×(n−k)

q such that

(UH)I = A e (UH)IC = Idn−k,

where A ∈ F(n−k)×k
q ;

3: Compute s′ = sU⊤;
4: if wtH(s

′) = t then
5: Return e, with eI = 0k and eIC = s′;
6: end if
7: Restart from Step 1 by choosing another I.

The cost in binary operations of Prange’s algorithm is shown in Theorem 1.
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Theorem 1. Prange’s algorithm over Fq for SDP requires on average

(︃
n− k
t

)︃−1(︃
n

t

)︃
(n− k)2 (n+ 1)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁
binary operations.

Proof. Computations for a single iteration basically consist on bringing theHmatrix

into systematic form and transforming the s syndrome accordingly. Therefore, the

iteration cost is given by the computation cost of UH e Us⊤, that is

(n− k)2 (n+ 1)
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁
binary operations. As said before, the success probability of an iteration depends

on the probability of choosing the correct error distribution, that is the correct

distribution of the weight of e. In this case, we assume that no errors occur in the

information set, so for a given I this probability is

#e: wtH(e) = t without errors in I

# e used in construction
=

#e: wtH(e) = t without errors in I

# e with weight t
=

=

(︁
n−k
t

)︁
(q − 1)t(︁

n
t

)︁
(q − 1)t

=

(︁
n−k
t

)︁(︁
n
t

)︁ ,

where it has implicitly been implied that SDP solution is unique. The average

number of iterations is given by the reciprocal of this probability, that is

(︃
n− k
t

)︃−1(︃
n

t

)︃
.

In the cost expression, the main term is the average number of required itera-

tions since it is binomial (exponential), while the other terms are polynomial. For
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this reason, improvements over Prange’s algorithm aim to reduce the number of

repetitions by assuming more probable error distributions.

3.2.2 Lee-Brickell

Lee-Brickell’s algorithm [24] improves the error distribution assumption used in

Prange to try to increase the success probability of one iteration, so that less of

them are required on average. To do this, the algorithm uses a more likely error

distribution assumption. In fact, Lee-Brickell allows for v errors in the information

set, that is |I ∩ Supp(e)| = v.

For the sake of clarity, we initially assume that the chosen information set is

I = {1, .., k}. Let us bring the parity check matrix H ∈ F(n−k)×n
q in systematic form

by multiplying it by an appropriate matrixU ∈ F(n−k)×(n−k)
q (Gaussian Elimination).

Let us split the error vector e in two parts: e =
(︂
e1 e2

)︂
, with e1 ∈ Fk

q and e2 ∈

F(n−k)
q . The first part has wtH(e1) = v (where the information set is), while the

second part has wtH(e2) = t errors. Parity check equations can be expressed in the

following way:

eH⊤U⊤ =
(︂
e1 e2

)︂⎛⎝ A⊤

Idn−k

⎞⎠ = e1A
⊤ + e2 = sU⊤

Considering the assumed weight distribution, for every possible e1 of weight v we

compute e2 = sU⊤ − e1A
⊤. If e2 has weight t − v, the SDP solution vector e =(︂

e1 e2

)︂
of weight t has been found. Algorithm 2 shows Lee-Brickell’s algorithm for

a generic information set.

The cost in binary operations of Lee-Brickell’s algorithm is shown in Theorem 2.
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Algorithm 2 Lee-Brickell’s algorithm over Fq for SDP

Input: H ∈ F(n−k)×n
q , s ∈ F(n−k)

q , 0 < t ≤ n, max{0, k + t− n} ≤ v ≤ min{k, t}.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k;
2: Compute U ∈ F(n−k)×(n−k)

q such that

(UH)I = A e (UH)IC = Idn−k,

where A ∈ F(n−k)×k
q ;

3: Build a list L = {e1|wtH (e1) = v};
4: Compute s′ = sU⊤;
5: for e1 ∈ L do
6: Compute e2 = s′ − e1A

⊤;
7: if wtH(e2) = t− v then
8: Return e, with eI = e1 ed eIC = e2;
9: end if
10: end for
11: Restart from Step 1 by choosing another I.

Theorem 2. Lee-Brickell’s algorithm over Fq for SDP requires on average

(︃
n− k
t− v

)︃−1(︃
k

v

)︃−1(︃
n

t

)︃{︄
(n− k)2(n+ 1)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+
+

(︃
k

v

)︃
(q − 1)v

[︁
(n− k)k

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+ (n− k) ⌈log2(q)⌉
]︁}︄

binary operations.

Proof. One Lee-Brickell iteration is identical to a Prange one, with the addition of

the computing of e2 = sU⊤ − e1A
⊤ for every element of the list L. Therefore,

the following term has to be added to the cost of one iteration already shown in

Theorem 1:

(︃
k

v

)︃
(q − 1)v

[︁
(n− k) k

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+ (n− k) ⌈log2(q)⌉
]︁
,
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where the two sum terms respectively represent the cost of the two computations

e1A
⊤ and sU⊤ − e1A

⊤. For a given I and assuming unique SDP solution, the

success probability of one iteration is

#e: wtH(e) = t with v errors in I

# e used in construction
=

#e: wtH(e) = t with v errors in I

# e with weight t
=

=

(︁
n−k
t−v

)︁(︁
k
v

)︁
(q − 1)t(︁

n
t

)︁
(q − 1)t

=

(︁
n−k
t−v

)︁(︁
k
v

)︁(︁
n
t

)︁ ,

whose reciprocal represents the average number of iterations.

It is clear that the single Lee-Brickell iteration requires more binary operation

than the Prange one, but the average number of iterations is lower. The latter being

the main term, in general we get a lower computational cost.

3.2.3 Stern

Stern’s algorithm [30] uses the same error distribution of Lee-Brickell, but instead

of requiring weight v in the information set, it partitions I and requires weight v/2

in each half. Moreover, the information set can be joined with another set Z of size

ℓ called zero window. Its name derives from its early use, as no error was allowed

in it. Anyway, it is more convenient to join Z with the information set and use ℓ as

an extra optimization parameter, also because by doing so the assumption on the

weight distribution is less strict and, therefore, more likely [19]. In total, we allow

for v errors in I ′ = I ∪ Z and t− v errors in J = (I ∪ Z)C .

For the sake of clarity, let us assume I ′ = {1, ..., k+ ℓ} and J = {k+ ℓ+1, ..., n}.

As usual, we bring the parity check matrix H in systematic form by multiplying it
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by an appropriate matrix U:

UH =

⎛⎝A 0ℓ×(n−k−ℓ)

B Idn−k−l

⎞⎠
with A ∈ Fℓ×(k+ℓ)

q and B ∈ F(n−k−ℓ)×(k+ℓ)
q . We refer to this procedure as Partial

Gaussian Elimination (PGE), because the result is not completely systematic. Then

we split the error vector in two parts, one corresponding to I ′ and the other to J :

e =
(︂
eI′ eJ

)︂
, where wtH(eI′) = v and wtH(eJ) = t− v. Parity check equations can

be expressed as follows:

eH⊤U⊤ =
(︂
eI′ eJ

)︂⎛⎝ A⊤ B⊤

0(n−k−ℓ)×ℓ Idn−k−ℓ

⎞⎠ =
(︂
s1 s2

)︂
= sU⊤,

with A ∈ Fℓ×(k+ℓ)
q , B ∈ F(n−k−ℓ)×(k+ℓ)

q , s1 ∈ Fℓ
q e s2 ∈ F(n−k−ℓ)

q . This leads to:

eI′A
⊤ = s1 (3.2.5)

eI′B
⊤ + eJ = s2 (3.2.6)

(3.2.7)

As a result of the use of the zero window, we get two SDP instances of reduced size.

More specifically, the (3.2.5) is referred to as the small instance. This is due to the

fact that we can literally solve it as a smaller size SDP instance and then use the

result to compute the whole solution though the (3.2.6).

To solve the small instance, let us partition I ′ in two subsetsX = {1, ..., (k+ℓ)/2}

and Y = {(k+ ℓ)/2+ 1, ..., k+ ℓ}, where k+ ℓ is assumed to be even for the sake of
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clarity. With a little abuse of notation in order to simplify the narrative, we define

eX ∈ Fk+ℓ
q (X) and eY ∈ Fk+ℓ

q (Y ). By doing so, it is possible to write eI′ = eX + eY ,

obtaining the (3.2.5) as:

eXA
⊤ = s1 − eYA

⊤. (3.2.8)

Therefore, it is necessary to find the eX and eY that verify the (3.2.8). To do that,

we build two lists:

S =
{︂(︂

eX , eXA
⊤
)︂
| eX ∈ Fk+ℓ

q (X), wtH(eX) = v/2
}︂

T =
{︂(︂

eY , s1 − eYA
⊤
)︂
| eY ∈ Fk+ℓ

q (Y ), wtH(eY ) = v/2
}︂

We then perform a collision search between the two lists, that is finding the pair

of tuples
(︂
eX , a

)︂
∈ S and

(︂
eY ,b

)︂
∈ T for which a = b. By construction of the

lists, those eX ed eY will satisfy the (3.2.8).

Once a collision is found, we compute eI = eX + eY . Through the (3.2.6) then

we compute eJ and, if the result has weight t − v, a valid error vector e is found.

Algorithm 3 shows Stern’s algorithm for generic information set and zero window.
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Algorithm 3 Stern’s algorithm over Fq for SDP

Input: H ∈ F(n−k)×n
q , s ∈ F(n−k)

q , 0 < t ≤ n, 0 ≤ ℓ < n− k and

max{0, k + ℓ+ t− n} ≤ v ≤ min{k + ℓ, t}.
Output: e ∈ Fn

q with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k and a zero window Z ⊂ IC of

size ℓ and define I ′ = I ∪ Z and J = (I ∪ Z)C ;

2: Partition I ′ in X of size
⌈︁
k+ℓ
2

⌉︁
and Y of size

⌊︁
k+ℓ
2

⌋︁
;

3: Compute U ∈ F(n−k)×(n−k)
q such as

(UH)I′ =

⎛⎝A

B

⎞⎠ , and (UH)J =

⎛⎝0l×(n−k−ℓ)

Id(n−k−ℓ)

⎞⎠ ,

where A ∈ Fℓ×(k+ℓ)
q and B ∈ F(n−k−ℓ)×(k+ℓ)

q ;

4: Compute sU⊤ =
(︂
s1 s2

)︂
, where s1 ∈ Fℓ

q and s2 ∈ F(n−k−ℓ)
q ;

5: Build the list S = {
(︂
eX , eXA

⊤
)︂
| eX ∈ F(k+ℓ)

q (X), wtH(eX) = ⌈v/2⌉};

6: Build the list T = {
(︂
eY , s1 − eYA

⊤
)︂
| eY ∈ F(k+ℓ)

q (Y ), wtH(eY ) = ⌊v/2⌋};

7: for
(︂
eX , a

)︂
∈ S do

8: for
(︂
eY , a

)︂
∈ T do

9: if wtH(s2 − (eX + eY )B
⊤) = t− v then

10: Return e =
(︂
eI′ eJ

)︂
, with eI′ = eX + eY and

eJ = s2 − (eX + eY )B
⊤;

11: end if

12: end for

13: end for

14: Restart from Step 1 by choosing other I and Z.
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Theorem 3. Stern’s algorithm requires on average

(︃
(k + ℓ)/2

v/2

)︃−2(︃
n− k − ℓ
t− v

)︃−1(︃
n

t

)︃
·

·
[︂
(n− k)2(n+ 1)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+ (q − 1)(k + ℓ)ℓ ⌈log2(q)⌉
2+

+ ℓ

(︃
2Lq

(︃
k + ℓ

2
,
v

2

)︃
+

(︃
(k + ℓ)/2

v/2

)︃
(q − 1)v/2

)︃
⌈log2(q)⌉+

+

(︁
(k+ℓ)/2

v/2

)︁2
(q − 1)v

qℓ
min

{︃
n− k − ℓ, q

q − 1
(t− v + 1)

}︃
·

· v
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁ ]︂
binary operations (for the sake of clarity, v and k + ℓ are assumed even).

Proof. As usual, bringing H in systematic form (and consequently transform s) has

a cost of

(n− k)2 (n+ 1)
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁
binary operations.

To build the list S, in order to reduce the number of operations, intermediate

sums technique can be used. We have to compute eXA
⊤ for every eX ∈ F(k+ℓ)

q (X)

of weight v/2. According to (3.2.4), that costs

Lq

(︃
k + ℓ

2
,
v

2

)︃
ℓ ⌈log2(q)⌉+ (q − 1)

(︃
k + ℓ

2

)︃
ℓ ⌈log2(q)⌉

2

binary operations.

Analogously, to find list T , that is calculating s1−eYA⊤ for every eY ∈ F(k+ℓ)
q (Y )

of weight v/2, using intermediate sums technique the number of needed binary
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operation is

Lq

(︃
k + ℓ

2
,
v

2

)︃
ℓ ⌈log2(q)⌉+ (q − 1)

(︃
k + ℓ

2

)︃
ℓ ⌈log2(q)⌉

2+

+

(︃
(k + ℓ)/2

v/2

)︃
(q − 1)v/2ℓ ⌈log2(q)⌉ ,

where the first two terms are the cost of eYA
⊤ and the third is the cost of s1

subtraction.

Once S and T are built, we need to iterate through the lists. Therefore, the

cost of the following operations should be multiplied for |S||T | =
(︁
(k+ℓ)/2

v/2

)︁2
(q − 1)v

but, since before proceeding with the algorithm we look for collisions, we have to

multiply by the average number of collisions. Since the vectors we compare (eXA
⊤

and s1− eYA
⊤) belong to Fℓ

q and we assume they are uniformly distributed, such a

number is
((k+ℓ)/2

v/2 )
2
(q−1)v

qℓ
. For every collision we compute s2 − (eX + eY )B

⊤ and we

check the weight to be t− v, so we can use early abort technique. For calculating a

single entry v
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁ binary operations are needed, that become

min

{︃
n− k − ℓ, q

q − 1
(t− v + 1)

}︃
v
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁ ,
with the early abort. The minimum is needed for taking into account the possibility

that the limit imposed by early abort could be higher than the size of the vector

(n− k − ℓ).

Finally, the average number of required iterations is the reciprocal of the prob-

ability of choosing the correct error distribution of e, that is

45



Chapter 3 - Security Analysis

(︃
(k + ℓ)/2

v/2

)︃2(︃
n− k − ℓ
t− v

)︃(︃
n

t

)︃−1

.

It is worth noticing that the main terms of the cost of Stern are the exponential

ones, which are

(︃
(k + ℓ)/2

v/2

)︃
(q − 1)v/2 = |S| = |T |,(︁

(k+ℓ)/2
v/2

)︁2
(q − 1)v

qℓ
=
|S| · |T |
qℓ

.

Clearly, the list sizes deeply affect the cost of the algorithm. Therefore, finding

clever ways to build them to get smaller lists could be beneficial. Finally, notice

that also the term Lq

(︁
k+ℓ
2
, v
2

)︁
is exponential, but the main term of the sum is equal

to the list size, which has already been considered.

3.2.4 MMT

In Stern, the solution of the small instance eI′ is obtained by concatenating its two

halves eX and eY . Thus, there is only one tuple of vectors
(︂
eX , eY

)︂
that gives the

solution. Then, we could think of ways of increasing this number of couples. This

would allow us to consider just a portion of the lists so that one representative couple

is left with a high probability. This process could even imply having bigger initial

lists, but if the list reduction is strong enough this could lead to smaller list sizes

than the one used in Stern. This is the basic idea of the so-called representation

technique [22]. In more detail, this technique considers couples of vectors of weight
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v/2 of full length, i.e. k + ℓ, instead of half-length as in Stern. This allows for

multiple representative couples (or representations) to exist. For example, let us

consider q = 2 for the sake of clarity and eI′ =
(︁
10100101

)︁
. With Stern, the only

representation
(︂
eX , eY

)︂
we have is:

S T

eX =
(︁
1010

)︁
eY =

(︁
0101

)︁

On the other hand, with the representation technique, we have r =
(︁

v
v/2

)︁
represen-

tations:

S T

eX =
(︁
10100000

)︁
eY =

(︁
00000101

)︁
eX =

(︁
10000100

)︁
eY =

(︁
00100001

)︁
eX =

(︁
10000001

)︁
eY =

(︁
00100100

)︁
eX =

(︁
00100100

)︁
eY =

(︁
10000001

)︁
eX =

(︁
00100001

)︁
eY =

(︁
10000100

)︁
eX =

(︁
00000101

)︁
eY =

(︁
10100000

)︁

Clearly, this means that now the list sizes are higher, that is
(︁
k+ℓ
v/2

)︁
instead of(︁

(k+ℓ)/2
v/2

)︁
, but as said before we are just considering a portion of the initial lists

S and T , respectively L1 and L2. To do that, we first have to consider that we
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want one representation to survive the reduction with high probability, that is hav-

ing P
{︂(︂

eX , eY

)︂
∈ (L1 × L2)

}︂
= 1

r
for every representation

(︂
eX , eY

)︂
. Indeed, the

probability of having one of the many representations in (L1×L2) would be almost

1 (almost because their probabilities are not statistically independent from one an-

other). Given that the goal is to find a solution for the small instance, a clever way

for reducing the lists could be partially enforcing the parity check equations of the

small instance, that is:

L1 =
{︂(︂

eX , eXA
⊤
)︂
| eX ∈ F(k+ℓ)

2 , wtH(eX) = v/2,
(︁
eXA

⊤)︁
[u]

= t1

}︂
L2 =

{︂(︂
eY , eYA

⊤
)︂
| eY ∈ F(k+ℓ)

2 , wtH(eY ) = v/2,
(︁
eYA

⊤)︁
[u]

= t2

}︂
,

(3.2.9)

where t1 ∈ Fu
2 is a random target vector for L1 and t2 = (s1)[u]−t1 is a target vector

for L2. Notice that for every eX ∈ L1 and eY ∈ L2 the vector eX + eY satisfies

the parity-check equations in the first u positions. The probability of the repre-

sentation eX surviving in L1 is P {eX ∈ L1} = 2−u and if we choose u = ⌈log2(r)⌉

it becomes (approximately) 1
r
. Because of the interdependence between the two

list buildings that enforce (eX + eY )A
⊤ = s1 in the first u positions, the proba-

bility of the representation eY surviving in L2 is P {eY ∈ L2|eX ∈ L1} = 1. Thus,

P
{︂(︂

eX , eY

)︂
∈ (L1 × L2)

}︂
= P {eX ∈ L1}P {eY ∈ L2|eX ∈ L1} = 1

r
as desired.

Moreover, A is random and, consequently, also
(︁
eXA

⊤)︁
[u]

and
(︁
eYA

⊤)︁
[u]

are ran-

dom. Thus, this reduction technique, called Wagner algorithm, leads to lists of

(expected) size

(︃
k + ℓ

v/2

)︃
r−1 =

(︃
k + ℓ

v/2

)︃(︃
v

v/2

)︃−1

which is usually less than the list sizes in Stern. Once L1 and L2 are built, we

have to merge them in order to find a final list L that only contains solutions
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of the complete small instance. To do so, Algorithm 4 is used, where u′ = ℓ,

w = v and t = s1. Obviously, by construction every pair of
(︂
xi,yi

)︂
∈ (L1 × L2)

already satisfies the parity check equations in the first u = ⌈log2(r)⌉ positions, then

the Merge algorithm actually only checks the remaining ℓ − u positions. We call

representation merge the process of joining two lists using representations and we

write that as L = L1 ▷◁[u′] L2, with u
′ being the length of the target vector.

Algorithm 4 Merge algorithm over F2

Input: Lists L1 and L2, 0 < u < ℓ, 0 ≤ w ≤ k + ℓ, A ∈ Fℓ×(k+ℓ)
2 and target

vector t ∈ Fu′
2 .

Output: L = L1 ▷◁[u′] L2, with final weight w and u′ enforced positions.

1: Lexicographically sort L1 and L2 according to (xiA
⊤)[u′] for xi ∈ L1 and

(yiA
⊤)[u′] + t for yi ∈ L2, respectively;

2: for
(︁
xi,yi

)︁
∈ (L1 × L2) with (xiA

⊤)[u′] = (yiA
⊤)[u′] + t do

3: if wtH(xi + yi) = w then L = L ∪ {xi + yi};
4: end if
5: end for
6: Return L.

Lemma 5. Merge algorithm over F2 requires on average

(L1 + L2)u
′(k + ℓ) + L1 log2(L1) + L2 log2(L2) + (k + ℓ)(L1L22

−u′
)

binary operations, where Li = |Li| for i = 1, 2.

Proof. The first term is the cost of (xiA
⊤)[u′] and (yjA

⊤)[u′] computations for lists

L1 and L2, respectively.

The second and third terms are the cost of sorting the two lists.

The last term is the cost of xi+yj computation multiplied by the average number

of collisions L1L22
−u′

.

The final list L doesn’t have to be stored as every vector in it is checked for the

full instance on the fly, so it doesn’t play a role in the cost expression. Its size is
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L = |L| = min

{︃
L1L2

2ℓ−u
,

(︃
k + ℓ

v

)︃
2−ℓ

}︃
= min

⎧⎨⎩
(︁
k+ℓ
v/2

)︁2
2−2u

2ℓ−u
,

(︃
k + ℓ

v

)︃
2−ℓ

⎫⎬⎭ =

= min

{︄(︃
k + ℓ

v/2

)︃2

2−(ℓ+u),

(︃
k + ℓ

v

)︃
2−ℓ

}︄

Still, an open question is left. How do we build the lists L1 and L2? The

naive way would be to enforce the parity check equations on u positions to every

vector with weight v/2, but, clearly, this is not optimal from a cost point of view.

Instead, we could iterate the process we used to build L, thus obtaining a binary

tree structure. By showing the level in the tree with a superscript, let us define

v(0) = v. Equations (3.2.9) become

L(1)
1 =

{︃(︂
e
(1)
1 , e

(1)
1 A⊤

)︂
| e(1)1 ∈ F(k+ℓ)

2 , wtH(e
(1)
1 ) = v(1),

(︂
e
(1)
1 A⊤

)︂
[u(1)]

= t
(1)
1

}︃
L(1)

2 =

{︃(︂
e
(1)
2 , e

(1)
2 A⊤

)︂
| e(1)2 ∈ F(k+ℓ)

2 , wtH(e
(1)
2 ) = v(1),

(︂
e
(1)
2 A⊤

)︂
[u(1)]

= t
(1)
2

}︃
,

where we defined

v(1) = v(0)/2 = v/2

u(1) =
⌈︁
log2

(︁
r(1)
)︁⌉︁

=

⌈︃
log2

(︃(︃
v(0)

v(1)

)︃)︃⌉︃
=

⌈︃
log2

(︃(︃
v

v/2

)︃)︃⌉︃
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and the target vectors as

t
(1)
1

$←− Fu(1)

q

t
(1)
2 = (s1)[u(1)] − t

(1)
1 .

Repeating the process means building L(1)
1 by creating two upper-level lists L(2)

1 and

L(2)
2 :

L(2)
1 =

{︃(︂
e
(2)
1 , e

(2)
1 A⊤

)︂
| e(2)1 ∈ F(k+ℓ)

2 , wtH(e
(2)
1 ) = v(2),

(︂
e
(2)
1 A⊤

)︂
[u(2)]

= t
(2)
1

}︃
L(2)

2 =

{︃(︂
e
(2)
2 , e

(2)
2 A⊤

)︂
| e(2)2 ∈ F(k+ℓ)

2 , wtH(e
(2)
2 ) = v(2),

(︂
e
(2)
2 A⊤

)︂
[u(2)]

= t
(2)
2

}︃
,

where we defined

v(2) = v(1)/2 = v/4

u(2) =
⌈︁
log2

(︁
r(2)
)︁⌉︁

=

⌈︃
log2

(︃(︃
v(1)

v(2)

)︃)︃⌉︃
=

⌈︃
log2

(︃(︃
v/2

v/4

)︃)︃⌉︃

and the target vectors as

t
(2)
1

$←− Fu(2)

q

t
(2)
2 = (t

(1)
1 )[u(2)] − t

(2)
1 .

The new lists are then given as input to the Merge algorithm where u′ = u(1),

w = v(1) and t = t
(1)
1 . The same procedure is applied to L(1)

2 . We build two

upper-level lists L(2)
3 and L(2)

4 :
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L(2)
3 =

{︃(︂
e
(2)
3 , e

(2)
3 A⊤

)︂
| e(2)3 ∈ F(k+ℓ)

2 , wtH(e
(2)
3 ) = v(2),

(︂
e
(2)
3 A⊤

)︂
[u(2)]

= t
(2)
3

}︃
L(2)

4 =

{︃(︂
e
(2)
4 , e

(2)
4 A⊤

)︂
| e(2)4 ∈ F(k+ℓ)

2 , wtH(e
(2)
4 ) = v(2),

(︂
e
(2)
4 A⊤

)︂
[u(2)]

= t
(2)
4

}︃
,

where the target vectors are

t
(2)
3

$←− Fu(2)

q

t
(2)
4 = (s1)[u(2)] − t

(2)
3 .

The new lists are then given as input to the Merge algorithm where u′ = u(1),

w = v(1) and t = t
(1)
2 .

This process can be potentially iterated infinite times, but the problem of build-

ing the top-level lists remains unsolved. Let us assume we stop at the second layer,

we have to find an efficient way of building L(2)
i for i = 1, 2, 3, 4. We can use a par-

tition approach as we did with Stern: for each L(2)
i , we build two upper-level lists,

called base lists as they will be the ones from where the whole tree starts, where each

list contains vectors of half the length and half the weight. Then we merge pairs

of base lists by concatenating their vectors and enforcing the parity check equation

in the first u(2) positions. We refer to this process as concatenation merge and we

write that as L(2)
i = B2i−1 ∪[u(2)] B2i for i = 1, 2, 3, 4. In total we need 8 base lists:

Bi =
{︂
e
(b)
i ∈ Fk+ℓ

2 (Pi) | wtH(e(b)i ) = v(2)/2
}︂
,

for i = 1, ..., 8, where P2i ∪ P2i+1 = {1, ..., k + ℓ} and partitions P2i and P2i+1 have

sizes
⌈︁
k+ℓ
2

⌉︁
and

⌊︁
k+ℓ
2

⌋︁
, respectively. Notice that all even-indexed base lists are the
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same and all odd-indexed base lists are the same, thus we only need two base lists.

This doesn’t mean that all the concatenation merges will have the same output,

as the randomly picked target vectors used in each merge are supposedly always

different. Defining B = |Bi|, L2 = |L(2)
i |, L1 = |L(1)

i | and L = |L|, the list sizes at

every level are:

B =

(︃
(k + ℓ)/2

v(2)/2

)︃
L2 = min

{︃
B2 · 2−u(2)

,

(︃
k + ℓ

v(2)

)︃
2−u(2)

}︃
= B2 · 2−u(2)

L1 = min

{︃
L2
2 · 2

−(u(1)−u(2)),

(︃
k + ℓ

v(1)

)︃
2−u(1)

}︃
L = min

{︃
L2
1 · 2

−(ℓ−u(1)),

(︃
k + ℓ

v(0)

)︃
2−ℓ

}︃

This algorithm has been proposed by May, Meurer and Thomae in [26] and is

known as MMT. To be precise, the proposed algorithm uses only two levels, but

the number of levels is just one of the parameters for which the algorithm can be

optimized. We will not give the cost expression for MMT, because, as we will see,

it will be easily obtainable from the cost of the next algorithm.

3.2.5 BJMM

So far, we have been considering only pairs of vectors with disjointed supports,

representing 1 entries as 1 = 1+0 = 0+1 and 0 entries as 0 = 0+0. In other words,

the zeros are ”less easily” represented than the ones. To increase the number of ways

through which we can get zeros, as we are considering vectors over F2 we could also

represent 0s as 0 = 1 + 1, thus considering pair of vectors whose supports overlap

in some positions. For instance, the vector
(︁
10100101

)︁
from previous examples can
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be represented with

(︁
10111000

)︁
+(︁

00011101
)︁
=(︁

10100101
)︁

where ε = 2 overlaps occur. Clearly, the weight of the vectors at every level grows

to

v(i) =
v(i−1)

2
+ ε(i),

but the number of representations also increases to

r(i) =

(︃
v(i−1)

v(i−1)

2

)︃(︃
k + ℓ− v(i−1)

ε(i)

)︃
.

For optimized parameters, this leads to smaller list sizes, which means a smaller

cost. The algorithm that allows for overlapping supports is known as BJMM [8] and

has been proposed by Becker, Joux, May and Meurer. Clearly, MMT is a special

case of BJMM where ε(i) = 0 in all levels. The authors proposed a 3-level tree as

no improvements were obtained by using more levels. In Fig.3.1 the tree used in

BJMM is illustrated.

Algorithm 5 shows the complete BJMM algorithm for a generic information set.
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ℓ

▷◁[ℓ] s1

L
Level 0

v(0) = v

u(1)u(1)

▷◁[u(1)]▷◁[u(1)] t
(1)
2t

(1)
1

L(1)1 L(1)2

Level 1

v(1) = v(0)

2 + ε(1)

u(2)u(2)u(2)u(2)

∪[u(2)]∪[u(2)] ∪[u(2)]∪[u(2)] t
(2)
1 t

(2)
2 t

(2)
3 t

(2)
4

L(2)1 L(2)2 L(2)3 L(2)4

Level 2

v(2) = v(1)

2 + ε(2)

Base lists Bi =
{︂
e
(b)
i ∈ F(k+ℓ)/2

2 | wtH(e
(b)
i ) = v(2)/2

}︂
, i = 1, ..., 8

Level 3
v(2)

2

Figure 3.1: Illustration of the BJMM tree.

Theorem 4. BJMM algorithm over F2 requires on average

(︃
n

t

)︃(︃
n− k − ℓ
t− v

)︃−1(︃
k + ℓ

v

)︃−1

·
[︂
(n− k)2(n+ 1)

+ 4
(︂
2Bu(2)(k + ℓ) + 2B log2(B) + (k + ℓ)B22−u(2)

)︂
+ 2

(︂
2L2u

(1)(k + ℓ) + 2L2 log2(L2) + (k + ℓ)L2
22

−(u(1)−u(2))
)︂

+
(︂
2L1ℓ(k + ℓ) + 2L1 log2(L1) + (k + ℓ)L2

12
−(ℓ−u(1))

)︂
+

(︃
k + ℓ

v

)︃
2−ℓ min {n− k − ℓ, 2(t− v + 1)} v

]︂
binary operations.

Proof. The multiplicative term is, as usual, the average number of required itera-

tions.

The first term in the brackets is the Partial Gaussian Elimination cost.

The second, third and fourth terms are the cost of merges at the various levels,

as shown in Lemma 5. Notice that at the second and third merge, the last sum term
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takes into account that the lists we are merging already satisfy the parity check

equations over the first u(2) and u(1) positions, respectively.

The last term is the cost of s2 − e1B
⊤ computation using the early abort tech-

nique, 2(t− v+1), multiplied by the average number of collisions in the last merge,(︁
k+ℓ
v

)︁
2−ℓ and by the cost of one entry of e1B

⊤ product, v.

BJMM algorithm can be generalized to the non-binary finite fields (Fq, q > 2) .

In this case, every element β of the field can be obtained as β = α+(β−α),∀α ∈ Fq,

thus the number of representations at every level generally grows. For example, let

us consider the last merge (for the other merges the same observations apply). In

Fig.3.2a we assume that all the ε(1) cancellations occur outside of the support of e.

Then, once we chose an appropriate e
(1)
1 , the elements of e

(1)
2 corresponding to the

support of e are fixed, thus we have
(︁

v(0)

v(0)/2

)︁
ways of representing the support of e.

The elements outside the support that must cancel out can be any element in Fq,

thus we have
(︁
k+l−v(0)

ε(1)

)︁
(q − 1)ε

(1)
representations of the zeros of e. The number of

representations of e with the chosen assumption is

(︃
v(0)

v(0)

2

)︃(︃
k + l − v(0)

ε(1)

)︃
(q − 1)ε

(1)

.

Clearly, this is not the total number of representations. Considering Fig.3.2b,

we can also have overlaps within the support of e. These overlaps must not result

in cancellations anymore, but they have to result in the correct entry of e. Thus,

considering also these cases, the total number of representations is

r(1) =

min(v(0)/2,ε(1))∑︂
i=0

(︃
v(0) − 2i
v(0)

2
− i

)︃
(q − 2)2i

(︃
k + ℓ− v(0)

ε(1) − i

)︃
(q − 1)ε

(1)−i.
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Algorithm 5 BJMM algorithm over F2

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , 0 < t ≤ n, 0 ≤ ℓ < n− k,
max{0, k + ℓ+ t− n} ≤ v ≤ min{k + ℓ, t},
0 ≤ ε(1) ≤ k + ℓ− v and 0 ≤ ε(2) ≤ k + ℓ− v/2− ε(1).

Output: e ∈ Fn
2 with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k and a zero window Z ⊂ IC of
size ℓ and define I ′ = I ∪ Z and J = (I ∪ Z)C ;

2: Compute U ∈ F(n−k)×(n−k)
q such as

(UH)I′ =

(︃
A
B

)︃
, and (UH)J =

(︃
0l×(n−k−ℓ)

Id(n−k−ℓ)

)︃
,

where A ∈ Fℓ×(k+ℓ)
q and B ∈ F(n−k−ℓ)×(k+ℓ)

q ;
3: Compute sU⊤ =

(︁
s1 s2

)︁
, where s1 ∈ Fℓ

q and s2 ∈ Fn−k−ℓ
q ;

4: Choose two partitions P1, P2 of {1, ..., k+ℓ} of sizes
⌈︁
k+l
2

⌉︁
and

⌊︁
k+l
2

⌋︁
, respectively;

5: Define

Bi =
{︁
x ∈ Fk+ℓ

2 (Pi)|wtH(x) = v(2)/2
}︁

per i ∈ {1, 2};
6: Choose t

(1)
1

$←− Fu(1)

2 , define t
(1)
2 = (s1)[u(1)] − t

(1)
1 ;

7: Choose t
(2)
1 , t

(2)
3

$←− Fu(2)

2 , define t
(2)
2 = (t

(1)
1 )[u(2)] − t

(2)
1 and t

(2)
4 = (s1)[u(2)] − t

(2)
3 ;

8: for i ∈ {1, ..., 4} do
9: Compute L(2)

i = B1 ▷◁[u(2)] B2 using Merge algorithm to get weight v(2) and

target vectors t
(2)
i ;

10: end for
11: for i ∈ {1, 2} do
12: Compute L(1)

i = L(2)
2i−1 ▷◁[u(1)] L

(2)
2i using Merge algorithm to get weight v(1)

and target vectors t
(1)
i ;

13: end for
14: Compute L = L(1)

1 ▷◁[ℓ] L(1)
2 using Merge algorithm to get weight v and target

vector s1;
15: for e1 ∈ L do
16: if wtH(s2 − e1B

⊤) = t− v then
17: Return e =

(︁
e1 e2

)︁
, with e2 = s2 − e1B

⊤;
18: end if
19: end for
20: Restart from Step 1 by choosing other I and Z.
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e

βα=

e
(1)
2

γβ+

e
(1)
1

γα

(a) Overlap only outside of the support of e

e

βα α1 β1=

e
(1)
2

γβ β1 − γ2γ1+

e
(1)
1

γαα1 − γ1 γ2

(b) Overlap also in the support of e

Figure 3.2: Possible cases for representations of e

Being the u(1) and u(2) parameters the logarithm of the number of representa-

tions, the reduction of the list sizes at every merge is bigger than the binary case.

Although, this does not lead in general to smaller lists, because the base lists are

bigger than the ones in the binary case. List sizes in non-binary BJMM are:

B =

(︃
(k + ℓ)/2

v(2)/2

)︃
(q − 1)v

(2)/2

L2 = min

{︃
B2 · q−u(2)

,

(︃
k + ℓ

v(2)

)︃
q−u(2)

(q − 1)v
(2)

}︃
= B2 · q−u(2)

L1 = min

{︃
L2
2 · q

−(u(1)−u(2)),

(︃
k + ℓ

v(1)

)︃
q−u(1)

(q − 1)v
(1)

}︃
L = min

{︃
L2
1 · q

−(ℓ−u(1)),

(︃
k + ℓ

v(0)

)︃
q−ℓ(q − 1)v

(0)

}︃
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Lemma 6. Merge algorithm over Fq requires on average

(L1 + L2)u
′(k + ℓ)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+
+ L1 log(L1) + L2 log2(L2) + (k + ℓ)(L1L2q

−u′
) ⌈log2(q)⌉

binary operations, where Li = |Li| for i = 1, 2.

Theorem 5. BJMM algorithm over Fq requires on average

(︃
n

t

)︃(︃
n− k − ℓ
t− v

)︃−1(︃
k + ℓ

v

)︃−1

·
[︂
(n− k)2(n+ 1)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+
+ 4

(︂
2Bu(2)(k + ℓ)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+ 2B log2(B) + (k + ℓ)B2q−u(2) ⌈log2(q)⌉
)︂
+

+ 2
(︂
2L2u

(1)(k + ℓ)
(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+ 2L2 log2(L2) + (k + ℓ)L2
2q

−(u(1)−u(2)) ⌈log2(q)⌉
)︂
+

+
(︂
2L1ℓ(k + ℓ)

(︁
⌈log2(q)⌉+ ⌈log2(q)⌉

2)︁+ 2L1 log2(L1) + (k + ℓ)L2
1q

−(ℓ−u(1)) ⌈log2(q)⌉
)︂
+

+

(︃
k + ℓ

v

)︃
(q − 1)vq−ℓ min

{︃
n− k − ℓ, q

q − 1
(t− v + 1)

}︃
v ⌈log2(q)⌉

2
]︂

binary operations.

3.2.6 Algorithm comparison

As already said, the security level of an SDP-based scheme depends on the best,

i.e. less costly, decoding algorithm. However, the cost of an algorithm is heavily

determined by the parameters chosen for the scheme. For example, the cost in

binary operations of Prange’s algorithm depends on parameters n, k, t and q, so we

can refer to its cost as c(n, k, t, q). The parameters k and t are implicitly functions
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of n, so let us define their relative values as

R = lim
n→∞

k(n)

n

T = lim
n→∞

t(n)

n
,

which are obviously bounded between 0 and 1. For large lengths n the cost can be

approximated by a base-two exponential:

c(n, k, t, q) = lim
n→∞

2nC(R,T,q)+o(n).

We refer to c(n, k, t, q) as finite regime cost and to C(R, T, q) as asymptotic cost.

The latter is obtained from the finite regime cost as

C(R, T, q) = lim
n→∞

1

n
log2(c(n, k, t, q)).

This cost still depends on the relative parameters, but as they are relative values

between 0 and 1 they allow us to compare the asymptotic costs of different algorithms

regardless of the actual code length n. In order to compare the asymptotic costs of

two or more algorithms, one of the relative parameters, usually R or T , is taken as

the independent variable. Then, for every possible value of this variable, the rest of

the parameters are chosen in order to minimize the asymptotic cost. In this way,

C(R, T, q) becomes a one-variable function, and the comparison among the costs of

different algorithms is possible for every value of the chosen independent variable.

In the next theorems, asymptotic costs of previously shown algorithms are given.

Before doing that, we define some useful notation:
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Q = log2(q) R = lim
n→∞

k(n)

n
T = lim

n→∞

t(n)

n

L = lim
n→∞

ℓ(n)

n
E(i) = lim

n→∞

ε(i)(n)

n
V = lim

n→∞

v(n)

n

V (i) = lim
n→∞

v(i)(n)

n
U (i) = Q lim

n→∞

u(i)(n)

n
= lim

n→∞

1

n
log2(r

(i))

Theorem 6. The asymptotic cost of Prange’s algorithm for SDP is

C(R, T, q) = h2(T )− (1−R)h2
(︃

T

1−R

)︃
.

Theorem 7. The asymptotic cost of Lee-Brickell’s algorithm for SDP is

C(R, T, V, q) = h2(T )− (1−R)h2
(︃
T − V
1−R

)︃
+ V ·Q.

Theorem 8. The asymptotic cost of Stern’s algorithm for SDP is

C(R, T, V, L, q) = N(R, T, V, L, q) + F (R, T, V, L, q),

where N(R, T, V, L, q) is the asymptotic number of iterations, which is given by

N(R, T, V, L, q) = h2(T )− (1−R− L)h2
(︃

T − V
1−R− L

)︃
− (R + L)h2

(︃
V

R + L

)︃
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and F (R, T, V, L, q) denotes the asymptotic cost of one iteration, which is given by

max {Σ, 2Σ− L ·Q} .

The asymptotic Stern’s list size is

Σ = lim
n→∞

1

n
log2 |S| =

R + L

2
h2

(︃
V

R + L

)︃
+
V

2
Q.

Theorem 9. The asymptotic cost of BJMM algorithm for SDP over F2 is

C(R, T, V, L) = N(R, T, V, L) + F (R, T, V, L),

where N(R, T, V, L) denotes the asymptotic number of iterations, which is given by

h2(T )− (1−R− L)h2
(︃

T − V
1−R− L

)︃
− (R + L)h2

(︃
V

R + L

)︃

and F (R, T, V, L) denotes the asymptotic cost of one iteration, which is given by

max
{︁
ΛB, 2ΛB − U (2), 2Λ2 − (U (1) − U (2)), 2Λ1 − (L− U (1))

}︁
.

The asymptotic BJMM list sizes are

ΛB = lim
n→∞

1

n
log2 |B| =

R + L

2
h2

(︃
V (2)

R + L

)︃
Λ2 = lim

n→∞

1

n
log2 |L2| = 2ΛB − U (2)

Λ1 = lim
n→∞

1

n
log2 |L1| = (R + L)h2

(︃
V (1)

R + L

)︃
− U (1)
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where, for i ∈ {1, 2} and V (0) = V ,

U (i) = V (i−1) +
(︁
R + L− V (i−1)

)︁
h2

(︃
E(i)

R + L− V (i−1)

)︃

and relative weights are

V (i) =
V (i−1)

2
+ E(i).

Notice that, for the sake of clarity, to compute Λ1, only the second term of

the minimum in L1 has been considered. This represents an upper bound of L1,

but for high values of n it is likely to be a very close approximation. Moreover,

the asymptotic cost for MMT can be easily obtained from Theorem 9 by choosing

E(1) = E(2) = 0.

Theorem 10. The asymptotic cost of BJMM algorithm for SDP over Fq, q > 2 is

C(R, T, V, L, q) = N(R, T, V, L, q) + F (R, T, V, L, q),

where N(R, T, V, L, q) denotes the asymptotic number of iterations, which is given

by

h2(T )− (1−R− L)h2
(︃

T − V
1−R− L

)︃
− (R + L)h2

(︃
V

R + L

)︃
,

and F (R, T, V, L, q) denotes the asymptotic cost of one iteration, which is given by

max
{︁
ΛB, 2ΛB − U (2), 2Λ2 − (U (1) − U (2)), 2Λ1 − (Q · L− U (1))

}︁
.
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The asymptotic BJMM list sizes are

ΛB = lim
n→∞

1

n
log2 |B| =

R + L

2
h2

(︃
V (2)

R + L

)︃
+Q

V (2)

2

Λ2 = lim
n→∞

1

n
log2 |L2| = 2ΛB − U (2)

Λ1 = lim
n→∞

1

n
log2 |L1| = (R + L)h2

(︃
V (1)

R + L

)︃
− (U (1) −Q · V (1))

where, for i ∈ {1, 2} and V (0) = V ,

U (i) =max
J(i)

{︃
Q
(︁
J (i) + E(i)

)︁
+ 2V

(i−1)−2J(i)

+ (R + L− V (i−1))h2

(︃
E(i) − J (i)

R + L− V (i−1)

)︃}︃
,

J (i) ∈
{︃
lim
n→∞

j

n
| j = 0, . . . ,min(v(i−1)/2, ε(i))

}︃

and relative weights are

V (i) =
V (i−1)

2
+ E(i).

r(i) ≃ q
v(i−1)

2
+ε(i)

(︃
k + ℓ− v(i−1)

ε(i) − v(i−1)/2

)︃
In Figure 3.3, the presented algorithms are compared with a field size of q = 2.

Their costs are evaluated over different rates. The code is supposed to be random,

so we can assume full-distance decoding, i.e. T = δ where δ is obtained from the

GV bound with equality (1.0.7).

As expected, Prange is the worst algorithm. Notice that asymptotically there’s

no difference between Prange and Lee-Brickell, while every other algorithm exceeds

Prange’s performance. In particular, we notice that the use of the representation

technique brings an improvement over Stern, as MMT outperforms it. Moreover,

allowing for overlaps in the representation technique is convenient in F2, as BJMM
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Figure 3.3: Asymptotic costs of ISD algorithms for SDP over F2.

costs less than MMT. However, in every case, the maximum cost is obtained for

R ≃ 0.45.

The same analysis can be carried out for q > 2. Clearly, the asymptotic cost

of each algorithm is higher than the binary case. While Stern still outperforms

Prange, BJMM is not better than Stern anymore. The problem lies in the fact that

increasing q leads to more representations, but, as a tradeoff, the number of vectors

with a certain weight grows as well. While these two aspects play opposite roles in

the size of the lists, the former wins. This leads to bigger list sizes and, therefore,

bigger costs.
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Restricted SDP

Let us consider some subset E of F⋆
q, denote by E0 = E ∪ {0} and by

SE
t := {x ∈ En

0 | wt(x) = t}

the Hamming sphere with radius t and restriction E. Clearly, for E of size z, we

have | SE
t |=

(︁
n
t

)︁
zt. The Restricted Syndrome Decoding Problem (R-SDP), first

introduced in [3], reads as follows.

Problem 3. Restricted Syndrome Decoding Problem (R-SDP)

Let Fq be a finite field of size q and k ≤ n be positive integers. Given H ∈ F(n−k)×n
q ,

s ∈ F(n−k)
q and t ∈ N, is there a vector e ∈ SE

t such that eH⊤ = s?

When E = F∗
q, the R-SDP corresponds to the canonical SDP. Consequently, it

is not surprising that R-SDP is NP-complete for any choice of E. The proof is essen-

tially the same as in [3], where the authors focus on the case E = {±x1,±x2, · · · ,±xa}.

From now on, we will consider the case

E =
{︁
gj (mod q) | j ∈ {0, 1, · · · , z − 1}

}︁
,
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where g ∈ F∗
q has multiplicative order z = ord(g) < q − 1. In other words, we

choose E as the cyclic subgroup of F∗
q which is generated by g and, to have E ̸= F∗

q,

we require that g is not primitive. This choice is made because the result of the

multiplication of two restricted elements lies in E and it can be performed as a sum

of exponents.

Analogously as we saw for SDP, we always consider that the R-SDP instance

is chosen uniformly at random. We expect to have on average (at most) a unique

solution if t is such that (︃
n

t

)︃
ztqk−n ≤ 1. (4.0.1)

Considering this asymptotically, we have for T = t/n the condition

2n(H(T )+T log2(z)−(1−R) log2(q)) ≤ 1,

which translates to

T log2(z) +H(T )− (1−R) log2(q) ≤ 0.

Let T ∗ be the maximum value of T for which a random instance of R-SDP is expected

to have a unique solution, that is

T ∗ = max {T ∈ [0; 1] | T log2(z) +H(T )− (1−R) log2(q) ≤ 0} . (4.0.2)

Comparing this to the condition in (3.0.1), we can see that with the R-SDP, we

are allowed to choose a much larger weight t and still guarantee the uniqueness of

the solution. Notice that if log2(z) ≤ (1 − R) log2(q), we even have uniqueness for

full-weight vectors. This case is of particular relevance, because as we will see, using

full-weight solutions for R-SDP leads to smaller signature sizes with the proposed
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schemes. Indeed, in this setting permutation vectors are not needed for monomial

transformations. Moreover, ISD complexity C grows with the weight, therefore we

can obtain the same cost 2C·n even with smaller code sizes, thus saving in signature

sizes.

4.1 ISD algorithms for R-SDP

We will now show the ISD algorithms that can be used in the restricted setting. As

we previously saw for ISD over Hamming metric, the most promising ones are Stern

and BJMM (over F2). For this reason, the study of new solvers for R-SDP will only

take into account these two approaches.

To compare the computational complexity of R-SDP with classical SDP, we

provide an adaption of the Stern algorithm, which works for any choice for E. As

we will see, there can be improvements, which depend specifically on the choice and

structure of E. Stern algorithm for R-SDP is basically the same as the one already

presented for SDP, with two significant differences:

• The two lists now contain the vectors of weight v/2 with restricted entries:

S =
{︂(︂

eX , eXA
⊤
)︂
| eX ∈ E(k+ℓ)

0 (X), wtH(eX) = v/2
}︂
,

T =
{︂(︂

eY , s1 − eYA
⊤
)︂
| eY ∈ E(k+ℓ)

0 (Y ), wtH(eY ) = v/2
}︂
,

where X and Y are partition subsets of I ′ = I ∪ Z;

• After solving the small instance, we have to check that the rest of the solution

vector has restricted entries, that is

s2 − (eX + eY )B
⊤ ∈ En−k−l

0 .
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For the sake of completeness, Stern’s algorithm for R-SDP is shown in Algorithm 6.

Algorithm 6 Stern’s algorithm over Fq for R-SDP

Input: H ∈ F(n−k)×n
q , s ∈ F(n−k)

q , 0 < t ≤ n, 0 ≤ ℓ < n− k and

max{0, k + ℓ+ t− n} ≤ v ≤ min{k + ℓ, t}.
Output: e ∈ En

0 with eH⊤ = s and wtH(e) = t.

1: Choose an information set I ⊂ {1, ..., n} of size k and a zero window Z ⊂ IC of

size ℓ and define I ′ = I ∪ Z and J = (I ∪ Z)C ;

2: Partition I ′ in X of size
⌈︁
k+ℓ
2

⌉︁
and Y of size

⌊︁
k+ℓ
2

⌋︁
;

3: Compute U ∈ F(n−k)×(n−k)
q such as

(UH)I′ =

⎛⎝A

B

⎞⎠ , and (UH)J =

⎛⎝0l×(n−k−ℓ)

Id(n−k−ℓ)

⎞⎠ ,

where A ∈ Fℓ×(k+ℓ)
q and B ∈ F(n−k−ℓ)×(k+ℓ)

q ;

4: Compute sU⊤ =
(︂
s1 s2

)︂
, where s1 ∈ Fℓ

q and s2 ∈ F(n−k−ℓ)
q ;

5: Build the list S = {
(︂
eX , eXA

⊤
)︂
| eX ∈ E(k+ℓ)

0 (X), wtH(eX) = ⌈v/2⌉};

6: Build the list T = {
(︂
eY , s1 − eYA

⊤
)︂
| eY ∈ E(k+ℓ)

0 (Y ), wtH(eY ) = ⌊v/2⌋};

7: for
(︂
eX , a

)︂
∈ S do

8: for
(︂
eY , a

)︂
∈ T do

9: Compute ˜︁eJ = s2 − (eX + eY )B
⊤;

10: if wtH(˜︁eJ) = t− v and ˜︁eJ ∈ En−k−l
0 then

11: Return e =
(︂
eI′ eJ

)︂
, with eI′ = eX + eY and eJ = ˜︁eJ ;

12: end if

13: end for

14: end for

15: Restart from Step 1 by choosing other I and Z.

Since the size of the two lists is now
(︁
(k+ℓ)/2

v/2

)︁
zv/2 and the average number of
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collisions is
(︁
(k+ℓ)/2

v/2

)︁2
zvqℓ, the asymptotic cost of Stern for R-SDP is the one stated

in Theorem 11, where Z = log2(z).

Theorem 11. The asymptotic cost of Stern’s algorithm for R-SDP is

C(R, T, V, L, q, z) = N(R, T, V, L, q) + max {Σ, 2Σ− L ·Q} ,

where

N(R, T, V, L, q) = h2(T )− (1−R− L)h2
(︃

T − V
1−R− L

)︃
− (R + L)h2

(︃
V

R + L

)︃

is the asymptotic number of iterations and

Σ = lim
n→∞

1

n
log2 |S| = (R + L)h2

(︃
V

R + L

)︃
+
V

2
Z

is the asymptotic Stern’s list size.

In Figure 4.1 we give the cost of Stern’s algorithm for random R-SDP instances,

where we choose T = T ∗, i.e., the maximal weight that guarantees uniqueness. Note

that the cost at the point z = q − 1 corresponds to the cost of Stern on a random

SDP instance and thus, we can see that R-SDP with z < q − 1 has a much larger

cost than the SDP with the same parameters q, n, R.

4.1.1 Representation technique for R-SDP

As we saw in the Hamming metric, the BJMM algorithm is very efficient over F2,

but it is not easily generalizable over bigger field sizes. The challenge of using the

representation technique for bigger q lies in picking the entries of vectors to be

merged from a convenient search space. Convenient in the sense that it has to be
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Figure 4.1: Cost of Stern’s algorithm for random R-SDP instances with q = 251,
n = 256 and several code rate values.

large enough to gain representations, but small enough to have reasonable list sizes.

For the Hamming metric, when the solution e lives in the whole Fn
q , it is difficult

to properly design such search space, because we need every possible entry from

Fq. However, in the restricted setting the solution lives in En
0 , so the entries of the

vectors resulting from merging are limited to a certain subset E of Fq. Therefore,

we could try to take a smaller search space than Fq, whose elements are chosen in

a smart way. For example, a possible search space could be X = E. However, if E

does not have much additive structure, i.e. there are not many elements y, y′ ∈ E

such that y+y′ ∈ E, the only ways of representing a non-zero entry x ∈ E will likely

be x = x + 0 = 0 + x. With this choice, the number of representations would not

be very big.

To get some fixed entry x ∈ E as x = y + y′, we could choose y ∈ E and

y′ ∈ D := {a− b | a, b ∈ E} \ {±E0}. If E has already a lot of additive structure, e.g.

when z is even, then D becomes small. Thus, we only need a few additional elements
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Figure 4.2: Counting the number of representations on level i.

in the search space to gain many representations for elements in E. We propose the

following search space X = E ∪D ∪−E. On each level i, we are considering vectors

x living in X0, with v
(i)
e entries in E, v(i)d entries in D and v

(i)
m entries in −E. From

now on, we will refer to an a-level BJMM, i.e. 1 concatenation merge and a − 1

representation merges, as BJMM(a).

To count the number of representations we use Figure 4.2. Note that, for the

sake of clarity, some of the following notation letters might be used differently from

the exposition of BJMM in Section 3.2. The representation merge at the i-th layer

joins two vectors e
(i+1)
1 and e

(i+1)
2 with weight v(i+1) from the higher layer into a

vector e(i) with weight v(i). We denote by ε(i+1) the number of entries which are

obtained through a E+E representation. That is, for a fixed entry x of e(i), we need

to compute the number of possible y ∈ E that can reach x through addition with

E :

ne(q, z, x) := |{y ∈ E | ∃y′ ∈ E : y + y′ = x ∈ E}| .

We denote by δ(i+1) the number of entries of e(i) obtained through representations

E+D. Hence, for a fixed entry x of e(i), we need to compute the number of possible

y ∈ E that can reach x through addition with D :

nd(q, z, x) := |{y ∈ E | ∃y′ ∈ D : y + y′ = x ∈ E}| .

72



Chapter 4 - Restricted SDP

Since ne(q, z, x) and nd(q, z, x) are independent of x, we just write ne(q, z), nd(q, z).

Finally, outside of the support of e(i), we allow for o(i+1) representations of 0 as

0 = y+(−y) = (−y)+ y, for y ∈ E. We could also allow for cancellations via D, but

as these entries are already only a few, they will be optimized to zero.

The vectors e
(i+1)
i have v

(i+1)
e = v

(i)
e /2 + ε(i+1) + o(i+1) entries in E, v(i+1)

d =

v
(i)
d /2 + δ(i+1) in D and v

(i+1)
m = v

(i)
m /2 + o(i+1) in −E. Hence, we get the number of

representations

r(i) =

(︃
v
(i−1)
e

v
(i−1)
e /2

)︃(︄(︃
v
(i−1)
e /2

δ(i), ε(i)

)︃
nd(q, z)

δ(i)ne(q, z)
ε(i)

)︄2

·
(︃
v
(i−1)
d

v
(i−1)
d /2

)︃(︃
v
(i−1)
m

v
(i−1)
m /2

)︃(︃
k + ℓ− v(i−1)

e − v(i−1)
d − v(i−1)

m

o(i), o(i)

)︃
z2o

(i)

. (4.1.1)

The amount of entries where the parity-check equations are enforced is then u(i) =⌈︁
logq r

(i)
⌉︁
.

After each merge, the obtained lists are filtered to get rid of vectors that are

not well-formed. After the filtering, we are considering vectors in S(i) that have v
(i)
e

entries in E, v(i)d entries in D and v
(i)
m entries in −E. Hence,

⃓⃓
S(i)
⃓⃓
=

(︃
k + ℓ

v
(i)
e , v

(i)
m , v

(i)
d

)︃
zv

(i)
e +v

(i)
m |D|v

(i)
d .
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To give the asymptotic cost, we need the following notation:

Q = log2(q) V (i)
e = lim

n→∞
v
(i)
e (n)
n

Ne = lim
n→∞

1
n
log2(ne(q, z))

Z = log2(z) V (i)
m = lim

n→∞
v
(i)
m (n)
n

Nd = lim
n→∞

1
n
log2(nd(q, z))

L = lim
n→∞

ℓ(n)
n

V
(i)
d = lim

n→∞

v
(i)
d (n)

n
Σ(i) = lim

n→∞
1
n
log2

(︁⃓⃓
S(i)
⃓⃓)︁

U (i) = Q lim
n→∞

u(i)(n)
n

∆ = lim
n→∞

1
n
log2(|D|)

D(i) = lim
n→∞

δ(i)(n)
n

E(i) = lim
n→∞

ε(i)(n)
n

O(i) = lim
n→∞

o(i)(n)
n

Theorem 12. The asymptotic cost of the presented BJMM(3) algorithm for R-SDP

is

C(R, T, V, L, q, z) = N(R, T, V, L, q, z) + F (R, T, V, L, q, z)

where N(R, T, V, L, q, z) denotes the asymptotic number of iterations, which is given

by

h2(T )− (R + L)h2
(︁

V
R+L

)︁
− (1−R− L)h2

(︁
T−V

1−R−L

)︁
and F (R, T, V, L, q, z) denotes the asymptotic cost of one iteration, which is given

by

max
{︁
Σ(2)/2,Σ(2) − U (2), 2Σ(2) − U (2) − U (1), 2Σ(1) − U (1) − LQ

}︁
,
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where for i ∈ {1, 2} and V (0)
e = V , V

(0)
d = V

(0)
m = 0 we set

U (i) = R + L−R(i−1) +R(i−1)h2

(︂
2O(i)

R(i−1)

)︂
+O(i)

+ V (i−1)
e g2

(︂
2E(i)

V
(i−1)
e

, 2D(i)

V
(i−1)
e

)︂
+ 2

(︁
D(i)Nd + E(i)Ne +O(i)Z

)︁
,

Σ(i) = (R + L)g3

(︃
V

(i)
e

R+L
, V

(i)
m

R+L
,
V

(i)
d

R+L

)︃
+
(︁
V (i)
e + V (i)

m

)︁
Z + V

(i)
d ∆,

R(i) = R + L− V (i)
e − V

(i)
d − V

(i)
m ,

V (i)
e = V (i−1)

e /2 + E(i) +O(i), V
(i)
d = V

(i−1)
d /2 +D(i), V (i)

m = V (i−1)
m /2 +O(i).

For large weight vectors, it makes sense to first shift the considered instance.

That is for a fixed c ∈ Fq, we shift the whole error set E to ˜︁E = {a+ c | a ∈ E}. Let

us denote by c the all c vector. Then, such shifting can easily be done by computing

the syndrome sc of c and adding it to the original syndrome s: (e+ c)H⊤ = s+ sc.

By choosing c ∈ −E, one can set the error at all positions with value c to zero.

Hence, one obtains ˜︁E = {a + c | a ∈ E} \ {0} of size ˜︁z = z − 1. With this error set

of reduced size, one can proceed as before. That is we again use the sets

˜︁D =
{︂
a− b | a, b ∈ ˜︁E}︂ \ {︂±˜︁E0

}︂
and − ˜︁E =

{︂
−e | e ∈ ˜︁E}︂ \ ˜︁E.

Note that for these sets, ne(q, z, x) and nd(q, z, x) are indeed dependent on the

element x. In order to avoid a more complicated analysis, we resolve this issue by

defining the average number of representations for an element in ˜︁E as

˜︁ne(q, z, c) =
1˜︁z∑︂

x∈˜︁E
ne(q, z, x) and ˜︁nd(q, z, c) =

1˜︁z∑︂
x∈˜︁E

nd(q, z, x),

which depends not on the particular element but only on the chosen shift. Hence,

˜︁ne and ˜︁nd can be directly used in Theorem 12.
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Figure 4.3: Comparison of the asymptotic complexity for the restricted Stern algo-
rithm and the restricted BJMM(3) algorithm using q = 157 and R = 0.45.

In Figure 4.3, we compare the complexity coefficients of different information set

decoders as a function of the relative error weight T . The considered code rate is

R = 0.45. The field size q = 157 allows for z = 12 and z = 13, which correspond

to the solid and dashed lines, respectively. While the performance of Stern depends

only on the size of E, the performance of the BJMM algorithms depends on its

structure. For z = 12, E possesses a lot of additive structure, which is why BJMM(3)

can improve over Stern. In particular, E = −E and ne(157, 12) = 2 allow for an

increased number of representations. This is not the case for z = 13, where we only

improve over Stern in the low error weight regime. Finally, we observe that shifting

has to be taken into account for high error weights, but becomes quickly impractical

as the weight decreases. Considering these observations, we avoid choosing instances

for which the BJMM algorithm can achieve a significantly lower complexity than

restricted Stern. However, it can be seen that in every case higher weights lead to

higher complexities. For Stern, the maximum is not exactly at T = 1, but still it

occurs at relatively high weights.
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4.1.2 Exploiting the additive structure for small z

As already said before, the additive structure of E facilitates the use of the rep-

resentation technique. In particular, when z is even, the restricted set has more

additive structure. This happens because for every element of E, also its opposite

is contained in E, as demonstrated in Lemma 7.

Lemma 7. Let E = {gj | j ∈ {0, 1, · · · , z − 1}} ∈ Fq be the restricted set, g ∈ F∗
q

not primitive of multiplicative order z. If z is even, then the restricted set can be

expressed as

E =
{︂
±gj | j ∈

{︂
0, 1, · · · , z

2
− 1
}︂}︂

.

Proof. To prove −gj is contained in E it is necessary to prove that −1 is, as the

product of any pair of elements in the restricted set also lives in E.

We need to show that there exists an integer i such that gi = −1. By definition

of multiplicative order, it holds that gz = 1 and gi ̸= 1 for any i < z.

Let us define the element a = gz/2. Notice that z/2 is an integer, as z is even.

By squaring a we get

a2 =
(︁
gz/2

)︁2
= gz = 1.

This means that a is a root of the polynomial x2−1 = (x+1)(x−1), whose solutions

are x = ±1. Since z/2 < z, a cannot be 1. Hence, a = gz/2 = −1.

Therefore, if the order z of the restricted set is even, the previous presentation

of ISD attacks for R-SDP simplifies, as it holds that −E = E.

In the following pages, we will focus on cases with small and even values of

z, such as 2, 4 and 6. We will explicitly show the additive structure and discuss

the performances of the proposed algorithms. For larger choices of z, the additive

structure of E has to be assessed, which, as we will see, depends on the factorization
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of xz−1 in Fq. As such a factorization cannot be given in general, the actual additive

structure for any proposed z should be checked independently.

Case z = 2

In this case, we have E = {±1} and D = {±2}. Figure 4.4 shows the additive

structure of the restricted set for z = 2.

• Elements in E
• Elements in D

•
0

•
−1

•
1

•
−2

•
2

Figure 4.4: Additive structure of E for z = 2.

In order to construct the intermediate lists using representation merge, we have

the usual v
(i)
e entries in {±1} and we also require v

(i)
d to denote the number of

±2’s on level i. Then, the number of well-formed vectors on level i is given by(︁ k+l

v
(i)
e ,v

(i)
d

)︁
2v

(i)
e +v

(i)
d .

The number of representations of e(i) = e
(i+1)
1 +e

(i+1)
2 on level i is counted as per

Figure 4.5. For this, it is enough to count the number of e
(i+1)
1 . There are

(︁ v
(i)
e

v
(i)
e /2

)︁
ways of splitting the support of the elements in E, without choosing the entries. Out

of the chosen v
(i)
e /2 we chose δ(i+1) positions, that overlap with ±2’s in e

(i+1)
2 and

also in the v
(i)
e /2 non-chosen positions we choose δ(i+1) many positions to be ±2.

e(i)

V
(i)
e V

(i)
d

e
(i+1)
2

+

=

e
(i+1)
1

V
(i)
e /2 D(i+1) O(i+1)G(i+1)

Figure 4.5: Counting the number of representations for level i.
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For this we have
(︁v(i)e /2

δ(i+1)

)︁2
possibilities. Out of the v

(i)
d many ±2’s on level i, γ(i+1) are

constructed as ±(1 + 1). Notice that this way of obtaining elements of D was not

used for the general case, but can be used when z is even because of Lemma 7. The

remaining (v
(i)
d − γ(i+1)) many ±2’s are obtained by support splitting. This results

in
(︁ v

(i)
d

(v
(i)
d −γ(i+1))/2,γ(i+1)

)︁
. Finally, one can choose o(i+1) out of the k + ℓ − v

(i)
d − v

(i)
e

zero-positions.

Let V
(i)
d = lim

n→∞

v
(i)
d (n)

n
, D(i) = lim

n→∞
δ(i)(n)

n
, G(i) = lim

n→∞
γ(i)(n)

n
. Then, the following

corollary holds.

Corollary 1. The asymptotic cost of the BJMM(3) algorithm for R-SDP with z = 2

is calculated according to Theorem 12, where for i ∈ {1, 2} we use

V (i)
e =

V
(i−1)
e

2
+O(i) +G(i)

V
(i)
d =

V
(i−1)
d −G(i)

2
+D(i),

as relative weights and

Σ(i) = (R + L)g2

(︄
V

(i)
e

R + L
,
V

(i)
d

R + L

)︄
+ Z(V (i)

e + V
(i)
d ),

U (i) = V (i)
e

(︃
1 + h2

(︃
2D(i+1)

V
(i)
e

)︃)︃
+ V

(i)
d g2

(︄
G(i+1)

V
(i)
d

,
V

(i)
d −G(i+1)

2V
(i)
d

)︄

+ (R + L− V (i)
e − V

(i)
d )h2

(︄
O(i+1)

R + L− V (i)
e − V (i)

d

)︄
+ Z ·O(i+1).

Figure 4.6 shows the curve of the asymptotic cost C(T ) for R = 0.5, q = 157 and

z = 2. Notice that unique decoding is ensured for every T . A general adaptation of

BJMM, i.e. a more classical version that does not use elements in D (BJMM(\D)(a)),

has also been considered.

It can be observed that the adapted BJMM algorithm improves significantly
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Figure 4.6: Comparison of the asymptotic complexity for restricted Stern’s algo-
rithm, the general adaption of BJMM and the generalization given in Corollary 1
using q = 157, z = 2 and R = 0.5.

over restricted Stern for medium error weights. While, as already stated, for the

classical SDP two representation levels give the best performance [8], here three

representation layers were found to be optimal. The generalization given in Corollary

1 allows for a further improvement for increased error weights. It was observed that

the number of elements from D is optimized to approximately 0 in the base lists.

Hence, one can start with restricted base lists and not lose a noticeable amount of

performance.

In [3], the case of z = 2 is considered with the particular choice of T = 1. As can

be seen from Figure 4.6, in this weight regime, the approach of Corollary 1 does not

offer any improvement over Stern. For such instances, it is advantageous to shift the

error vector e, as the resulting relative error weight would approximately become

T = 0.5.
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Case z = 4

In this case, we have E = {±1,±g} and D = {±(g + 1),±(g − 1)}. Notice that

according to the definition of D, it should also include ±2 and ±2g. We do not take

such values because they are less useful to representations, considering that they

can only represent one value of E (±1 and ±g respectively). Figure 4.7 shows the

additive structure of the restricted set for z = 4.

• Elements in E
• Elements in D
• Discarded elements

•
0

•
−1

•
1

•
−g

•
g

•
−1 + g

•
1 + g

•
−1− g

•
−1 + g

•
−2

•
2

•
−2g

•
2g

Figure 4.7: Additive structure of E for z = 4.

Following the approach for z = 2, we obtain the same number of possibilities for

choosing the supports of e
(i+1)
1 and e

(i+1)
2 . There are, however, more possibilities for

picking the values in the chosen positions: there are two possibilities for obtaining

any e ∈ E as the sum of a ∈ E and b ∈ D and two possibilities for obtaining e ∈ D as

the sum of two elements in E. This increases the number of representations for level
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i overall by factor of 22(δ
(i+1)+γ(i+1)) compared to the number computed for z = 2.

Hence, we obtain the same V
(i)
e , V

(i)
d , Σ(i) as in Corollary 1 and the new number of

representations is given by

U (i) = V (i)
e

(︃
1 + h2

(︃
2D(i+1)

V
(i)
e

)︃)︃
+ V

(i)
d g2

(︄
G(i+1)

V
(i)
d

,
V

(i)
d −G(i+1)

2V
(i)
d

)︄

+ (R + L− V (i)
e − V

(i)
d )h2

(︄
O(i+1)

R + L− V (i)
e − V (i)

d

)︄
+ Z ·O(i+1)

+ 2(D(i+1) +G(i+1)).

Figure 4.8 shows the curve of the asymptotic complexity C(T ) for R = 0.5,

q = 157 and z = 4. Again, BJMM improves over Stern for medium error weights.

The generalization using D gives a further speedup for increased weights.
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Figure 4.8: Comparison of the asymptotic complexity for restricted Stern’s algo-
rithm, the general adaption of BJMM and the proposed generalization using q = 157,
z = 4 and R = 0.5.
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Case z = 6

In this special case, also considered in [31], we have E = {±1,±g,±(g−1)}. In fact,

from the definition of multiplicative order z, it holds that g is a root of x6 − 1 =

(x3−1)(x+1)(x2−x+1) and that g is not a root of (x3−1) or (x+1). Therefore, it

must be a root of (x2−x+1), which means that g2 = g−1. Notice that E has a great

additive structure: any element e ∈ E can be obtained as e = e1 + e2 = e2 + e1 with

e1, e2 ∈ E, e1 ̸= e2. Thus, by discarding the elements of D analogously as we did for

z = 4, for z = 6 it holds that D = {∅} and the presentation of representation-based

attacks further simplifies. Figure 4.9 shows the additive structure of the restricted

set for z = 6.

• Elements in E
• Discarded elements

•
0

•
−1

•
1

•−g

•
g

•
−g + 1

•
g − 1

•
2g

•
2

•2(g − 1)•−2g

•
−2

•
2(−g + 1)

Figure 4.9: Additive structure of E for z = 6.

Therefore, using again Figure 4.5 to explain the number of representations, we

have v
(i)
d = γ(i) = 0. Hence, we get exactly the same as in Corollary 1 by setting

V
(i)
d = G(i) = 0 and adding the new representations 22δ

(i+1)
.
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Corollary 2. The asymptotic cost of the BJMM(3) algorithm for R-SDP with z = 6

is calculated according to Theorem 12, where for i ∈ {1, 2} we use

V (i)
e =

V
(i−1)
e

2
+O(i) +D(i)

as relative weights and

Σ(i) = (R + L)h2

(︄
V

(i)
e

R + L

)︄
+ Z · Vi,

U (i) = V (i)
e

(︃
1 + h2

(︃
2D(i+1)

V
(i)
e

)︃)︃
+ 2D(i+1)

+ (R + L− V (i)
e )h2

(︃
O(i+1)

R + L− V (i)
e

)︃
+ Z ·O(i+1).

Figure 4.10 shows the curve of the asymptotic cost C(T ) for R = 0.5, q = 157

and z = 6. Using the additive structure of E as proposed in Corollary 2 enables

a remarkable speedup over Stern and the basic BJMM adaption. Experiments,

for which we allowed elements from {±(g + 1),±(2g − 1),±(g − 2)} in intermediate

lists, did not yield further performance improvements.
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Figure 4.10: Comparison of the complexity coefficients for restricted Stern’s algo-
rithm, the general adaption of BJMM and the proposed generalization using q = 157,
z = 6 and R = 0.5.
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Chapter 5

Signature schemes

As we briefly discussed, there are different ways of building digital signature schemes.

This thesis focuses on ZKID-based signature schemes, more specifically on code-

based ones. At first, we will present and discuss some existing schemes based on

SDP, then we will adapt them to the restricted problem. Finally, we will present a

further restricted version of R-SDP and apply it to the schemes.

5.1 CVE

In [13] Cayrel, Véron and El Yousfi Alaoui presented an identification Zero-Knowledge

scheme based on Syndrome Decoding Problem in Fq. Such a scheme, which we will

refer to as CVE, is shown in Figure 5.1. It is clear how the security of the private

key is based on the hardness of SDP. In fact, the only way an attacker has to get a

cheating probability of 1 is by knowing the private key e of weight t. To do so, he

must be able to solve the instance {s,H} of the SDP problem.

The CVE scheme involves the generation by the Prover of two commitments: c0

e c1. Only one of them will be used in the verification phase, based on the challenge
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

PROVER VERIFIER

Choose u
$←− Fn

q , τ
$←−Mn

Set c0 := Hash
(︁
τ,uH⊤)︁

Set c1 := Hash
(︁
τ(u), τ(e)

)︁
{c0, c1}−−−−−−−→

Choose β
$←− F∗

q

β←−−−−−−−
Set y := τ(u+ βe)

y−−−−−−−→
Choose b

$←− {0, 1}
b←−−−−−−−

If b = 0, set f := τ
If b = 1, set f := e′ = τ(e)

f−−−−−−−→
If b = 0, accept if

c0 = Hash
(︁
τ, τ−1(y)H⊤ − βs

)︁
If b = 1, accept if wt(e′) = t
and c1 = Hash

(︁
y − βe′, e′

)︁
Figure 5.1: CVE ZKID protocol.

bit b that will be chosen by the Verifier. Notice also that the responses f of the

Prover in the b = 0 and b = 1 cases, if revealed simultaneously, would compromise

the private key. In fact, τ is invertible and thus it would be possible to extract e

from the knowledge of τ and τ(e). Obviously that is not allowed, as only one of the

two possible responses is transmitted.

It can be easily verified that CVE satisfies the completeness property. Indeed,

the honest user is identified in both cases:
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Case b = 0: τ−1(y)H⊤ − βs = (u+ βe)H⊤ − βs = uH⊤ + βeH⊤ − βs = uH⊤

Case b = 1: y − βe′ = τ(u+ βe)− βτ(e) = τ(u+ βe− βe) = τ(u).

For the soundness error computation, let us consider an attacker that wants

to identify without having the private key. As already said before, he has to send

the commitments before knowing the challenge bit b. Therefore, the only way he

has to commit cheating is to foresee the challenge and to accordingly prepare the

commitments. So, let us define his two possible strategies, ST0 and ST1, where the

foreseen challenge is b = 0 and b = 1, respectively.

• ST0: the attacker uniformly chooses u e τ at random and finds a vector ê,

without weight constraints, such that êH⊤ = s (this can be easily done al-

gebraically, because of the lack of weight constraint). Commitments are then

generated choosing c0 = Hash(τ,uH⊤) and c1 at random (in this case it will

not be verified). At this point, the attacker is able to correctly answer re-

gardless of β. Indeed, in this case the Verifier cannot check the weight of ê,

so the value y = τ(u + βê) and the response f = τ are enough to pass the

verification.

Actually, this strategy can be improved in order to cheat also when the Verifier

chooses b = 1. In fact, instead of choosing it at random, the attacker can

prepare an appropriate commitment c1 = Hash(u∗, e′). In this phase, the

attacker has to foresee the value β that will be chosen by the Verifier. Such a

forecast ˜︁β is then used to compute the values u∗ and e′. Given that he already

set y = τ(u) + βτ(ê) for the b = 0 case, in the commitment phase (when

β is not yet available) the attacker uses ˜︁y = τ(u + ˜︁βê) to find e′ of weight
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t such that ˜︁y − ˜︁βe′ = τ(u) + ˜︁β(τ(ê) − e′) = u∗. If the Verifier will choose

β = ˜︁β (that happens with probability 1
q−1

), then ˜︁y = y e Hash(y − βe′, e′) =

Hash(˜︁y − ˜︁βe′, e′) = Hash(u∗, e′) = c1 and the check is successful. Otherwise,

if β ̸= ˜︁β the attacker fails;

• ST1: the attacker uniformely chooses u and τ at random and randomly picks

a vector ê of the correct weight t. Commitments are then generated choosing

c0 at random (it will not be verified) and c1 = Hash(τ(u), τ(ê)). Even in this

situation, the attacker is able to correctly answer regardless of β. Indeed, in

this case the Verifier does not check that the vector ê is a valid solution of

SDP with instance {s,H}, but instead he only checks the correctness of the

weight. Therefore, the value y = τ(u + βê) and the response f = τ(ê) are

enough to pass the verification.

Also in this case the strategy can be improved. In fact, in order to cheat even

if the Verifier chooses b = 0, the attacker can try to foresee the value ˜︁β and

choose c0 = Hash(τ,uH⊤ + ˜︁β(êH⊤ − s)). If β = ˜︁β (with probability 1
q−1

),

then y = ˜︁y and the check would be successful: Hash(τ, τ−1(y)H⊤ − βs) =

Hash(τ, τ−1(˜︁y)H⊤ − ˜︁βs) = Hash(τ,uH⊤ + ˜︁β(êH⊤ − s)) = c0.

Notice that with the term challenge value we refer to b and not to β, even if both

of them are sent to the Prover after receiving the commitments. This is due to the

fact that, according to the strategies we just presented, the knowledge of β is not

needed to commit cheating with a soundness error ε of at least 1/2. Considering

both strategies and their improvements, the soundness error is
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ε = Pr[Cheating] =
1∑︂

i=0

Pr[ST = STi](Pr[b = i]+Pr[b = 1− i, β = ˜︁β])
=

1∑︂
i=0

Pr[ST = STi](Pr[b = i]+Pr[b = 1− i]Pr[β = ˜︁β])
=

1∑︂
i=0

1

2

(︃
1

2
+

1

2

1

q − 1

)︃
=

1

2

(︃
1 +

1

q − 1

)︃
=

q

2(q − 1)
.

For the sake of brevity, we refer to [13] for the proof of the zero knowledge

property.

The communication cost of the scheme is the cost of a complete interaction

between the two parties, measured in number of used bits. The communication cost

of a single round can be computed by adding the number of bits that are needed to

represent each of the elements transmitted between Prover and Verifier in the 5-way

pass of CVE protocol. Then, supposing that to reach a certain security level N

rounds of the protocol in Figure 5.1 are needed (cheating probability εN), we have

to multiply the cost of a single round by N .

Before doing so, a few tricks have to be considered. In order to represent a vector

of length n and weight t, we could represent every entry with a total of n ⌈log2(q)⌉

bits or we could represent only its support and its ordered non-null entries with a

total of t (⌈log2(n)⌉+ ⌈log2(q − 1)⌉) bits. Therefore, the cost of representing such a

vector is

ψ(n, q, t) = min
{︁
n ⌈log2(q)⌉ , t (⌈log2(n)⌉+ ⌈log2(q − 1)⌉)

}︁
.

In order to send random elements, it is enough to communicate the seed of

the pseudorandom noise generator (PRNG) that has been used to compute such

elements. Regarding the seed and hash digest sizes, security aspects have to be
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considered. The seed has to be at least λ bits long. Indeed, if it was shorter,

a man-in-the-middle attacker could obtain through brute force, with a cost lower

than 2λ, every possible τ . Therefore, for the case b = 1 he would be able to find

the private key e starting from e′ simply by inverting τ . Because of the possibility

of birthday attacks, the hash digest has to be at least 2λ bits long. Then, we get a

total communication cost of

N

⎛⎜⎜⎝2 · 2λ⏞ ⏟⏟ ⏞
{c0,c1}

+ ⌈log2(q − 1)⌉⏞ ⏟⏟ ⏞
β

+n ⌈log2(q)⌉⏞ ⏟⏟ ⏞
y

+ 1⏞⏟⏟⏞
b

+
λ+ ψ(n, q, t)

2⏞ ⏟⏟ ⏞
f

⎞⎟⎟⎠ (5.1.1)

bits, where the last term is the average value of the cost of f , which is the

arithmetic average of τ and τ(e) costs, being b equiprobable:

lf = Pr[b = 0] · λ+ Pr[b = 1] · ψ(n, q, t) = λ+ ψ(n, q, t)

2
. (5.1.2)

5.1.1 Optimization

As shown in [3], it is possible to further reduce the communication cost through an

appropriate compression technique, shown in Figure 5.2.

In order to reduce the transmission cost of the commitment hash digests, the

Prover generates them at the beginning of the protocol and sends only the hash

digest of both commitments from every round. The hash function is used both for

compressing the information to be sent and for making it non-modifiable afterwards,

analogously as the Fiat-Shamir transform does. Then, the Verifier will be able to

recompute the commitments and to verify that their hash digest is equal to the

one received from the Prover. So, in this case the verification is not carried out
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

PROVER VERIFIER

Generate c
(i)
0 , c

(i)
1 for i = 0, ..., N − 1

Set c = Hash(c
(0)
0 , c

(0)
1 , ..., c

(N−1)
0 , c

(N−1)
1 )

c−−−−−−−→
Repeat single round for N times←−−−−−−−−−−−−−−−−−−
Repeat single round for N times−−−−−−−−−−−−−−−−−−→

Check validity of c

GENERIC i-th ROUND

Choose β(i) $←− F∗
q

β(i)

←−−−−−−−
Set y(i) = τ (i)(u(i) + βe)

y(i)

−−−−−−−→
Choose b(i)

$←− {0, 1}
b(i)←−−−−−−−

If b(i) = 0, set f (i) := τ (i)

If b(i) = 1, set f (i) := (e′)(i) = τ (i)(e)

f (i), c
(i)

b(i)⊕1−−−−−−−→
If b(i) = 0, compute

c
(i)
0 = Hash

(︁
τ (i), (τ (i))−1(y(i))H⊤ − β(i)s

)︁
If b(i) = 1 and wt((e′)(i)) = t, compute

and c
(i)
1 = Hash

(︁
y(i) − β(i)(e′)(i), (e′)(i)

)︁
Figure 5.2: CVE ZKID protocol with compression technique.

singularly in each round anymore, but at the end of the execution of all N rounds.

Considering that in the i-th round the Verifier computes from the response only one

of the two commitments (c
(i)

b(i)
, where b(i)

$←− {0, 1}), the Prover has to send also the

unused commitment c
(i)

b(i)⊕1
. With this technique, the communication cost is
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2λ⏞⏟⏟⏞
c

+N

⎛⎜⎜⎝⌈log2(q − 1)⌉⏞ ⏟⏟ ⏞
β(i)

+n ⌈log2(q)⌉⏞ ⏟⏟ ⏞
y(i)

+ 1⏞⏟⏟⏞
b(i)

+ 2λ⏞⏟⏟⏞
c
(i)

b(i)⊕1

+
λ+ ψ(n, q, w)

2⏞ ⏟⏟ ⏞
f (i)

⎞⎟⎟⎠ .

It is clear that the cost saving with respect to (5.1.1) grows with the number of

rounds N .

5.1.2 Applying Fiat-Shamir transform

To get the signature scheme, we apply the Fiat-Shamir transform analogously as

we did in Figure 2.2. The challenge bits b(i) and the values β(i) are obtained from

the hash digest of the message m concatenated to the commitment digest c. The

signature σ is composed of c and of the responses from each round obtained as in

Figure 5.2:

rsp =
{︁
{y(i)}i∈ZN

, {f (i)}i∈ZN
, {c(i)

b(i)⊕1
}i∈ZN

}︁
.

The terms c and c
(i)

b(i)⊕1
are hash digest of 2λ bit, y(i) is n ⌈log2(q)⌉ bits long and

the size of f (i) is the one shown in (5.1.2). Therefore, the size of the signature based

on CVE is

|σ|CVE = 2λ⏞⏟⏟⏞
c

+N

⎛⎜⎜⎝n ⌈log2(q)⌉⏞ ⏟⏟ ⏞
y(i)

+ 2λ⏞⏟⏟⏞
c
(i)

b(i)⊕1

+
λ+ ψ(n, q, t)

2⏞ ⏟⏟ ⏞
f (i)

⎞⎟⎟⎠ .

The public key is the syndrome s and its bitsize is

|PK|CVE = (n− k) ⌈log2(q)⌉ .
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5.2 GPS

In [20], Gueron, Persichetti and Santini present a code-based zero-knowledge signa-

ture scheme based on a ZKID protocol we refer to as GPS. Such protocol attains

an arbitrarily low soundness error. In such way, less round are needed and con-

sequently, at least in theory, the signature size is reduced. The GPS protocol is

build by applying a structure called sigma protocol with helper to the CVE protocol.

Therefore, also in this case the underlying protocol is SDP.

5.2.1 Sigma protocol with helper

The sigma protocol with helper is an interactive algorithm among three parties: the

Prover (that wants to get identified), the Verifier (that carries out the identification)

and the Helper (a trusted third party).

The protocol applied to the CVE scheme is shown in Figure 5.3.

For the sake of brevity, we refer to [20] for the proof of the zero knowledge

property.

It can be easily verified that the sigma protocol with helper satisfies the com-

pleteness property. The first check is (Hash(r, τ, t) = c) ∧ (τ is isometry). The first

part verifies that the private key is a solution of the parity-check equations eH⊤ = s.

In fact:

t = τ(y)H⊤ − zs = τ(u)H⊤ + zτ(˜︁e)H⊤ − zs = τ(u)H⊤ + zeH⊤ − zs = τ(u)H⊤.

The second part guarantees the correctness of the weight of e = τ(˜︁e), because

checking that τ is an isometry corresponds, by definition, to checking that wtH(e) =

wtH(˜︁e) and, in case of honest execution, ˜︁e has the correct weight t. It is important

to emphasize that the verification of the weight is carried out for one half by the
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Verifier (check of τ isometry) and for the other half it is based on the trust that the

Verifier puts in the Helper (˜︁e of the correct weight). If for some reason the Helper

could not be trusted anymore, it would not be possible to check the correctness of

the weight of the SDP solution.

For the analysis of the soundness property, let us define the strategies an attacker

could use. He could choose between two strategies:

• STa: An attacker could easily algebraically obtain a solution ef = τ(˜︁ef ) of any
weight of the parity-check equations. Then, instead of the vector ˜︁e given by

the Helper through the seed, he could use ˜︁ef in order to pass the first check.

However, the second check would not be passed, because yf = u+ z˜︁ef is not

the one used by the Helper to compute cz. In other words, the second check

binds the attacker to use the same u and ˜︁e used by the Helper. Then, such

strategy is not successful because, by hypothesis, the Verifier can trust the

Helper;

• STb: As usual, it is possible to cheat by accurately preparing the commitment.

Indeed, supposing the attacker expects to receive z as challenge value, he could

send the commitment c = Hash(r, τ,x), where

x = τ(u)H⊤ + zτ(˜︁e)H⊤ − zs,

which is equal to the t computed by the Verifier. In this way, the attacker

passes the first check and he is able to pass also the second since he used the

same u and ˜︁e used by the Helper to generate cz.

The only possible strategy is STb, which has a success probability of the recip-

rocal of the challenge space size. Therefore, the soundness error is ε = 1/q, which

is remarkably lower than the CVE one (ε = q
2(q−1)

). This happens because the
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challenge space, i.e. the set of elements where the challenge is drawn from, has

gone from {0, 1} to Fq. Moreover, ε can be chosen arbitrarily low by appropriately

choosing the prime number q.

Analogously as highlighted for CVE, also in this case the minimum seed length

is λ. In fact, if it was shorter a man-in-the-middle attacker could get every possible

˜︁e with a cost lower than 2λ. Being τ published in the response rsp, it would be then

immediate for the attacker to find the private key e = τ(˜︁e).
5.2.2 Removing the Helper

The big disadvantage of the sigma protocol with helper algorithm is the necessity of

a trusted Helper. To overcome this obstacle, i.e. removing the Helper from the algo-

rithm, we use the cut-and-choose technique. According to this technique, the Prover

has to simulate the execution of the Helper. To do so, after uniformly sampling at

random the seed that represents the Helper’s input, the Prover computes the aux

following the Setup phase shown in Figure 5.3. However, the Verifier has to make

sure of the simulated Helper’s honesty and, to do so, requires multiple executions of

such simulation. After this, the Verifier chooses only one of the simulations (chal-

lenge instance) that will be used for the authentication as shown in Figure 5.3. For

the rest of the unused simulations, the Prover sends the seeds and the aux values to

the Verifier. Using such seeds, the Verifier re-simulates the Helper and checks that

the aux obtained from its simulation are equal to the ones received from the Prover.

The fact that the Prover does not previously know which instance will be used for

the authentication does not allow him to commit cheating without trying to guess

the instance. In this way, if the check on the aux values is successful, the Verifier can

trust the simulated Helper (again, with a certain degree of uncertainty). In Figure

5.4 the protocol with the addition of the cut-and-choose technique is shown.
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

PROVER HELPER VERIFIER

Input : Uniform random seed∈ {0, 1}λ
I. Setup - H(seed)

Choose u
seed←−− Fn

q and ˜︁e seed←−− Fn
q with weight t

For all v ∈ Fq:

1. Choose rv
seed←−− {0, 1}λ

2. Compute cv = Hash(rv,u+ v˜︁e)
Set aux := {cv}v∈Fq

seed←−−−−−−− aux−−−−−−−→

II. Commitment - P1(H,e,seed)

Choose u
seed←−− Fn

q and ˜︁e seed←−− Fn
q with weight t

Determine isometry τ = FindIsometry(e,˜︁e) : e = τ(˜︁e)
Choose r

$←− {1, 0}λ
Compute c = Hash(r, τ, τ(u)H⊤)

c−−−−−−−→
III. Challenge - V1(·)

Choose z
$←− Fq

Set ch := z
ch←−−−−−−−

IV. Response - P2(ch,seed)
Regenerate rz from seed
Compute y = u+ z˜︁e
Set rsp := (r, rz, τ,y)

rsp−−−−−−−→
V. Verification - V2(H, s,aux,c,rsp)

Compute t = τ(y)H⊤ − zs
Check that Hash(r, τ, t) = c and that τ is an isometry

Check that Hash(rz,y) = cz
Return 1 (accept) if both checks are successful, or 0 (reject) otherwise

Figure 5.3: Sigma protocol with helper.

It is important to emphasize that the Prover cannot communicate the seed of

the instance selected by the Verifier. Otherwise, ˜︁eI would be obtainable from seedI

and, together with the knowledge of τI contained in rspI , it would be immediate for

an attacker to find the secret key e = τI(˜︁eI).
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

PROVER VERIFIER

I. Commitment
For all i ∈ ZM :

1. Choose seedi
$←− {0, 1}λ

2. Compute auxi = H(seedi)
3. Compute ci = P1(H, e, seedi)

{auxi}i∈ZM
, {ci}i∈ZM−−−−−−−−−−−−−−−−−→

II. Challenge

Choose I
$←− ZM

Choose z
$←− Fq

Set ch := {I, z}
ch←−−−−−−−

III. Response
Compute rspI = P2(z, seedI)

rspI , {seedi}i ̸=I−−−−−−−−−−−−−−→
IV. Verification

For all i ∈ ZM such that i ̸= I:
1. Compute auxi = H(seedi)
2. Check that auxi = auxi

Set b := 1 if all checks are successful, b := 0 otherwise
Compute b′ = V2(H, s, auxI , cI , rspI)
Accept if b ∧ b′ = 1, reject otherwise

Figure 5.4: Sigma protocol with helper + cut-and-choose technique

In order to compute the soundness error, let us consider the two possible strate-

gies that an attacker could use:

• ST0: The cut-and-choose technique establishes that the Helper is simulated by

the Prover, so the Helper’s honesty is not guaranteed anymore. If the attacker

could foresee the challenge instance I requested by the Verifier, he could use

the previously shown strategy STa. In fact, the attacker could forge the Helper
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by modifying its auxI = {(cv)I}v∈Fq :

(cv)I = Hash
(︁
(rv)I ,uI + v(˜︁ef )I))︁ = Hash

(︁
(rv)I , (yf )I

)︁
.

The success probability is equal to the probability of guessing the challenge

instance, that is 1/M ;

• ST1: For each of the M instances, the attacker modifies every commitment ci

as shown for the strategy STb. Such strategy is successful (with probability

1/q regardless of the challenge instance I) because:

– check for i ̸= I: the Verifier only considers the auxi, that are not modified

by STb;

– check for i = I: same reason shown in the explanation of STb.

The attacker can use the strategy with the higher success probability between

ST0 and ST1. Therefore, the soundness error is

ε = max

{︃
1

M
,
1

q

}︃
. (5.2.1)

As for the CVE, to get the desired cheating probability 2−λ we can execute N

multiple rounds of the just presented protocol. The number of rounds is

N =

⎡⎢⎢⎢ −λ

log2

(︂
max

{︂
1
M
, 1
q

}︂)︂
⎤⎥⎥⎥ .

In order to obtain the communication cost, we have to multiply by N the cost of

a single round. It is then necessary to compute the cost of the protocol of Figure 5.4.

Recall that the auxi are composed of q hash digests, therefore each one of them (M
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in total) is 2λq bits long. Also the ci are hash digests, each one of them (M in total)

is 2λ bits long. Regarding the response of the challenge instance, rspI is composed of

two random strings (λ bits each), a monomial transformation and a vector over Fn
q

(n ⌈log2(q)⌉ bits). The transformation is made of a permutation vector of length n

with unique entries in Zn and a vector of scalar values ∈
(︁
F∗
q

)︁n
. If the SDP problem

requires a solution of max weigth t = n, the transformation can be reduced to the

vector of scalar values. Therefore, its size is

lτ =

⎧⎪⎪⎨⎪⎪⎩
n (⌈log2(n)⌉+ ⌈log2(q − 1)⌉) , if t < n

n ⌈log2(q − 1)⌉ , if t = n

(5.2.2)

bits. In the end, considering the M − 1 {seedi}i ̸=I , each one of them takes λ bits,

we get a communication cost of

N
[︂

2λqM⏞ ⏟⏟ ⏞
{auxi}i∈ZM

+ 2λM⏞ ⏟⏟ ⏞
{ci}i∈ZM

+ ⌈log2(M)⌉+ ⌈log2(q)⌉⏞ ⏟⏟ ⏞
ch

+

+ 2λ+ lτ + n ⌈log2(q)⌉⏞ ⏟⏟ ⏞
rspI

+λ(M − 1)⏞ ⏟⏟ ⏞
{seedi}i ̸=I

]︂ (5.2.3)

5.2.3 Applying Fiat-Shamir transform

By applying the Fiat-Shamir transform to the ZKID protocol we get the signature

scheme. The challenge values of the Signer’s signature are obtained from the hash

digest of the message m concatenated to the aux values and commitments. In this

case, for the sake of simplicity, instead of taking the challenge values from the bits

of the hash digest string, it is preferred to use the hash digest as seed of the PRNG

that is used to randomly sample the challenge. Obviously, at the minimum variation

of m || cmt(j) a whole different challenge is obtained, therefore the principle of the
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Fiat-Shamir transform is still valid. In Figure 5.5 the signature scheme based on

the GPS ZKID protocol with N round is shown.

Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q , message m

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

SIGNER VERIFIER

I. Signature
For every round j ∈ ZN :

1. Generate commitment cmt(j) =
{︂
{aux(j)i }i∈ZM

, {c(j)i }i∈ZM

}︂
as in GPS

2. Compute seed(j) = Hash(m, cmt(j))

3. Choose ch(j) = {I(j), z(j)} seed←−− ZM × Fq

4. Generate response rsp(j) = {rsp(j)
I(j)

, {seed(j)i }i ̸=I(j)} as in GPS

Set signature σ :=
{︁
{cmt(j)}j∈ZN

, {rsp(j)}j∈ZN

}︁
σ−−−−−−−→

II. Verification

Parse σ as
{︁
{cmt(j)}j∈ZN

, {rsp(j)}j∈ZN

}︁
For every round j ∈ ZN :

1. Compute seed(j) = Hash(m, cmt(j))

2. Choose ch(j) = {I(j), z(j)} seed←−− ZM × Fq

3. Perform verification as in GPS
Accept or reject the signature accordingly

Figure 5.5: Signature scheme based on GPS ZKID protocol.

In order to obtain the bitsize of the signature σ, it is enough to eliminate from

(5.2.3) the cost of the challenge ch:

|σ|GPS = N
[︂

2λqM⏞ ⏟⏟ ⏞
{aux(j)i }i∈ZM

+ 2λM⏞ ⏟⏟ ⏞
{c(j)i }i∈ZM

+2λ+ lτ + n ⌈log2(q)⌉⏞ ⏟⏟ ⏞
rsp

(j)

I(j)

+

+ λ(M − 1)⏞ ⏟⏟ ⏞
{seed(j)i }

i̸=I(j)

]︂ (5.2.4)

As for CVE, the public key is the syndrome s and its bitsize is
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Table 5.1: Comparison between optimized CVE and non-optimized GPS-based sig-
nature sizes, λ = 128

q n t M N Sign. Size

CVE (opt.)
991 220 90

− 129 52.5 kB
GPS (no opt.) 991 13 390.2 MB

|PK|GPS = (n− k) ⌈log2(q)⌉ .

Because of the smaller soundness error, the GPS signature needs less rounds than

the CVE signature. However, this does not lead to a reduction of the signature size,

because the cost of the single round is remarkably higher in the GPS. In Table 5.1

the signature sizes of the two schemes for a security level of λ = 128 are compared.

As it is, the performances of the GPS signature scheme in terms of signature size

are not even comparable to the ones of the CVE signature scheme.

5.2.4 Optimization

Because of the considerable increase in the signature size, it could seem that using

the sigma protocol with helper is counter-productive. The yet unexpressed advan-

tage of this solution lies in the fact that the sigma protocol with helper can be

highly optimized. Indeed, it is still possible to apply different techniques in order

to drastically shrink the communication cost of the GPS protocol. Such techniques

are shown below.

• Commitments. In the protocol shown in Figure 5.4, the Prover transmitsM

commitments, even if just one of them (cI) is used for the verification. Through

a function, called MerkleTree, a Merkle Tree T of depth d = ⌈log2(M)⌉ is built.
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Its leaves are the hash digests of the commitments c0, ..., cM−1:

Td,ℓ = Hash(cℓ)

where 0 ≤ ℓ ≤ 2d − 1. If d ≥ log2(M), the rest of the leaves are obtained by

hashing random strings. The internal nodes are then computed, starting from

the layer d of the leaves, by hashing two nodes from the previous layer:

Tu,ℓ = Hash(Tu+1,2ℓ||Tu+1,2ℓ+1)

where 0 ≤ u ≤ d− 1 and 0 ≤ ℓ ≤ 2u − 1. The process iterates, until the root

tree T0,0 is reached. By doing so, after the Commitment phase, the Prover can

just send the Merkle Tree root (2λ bits) and then include the authentication

path of cI once he gets the challenge from the Verifier. By authentication

path we mean the list of sibling nodes on the path from the leaf to the root

(excluded). Such list takes 2λ ⌈log2(M)⌉ bits. In this way, by recomputing cI

as Hash(r, τ, t) (see function V2 in Figure 5.3) and by using the authentication

path, the Verifier can recreate the Merkle Tree root and check that it is equal

to the one received from the Prover. By using this technique, it is possible

to save on the communication cost, going from 2λM bits (M commitments

ci) to 2λ(1 + ⌈log2(M)⌉) bits (root + authentication path). In Figure 5.6 an

example of commitment Merkle Tree is shown. We call MerkleTree a function

that creates a Merkle Tree from a set of leaves and ReconstructRoot a function

that recomputes the root of a Merkle Tree from a leaf and its relative path;

• Auxiliary Information. The transmission of aux can be optimized as well.

For starters, notice that the function V2 in Figure 5.3 uses, in the second

check, just one of the q commitments that compose the aux. Therefore, for
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T0,0

T1,0

T2,0

T3,0

c0

T3,1

c1

T2,1

T3,2

c2

T3,3

c3

T1,1

T2,2

T3,4

c4

T3,5

c5

T2,3

T3,6

c6

T3,7

c7

Figure 5.6: Example of commitments Merkle Tree, M = 8, I = 3. I-th commit-
ment is shown in green, the relative authentication path is shown in red, the root
transmitted after the Commitment phase is shown in yellow, the nodes recomputed
by the Verifier are shown in grey and the commitments from which the path is cal-
culated by the Prover are shown in thick line.
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every {auxi}i∈ZM
we can think of applying the same Merkle Tree technique we

saw for the commitments, where the leaves are obtained from the hash digests

of {cv}v∈Fq . In total we have M trees, each one of them with its own root and

authentication path, so 2λM(1 + ⌈log2(q)⌉) bits.

Notice also that only one of theM instances is executed, therefore only auxI is

used in the function V2 and the rest is recomputed from the seeds. Then, the

Prover can send the hash digest of the roots of the M Merkle Trees after the

Commitment phase and the authentication path of auxI ’s tree in the Response

phase. The Verifier is then able to recompute the root of TauxI from the path

and the relative cz recomputed as Hash(rz,y) (see function V2 in Figure 5.3).

The roots of the remaining trees are recomputed starting from the seeds.

Therefore, the Verifier can then recompute the hash digest of the roots and

then check that the result is equal to the digest received from the Prover after

the Commitment phase. With these optimizations, we go from 2λqM bits (M

auxiliary information auxi) to 2λ(1 + ⌈log2(q)⌉) bits (final root + I-th tree’s

authentication path). In Figure 5.7 an example of aux Merkle Tree is shown.

• Seeds. The transmission of the M − 1 seeds can be optimized as well. In

Figure 5.4, the Prover randomly chooses the seeds. For this reason, considering

that the hash function can be modeled as a random oracle, it is possible to

generate the seeds as hash digests. In particular, it is possible to get all of the

M seeds as leaves of a binary hash tree of depth d = ⌈log2(M)⌉. The Prover

chooses an initial seed as tree root (T0,0 = seed), that is given as input to the

hash function. The produced digest is then split in half in order to get other

two nodes of higher level. The process can then be repeated by hashing the
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root

root0

c0 c1 c2 c3

root1

c0 c1 c2 c3

root2

c0 c1 c2 c3

root3

c0 c1 c2 c3

Taux0 Taux1 Taux2 Taux3

Figure 5.7: Example of auxiliary information Merkle Tree,M = 4, I = 2, q = 4, z =
3. The z-th commitment of I-th tree is shown in green, the relative authentication
path is shown in red, the final root transmitted after the Commitment phase is
shown in yellow, the nodes recomputed by the Verifier are shown in grey and the
commitments from which the path is calculated by the Prover are shown in thick
line.

obtained nodes until the desired number of leaves is reached:

(Tu+1,2ℓ||Tu+1,2ℓ+1) = Hash(Tu,ℓ)

for 0 ≤ u ≤ d− 1 and 0 ≤ ℓ ≤ 2u− 1. In order to communicate the {seedi}i ̸=I

to the Verifier, the Prover could think about sending the tree root. However,

this would also publish seedI that, as already said before, is not possible due

to security reasons. The Prover can then communicate to the Verifier the seed

path of seedI , i.e. the list of sibling nodes on the path from the leaf to the

root (excluded). Therefore, the communication cost relative to the seeds goes

from λ(M − 1) to λ ⌈log2(M)⌉ bits. In Figure 5.8 an example of seed hash

tree is shown. We call SeedTree a function that builds the seed tree from an

initial root seed, SeedPath a function that computes the seed path from the

open instances indexes and the initial root seed, ReconstructSeeds a function

that recomputes from the seed path all the seeds but the ones from the open
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T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

Figure 5.8: Example of seeds hash tree, M = 8, I = 6. I-th seed is shown in green,
the relative seed path is shown in red, the nodes recomputed by the Verifier from
the path are shown in gray and the obtained leaves are shown in thick line.

instances.

• Executions. In order to achieve the targeted security level λ, as it stands

the GPS scheme uses N multiple executions of the protocol shown in Figure

5.4, where M instances are precomputed and only one is used. The same level

can be attained with a single execution (N = 1) by verifying more than just

an instance. In other words, s = |S| instances are verified, where S ⊆ ZM .

Previously, using multiple executions we obtained the total communication

cost by multiplying the cost of one execution (also including the just presented

optimizations) by the number of roundsN . Instead, in this way we fully exploit

the optimizations we just discussed, since by executing only one round we get

rid of the multiplicative term N . To be thorough, the protocol of Figure 5.4

with optimized commitments, aux values and seeds has a slightly higher cost

with increasing s and, moreover, it depends on S for the same s. In Figure 5.9,

a few examples of seed hash trees withM = 8 and s = 2 are shown for varying

S. In Figure 5.9a the number of nodes that compose the seed path grows with
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respect to Figure 5.8. In the particular cases of Figure 5.9b and Figure5.9c,

the number of path nodes drops with respect to Figure 5.9a, but this happens

with smaller probability. Therefore, in general we can state that by increasing

s the communication cost also grows, even if slightly. To eliminate from the

analysis the variability of the cost given by S, we consider the communication

cost in its worst case, that is

λ
[︁
2⌈log2(s)⌉ + s

(︁
⌈log2(M)⌉ − ⌈log2(s)⌉ − 1

)︁]︁
(5.2.5)

Similar considerations apply to the commitments tree (Figure 5.6). Regarding

the aux tree (Figure 5.7), raising s means increasing the number of authentica-

tion paths sent after the Response phase. Therefore, once again, we recognize

a (tolerable) increment of the cost with growing s. In the end, notice that

in the extreme case s ≈ M we would get very small seed paths, but, at the

same time, very numerous authentication paths. This is one of the reasons

why cases with several instances to be verified must be avoided.

Clearly, the soundness error changes. In this case, by referring as e ≤ s to the

number of dishonest instances computed with ST0 from an adversary Prover,

the soundness error ε is by

max
e∈Zs+1

(︁
M−e
s−e

)︁(︁
M
s

)︁
qs−e

. (5.2.6)

In fact, the attacker wins when all the e dishonest instances are included among

the s that are checked by the Verifier and, at the same time, the remaining

instances s− e are computed with the correct value of z following the strategy

ST1. The first condition happens with a probability of
(︁
M−e
s−e

)︁
/
(︁
M
s

)︁
, while

the second condition, statistically independent from the first, happens with a
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T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(a) s = 2, S = [2, 6]. The seed path has 4 nodes (worst case).

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(b) s = 2, S = [5, 6]. The seed path has 3 nodes (intermediate case).

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(c) s = 2, S = [4, 5]. The seed path has 2 nodes (best case).

Figure 5.9: Example of seed hash trees, M = 8, s = 2 and varying S.
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probability of 1/qs−e. Obviously, for s = 1 we get the (5.2.1) again:

max
e∈Zs+1

(︁
M−e
s−e

)︁(︁
M
s

)︁
qs−e

= max
e∈[0,1]

(︁
M−e
s−e

)︁(︁
M
s

)︁
qs−e

= max

{︃
1

q
,
1

M

}︃
.

For the sake of completeness, notice that in the extreme case s = M (every

instance is verified) an attacker could use the STa for every instance, thus com-

mitting cheating with certain probability. Indeed, in this case the soundness

error is

max
e∈Zs+1

(︁
M−e
s−e

)︁(︁
M
s

)︁
qs−e

= max
e∈ZM+1

(︁
M−e
M−e

)︁(︁
M
M

)︁
qM−e

= max
e∈ZM+1

qe−M = 1.

Also for this reason, cases where s ≈M are not considered.

The soundness error of (5.2.6) has two degrees of freedom, s and M . Qualita-

tively, the soundness error grows when each one of them does. Then, we have

to decide if choosing a high s and a low M or vice versa. For example, for

q = 991 we can attain a security level of at least λ = 128 both with s = 19,

M = 991 and s = 63, M = 133. However, in the second case, s is almost half

of M and, as we said earlier, this leads to an increase in the communication

cost given by the paths. For this reason, the first case is preferable, i.e. a large

M and a relatively small s. This is also shown by (5.2.5), which grows linearly

with s and only logarithmically with M .

The complete scheme of the optimized GPS ZKID protocol is shown in Figure

5.10. The communication cost of the ZKID scheme can be easily obtained from
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

PROVER VERIFIER
I. Commitment

Choose seed
$←− {0, 1}λ

Compute {seedi}i∈ZM
= SeedTree(seed)

For all i ∈ ZM :
1. Compute auxi = H(seedi)

2. Build tree T
(aux)
i = MerkleTree(auxi) and call root

(aux)
i its root

3. Compute ci = P1(H, e, seedi)

Compute h = Hash
(︁
{root(aux)i }i∈ZM

)︁
Build tree T (c) = MerkleTree

(︁
{ci}i∈ZM

)︁
and call root(c) its root

h, root(c)−−−−−−→
II. Challenge

Choose uniformly S ⊆ ZM at random, with |S| = s
For all j ∈ S:
1. Choose zj

$←− Fq

Set ch :=
{︁
S, {zj}j∈S

}︁
ch←−−−−−−

III. Response
For all j ∈ S:
1. Compute rspj = P2(zj, seedj)

2. Compute path
(aux)
j

3. Compute path
(c)
j

Compute path(seed) = SeedPath(S, seed)

{rspj}j∈S, {path(aux)j }j∈S, {path(c)j }j∈S, path
(seed)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IV. Verification

Set b := 1
For all j ∈ S:
1. Compute tj = τj(yj)H

⊤ − zjs
2. Compute cj = Hash(rj, τj, tj)

3. Compute root
(c)

= ReconstructRoot(path
(c)
j , cj)

4. Check that root
(c)

= root(c)

5. Set b := 0 if check is not successful
6. Compute (czj)j = Hash((rz)j,yj)

7. Compute root
(aux)
j = ReconstructRoot(path

(aux)
j , (czj)j)

Recover seedj /∈S = ReconstructSeeds(S, path(seed))
For all j /∈ S:
1. Compute auxj = H(seedj)

2. Build tree Tauxj = MerkleTree(auxj) and call root
(aux)
j its root

Compute h = Hash
(︁
{root(aux)j }j∈ZM

)︁
Set b′ := 1 if h = h, b := 0 otherwise
Accept if b ∧ b′ = 1, reject otherwise

Figure 5.10: Optimized GPS ZKID protocol.
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Figure 5.10:

2λ⏞⏟⏟⏞
h

+ 2λ⏞⏟⏟⏞
root(c)

+ s(⌈log2(M)⌉+ ⌈log2(q)⌉)⏞ ⏟⏟ ⏞
ch

+

+ s(2λ+ lτ + n ⌈log2(q)⌉)⏞ ⏟⏟ ⏞
{rspj}j∈S

+ s(2λ ⌈log2(q)⌉)⏞ ⏟⏟ ⏞
{path(aux)j }j∈S

+ s(2λ ⌈log2(M)⌉)⏞ ⏟⏟ ⏞
{path(c)j }j∈S

+

+ λ
[︁
2⌈log2(s)⌉ + s

(︁
⌈log2(M)⌉ − ⌈log2(s)⌉ − 1

)︁]︁⏞ ⏟⏟ ⏞
path(seed)

(5.2.7)

5.2.5 Applying Fiat-Shamir transform

Once again, by applying the Fiat-Shamir transform to the protocol of Figure 5.10

we obtain the relative signature scheme, represented in Figure 5.11.

The signature size can be obtained from (5.2.7) by eliminating the term that

represents the cost of the challenge:

|σ|GPS = 2λ⏞⏟⏟⏞
h

+ 2λ⏞⏟⏟⏞
root(c)

+ s(2λ+ lτ + n ⌈log2(q)⌉)⏞ ⏟⏟ ⏞
{rspj}j∈S

+

+ s(2λ ⌈log2(q)⌉)⏞ ⏟⏟ ⏞
{path(aux)j }j∈S

+ s(2λ ⌈log2(M)⌉)⏞ ⏟⏟ ⏞
{path(c)j }j∈S

+

λ
[︁
2⌈log2(s)⌉ + s

(︁
⌈log2(M)⌉ − ⌈log2(s)⌉ − 1

)︁]︁⏞ ⏟⏟ ⏞
path(seed)

(5.2.8)

In Table 5.2 the signature sizes of the CVE-based and GPS-based schemes are

compared for different parameters and security level λ = 128. The GPS-based

signature scheme attains sizes of almost half of the ones obtainable with the CVE-

based scheme.
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q , message m

Private Key e ∈ Fn
q with weight t

Public Key s = eH⊤ ∈ Fn−k
q

SIGNER VERIFIER

I. Signature

Generate commitment cmt = {h, root(c)} as in opt. GPS
Compute seed = Hash(m, cmt)
Choose uniformly S ⊆ ZM at random from seed, with |S| = s
For all j ∈ S:

1. Choose zj
seed←−− Fq

Set ch :=
{︁
S, {zj}j∈S

}︁
For all j ∈ S:

Generate {rspj}j∈S , {path
(aux)
j }j∈S , {path(c)j }j∈S , path

(seed) as in opt. GPS

Set signature σ :=
{︂
cmt, {rspj}j∈S , {path

(aux)
j }j∈S , {path(c)j }j∈S , path

(seed)
}︂

σ−−−−−−−→
II. Verification

Parse σ as
{︂
cmt, {rspj}j∈S , {path

(aux)
j }j∈S , {path(c)j }j∈S , path

(seed)
}︂

Compute seed = Hash(m, cmt)
Choose uniformly S ⊆ ZM at random from seed, with |S| = s

For all j ∈ S:

1. Choose zj
seed←−− Fq

Set ch :=
{︁
S, {zj}j∈S

}︁
Perform verification as in opt. GPS

Accept or reject the signature accordingly

Figure 5.11: Signature scheme based on the optimized GPS ZKID protocol.

5.3 R-CVE and R-GPS

The previously shown CVE and GPS both rely on the SDP problem. We now show

that by using R-SDP instead we can save on the signature sizes. From now on, we

will refer to the CVE and GPS schemes based on R-SDP as R-CVE and R-GPS,

respectively.

For starters, let us define how the problem used in the schemes switches from

SDP to R-SDP. While with SDP the private key was a vector e ∈ Fn
q of weight

t, with R-SDP the private key is e ∈ En
0 of weight t. Analogously, the vector ˜︁e

113



Chapter 5 - Signature schemes

Table 5.2: Comparison between optimized CVE-based and optimized GPS-based
signature sizes, λ = 128

q n t M s N Sign. Size (kB)

CVE (opt.)
991 220 90

− − 129 52.5
GPS (opt.) 991 19 − 27.2

CVE (opt.)
131 220 90

− − 130 44.5
GPS (opt.) 512 23 − 28.5

CVE (opt.)
269 207 90

− − 129 46.5
GPS (opt.) 1024 19 − 25.3

of weight t that is randomly sampled from Fn
q in GPS is now sampled from En

0 in

R-GPS. Moreover, the scaling vector of monomial transformations that was taken in

(F∗
q)

n is now taken in En. This justifies the choice of taking E as a cyclic subgroup

of F∗
q. In fact, as we recall applying the monomial transformation τ to a vector a

means multiplying each entry of the vector by an element of the scaling vector v.

If both a and v are restricted, then also the result is, because a product from two

elements of E is still in E. A restricted monomial transformation has a bit-size of

lz,τ =

⎧⎪⎪⎨⎪⎪⎩
n (⌈log2(n)⌉+ ⌈log2(z)⌉) , if t < n

n ⌈log2(z)⌉ , if t = n

(5.3.1)

which is clearly lower than (5.2.2) as z < q− 1. Also, a restricted vector has a lower

bit-size than a regular vector over Fq, as the former takes n ⌈log2(z + 1)⌉ bits and

the latter takes n ⌈log2(q)⌉ bits to be represented.

Both in CVE and in GPS, part of the communication cost is due to monomial

transformations or transformed vectors. Therefore, as using R-SDP reduces their

sizes, it is convenient to apply it to such schemes. The signature sizes of R-CVE

and R-GPS are
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|σ|R-CVE = 2λ⏞⏟⏟⏞
c

+N

⎛⎜⎜⎝n ⌈log2(z + 1)⌉⏞ ⏟⏟ ⏞
y(i)

+ 2λ⏞⏟⏟⏞
c
(i)

b(i)⊕1

+
λ+ ψ(n, q, t)

2⏞ ⏟⏟ ⏞
f (i)

⎞⎟⎟⎠ , (5.3.2)

|σ|R-GPS = 2λ⏞⏟⏟⏞
h

+ 2λ⏞⏟⏟⏞
root(c)

+ s(2λ+ lz,τ + ψ(n, q, t))⏞ ⏟⏟ ⏞
{rspj}j∈S

+

+ s(2λ ⌈log2(q)⌉)⏞ ⏟⏟ ⏞
{path(aux)j }j∈S

+ s(2λ ⌈log2(M)⌉)⏞ ⏟⏟ ⏞
{path(c)j }j∈S

+

λ
[︁
2⌈log2(s)⌉ + s

(︁
⌈log2(M)⌉ − ⌈log2(s)⌉ − 1

)︁]︁⏞ ⏟⏟ ⏞
path(seed)

.

(5.3.3)

5.4 R-BG

Another scheme that has been considered is the so-called BG, proposed in [12]

by Bidoux and Gaborit. BG is not originally based on SDP, but instead on the

Permuted Kernel Problem (PKP). Briefly, for PKP the prover first samples a vector

e ∈ Fn
q , a full rank H ∈ F(n−k)×n

q , a permutation π ∈ Sn and computes s = π(e)H⊤.

The secret key is the permutation π and the public key is {e, s}. With minor

modifications, the scheme can be adapted to the R-SDP setting. The only differences

are that we use monomial transformations instead of permutations and that e and

the transformation are sampled from the restricted set. Namely, once H has been

defined, we sample e, τ
$←− Sn × En, set the secret key as τ and the public key as

{e, s = τ(e)H⊤}. Obviously, to compress the public key size, e can be generated

from a seed seed(pk).

In Figure 5.12 one round of R-BG is shown. SeedTree, SeedPath and Reconstruct-

Seeds are the same function used in GPS.

It can be easily verified that the R-BG scheme satisfies the completeness property.
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The first check verifies that the prover applied the secret key τ . In fact, it computes

˜︁s = ˜︁eMH⊤ − βs = [τM(˜︁eM−1) + vM ]H⊤ − βs =

= [τM ◦ τM−1(˜︁eM−2) + τM(vM−1) + vM)]H⊤ − βs =

= [τM ◦ · · · ◦ τ1(˜︁e0) + M−1∑︂
i=1

τM ◦ · · · ◦ τi+1(vi) + vM ]H⊤ − βs =

= [τM ◦ · · · ◦ τ1(βe) + v]H⊤ − βs.

If the secret key has been correctly applied, i.e. τ1 = τ−1
2 ◦ · · · τ−1

M ◦ τ , then τM ◦ · · · ◦

τ1(βe)H
⊤ = βτ(e)H⊤ = βs and, therefore, ˜︁s = vH⊤. Notice that a composition

of restricted permutation is still restricted, so τ1 should be restricted. The second

check verifies the validity of {˜︁ei}1≤i≤M vectors and, by extention, the validity of the

seeds that produce e, {τi}2≤i≤M and {vi}1≤i≤M .

It can be seen that the protocol structure is the same as BG, so it inherits all of

its features. As in [12, Theorem 2], the soundness error is

ε =
1

M
+

M − 1

M(q − 1)
.

Once again, the security level λ is attained through multiple repetitions of the single

round. To set the value of N so that the attack in [23] is mitigated, we rely on the

analysis in [12, Section 4.2]. To this end, let

P (N ′, N,M) =
N∑︂

j=N ′

(︃
N

j

)︃(︃
1

q − 1

)︃j (︃
M − 1

M

)︃N−j

,

N∗ = arg min0≤x≤N

{︃
1

P (x,N,M)
+MN−x

}︃
.

Then, we choose N so that P (N∗, N,M)−1 +MN−N∗
> 2λ.

For the sake of brevity, we refer to [12] for the proof of the zero knowledge

116



Chapter 5 - Signature schemes

property.

The communication cost in bits of one round of the R-BG ZKID scheme is

2λ⏞⏟⏟⏞
c

+ ⌈log2(q − 1)⌉⏞ ⏟⏟ ⏞
β

+ 2λ⏞⏟⏟⏞
h

+ ⌈log2(M)⌉⏞ ⏟⏟ ⏞
I

+(2λ+ n ⌈log2(q)⌉+ λ ⌈log2(M)⌉+ lz,τ )⏞ ⏟⏟ ⏞
rsp

.

Actually, such expression is the upper bound of the real communication cost, as

the biggest size of rsp corresponding to I = 1 has been used. Moreover, the exe-

cution of multiple rounds can be optimized similarly to what we presented for the

optimized CVE. This means that the Prover computes for every round the commit-

ments c(1), . . . , c(t) as in Figure 5.12 and sends only their hash digest

c = Hash
(︁
c(1), . . . , c(t), salt

)︁
,

where also an additional salt is inputted into the hash function and is transmitted

with c. After he receives the β(i) for every round, the Prover computes all the hashes

h(1), . . . , h(t) as in Figure 5.12 and sends only their hash digest

h = Hash
(︂
h(1), . . . , h(t)

)︂
.

The Verifier has then to recompute all the c(i) and h(i) of every round and then

checks if their hashed values are equal to the ones sent by the Prover. With this

technique, the entire communication cost becomes

5λ⏞⏟⏟⏞
c,h,salt

+t
(︂
⌈log2(q − 1)⌉⏞ ⏟⏟ ⏞

β(i)

+ ⌈log2(M)⌉⏞ ⏟⏟ ⏞
I(i)

+2λ+ n ⌈log2(q)⌉+ λ ⌈log2(M)⌉+ lz,τ⏞ ⏟⏟ ⏞
rsp(i)

)︂
.
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The signature size obtained by applying the Fiat-Shamir transform is then

|σ|R-BG = 5λ⏞⏟⏟⏞
c,h,salt

+t
(︂
2λ+ n ⌈log2(q)⌉+ λ ⌈log2(M)⌉+ lz,τ⏞ ⏟⏟ ⏞

rsp(i)

)︂
. (5.4.1)

The public-key size is

|PK|R-BG = ψ(n, z + 1, t) + (n− k) ⌈log2(q)⌉ . (5.4.2)

5.5 R-BG(G)

When the R-SDP with full Hamming weight is considered, an even more compact

representation for restricted objects can be obtained. The idea consists of identifying

a set of restricted objects with small cardinality (but not too small, since this may

facilitate attacks) and admits a compact representation, preferably fast to compute.

We will then use such a set to build a variant of R-BG, called R-BG(G).

5.5.1 R-SDP(G)

We will refer to the set of all diagonal matrices diag(gi1 , . . . , gin), with ij ∈ {0, . . . , z−

1}, as the restricted diagonal group, which we denote by Dn(g) ⊆ Fn×n
q . Let us

introduce the bijection ℓ : Dn(g) → Zn
z , which allows for a vector representation of

the matrices in Dn(g), as

ℓ
(︁
diag(gi1 , . . . , gin)

)︁
= (i1, . . . , in).

It is easy to see that (Dn(g), ·) is isomorphic to (En, ⋆), where ”· ” denotes the

standard matrix multiplication and ”⋆ ” denotes the component-wise multiplication.

Additionally, both are abelian (or symmetric) groups and ℓ is a group isomorphism
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from (Dn(g), ·) to (Zn
z ,+). In other words, every element of Zn

n is associated with

only one element in Dn(g) through ℓ. More generally, any A generates a cyclic

subgroup {Ai | i ∈ N} ⊂ Dn(g). Due to the isomorphism to Zn
z , the order of A

is the same as the order of ℓ(A) in (Zn
z ,+). Indeed, for A = diag(gi1 , . . . , gin),

Aj = diag
(︁
gj·i1 (mod z), . . . , gj·in (mod z)

)︁
. If j = z̄ = ord(A), then by definition

Az̄ = diag
(︁
gz̄·i1 (mod z), . . . , gz̄·in (mod z)

)︁
= In (mod q).

This means that

ℓ(Az̄) =
(︁
z̄ · i1 (mod z), . . . , z̄ · in (mod z)

)︁
=
(︁
0 (mod z), . . . , 0 (mod z)

)︁
.

Recall that x ∈ Zz has order z
gcd(x,z)

, where gcd is the greatest common divisor.

Thus, by denoting the least common multiple as lcm, we have

ord(A) = lcm
(︁
ord(i1), . . . , ord(in)

)︁
= lcm

(︂
z

gcd(i1,z)
, . . . , z

gcd(in,z)

)︂
.

Notice that, if one of the ij is coprime to z, A has maximum order z.

We now consider the subgroup of Dn(g) whose generating set is a set of m

matrices from Dn(g). Namely, we choose m matrices B1, . . . ,Bm ∈ Dn(g), and

define

G = ⟨B1, · · · ,Bm⟩ =

{︄
m∏︂
j=1

B
uj

j

⃓⃓⃓⃓
⃓ui ∈ {0, . . . , z − 1}

}︄
.

In the following, we will call G the restricted diagonal subgroup. To any A ∈ G, we

can associate a vector representation through ℓG : G→ Zm
z , as follows

ℓG (A) = ℓG

(︄
m∏︂
j=1

B
uj

j

)︄
= (u1, . . . , um). (5.5.1)
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Clearly, (G, ·) ⊂ (Dn(g), ·) is a subgroup and ℓG is a group homomorphism. Thus,

for any A ∈ G, x ∈ N we have ℓG(A
x) = xℓG(A) (mod z).

Proposition 1. Let MG ∈ Zm×n
z be the matrix whose j-th row is ℓ(Bj), and B =

{uMG | u ∈ Zm
z } . Then, it holds that

1. ℓ(A) = ℓG(A)MG (mod z), for any A ∈ G;

2. |B| = |G|.

Proof. Let Bj = diag
(︂
gi

(j)
1 , . . . , gi

(j)
n

)︂
, hence ℓ(Bj) =

(︂
i
(j)
1 , . . . , i

(j)
n

)︂
, and A =∏︁m

j=1B
uj

j ∈ G. Then, it holds that

A =
m∏︂
j=1

diag
(︂
guji

(j)
1 , . . . , guji

(j)
n

)︂
= diag

(︂
g
∑︁m

j=1 uji
(j)
1 , . . . , g

∑︁m
j=1 uji

(j)
n

)︂
.

By construction, the element in the j-th row and v-th column of MG is i
(j)
v . Hence,

for u = ℓG(A) = (u1, . . . , um) ∈ Zm
z we get

ℓ(A) =

(︄
m∑︂
j=1

uji
(j)
1 , . . . ,

m∑︂
j=1

uji
(j)
n

)︄
= uMG ∈ Zn

z .

The second claim follows, since ℓ : Dn(g) ↦→ Zn
z is a bijection.

Now that we defined all the needed mathematical tools, let us use them for

slightly modifying R-SDP. From now on, we focus only on restrictions E = {gi |

i ∈ {0, · · · , z − 1}} such that z is prime. Also, we consider only restricted diagonal

subgroups G having maximum order |G| = zm, because, in this case, from Proposi-

tion 1 we have the maximum number of obtainable uMG vectors. We now consider

R-SDP with the additional constraint that the solution must be associated with an

element of G. The corresponding problem is defined as follows.
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Problem 4. R-SDP(G): SDP with Restricted Diagonal Subgroup G

Let G = ⟨B1, . . . ,Bm⟩, H ∈ F(n−k)×n
q and s ∈ Fn−k

q . Does there exist a vector e ∈ Fn
q

such that diag(e) ∈ G and eH⊤ = s?

For the sake of simplicity, we will sometimes slightly abuse notation and will

say e ∈ G, obviously implying that diag(e) ∈ G. When G = Dn(g), R-SDP(G)

corresponds to R-SDP.

Notice that R-SDP(G) admits fewer solutions than the more general R-SDP.

Consequently, we can modify the criterion to have a unique solution as

|G|q−(1−R)n < 1

and since |G| = zm we get m log2(z)− (1−R)n log2(q) ≤ 0.

At first glance, it seems like R-SDP(G) cannot be harder than R-SDP. Indeed,

the solution space now is G, with size |G| ≤ zm, instead of En, which is bigger and

has size zn. So, there may be attacks that exploit this additional constraint. To

avoid this, parameters have to be chosen carefully. We refer to [5] for the study of

attack strategies that exploit the knowledge of G and the following evaluation of

safe parameters.

5.5.2 Using R-SDP(G)

We will now show how to use R-SDP(G) for the R-BG scheme, which we will refer

to as R-BG(G). When R-SDP(G) is used, the generating set ⟨B1, . . . ,Bm⟩ must be

publicly known. In order for |G| to have the maximum order zm, it follows from

Proposition 1 that MG must have maximum rank m. The generating set can be

easily made part of the public key: the prover samples a seed seedG to generate a

candidate for ⟨B1, . . . ,Bm⟩ and checks if the corresponding MG has maximum rank.
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If this is not true, one discards the seed and restarts. When a valid seed is found, the

prover samples e at random from G and computes the syndrome s = eH⊤, where

H can be sampled from the seed. Notice that, as an option, one can even fix G, i.e.

fix a generating set ⟨G1, . . . ,Gm⟩ and use it for every instance of the protocol.

The vector e is sampled from G. Recall that we are considering the full weight, so

the monomial transformations are just composed of the scaling vector v. Moreover,

their action on a generic vector x can be simply expressed as a matrix multiplication

x ·diag(v). Since the monomial transformations must maintain the restriction in G,

also v has to be sampled from G. Then, let us show how to randomly draw a vector

from G. To uniformly sample at random some A ∈ G, one can first sample u
$←− Fm

z

and then compute A = ℓ−1
G (u) =

∏︁m
j=1B

uj

j . In practice, this can be done by first

computing ℓ(A) = (a1, . . . , an) = uMG, which requires O(nm) operations over Fz,

and then using the indices to generate the matrix as diag
(︂(︁
ga1 , . . . , gam

)︁)︂
, which

requires O(n) operations over Fq. Then, the n values diag−1(A) =
(︁
ga1 , . . . , gam

)︁
will either be considered as the elements of a restricted vector or as the diagonal of

a matrix defining a restricted isometry. As it is common in ZK protocols, random

objects will be communicated using the generating seed, of size λ, which a secure

PRNG has been fed with.

Clearly, if a restriction is enforced, it also has to be verified. To verify that a

given a is indeed in G, it is enough to check that ℓ(a) is a linear combination of the

rows of MG. This can be done using a basis C ∈ F(n−m)×n
z for the null space of MG:

a ∈ G, if and only if ℓ(a)C⊤ = 0.

For the sake of brevity, the scheme will not be shown, as it is the same as the one

in Figure 5.12 with slight modifications: e, τ and τi are sampled from G. Similar

adjustments can be also applied to R-GPS, thus obtaining R-GPS(G).

Considering that |G| = zm, it takes m ⌈log2(z)⌉ bits to represent a vector of
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Table 5.3: Performances of the GPS scheme [21] based on different problems, λ =
128.

q z n k w m N M Sign. Size (kB)

SDP

128 220 101 90 512 23 24.6
256 207 93 90 1024 19 22.4
512 196 92 84 2024 16 20.6
1024 187 90 80 4096 14 19.5

R-SDP

67 11 147 63 147 512 24 14.8
197 14 105 53 105 1024 19 13.4
991 33 77 48 77 2048 16 12.9
991 33 77 38 77 4096 14 12.5

R-SDP(G)

53 13 82 47 82 54 512 25 12.7
103 17 76 44 76 48 1024 21 12.7
223 37 56 33 56 34 2048 19 11.8
1019 509 40 16 40 18 4096 14 11.5

length n from G. Therefore, the signature size of R-BG(G) is

|σ|R-BG(G) = 5λ⏞⏟⏟⏞
c,h,salt

+t
(︂
2λ+ n ⌈log2(q)⌉+ λ ⌈log2(M)⌉+m ⌈log2(z)⌉⏞ ⏟⏟ ⏞

rsp(i)

)︂
,

which is clearly less than (5.4.1) as m < n. The public-key size is

|PK|R-BG(G) = m ⌈log2(z)⌉+ (n− k) ⌈log2(q)⌉ ,

which is also smaller than (5.4.2). Finally, we provide sets of parameters aiming for

a security level of λ = 128, for both GPS (Table 5.3) and BG in (Table 5.4) based

on different problems. We can see that R-BG has signature sizes 3 kB lower than

R-GPS. R-GPS(G) sizes are 1÷ 2 kB smaller than R-GPS and R-BG(G) are 2÷ 3

kB smaller than R-BG.
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Table 5.4: Performances of the BG scheme [12] based on different problems, λ = 128.

q z n k m N t Sign. Size (kB)

PKP 997 61 33
32 42 10.0
256 31 8.9

R-SDP 991 33 77 38
32 42 10.8
256 31 9.5

R-SDP(G)
971 97 44 26 26

32 42 8.0
256 31 7.4

1019 509 40 16 18
32 42 7.7
256 31 7.2

5.6 Comparison with other post-quantum

signatures schemes

In Table 5.5 we compare the R-GPS, R-BG, R-GPS(G) and R-BG(G) schemes with

other post-quantum signatures. As it is common in the literature, we have distin-

guished between ”fast” variants (those with the lowest number of rounds, that is,

with a smaller computational cost) and ”short” variants (the ones with a larger num-

ber of rounds and shorter signatures). Our protocols compare very favorably with

the schemes existing in the literature, even when considering the more conservative

R-SDP.

For what concerns SDP, we achieve signatures that are smaller than those of all

other schemes, apart from some variants of the Ret. of SDitH and WAVE. Notice

that WAVE is a Hash&Sign scheme and has large public keys (more than 3MB). Our

protocols, instead, use public keys of less than 0.1 kB. Notice that R-GPS achieves

signature sizes 10 kB smaller than GPS, thus highlighting the advantage of using

R-SDP instead of usual SDP.

Schemes based on the rank metric can achieve smaller signatures when some
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structure is considered (e.g. ideal codes). An exception is Durandal, which is not

obtained from a ZK protocol, but has much larger public keys. An analogous situ-

ation holds for LESS-FM. Our R-BG protocol beats all existing schemes based on

PKP, and has signatures that are smaller than both variants of SPHINCS+. Finally,

we notice that R-BG achieves better signature sizes than R-GPS and both schemes

improve when their (G) counterpart is considered.
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Public Data Parameters q, n, k, t ∈ N, parity-check matrix H ∈ F(n−k)×n
q

Private Key τ ∈ Sn × En

Public Key e ∈ En
0 with weight t, s = τ(e)H⊤ ∈ Fn−k

q

PROVER VERIFIER

Choose seed
$←− {0, 1}λ

Compute {seedi}1≤i≤M = SeedTree(seed)
For i = 2, · · · ,M :

1. Choose seed∗i , salti
seedi←−− {0; 1}λ

2. Choose τi
seed∗i←−−− Sn × En, vi

seed∗i←−−− Fn
q

3. Set ci := Hash
(︁
salti, seed

∗
i

)︁
Set τ1 := τ−1

2 ◦ · · · τ−1
M ◦ τ

Choose seed∗1, salt1
seed1←−−− {0; 1}λ

Choose v1
seed∗1←−−− Fn

q

Set c1 := Hash
(︁
salt1, seed

∗
1, τ1

)︁
Compute v = vM +

∑︁M−1
i=1 τM ◦ · · · ◦ τi+1(vi)

Set c := Hash
(︁
vH⊤, {ci}1≤i≤M

)︁
c−−−−−−→

Choose β
$←− F∗

q

β←−−−−−−
Set ˜︁e0 := βe
For i = 1, · · · ,M :
Set ˜︁ei := τi(˜︁ei−1) + vi

Set h := Hash
(︁
{˜︁ei}1≤i≤M}

)︁
h−−−−−−→

Choose I
$←− {1, · · · ,M}

I←−−−−−−
Compute path = SeedPath(I, seed)
If I ̸= 1, set rsp := {cI ,˜︁eI , τ1, path}
Else, set rsp := {cI ,˜︁eI , path}

rsp−−−−−−→
If I ̸= 1, check if τ1 ∈ Sn × En

Generate {seedi}i ̸=I = RecontstructSeeds(I, path)
For i ̸= I:

1. Choose seed∗i , salti
seedi←−− {0; 1}λ

2. Choose τi
seed∗i←−−− Sn × En, vi

seed∗i←−−− Fn
q

3. Set ci := Hash
(︁
salti, seed

∗
i

)︁
Set ˜︁e0 = βe

For i ̸= I:
1. ˜︁ei = τi(˜︁ei−1) + vi

2. If i ̸= 1: compute ci = Hash
(︁
salti, seed

∗
i

)︁
3. Else, compute c1 = Hash

(︁
salt1, seed

∗
1, τ1

)︁
Compute ˜︁s = ˜︁eMH⊤ − βs

Set b := 1 if c = Hash
(︁˜︁s, {ci}1≤i≤M

)︁
, b := 0 otherwise

Set b′ := 1 if h = Hash
(︁
{˜︁ei}1≤i≤M

)︁
, b′ := 0 otherwise

Accept if b ∧ b′ = 1, reject otherwise

Figure 5.12: One round of the R-BG protocol.
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Table 5.5: Comparison between signature schemes based on different post-quantum
problems for λ = 128. All sizes are expressed in kB.

Problem Scheme Pk size Sign. size Pk+Sign. size Variant

Hamming SDP,
low weight

GPS[21]
0.1 24.0 24.1 Fast
0.1 19.8 19.9 Short

FJR[17]
0.1 22.6 22.7 Fast
0.1 16.0 16.1 Short

SDItH[18]
0.1 11.5 11.6 Fast
0.1 8.3 8.4 Short

Ret. of SDitH[1]
0.1 12.1 12.1 Fast, Var.3
0.1 5.7 5.8 Shortest, Var.3

Hamming SDP,
large weight

WAVE[15] 3200 2.1 3202 -

Code Equivalence LESS-FM[6]
10.4 11.6 23.0 Balanced
205.7 5.3 211.0 Short sign

Rank Syndrome
Decoding

Fen[16]
0.1 11.0 11.1 Fast
0.1 8.5 8.6 Short

BG[12]
0.1 17.2 17.3 Fast
0.1 12.6 12.7 Short

Durandal[2] 15.2 4.1 19.3 -

Ideal Rank
Syndrome Decoding

BG[12]
0.1 12.6 12.7 Fast
0.1 10.2 10.3 Short

Ideal Rank
Support Learning

BG[12]
0.5 8.4 8.9 Fast
0.5 6.1 6.6 Short

MinRank Fen[16]
18.2 9.3 27.5 Fast
18.2 7.1 25.3 Short

MinRank with
Linearized Poly

Fen[16]
18.2 7.2 25.4 Fast
18.2 5.5 23.7 Short

Rank Syndrome Dec.
with Linearized Poly

Fen[16]
0.9 7.4 8.3 Fast
0.9 5.9 6.8 Short

PKP

Beu[11]
0.1 18.4 18.5 Fast
0.1 12.1 12.2 Short

Fen[16]
0.1 16.4 16.5 Fast
0.1 12.8 12.9 Short

BG[12]
0.1 9.8 9.9 Fast
0.1 8.8 8.9 Short

Hash collisions SPHINCS+[10]
<0.1 16.7 16.7 Fast
<0.1 7.7 7.7 Short

R-SDP
R-GPS

0.1 14.8 14.9 Fast
0.1 12.5 12.6 Short

R-BG
0.1 10.8 10.9 Fast
0.1 9.5 9.6 Short

R-SDP(G)
R-GPS(G)

0.1 12.7 12.8 Fast
0.1 11.5 11.6 Short

R-BG(G)
0.1 7.7 7.8 Fast
0.1 7.2 7.3 Short
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Implementation of restricted GPS

signature scheme

In this chapter, the implementation of a proof-of-concept GPS signature scheme

(Figure 5.11) is introduced. For the sake of brevity, only the main and most partic-

ular functions will be presented. The proof-of-concept does not aim to be efficient,

but instead is useful to check if the scheme can be successfully implemented, i.e. if

the soundness property is correctly verified in practice. Therefore, coding consider-

ations and strategies will not be discussed in detail. The entire code can be found in

the Appendix. The code has been developed with SageMath, a free and open-source

mathematical software system based on the Python programming language.

6.1 FindIsometry

Given two vectors e and ˜︁e as inputs, the function FindIsometry outputs a monomial

transformation such that e = τ(˜︁e). Briefly recalling the definition of τ , its action
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can be expressed as

e = (e0, . . . , en−1) = τ(˜︁e) = (︁vπ(0)˜︁eπ(0), . . . , vπ(n−1)˜︁eπ(n−1)

)︁
.

We refer to e and ˜︁e supports as S and ˜︁S, respectively.
After obtaining the indexes of S and ˜︁S, all the possible permutations of the set

of ˜︁S indexes are defined and one of them is picked at random. The same is done for˜︁SC . Such two permutations are then joined to form a single random permutation

vector of indexes π, making sure that the permutation of ˜︁S lands on S.

The scaling vector is then computed. For the indexes i outside of S, the scalars

vπ(i) are chosen randomly over E as they will be multiplied by ˜︁eπ(i) = 0. For indexes

inside of S, the scalars vπ(i) are computed as ei/˜︁eπ(i).
6.2 SeedPath

Given the list S ⊆ ZM of selected instances and the root seed, SeedPath outputs the

seed path that does not disclose {seedi}i∈S. Every node in the seed path is defined

as a Node class object whose attributes are:

• Value;

• Layer index;

• Index within the layer;

• Direction (left or right node).

Let us refer to the situation of Figure 5.9a, withM = 8, s = 2 and S = [2, 6]. The

first step consists of creating a temporary seed path for the first challenge instance,

which is 2 in this case (Figure 6.1a). Then, from the root layer to the leaves layer,
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we remove nodes that do not match with the rest of the challenge instances. For

example, the node T1,1 would reveal seed6, therefore we substitute it with its child

nodes (Figure 6.1b). Analogously, at the next iteration T2,3 will be substituted with

seed7 (Figure 6.1c), thus ending the algorithm.

6.3 ReconstructSeeds

Given the list S ⊆ ZM of selected instances and the seed path, ReconstructSeeds

outputs {seedi}i/∈S.

Let us refer to the situation of Figure 5.9c. Starting from the first node on the

left, T1,0, we compute by hashing every layer until we get to the leaves layer (Figure

6.2a). Then, we do the same for the next node to the right, T2,3 (Figure 6.2b).

6.4 Results

In this section, the results of the R-GPS scheme implementation are presented. In

Figure 6.3 an example of script execution is shown. As we can notice, the complete-

ness property of the scheme is verified, thus the implementation has been successful.

For the signature and verification timings, we get timings ranging from some

minutes to tens of minutes, depending on the parameters. Clearly, such timings are

large. But again, this is a proof-of-concept implementation, which is not written

in a highly-performance programming language, i.e. C, nor optimized. Thus, the

obtained times are expected. We also noticed that timings grow with q. This is

because the number of aux grows, therefore more hashes have to be computed and

hashing is the bottleneck of the scheme. Obviously, verification is always faster than

signing as the Verifier performs fewer operations than the Signer.
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T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(a) Temporary seed path of seed2.

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(b) Substituting T1,1 with its child nodes.

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(c) Substituting T2,3 with seed7.

Figure 6.1: Example of SeedPath execution for M = 8, s = 2 and S = [2, 6].
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T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2 T2,3

(a) Computing the seeds from the first node on the left.

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(b) Continuing with T2,3. The seeds that cannot be recomputed are shown in dotted line.

Figure 6.2: Example of ReconstructSeeds execution for M = 8, s = 2 and S = [4, 5].
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Figure 6.3: Example of script execution.

Just as a term of comparison, with a proof-of-concept C implementation of R-

BG we obtain 19.2 ms for the signing and 18.0 ms for the verification, while a

more optimized C implementation gives 2.1 ms for the signing and 2.0 ms for the

verification.
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Conclusion and future work

New approaches to code-based digital signatures have been studied in this work.

In particular, we focused on zero-knowledge ID schemes and then applied the Fiat-

Shamir transform to obtain ZKID-based signature schemes. Information Set De-

coder generic solvers for Syndrome Decoding Problem have been analyzed to under-

stand how the best algorithm such as Stern and BJMM perform.

A relatively new problem based on sets of restricted elements, R-SDP, has been

introduced. New ISD solvers have been developed for this setting, where the ap-

propriate choice of the elements search space aims to increase the number of repre-

sentations while keeping the lists as small as possible. For low values of z it is also

possible to further exploit the algebraic structure of E, making attacks even more

successful. It is then clear that even or small orders of the restricted set have to be

avoided.

We explored some of the already existing ZKID-based signature schemes, such as

CVE, GPS and BG. By applying R-SDP to these schemes, we highlighted a saving in

signature sizes. This happens because the restricted objects, i.e. vectors and mono-

mial transformations, require fewer bits to be represented than their counterparts
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over Fq. Moreover, the restriction implicates the existence of fewer solutions, so the

instance weight can be maximum for z small enough. In this case, transformations

can be represented with just the scaling vector, so this results in a further bit saving

and faster computations as mere component-wise multiplications are required. More

importantly, higher weights make ISD more difficult. Therefore, smaller codes can

be used, thus getting even smaller sizes. The R-GPS scheme achieves signature sizes

of the order of 12 kB, which is 8 to 10 kB times less than GPS. This underlines the

strength of the applied restriction.

The proof-of-concept Python implementation of R-GPS shows that the scheme

can correctly work, even if it requires the execution of non-trivial subroutines for the

management of Merkle Trees and binary trees. The timings are large but expected

for a Python proof-of-concept. This is due to the large number of hashes that the

scheme has to perform and this number grows with q. However, a fully optimized

version of R-GPS will surely yield much better timings. The considered schemes

will be implemented in an optimized way, as they will be the subject of a NIST

submission for the fourth round of the standardization contest for signature schemes.

For full-weight instances, an even newer problem has been introduced, R-SDP(G),

based on a restriction of the set of diagonal matrices with entries in E, showing that

it leads to even smaller signatures when applied to the considered schemes. The

obtained signature sizes in the order of 7 kB are highly competitive with respect to

other state-of-the-art solutions.

Future work will aim to possibly find better-performing alternatives than R-BG

and to choose optimal parameters for R-SDP, both for security and implementation

aspects. The schemes have then to be developed in C language in a highly-optimized

fashion in order to cut the timings down as much as possible and be competitive

even with schemes that show smaller signature and/or public key sizes.
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7.1 opt test MPC.sage

1 reset()

2

3 import hashlib

4 import numpy

5 import sys

6 from time import perf_counter

7

8 load('/path/to/opt_MPC_utils.sage')

9 load('/path/to/merkletools.sage')

10

11 #Scheme parameters

12 q = 997 #Select prime integer q (size of the field)

13 n = 256 #Lenght of the code

14 r = 204 #Redundancy of the code (n-k)

15 w = 10 #Private key weight

16 z = 83 #Restricted set size

17 _lambda = 128 #Seed bit lenght

18 M = 400 #Number of instances
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19 s_num = 20 #Number of chosen rounds (|S|)

20 mex = "Ciao!" #Message to be signed

21 avg = True #True if average measurements over 5 executions are

needed, False otherwise↪→

22

23 #Preparations to execute the protocol

24 Fq=GF(q) #Finite field with q elements

25 Fq_set = Set(Fq)

26 Fq_star = Fq_set.difference([0]) #Multiplicative group of Fq

27 E = Set(get_E()) #Restricted set

28

29 #Key generation

30 e, Htr_unsys, s, pk_seed = key_gen()

31 for i in range(len(e)):

32 assert e[i] in E or e[i] == 0, "ERROR: e is not restricted!"

33

34

35 #MPC-in-the-head identification

36 ok, sig_size, tot_time = MPC_id(e,Htr_unsys,s,mex,s_num)

37 if avg:

38 for i in range(4):

39 ok_tmp, sig_size_tmp, tot_time_tmp =

MPC_id(e,Htr_unsys,s,mex,s_num)↪→

40 sig_size += sig_size_tmp

41 tot_time += tot_time_tmp

42 sig_size = sig_size/5

43 tot_time = tot_time/5
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44

45 print("\nSigned message: "+mex)

46 print("\nSignature size: "+str(sig_size/1024.)+" KB")

47 print("\nPublic Key size (seed): "+str(sys.getsizeof(pk_seed))+" B")

48 if ok==1:

49 print(Bcolors.BOLD+Bcolors.UNDERLINE+Bcolors.OKGREEN+"\nSignature

ACCEPTED!\n"+Bcolors.ENDC+Bcolors.ENDC);↪→

50 else:

51 print(Bcolors.BOLD+Bcolors.UNDERLINE+Bcolors.FAIL+"\nSignature

REJECTED!\n"+Bcolors.ENDC+Bcolors.ENDC);↪→

52

53 print("Total execution time: "+str(tot_time)+" seconds\n")

7.2 opt MPC utils.sage

1 #MPC functions

2

3 from random import seed

4

5 class Bcolors:

6 HEADER = '\033[95m'

7 OKBLUE = '\033[94m'

8 OKCYAN = '\033[96m'

9 OKGREEN = '\033[92m'

10 WARNING = '\033[93m'

11 FAIL = '\033[91m'

12 ENDC = '\033[0m'
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13 BOLD = '\033[1m'

14 UNDERLINE = '\033[4m'

15

16 #Class that represents a node of the seed tree

17 class Node:

18

19 def __init__(self,val='',lev=-1,ind=-1,dir=''):

20 self.val = val #Value of the node

21 self.lev = lev #Level within the tree of the node

22 self.ind = ind #Index of the node in that level

23 self.dir = dir #Direction of the node (left or right)

24

25 def level(self):

26 return self.lev

27

28 def value(self):

29 return self.val

30

31 def index(self):

32 return self.ind

33

34 def direction(self):

35 return self.dir

36

37 ##################################################################

38

39 #Obtaining restricted set
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40 def get_E():

41

42 assert is_prime(q),"q is not prime!"

43 assert (q-1)%z == 0, "z does not divide q-1!"

44

45 alpha = Fq.primitive_element()

46 exp = (q-1)/z

47 g = alpha**exp

48 return [g^l for l in range(z)]

49

50 ##################################################################

51

52 #Key generation

53 def key_gen():

54

55 set_random_seed()

56 pk_seed = initial_seed() #Save the seed that generates the public

key H↪→

57 Htr_unsys = random_matrix(Fq,n-r,r) #public matrix (only

non-systematic portion)↪→

58 set_random_seed() #Set a random seed that generates the private

key e so it can't be reconstructed from pk_seed↪→

59 e = FWV()

60

61 #compute syndrome

62 s = e[0:r] + e[r:n]*Htr_unsys

63
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64 return e,Htr_unsys,s,pk_seed

65

66 ##################################################################

67

68 #Generate a random vector with weight w and lenght n

69 def FWV():

70

71 a = vector(Fq,w)

72

73 for i in range(0,w):

74 a[i] = E.random_element()

75

76 b = zero_vector(n) #List of zeros of lenght n

77 P = Permutations(range(0,n))

78 rnd_supp = P.random_element()

79

80 for i in range(0,w):

81 b[rnd_supp[i]] = a[i]

82

83 return b

84

85 ##################################################################

86

87 #Find an isometry function tau such that e = tau(e_tilde)

88 def FindIsometry(e,e_tilde):

89

90 supp_e = []
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91 supp_e_tilde = []

92

93 for i in range(0,n):

94 if e[i]!=0:

95 supp_e.append(i)

96 if e_tilde[i]!=0:

97 supp_e_tilde.append(i)

98

99 P_supp = Permutations(supp_e_tilde)

100 tau_perm_supp = P_supp.random_element()

101

102 zeros_e_tilde = [x for x in list(range(0,n)) if x not in

supp_e_tilde] #Complement of e_tilde support↪→

103 P_zeros = Permutations(zeros_e_tilde)

104 tau_perm_zeros = P_zeros.random_element()

105

106 #Joining the permutations of e_tilde support and of the

complement of e_tilde support, according to e support↪→

107 tau_perm = [] #Total permutation

108 j = 0

109 k = 0

110

111 for i in range(0,n):

112 if i in supp_e:

113 tau_perm.append(tau_perm_supp[j])

114 j = j + 1

115 else:
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116 tau_perm.append(tau_perm_zeros[k])

117 k = k + 1

118

119 tau_values = vector(Fq,n)

120

121 for i in range(0,n):

122 #Find value vector through reciprocal calculation

123 if e_tilde[tau_perm[i]] == 0:

124 tau_values[tau_perm[i]] = E.random_element()

125 else:

126 tau_values[tau_perm[i]] = Fq(e[i]/e_tilde[tau_perm[i]])

127

128 return tau_perm, tau_values

129

130 ##################################################################

131

132 #Apply monomial transformation (isometry)

133 def apply_rest_monomial(tau_perm,tau_values,a):

134

135 b = vector(Fq,n)

136

137 for i in range(0,n):

138 p = tau_perm[i]

139 b[i] = tau_values[p]*a[p]

140

141 return b

142
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143 ##################################################################

144

145 #Hash input

146 def hash(input):

147

148 dig = hashlib.sha256()

149 dig.update(input.encode('utf-8'))

150 dig = dig.hexdigest()

151

152 return dig

153

154 ##################################################################

155

156 #Compute the hash of an input node and separates the result in two

parts↪→

157 def hash_forking(input):

158

159 dig = hash(input)

160 sx = dig[:len(dig)//2]

161 dx = dig[len(dig)//2:]

162

163 return sx, dx

164

165 ##################################################################

166

167 #Generates the M seeds as leaves of a binary tree obtained by a

starting seed↪→
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168 def SeedTree(starting_seed):

169

170 last_level = [str(starting_seed)]

171

172 while len(last_level) < M:

173

174 next_level = []

175

176 for i in last_level:

177 sx, dx = hash_forking(i)

178 next_level.append(sx) # Sibling node (SX)

179 next_level.append(dx) # Sibling node (DX)

180

181 last_level = next_level

182

183 return last_level[0:M] # Return the M required seeds

184

185 ##################################################################

186

187 #Returns the seed path of S-th seeds which are the S-th leaves of the

binary tree obtained from starting_seed↪→

188 def SeedPath(S,starting_seed):

189

190 path = []

191

192 #Get number of leaves of the seeds binary tree

193 n_leaves = 1
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194 while n_leaves < M:

195 n_leaves = 2*n_leaves

196 indexes = list(range(0,n_leaves)) #List of leaves indexes

197

198 #First, we get the path of just the first seed whose index is in

S↪→

199 last_level = str(starting_seed) #Root node

200

201 levels = log(n_leaves,2)

202

203 lv_counter = levels

204 last_index = 0

205 while not len(indexes) == 1:

206 lv_counter -= 1

207 sx, dx = hash_forking(last_level)

208 if S[0] in indexes[:len(indexes)//2]: #S[0] is on the left

part↪→

209 path.append(Node(dx,lv_counter,2*last_index+1,'right'))

210 last_index = 2*last_index

211 last_level = sx #New parent node

212 del indexes[len(indexes)//2:] #Eliminate indexes we don't

need anymore↪→

213 else: #S[0] is on the right part

214 path.append(Node(sx,lv_counter,2*last_index,'left'))

215 last_index = 2*last_index + 1

216 last_level = dx #New parent node
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217 del indexes[:len(indexes)//2] #Eliminate indexes we don't

need anymore↪→

218

219 assert indexes[0] == S[0], "Seed Path computation error!"

220

221 for i in S:

222 if not i == S[0]:

223 indexes = [list(range(0,n_leaves/(2^x))) for x in

range(0,levels)] #List of node index lists for every

level

↪→

↪→

224 for j in range(levels-1,-1,-1): #j is the level index

(from levels-1 to 0 (leaves level) included)↪→

225 #i is on the left part

226 if i in indexes[0][:len(indexes[0])//2]:

227 #Cut the indexes in half at every level

228 for ind in indexes: #Eliminate indexes we don't

need anymore↪→

229 if len(ind) == 1:

230 del ind[0]

231 else:

232 del ind[len(ind)//2:]

233 for x in path:

234 if x.level()==j and x.index()==indexes[j][0]:

235 #Remove the node and add its child (only

if not included in S)↪→

236 path.remove(x)

237 #Calculate child nodes
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238 sx, dx = hash_forking(x.value())

239 if j-1 == 0 and not indexes[j-1][0] in S

or j-1 > 0:↪→

240 #Left child node

241 path.append(Node(sx,j-1,

indexes[j-1][0],'left'))↪→

242 if j-1 == 0 and not indexes[j-1][1] in S

or j-1 > 0:↪→

243 #Right child node

244 path.append(Node(dx,j-1,

indexes[j-1][1],'right'))↪→

245 #i is on the right part

246 else:

247 #Cut the indexes in half at every level

248 for ind in indexes: #Eliminate indexes we don't

need anymore↪→

249 if len(ind) == 1:

250 del ind[0]

251 else:

252 del ind[:len(ind)//2]

253 for x in path:

254 if x.level()==j and x.index()==indexes[j][0]:

255 #Remove the node and add its child (only

if not included in S)↪→

256 path.remove(x)

257 #Calculate child nodes

258 sx, dx = hash_forking(x.value())
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259 if j-1 == 0 and not indexes[j-1][0] in S

or j-1 > 0:↪→

260 #Left child node

261 path.append(Node(sx,j-1,

indexes[j-1][0],'left'))↪→

262 if j-1 == 0 and not indexes[j-1][1] in S

or j-1 > 0:↪→

263 #Right child node

264 path.append(Node(dx,j-1,

indexes[j-1][1],'right'))↪→

265

266 return path

267

268 ##################################################################

269

270 #Function that takes a list a of elements as input, generates a

Merkle Tree from it and returns the call to the constructor↪→

271 def MerkleTree(input):

272

273 a = input

274

275 #https://stackoverflow.com/questions/18754180

/create-multiple-instances-of-a-class↪→

276 mt = MerkleTools()

277

278 counter = 0

279 while not log(len(a),2)==ceil(log(len(a),2)):
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280 counter += 1

281 #We add 'custom' leaves to get the right number of leaves

(power of 2). This is done by hashing the last leaf (we

can't add random leaves because this would

↪→

↪→

282 #cause the reconstructed tree (created by Verifier) to be

different to the first one (created by Prover) in the

custom leaves if the set seed isn't the same)

↪→

↪→

283 a.append(hash(a[-1]))

284

285 d = log(len(a),2)

286

287 for i in range(0,2^(d)):

288 mt.add_leaf(a[i]) #Not automatically hashed, the input a is

intended to be already hashed↪→

289

290 mt.make_tree()

291

292 #Removing custom leaves now that we no longer need them

293 for i in range(0,counter):

294 a.pop(-1)

295

296 return mt

297

298 ##################################################################

299
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300 #Outputs the list of reconstructed seeds from the seed path obtained

from SeedPath (obviously, seeds with j in S are not included in

the list)

↪→

↪→

301 def ReconstructSeeds(S,path_seed):

302

303 #Get number of leaves of the seeds binary tree

304 n_leaves = 1

305 while n_leaves < M:

306 n_leaves = 2*n_leaves

307

308 seed = ['']*n_leaves #Final list of seeds we are looking for

309

310 for node in path_seed:

311

312 #First, we have to reconstruct the leaves associated to each

node in path_seed↪→

313 last_level = [node]

314

315 for i in range(0,node.level()): #As said before, i is the

level of the tree where the digest is, so is also the

number of hash forkings that we have to compute

↪→

↪→

316

317 next_level = []

318 next_level_indexes = []

319

320 for x in last_level:

321 sx, dx = hash_forking(x.value())
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322 next_level +=

[Node(sx,x.index()-1,2*x.index(),'left'),

Node(dx,x.index()-1,2*x.index()+1,'right')]

↪→

↪→

323 next_level_indexes += [2*x.index(), 2*x.index()+1]

324

325 last_level = next_level

326

327 if node.level() == 0:

328 next_level_indexes = [node.index()]

329

330 #After recontructing the leaves, we have to place them in the

final seed list↪→

331 counter = 0

332 for i in next_level_indexes:

333 seed[i] = last_level[counter].value()

334 counter += 1

335

336 test = 1

337 for i in S:

338 if not seed[i] == '':

339 test = 0

340 if test and len(seed)==n_leaves:

341 return seed

342 else:

343 raise Exception("Seed recomputation error!")

344

345 ##################################################################
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346 #Here the actor (Helper, Prover, Verifier) classes description

begins.↪→

347 #If the comments above the method definitions are in:

348 # - lower case letters: the method is one of the steps of the first

MPC-in-the-head scheme (the one with the Helper)↪→

349 # - upper case letters: the method is one of the steps of the second

MPC-in-the-head scheme (the one without the Helper), which use

the "lower case" methods

↪→

↪→

350

351 #HELPER

352 class Helper:

353

354 #Setup (H)

355 def H(seed):

356

357 set_random_seed(seed)

358 u_helper = random_vector(Fq,n)

359 e_tilde_helper = FWV()

360

361 r_v = matrix(GF(2),q,_lambda)

362 c_v = [""]*len(Fq)

363

364 set_random_seed(seed)

365 for v in Fq:

366 r_v[v] = random_vector(GF(2),_lambda)

367 c_v[v] = hash(str(r_v[v])+str(u_helper+v*e_tilde_helper))

368
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369 aux = c_v

370

371 return aux

372

373 ##################################################################

374

375 #PROVER

376 class Signer:

377

378 def __init__(self,hash_leaf=False,s_num=0):

379

380 self.s_num = s_num

381 self.hash_leaf = hash_leaf # True to hash the input leaves,

False otherwise↪→

382

383 self.u = []

384 self.e_tilde = []

385 self.tau_perm = []

386 self.tau_values = []

387 self.r_vec = []

388

389 self.aux = [] # list of M aux

lists of strings↪→

390 self.aux_hash = [[] for x in range(M)] # hashed version

of aux (leaves must be obtained by hashing the aux

values)

↪→

↪→
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391 self.c = [] # list of M

commitments↪→

392 self.c_hash = [] # hashed version

of c↪→

393 self.root_aux = [""]*M # list of the M

roots of each aux tree↪→

394 self.T_aux = [] # list of calls

to the T_aux merkle trees constructors↪→

395

396 #Commitment (P1)

397 def P1(self,Htr_unsys,e,seed):

398

399 set_random_seed(seed)

400 self.u.append(random_vector(Fq,n))

401 self.e_tilde.append(FWV())

402 tau_p, tau_v = FindIsometry(e,self.e_tilde[-1])

403 self.tau_perm.append(tau_p)

404 self.tau_values.append(tau_v)

405 self.r_vec.append(random_vector(GF(2),_lambda))

406 tau_u = apply_rest_monomial(self.tau_perm[-1],

self.tau_values[-1],self.u[-1])↪→

407

408 c = hash(str(self.r_vec[-1])+str(self.tau_perm[-1])+

str(self.tau_values[-1])+

str(tau_u[0:r]+tau_u[r:n]*Htr_unsys))

↪→

↪→

409

410 return c
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411

412 #Response (P2)

413 def P2(self,ch,seed,I):

414

415 set_random_seed(seed)

416 r_v_prover = matrix(GF(2),q,_lambda)

417

418 for v in Fq:

419 r_v_prover[v] = random_vector(GF(2),_lambda)

420

421 r_z = r_v_prover[ch]

422 y = self.u[I] + ch*self.e_tilde[I]

423 rsp =

[self.r_vec[I],r_z,self.tau_perm[I],self.tau_values[I],y]↪→

424

425 return rsp

426

427 #I. COMMITMENT

428 def Commitment(self,Htr_unsys,e):

429

430 set_random_seed()

431 self.starting_seed = initial_seed() # Random starting

seed, root of the seed tree↪→

432 self.seed = SeedTree(self.starting_seed) # list of M seeds

obtained from the seed tree↪→

433

434 for i in range(0,M):

156



Appendix

435 self.aux.append(Helper.H(int(self.seed[i],16)))

436 if self.hash_leaf:

437 for j in range(0,len(self.aux[i])):

438 self.aux_hash[i].append(hash(self.aux[i][j]))

439 else:

440 self.aux_hash[i] = self.aux[i] #We don't do the hash

of the leaves↪→

441 mt = MerkleTree(self.aux_hash[i])

442 self.T_aux.append(mt)

443 self.root_aux[i] = mt.get_merkle_root()

444 self.c.append(self.P1(Htr_unsys,e,int(self.seed[i],16)))

445

446 h = hash(''.join(self.root_aux)) # Total hash of aux trees

roots↪→

447 if self.hash_leaf:

448 for i in range(0,len(self.c)):

449 self.c_hash.append(hash(self.c[i]))

450 else:

451 self.c_hash = self.c

452

453 self.T_c = MerkleTree(self.c_hash)

454 mt = self.T_c

455 root_c = mt.get_merkle_root()

456

457 return h, root_c

458

459 #II. CHALLENGE
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460 def Challenge(self,mex,h,root_c):

461

462 S = [] # list of s_num selected rounds (from 0 to M-1)

463 z = [] # list of s_num selected aux (from 0 to q-1)

464

465 set = Set(Integers(M))

466 set_random_seed(Integer(hash(str(mex)+str(h)+

str(root_c)),16))↪→

467

468 for i in range(0,self.s_num):

469 S.append(int(set.random_element()))

470 set = set.difference([S[i]])

471 z.append(Fq.random_element())

472

473 return S, z

474

475 #III RESPONSE

476 def Response(self,z,S):

477

478 rsp_S = [] # list of s responses

479 path_aux_S = [] # list of s aux for the selected

rounds↪→

480 path_c_S = [] # list of s paths of the commitments

(c) for the selected rounds↪→

481

482 for i in S:

483 idx = S.index(i) #Index of i within the list S
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484 rsp_S.append(self.P2(z[idx],int(self.seed[i],16),i))

485

486 mt = self.T_aux[i]

487 path_aux_S.append(mt.get_proof(int(z[idx])))

488 mt = self.T_c

489 path_c_S.append(mt.get_proof(int(i)))

490

491 path_seed = SeedPath(S,self.starting_seed)

492

493 return rsp_S, path_aux_S, path_c_S, path_seed

494

495 #Main execution of the Signer

496 def main(self,Htr_unsys,e,mex):

497

498 #I. COMMITMENT

499 h, root_c = self.Commitment(Htr_unsys,e)

500

501 #II. CHALLENGE

502 S, z = self.Challenge(mex,h,root_c)

503

504 #III. RESPONSE

505 rsp_S, path_aux_S, path_c_S, path_seed = self.Response(z,S)

506

507 #Signature

508 sigma = [h,root_c,rsp_S,path_aux_S,path_c_S,path_seed]

509

510 return sigma
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511

512 ##################################################################

513

514 #VERIFIER

515 class Verifier:

516

517 def __init__(self,hash_leaf,s_num):

518

519 self.hash_leaf = hash_leaf # True to hash the input leaves,

False otherwise↪→

520 self.s_num = s_num # Number of rounds to

select↪→

521

522 self.T_aux_bar = [] #

list of calls to the T_aux_bar merkle trees constructors↪→

523 self.aux_bar_not_S = ['']*M #

list of the M aux_bar reconstructed by every seed not

included in S (each entry is a list of length q)

↪→

↪→

524 self.aux_bar_not_S_hash = [[] for x in range(M)] #

hashed version of aux_bar_not_S (leaves must be obtained

by hashing the aux values)

↪→

↪→

525 self.root_aux_bar = ['']*M #

list of the roots of all the T_aux_bar merkle trees↪→

526

527 #Verification (V2)

528 def V2(self,Htr_unsys,s,aux,c,rsp):

529
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530 tau_y = apply_rest_monomial(rsp[2],rsp[3],rsp[4])

531 t = tau_y[0:r]+tau_y[r:n]*Htr_unsys - self.z*s

532

533 c_verifier = hash(str(rsp[0])+str(rsp[2])+str(rsp[3])+str(t))

534

535 #The 2nd and 3rd conditions check if tau is an isometry

536 if c_verifier == c and numpy.unique(rsp[2]).size == n and 0

not in rsp[3]:↪→

537

538 c_z_verifier = hash(str(rsp[1])+str(rsp[4]))

539 c_z = aux[self.z]

540

541 if c_z_verifier == c_z:

542 return 1

543 else:

544 return 0

545 else:

546 return 0

547

548 #II. VERIFICATION

549 def Verification(self,Htr_unsys,s,h,root_c,rsp_S,path_aux_S,

path_c_S,path_seed):↪→

550

551 seed_bar = ReconstructSeeds(self.S,path_seed)

552 b = 1

553 for j in range(0,M):

554 if j in self.S:
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555 idx = self.S.index(j) #Index of j in the self.S list

556 tau_y_S = apply_rest_monomial(rsp_S[idx][2],

rsp_S[idx][3],rsp_S[idx][4])↪→

557 t_S = tau_y_S[0:r]+tau_y_S[r:n]*Htr_unsys -

self.z[idx]*s↪→

558 c_S = hash(str(rsp_S[idx][0])+str(rsp_S[idx][2])+

str(rsp_S[idx][3])+str(t_S))↪→

559

560 if self.hash_leaf:

561 c_S_hash = hash(c_S)

562 else:

563 c_S_hash = c_S

564

565 mt = MerkleTools()

566 if not int(mt.validate_proof(path_c_S[idx], c_S_hash,

root_c)): #validate_proof() is equal to

get_merkle_root() (the function that they call

"ReconstructRoot" in the paper) + check with

target root

↪→

↪→

↪→

↪→

567 b = 0

568

569 c_z_S = hash(str(rsp_S[idx][1])+str(rsp_S[idx][4]))

570 if self.hash_leaf:

571 c_z_S_hash = hash(c_z_S)

572 else:

573 c_z_S_hash = c_z_S

574
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575 self.root_aux_bar[j] =

mt.get_root_from_path(path_aux_S[idx],

c_z_S_hash)

↪→

↪→

576 self.T_aux_bar.append('') #T_aux_bar must have j

entries, even if this one won't be used↪→

577 else:

578 self.aux_bar_not_S[j] = Helper.H(int(seed_bar[j],16))

579

580 if self.hash_leaf:

581 for i in range(0,len(self.aux_bar_not_S[j])):

582 self.aux_bar_not_S_hash[j].append(hash

(self.aux_bar_not_S[j][i]))↪→

583 else:

584 self.aux_bar_not_S_hash[j] =

self.aux_bar_not_S[j]↪→

585

586 self.T_aux_bar.append(MerkleTree

(self.aux_bar_not_S_hash[j]))↪→

587 mt = self.T_aux_bar[j]

588 self.root_aux_bar[j] = mt.get_merkle_root()

589

590 h_bar = hash(''.join(self.root_aux_bar))

591 if h_bar == h:

592 b_prime = 1

593 print(Bcolors.OKCYAN+"\nb_prime = 1"+Bcolors.ENDC)

594 else:

595 b_prime = 0
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596 print(Bcolors.WARNING+"\nb_prime = 0"+Bcolors.ENDC)

597

598 if b == 1:

599 print(Bcolors.OKCYAN+"\nb = 1"+Bcolors.ENDC)

600 else:

601 print(Bcolors.WARNING+"\nb = 0"+Bcolors.ENDC)

602

603 return b and b_prime

604

605 #Function the Verifier uses to reconstruct the challenge (is the

same as Signer.Challenge())↪→

606 def Challenge_verifier(self,mex,h,root_c):

607

608 self.S = [] # list of s_num selected rounds (from 0 to

M-1)↪→

609 self.z = [] # list of s_num selected aux (from 0 to q-1)

610

611 set = Set(Integers(M))

612 set_random_seed(Integer(hash(str(mex)+str(h)+

str(root_c)),16))↪→

613

614 for i in range(0,self.s_num):

615 self.S.append(int(set.random_element()))

616 set = set.difference([self.S[i]])

617 self.z.append(Fq.random_element())

618

619 return None
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620

621 #Main execution of the Verifier

622 def main(self,Htr_unsys,s,sigma,mex):

623

624 h, root_c, rsp_S, path_aux_S, path_c_S, path_seed = sigma

625

626 self.Challenge_verifier(mex,h,root_c)

627

628 return

self.Verification(Htr_unsys,s,h,root_c,rsp_S,path_aux_S,

path_c_S,path_seed)

↪→

↪→

629

630 ##################################################################

631

632 def MPC_id(e,Htr_unsys,s,mex,s_num):

633

634 signer = Signer(True,s_num) #True for abilitating hashing

of input leaves↪→

635 verifier = Verifier(True,s_num) #True for abilitating hashing

of input leaves↪→

636

637 start_time = perf_counter()

638

639 #SIGNATURE

640 global sigma ################################

641 sigma = Signer.main(signer,Htr_unsys,e,mex)

642
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643 #VERIFICATION

644 ok = Verifier.main(verifier,Htr_unsys,s,sigma,mex)

645

646 stop_time = perf_counter()

647

648 #Get signature byte size

649 sig_size = sys.getsizeof(sigma[0]) + sys.getsizeof(sigma[1])

#First two element of the signature are digests↪→

650 #The signature byte size must not include the bytes used for the

Python list or dictionary structure↪→

651 for j in range(0,len(sigma[2])):

652 sig_size += sys.getsizeof(sigma[2][j])

653 for i in [3,4]:

654 for j in range(0,len(sigma[i])):

655 sig_size += sys.getsizeof(sigma[i][j])

656 for j in range(0,len(sigma[5])):

657 sig_size += sys.getsizeof(sigma[5][j])

658

659 return ok, sig_size, stop_time-start_time

7.3 merkletools.sage

1 import hashlib

2 import binascii

3 import sys

4

5 if sys.version_info < (3, 6):
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6 try:

7 import sha3

8 except:

9 from warnings import warn

10 warn("sha3 is not working!")

11

12 class MerkleTools(object):

13 def __init__(self, hash_type="sha256"):

14 hash_type = hash_type.lower()

15 if hash_type in ['sha256', 'md5', 'sha224', 'sha384',

'sha512',↪→

16 'sha3_256', 'sha3_224', 'sha3_384',

'sha3_512']:↪→

17 self.hash_function = getattr(hashlib, hash_type)

18 else:

19 raise Exception('`hash_type` {} nor

supported'.format(hash_type))↪→

20

21 self.reset_tree()

22

23 def _to_hex(self, x):

24 try: # python3

25 return x.hex()

26 except: # python2

27 return binascii.hexlify(x)

28

29 def reset_tree(self):
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30 self.leaves = list()

31 self.levels = None

32 self.is_ready = False

33

34 def add_leaf(self, values, do_hash=False):

35 self.is_ready = False

36 # check if single leaf

37 if not isinstance(values, tuple) and not isinstance(values,

list):↪→

38 values = [values]

39 for v in values:

40 if do_hash:

41 v = v.encode('utf-8')

42 v = self.hash_function(v).hexdigest()

43 v = bytearray.fromhex(v)

44 self.leaves.append(v)

45

46 def get_leaf(self, index):

47 return self._to_hex(self.leaves[index])

48

49 def get_leaf_count(self):

50 return len(self.leaves)

51

52 def get_tree_ready_state(self):

53 return self.is_ready

54

55 def _calculate_next_level(self):
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56 solo_leave = None

57 N = len(self.levels[0]) # number of leaves on the level

58 if N % 2 == 1: # if odd number of leaves on the level

59 solo_leave = self.levels[0][-1]

60 N -= 1

61

62 new_level = []

63 for l, r in zip(self.levels[0][0:N:2],

self.levels[0][1:N:2]):↪→

64 new_level.append(self.hash_function(l+r).digest())

65 if solo_leave is not None:

66 new_level.append(solo_leave)

67 self.levels = [new_level, ] + self.levels # prepend new

level↪→

68

69 def make_tree(self):

70 self.is_ready = False

71 if self.get_leaf_count() > 0:

72 self.levels = [self.leaves, ]

73 while len(self.levels[0]) > 1:

74 self._calculate_next_level()

75 self.is_ready = True

76

77 def get_merkle_root(self):

78 if self.is_ready:

79 if self.levels is not None:

80 return self._to_hex(self.levels[0][0])
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81 else:

82 return None

83 else:

84 return None

85

86 def get_proof(self, index):

87 if self.levels is None:

88 return None

89 elif not self.is_ready or index > len(self.leaves)-1 or index

< 0:↪→

90 return None

91 else:

92 proof = []

93 for x in range(len(self.levels) - 1, 0, -1):

94 level_len = len(self.levels[x])

95 if (index == level_len - 1) and (level_len % 2 == 1):

# skip if this is an odd end node↪→

96 index = int(index / 2.)

97 continue

98 is_right_node = index % 2

99 sibling_index = index - 1 if is_right_node else index

+ 1↪→

100 sibling_pos = "left" if is_right_node else "right"

101 sibling_value =

self._to_hex(self.levels[x][sibling_index])↪→

102 proof.append({sibling_pos: sibling_value})

103 index = int(index / 2.)
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104 return proof

105

106 def validate_proof(self, proof, target_hash, merkle_root):

107 merkle_root = bytearray.fromhex(merkle_root)

108 target_hash = bytearray.fromhex(target_hash)

109 if len(proof) == 0:

110 return target_hash == merkle_root

111 else:

112 proof_hash = target_hash

113 for p in proof:

114 try:

115 # the sibling is a left node

116 sibling = bytearray.fromhex(p['left'])

117 proof_hash = self.hash_function(sibling +

proof_hash).digest()↪→

118 except:

119 # the sibling is a right node

120 sibling = bytearray.fromhex(p['right'])

121 proof_hash = self.hash_function(proof_hash +

sibling).digest()↪→

122 return proof_hash == merkle_root

123

124 #I ADDED THIS: it's the same as validate_proof, but doesn't do

the final check and only outputs the merkle root↪→

125 def get_root_from_path(self, proof, target_hash):

126 target_hash = bytearray.fromhex(target_hash)

127 if len(proof) == 0:
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128 return target_hash

129 else:

130 proof_hash = target_hash

131 for p in proof:

132 try:

133 # the sibling is a left node

134 sibling = bytearray.fromhex(p['left'])

135 proof_hash = self.hash_function(sibling +

proof_hash).digest()↪→

136 except:

137 # the sibling is a right node

138 sibling = bytearray.fromhex(p['right'])

139 proof_hash = self.hash_function(proof_hash +

sibling).digest()↪→

140 return self._to_hex(proof_hash)
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