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Sommario

Un codice a correzione d’errore ha capacità di correzione strettamente legate alla

distanza minima tra le parole in codice che lo compongono, dette codeword. Per

codici lineari, i più utilizzati nella pratica, la distanza minima è pari al peso della

codeword non nulla con peso minore, ossia con il minor numero di simboli diversi

da zero. Trovare la parola a peso minimo di codici generici è un problema NP-

hard, ovvero, gli algoritmi esistenti impiegano un tempo che cresce esponenzialmente

con la dimensione del codice considerato. La famiglia di algoritmi più utilizzata a

questo scopo è Information Set Decoding (ISD). Informalmente, si può pensare agli

algoritmi ISD come una variante degli attacchi a forza bruta, nel quale si fanno

assunzioni sulla distribuzione dei simboli nelle codeword. In questa tesi proponiamo

un algoritmo ISD, chiamato SparseISD, per trovare la parola a peso minimo di

codici Low-Density Parity-Check (LDPC). Questi codici presentano una matrice

di parità sparsa, cioè con la maggioranza degli elementi nulli. SparseISD sfrutta

questa caratteristica per creare condizioni di ricerca favorevoli. Studiamo il problema

presentando un ensemble di codici creato come generalizzazione dell’ensemble dei

codici random, che sono tipicamente il bersaglio degli algoritmi ISD. Dimostriamo

che i codici LDPC presentano una distribuzione di peso che tende a quella dei codici

random. Presentiamo inoltre, una implementazione proof of concept di SparseISD,

per dimostrarne il funzionamento.
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Abstract

The error correction capabilities of an error correcting code are strictly related to

the minimum distance between any two codewords in it. Therefore, finding the

minimum distance of codes is of great importance. For linear codes, this can be done

by finding the minimum non null codeword, which is a well known NP-hard problem.

Information Set Decoding (ISD) is the most efficient family of algorithms for finding

the minimum weight codeword of generic codes. We investigate the use of ISD

algorithms with Low-Density Parity-Check (LDPC) codes, a family characterized by

sparse parity-check matrices. A new ISD algorithm, called SparseISD, is proposed,

together with a novel ensemble of codes that comprehends LDPC codes. We prove

that these codes have a weight distribution analog to those of random codes, that

are, conventionally, the target of ISD algorithms. SparseISD performs better than

state of the art ISD algorithms when applied to codes from our ensemble. A proof-

of-concept implementation is presented.
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1 Introduction

Error correcting codes, commonly referred to as codes, play a fundamental role in

the world of telecommunications. When information is transmitted over a noisy

communication channel, many kinds of disturbances can cause an alteration of the

original message. Codes were born to make such errors less disrupting. The idea is

simple: given a length-k string m, defined over some alphabet, we add r redundant

symbols to m, and link them through some mathematical relationship. This step

is called encoding, and the result is a length-n string c called codeword. Clearly,

n = k + r. Codes can be thought of as a set of codewords. If on reception the

received message x does not satisfy the defined relationship, then x /∈ C , therefore

some error happened. When the amount of error is limited, one might even be

able to recover the original message. This second step is called decoding. It can

be formulated as the problem of finding the codeword c ∈ C that resembles x the

most; this formulation takes the name of Maximum Likelihood Decoding (MLD).

The wide majority of error correcting codes used in practice are linear codes: a

linear code C is a linear subspace of the vector field defined over the finite prime

field Fn
q . Then, considering additive communication channels, we can model received

messages as x = c+ e, where e is the length-n additive error. We endow Fn
q with a

metric to measure distances between its elements with some function dist : Fn
q → N.

When communication channels with uniform probability of error across messages

are considered, such as our case, MLD is equivalent as finding the closest codeword

to the received message. Therefore, we can reformulate the problem as finding

the codeword c ∈ C , such that dist(x, c) ≤ dist(x, c′) for any c′ ∈ C . A direct

implication is that for each codeword c we can define a region in space V (c) ⊂ Fn
q ,

containing the elements that have c as closest codeword. This region coincides with

the Voronoi region centered in c. Hence, given a message x, MLD consists in finding

the center of the Voronoi region that contains x. It is now easy to see that MLD fails

when the error brings the message to a different Voronoi region, i.e., when x = c+e,

and x ∈ V (c′), c ̸= c′. The smallest amount of error for which decoding might fail

1
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is e = dmin

2
, where dmin is the minimum distance between any two codewords in

the code. Guaranteed unique decoding for e >
⌊
dmin−1

2

⌋
is impossible. This is

an important bound on the error capacity of a code, and it is a measure of its

decoding performances. For a linear code C , the minimum distance is equivalent to

the minimum Hamming weight of any non null codeword c ∈ C , that is the number

of non zero symbols. It comes without saying, that knowing this bound is of great

importance.

Searching for the nearest neighbor and finding the minimum weight for a generic

code are NP-complete problems. This implies that, in the worst case, solving these

problems takes a time exponential on the parameters of the code. For this reason,

many codes are built with an underlying algebraic structure, such that polynomial-

time decoding is possible. This is the case of the Berlekamp-Massey algorithm for

Reed-Solomon codes, and Patterson algorithm for Goppa codes. Other codes use

heuristics, that don’t guarantee optimal decoding, but have great performances.

This is the case of Low-Density Parity-Check (LDPC) codes.

LDPC codes are a family of codes introduced by Robert Gallagher in his PhD theis

[4]. They are characterized by a parity-check matrix H, used when decoding, that is

sparse. This means that the wide majority of elements in H are null. A consequence

of this property is that many computations can be skipped and, for this reason, these

codes have efficient encoding and decoding algorithms. Decoding, in particular,

uses fast iterative algorithms based on graphs, called message-passing algorithms,

Together with their great error correction capabilities, this makes LDPC one of the

most studied family of codes. In spite of this, little is known about algorithms for

finding the minimum distance of such codes. This is because their construction relies

on heuristic procedures, that do not guarantee specific code properties. As a result,

existing algorithms are not only exponential, but are also solely based on heuristics.

The best known family of generic decoders is Information Set Decoding (ISD). These

algorithms can be easily tweaked to search for the minimum distance of a code. The

first ISD algorithm was proposed in 1962 by Eugène Prange [8]. Many improve-

ments were later proposed, but all algorithms have the same common structure. An

ISD algorithm is a randomized algorithm that takes as input a parity-check matrix

H and a weight w. It performs transformations on H, and searches for codewords

of weight w that respect a defined weight distribution. It can be thought of as

a smart brute force attack, where instead of performing exhaustive search on the

entire search space, a probabilistic distribution is used. Its running time depends
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on the used parameters, and on the input parity-check matrix. When one possesses

some information about the structure of the input code, the procedure can be sped

up. Matter of fact, ISD algorithms are designed to attack code-based cryptographic

schemes, where codes are hidden in such a way that appear as random codes, so that

no assumption can be made on the structure beneath. Currently, security param-

eters for many code-based cryptographic schemes are based on the computational

complexity of attacking them using these algorithms.

1.1 Our contribution

In this thesis we propose an ISD variant, based on the existing ISD algorithm pro-

posed by Jacques Stern [9]. Stern algorithm is arguably one of the most used and

studied ISD variant, because of its good compromise between time and space com-

plexity. It is based on finding collisions between lists trough the meet-in-the-middle

approach. Our algorithm, which we named SparseISD, is tailored to find the min-

imum distance of LDPC codes. It exploits the sparsity of parity-check matrix to

create favorable conditions when performing collision search. We provide an asymp-

totic analysis of the computational complexity of our algorithm.

Before describing SparseISD, we present a novel ensemble of binary codes that com-

prehends the family of LDPC codes. The model used for random codes was gen-

eralized, defining ensembles of parity-check matrices with elements sampled from

the binomial distribution with probability ν. Proofs about important properties

of codes in our ensemble are provided, in particular, we show that when ν grows

with n faster than O( ln(n)
n

), our codes follow the same weight distribution of random

codes. This is instrumental to our results, since ISD algorithms are usually studied

for random codes, and as ν approaches 1
2
our ensembles tends to the one of random

codes. Doing so, we were able to study the minimum distance of our codes and

consequently, analyze the performances of ISD. The proposed algorithm, and the

proposed ensemble, were validated through numerical experiments. We provide a

comparison of the average computational complexity of SparseISD and Stern algo-

rithm, when applied to code from our ensemble. More precisely, we analyzed the

cases of ν = ln(n)2

n
and ν =

√
n
n
. On average, our algorithm performs better than

Stern algorithm, especially for higher code rates. For R = 0.8, we were able to

obtain an asymptotic speedup of 221×.

Finally, we have implemented a proof-of-concept implementation of SparseISD, per-

forming tests on small-sized codes with known-distance from our ensemble for vali-
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dation.

1.2 Thesis organization

The remainder of the thesis is organized as follows:

- In Chapter 2 we provide the necessary background knowledge on computa-

tional complexity and coding theory;

- Chapter 3 introduces a novel ensemble of binary codes, comprehending LDPC,

along with proofs on its properties;

- We formally describe SparseISD in Chapter 4, providing an asymptotic anal-

ysis of its average computational complexity;

- Chapter 5 discusses important characteristic of our proof-of-concept imple-

mentation, and shows the results of tests performed on small-sized codes;

- Chapter 6 provides a critical analysis of the work done, outlying the direction

for future developments;

- Finally, in Chapter 7 we summarize the key contributions in this thesis.



2 Preliminaries

2.1 Notation

2.1.1 Mathematical notation

We use p to denote a prime number, and q a prime power q = pm, m a positive

integer. We denote by Fq the finite field of order q, and by Fn
q the vector field whose

elements are length-n vectors with values in Fq. We denote the order of a given set

A as |A|. To denote matrices and vectors we use respectively bold uppercase letters

and bold lowercase letters. Given a matrix M, we denote by M⊤ its transpose. We

denote both the null matrix and the null vector as 0, with the dimension made clear

from context. The identity matrix of size k is indicated by Ik.

Pn is used to indicate the group of length-n permutations. Let π ∈ Pn and

a = (a1, · · · , an), we have π(a) = (aπ−1(1), · · · , aπ−1(n)). Given an event Event the

probability that it happens is denoted as P [Event]. Let X be a random variable, we

use E [X] to denote its mean value. We express that x is sampled from a distribution

D with x ∼ D. We write x
$←− A to denote that x is sampled uniformly at random

from A.

2.1.2 Asymptotic notation

When describing the asymptotic behavior of functions we make extensive use of

Landau’s notation. For functions f(n) and g(n), with n positive, we write

- f(n) ∼ g(n) if

lim
n→∞

f(n)

g(n)
= 1;

5
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- f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0;

- f(n) = O(g(n)) if ∃c, n0 positive such that ∀n ≥ n0

|f(n)| ≤ c · |g(n)|;

- f(n) = Ω(g(n)) if ∃c, n0 positive such that ∀n ≥ n0

|f(n)| ≥ c · g(n).

For the binomial coefficient we will use the following two asymptotic expansions:

- if w = o(n) then

log2

(
n

w

)
= w · log2

(n
w

)
· (1 + o(1));

- if w = Ω(n) then

log2

(
n

w

)
= n · h

(w
n

)
· (1 + o(1));

Where

h(x) = −x log2(x)− (1− x) log2(1− x)

is the binary entropy function.

2.1.3 Computational complexity

We say that a problem Π is NP if a nondeterministic Turing machine can solve it in

polynomial-time. NP-complete is a subclass of problems in NP (NP-complete ⊆ NP)

such that for every Π ∈ NP-complete, there exists a polynomial-time reduction

from every problem in NP to Π. Currently, there is no known algorithm that runs

in polynomial time on a deterministic Turing machine, capable of solving any of

the problems in NP-complete. If such an algorithm were to exist, then the entire

NP class would collapse into P, the class of problems for which such an algorithm

exists. It is speculated that P ̸= NP, but this has not been proven. Nevertheless,

the complexity class refers to worst-case instances. Matter of fact, a problem in

NP-complete may admit an average-case polynomial-time algorithm. From here
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on, unless stated otherwise, when we refer to complexity, we will be referring to

deterministic machines, since, with the necessary simplifications, they model the

computers we use.

2.2 Error Correcting Codes

A code is a subset C ⊆ Fn
q . Elements in this subsets are called codewords. If the

subset C is a linear subspace of Fn
q , then we refer to it as linear code of length n.

More specifically:

Definition 2.2.1 (Linear Code). Let k, n ∈ N, 1 ≤ k ≤ n. An [n, k] linear code C

over Fq is a linear subspace of Fn
q of dimension k.

A linear code can be represented by one of its generator matrices G or the corre-

sponding parity-check matrix H, formally defined as:

Definition 2.2.2 (Generator Matrix). A generator matrix G ∈ Fk×n
q of an [n, k]

linear code C is a matrix that has the code as image.

C =
{
xG|x ∈ Fk

q

}
(2.1)

Definition 2.2.3 (Parity-Check Matrix). A parity-check matrix H ∈ Fn−k×n
q of an

[n, k] linear code C is a matrix that has the code as kernel.

C =
{
x ∈ Fn

q |xH⊤ = 0
}

(2.2)

Theorem 2.2.1.

If G = [Ik|A] is a generator matrix of an [n, k]q code C , then H =
[
−A⊤|In−k

]
is a

parity check matrix of C .

Given a linear code C ∈ Fn
q , a generator matrix G for C specifies an encoder for

the code, as by eq. (2.1), given a word u ∈ Fk
q , the corresponding codeword c ∈ C is

c = uG. Given a parity-check matrix H for C and a vector x ∈ Fn
q , to verify if x is

a codeword of the given code it is sufficient to check if eq. (2.2) is satisfied, that is

verifying if multiplying x by the transpose of H yields a zero vector. The result of

this operation is called syndrome. When the syndrome is nonzero it can be inferred

that some error e ∈ Fn
q was applied to the original message c.
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x = c+ e, x, e ∈ Fn
q , c ∈ C (2.3)

Under certain conditions the original codeword can be recovered, using special al-

gorithms called decoders, presented in section 2.3. Error correction is possible due

to the presence of r = n− k redundancy symbols in codewords. The ratio between

the length n and the dimension k of a linear code is called code rate R, and it

represents the rate of information bits in transmitted bits when the code is used for

communication.

The capability of a code to correct errors is closely related to distances between

codewords. To measure distances between elements in a vector space, a distance

function, or metric, must be defined. We endow Fq with the Hamming metric.

Definition 2.2.4 (Hamming distance). Let x,y ∈ Fn
q . The Hamming distance

dH(x,y) is the number of coordinates in which x and y differ.

Definition 2.2.5 (Hamming weight). Let x ∈ Fn
q . The Hamming weight wtH(x) is

the number of nonzero coordinates of x.

For the sake of simplicity for the remainder of this dissertation distance d and

weight wt will be used as synonyms to denote respectively Hamming distance dH

and Hamming weight wtH .

Definition 2.2.6. (Minimum distance) Let C be a linear code. The minimum

distance between any two codewords dmin, such that

∀c, c′ ∈ C , c′ ̸= c′ dmin ≤ d(c, c′)

is known as distance of C .

We can refer to an [n, k] linear code with known distance d as [n, k, d] linear code.

For each codeword c ∈ C we can define the Voronoi region V (c) ⊆ Fn
q , that is the

region in space such that for any x ∈ V , c is the closest codeword.

∀x ∈ V (c),∀c′ ∈ C , c′ ̸= c′, d(x, c) < d(x, c′) (2.4)

The operating principle of many decoders is to find the closest codeword when a
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vector with nonzero syndrome is received. For this reason, the larger these regions

are, the higher the weight wt(e) of error e that can be applied to a codeword

c without ending in the region of a different codeword V (c′). The radius of the

smallest of these regions constraints the amount of error the code is capable to

correct, and it can be determined from the distance of the code d.

Proposition 2.2.1. Error Correction Capacity

Let C ⊆ Fn
q be a [n, k, d] linear code. Then, the code can correct up to ⌊d−1

2
⌋.

The ratio d
n
is called relative distance, and it is a measure of the error correction

capability of a given code.

Theorem 2.2.2.

Let C be a linear code, dmin its minimum distance, wmin the minimum weight of

any nonzero codeword c ∈ C , then

dmin = wmin.

It follows that the error correction capacity of a linear code can be determined by

finding its minimum weight codeword, as the minimum distance can be inferred

from this.

We denote by Sn,w the Hamming sphere with radius w, that is the set of length-n

vectors with weight w.

The weight distribution of a code C is given by {mC (0),mC (1), ...,mC (n)}, where
mC (w) ⊆ Sn,w counts the number of weight-w codewords in C .

2.2.1 Low-Density Parity-Check Codes

LDPC codes are a family of codes introduced by R. G. Gallagher in his 1963 PhD

dissertation [4]. We define LDPC formally:

Definition 2.2.7. A Low-Density Parity-Check (LDPC) code C is a linear

block code characterized by a sparse parity-check matrix H.

This means thatH has a wide majority of zeroes and relatively few nonzero elements.

This feature allows for fast encoding and decoding algorithms, as many computations
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can be skipped. This property can also be seen when representing H using a Tanner

graph.

Definition 2.2.8. A Tanner graph is a bipartite graph G with vertex set V ∪W ,

V ∩W = ∅ created from a parity-check matrix H. Vertices in V and W correspond

respectively to the columns and rows of H. Two nodes vi ∈ V and wj ∈ W are

connected by an edge if and only if the (s, t)th entry of H is nonzero.

Tanner graphs can be used to represent any parity-check matrix, but when it is

used to represent LDPC the resulting graph is sparse too, meaning the nodes in it

have low degree (are connected to a few nodes). In other words the graph presents

few relatively few edges. An example of Tanner graph can be seen in fig. 2.1. H

v1 v2 v3 v4 v5 v6

w1 w2 w3

Figure 2.1: Example of Tanner Graph

sparseness can be quantified in different ways. We will use γ to denote the density

of H, which is the ratio between the number of ones and the number of elements in

the matrix. Thanks to this property encoding and decoding algorithms for LDPC

codes achieve great error correction capabilities and are very efficient. For these

reasons they are widely employed in many communication standards. Typically, the

number of nonzero elements per row in LDPC is O(log(n)). In the [1] cryptographic

scheme MDPC are used instead, that are codes with a sparse parity-check matrix

but with a higher number of nonzero elements than typical LDPC codes.

Definition 2.2.9. A Moderate-Density Parity-Check (MDPC) code C is a

linear block code characterized by a parity-check matrix H with row weight O (
√
n).

2.3 Decoding

In coding theory, decoders are algorithms capable of correcting received messages

in a communication channel, yielding the original sent message. Put formally, a

decoder is an algorithm that is capable of determining the codeword c when a

vector y = c + e is received, e being the applied error on the codeword over the

communication channel. To be precise will be considering hard-decision decoding,
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meaning that a received word y is defined over the same alphabet as the transmitted

codeword c.

The codeword that is most likely to have been transmitted is the closest to the

received word. For this reason the problem of finding such a codeword is also called

MLD, and decoders based on determining the closest codeword are called Maximum

Likelihood (ML) decoders. When the decoding problem is expressed using the parity-

check matrix H, it is reffered to as Syndrome Decoding Problem (SDP), and it can

be stated as follows:

Problem 1. Syndrome Decoding Problem (SDP)

Let H ∈ Fr×n
q , s ∈ Fr

q and w ∈ N. Determine if there exists a vector e ∈ Fn
q such

that wt(e) = w and He⊤ = s.

SDP was proven to be NP-complete after a polynomial-time reduction from the

Three-Dimensional Matching problem was found in 1978 by Berlekamp, McEliece

and van Tilborg [2]. In the same paper they have conjectured that the problem

of finding the minimum distance of a linear code belongs to the NP-complete class

too. This was later proven by Vardy in 1997 [10]. The problem is formulated as the

decision problem of finding a codeword with a given weight w, denoted as Given

Weight Codeword Problem (GWCP):

Problem 2. Given Weight Codeword Problem (GWCP)

Let H ∈ Fr×n
q , and w ∈ N. Determine if there exists a vector c ∈ Fn

q such that

wt(c) = w and Hc⊤ = 0.

To find the minimum distance is sufficient to iterate an algorithm for GWCP, in-

creasing w until an affirmative answer is obtained. SDP and GWCP were proven

to be equivalent problems. A proof of such equivalence can be found in [11]. Note

that this results implies that an algorithm that finds the minimum distance for any

class of code is expected to run on exponential time, but it doesn’t say anything on

the complexity for a specific class, such as finding the minimum distance for LDPC

codes. For what concerns decoding, algorithms based on the geometrical task of

finding the closest codewords are indeed impractical for most codes. Decoding is

typically done using algorithms that are based on the inherent structure of the dif-

ferent families. Examples of such algorithms are Belief Propagation [4] for LDPC

codes, Patterson algorithm [6] for Goppa codes, and the Berlekamp-Massey algo-
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rithm [3] for Reed-Solomon codes, all of which run in polynomial-time, although,

unlike ML decoders, they might not achieve the optimal solution.

2.4 Information Set Decoding

Information Set Decoding (ISD) is a family of generic decoders that can operate on

any linear code. With slight modifications these algorithms can be used to search

for the minimum distance of a code. The name is derived from information sets :

Definition 2.4.1 (Information Set). Let C be an [n, k] linear code with generator

matrix G ∈ Fk×n
q . For any set of k independent columns of G, the corresponding

set of coordinates forms an information set. Given the corresponding parity check

matrix H ∈ Fr×n
q , for any set of of n − k independent columns of H the set of

coordinates of the complementary k columns forms an information set.

ISD algorithms receive as input a description for the code, typically the parity-check

matrix H and the desired weight w, and return an element X in the powerset of

Cw, i.e. a set of weight-w codewords in C .

ISD: Fr×n
q × {0, . . . , n} P(Cw),

(H, w) X.

The first ISD algorithm was proposed by Prange in 1962 [8]. All subsequent proposed

versions are an improvement to the original one and follow a common procedure,

highlighted in algorithm 1. We can divide this procedure in three main steps:

• Partial Gaussian Elimination (PGE): a random permutation π of length n is

sampled. Then PGE with parameter ℓ ∈ N, 1 ≤ ℓ ≤ n− k is performed. This

is the equivalent of performing a change of basis on the permuted parity-check

matrix, in order to obtain a matrix with the following structure:(
A ∈ Fℓ×(k+ℓ)

q 0 ∈ Fℓ×(n−k−ℓ))
q

B ∈ F(n−k−ℓ)×(k+ℓ)
q In−k−ℓ

)
.

Note that if the rightmost n− k− l columns form a matrix whose rank is < k,

then PGE cannot be performed. In these cases, a new permutation is sampled.

• Solving the small instance: after applying transformations in the previous step,
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we have:

c = (c′, c′′) ∈ π(C ) ⇐⇒

Ac′⊤ = 0,

Bc′⊤ + c′′⊤ = 0.
(2.5)

Notice how the first equation in eq. (2.5) implies that c′ is a codeword of

length k + l of the code whose parity-check matrix is A. The search for c′

is restricted by assuming a defined weight distribution over the codeword,

specifically a weight partition, and some low weight w. We will refer this step

as the Solve subroutine.

• Producing solutions : once c′ has been found, one can easily compute c′′ from

the second equation of the linear system eq. (2.5). Codewords of the form

(c′, c′′) are produced, and the ones that have the desired weight w are added

to the solution. Not that any such codeword corresponds to the permutation

of a codeword in Cw

The assumed weight partition during Solve is what really differentiates the different

versions of ISD, and determines the probability of finding a codeword in each iter-

ation. Matter of fact, the average number of iterations needed to find a codeword

is function of the probability that the weight distribution is followed. For instance,

in Prange algorithm, decoding is performed searching for an error vector that has

nonzero elements outside of the information set.

Algorithm 1: General ISD structure

Data: subroutine Solve, parameter ℓ ∈ N, 1 ≤ ℓ ≤ r
Input: H ∈ Fr×n

2 , w ∈ N
Output: set Y ∈ Cw

1 repeat

2 Sample π
$←− Sn;

3 Apply PGE on π(H);

4 until PGE Is successful;
5 X = Solve(A, ℓ);
6 Set Y = ∅;
7 for c′ ∈ X do
8 Compute c′′ = −c′B⊤;
9 if wt(c′) + wt(c′′) == w then

10 Update Y ← Y ∪
{
π−1
(
(c0, c′′)

)}
;

11 return Y ;

The framework we have just used to describe ISD is a very general way to analyse

algorithms within this family, but allows to identify the main quantities we will
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use for our analysis. We have yet not specified how the Solve subroutine is carried

out, yet its functioning, that changes across ISD variants, heavily influences the

computational cost of the whole procedure. For the moment, to keep this analysis

as general as possible, consider that it will only return the codewords in π(Cw) that

satisfy some constraints. We will denote this constraint with:

fISD,π : Fk+ℓ
q → 0, 1

And assume that whenever fISD,π(c
′) is equal to 1, the codeword will be among the

outputs of the subroutine.

2.4.1 Computational Cost

We analyse the cost of an ISD algorithm, considering a generic Solve subroutine.

This later allows us to establish the computational cost of specific variant by de-

scribing the computational cost terms associated with the subroutine.

Crucial quantities for this evaluation are the success probability and the average

number of codewords found for each iteration.

When considering generic codes, the probability that a chosen permutation is valid

is only a function of:

(i) the desired weight w;

(ii) the weight distribution constraints imposed by the considered ISD variant.

Proposition 2.4.1. Cost of one iteration

On average, one iteration of ISD uses a number of elementary operations (sums and

multiplications) over Fq counted by

O

(
n(n− k + l)2 + E[tSolve] + E[|X|]

pinv(ℓ)

)

Where:

- pinv =
∏n−k

i=ℓ+1 1− q−i;

- tSolve is the cost of the subroutine Solve;
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- |X| is the number of solutions found for the small instance.

Proof. Performing PGE requires a number of operations which is well counted by

n(n − k + ℓ)2 (for instance, see [7]). The number of times we need to repeat the

PGE step on average, corresponds to the reciprocal of the probability that the chosen

permutation π places, on the rightmost side of π(H), n− k− ℓ columns which form

a basis for a space with dimension ℓ. Assuming that all columns of H behave as

random vectors over Fq, with length n− k, we get that this probability is

pinv(ℓ) =
n−k−ℓ−1∏

i=0

(
1− qi

qn−k

)
=

n−k−ℓ−1∏
i=0

(
1− q−(n−k−i)

)
=

n−k∏
i=ℓ+1

(
1− q−i

)

Remark 2.4.0.1.

The term O(E[|X|]) is slightly optimistic, since we are omitting some polynomial

factors. The execution of instructions 8-9 in algorithm 1 requires to:

(i) compute −c′B⊤;

(ii) check Hamming weights.

With a schoolbook approach the calculation of −c′B⊤ would require O((k + ℓ)2(n−
k − l)) operations. However, c′ is expected to have low weight as we are looking for

the minimum distance, and some precomputations can be used, drastically reducing

this cost. The cost is reduced even further if the use the early abort technique is

considered; by checking the codeword weight on-the-run, most of times it allows

to stop the computation of c′′ as soon as the target weight is exceeded. For these

reasons we expect that the cost of instructions 8 − 10 is very limited, thus can be

safely neglected, so that the cost of instructions 7−10 corresponds to O(E[|X|]), that
is the average number of performed iterations.

We consider it helpful to give, as a reference, the computational cost of applying a

brute-force attack when searching for the distance of a code, that is, asymptotically,

equal to the cost of total enumeration of weight-w codewords:

O

((
n

w

)
(q − 1)w

)
.
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We do this to highlight how, even though ISD is intractable for very large instances,

it is still a major improvement over brute-force attacks.

2.4.2 Lee-Brickell algorithm

Lee-Brickell algorithm [5], proposed in 1988, is an ISD algorithm where the codeword

weight distribution is split into 2 partitions, one having length k and weight p, the

other length n − k and weight w − p. If we consider p = w the behaviour of the

algorithm is the same as Prange’s. Lee-Brickell algorithm’s standard form for the

parity-check matrix H can be see in fig. 2.2. It is easy to see that the algorithm

uses ℓ = 0. This means that the algorithm does not consider matrix A, since it

has 0 rows. The resulting weight partitioning is shown in fig. 2.3. For the latter

reasons, Lee-Brickell algorithm’s Solve subroutine only consists in the enumeration

of the weight-p length-k subcodewords. A list X of length
(
k
p

)
(q − 1)p is created,

and for each entry, the righmost partition is obtained by applying eq. (2.6).

In the original formulation, Lee-Brickell’s algorithm was proposed for codes over the

binary field F2, and was later generalized [7] to be used over arbitrary finite fields

Fq.

H =

k n− k

n− kB In−k

Figure 2.2: H standard form for Lee-Brickell algorithm

Bx⊤
1 = x⊤

2 (2.6)

Proposition 2.4.2. Performances of Lee-Brickell ISD

x′

Length k
Weight p

x′′

Length n− k
Weight w − p

Figure 2.3: Lee-Brickell algorithm codeword partitioning



CHAPTER 2. PRELIMINARIES 17

Algorithm 2: Lee & Brickell Solve subroutine

Data: p ∈ N, 0 ≤ k
Input:
Output: set X with the enumeration of weight-p length-k codewords

1 Set X = {x′|x′ ∈ Sk,p}
2 return X

The time complexity of Lee-Brickell algorithm’s Solve subroutine, with parameter

p ∈ N, 0 ≤ p ≤ min{w, k}, is

tSolve(p) =

(
k

p

)
(q − 1)p

The probability that a codeword c ∈ Cw is returned is

pISD(w) =

(
k
p

)(
n−k
w−p

)(
n
w

)
Proof. Lee-Brickell’s Solve subroutine only consist in the enumeration of codewords

with length k and weight p. These result in the enumeration of
(
k
p

)
(q − 1)p, hence

the stated tSolve is obtained.

The success probability is given by the probability of having assumed the correct

weight distribution, that is represented by the number of codewords following the

distribution, over the total number of weight-w codewords. This clearly results in

the pISD stated in the proposition.

2.4.3 Stern algorithm

Stern’s ISD variant [9] was proposed in 1989, and it was originally intended for

solving the Given Weight Codeword Problem (GWCP), unlike other variants. It

is one of the most used, as well as on the fastest on a classical computer. Stern

algorithm is based on performing a collision search using the meet-in-the-middle

technique on the leftmost partition, by further segmenting it in two partitions. A

description of the Solve subroutine is given in algorithm 3. The standard form of the

parity-check for Stern algorithm can be seen in fig. 2.4, and it leads to the system

of equations in eq. (2.7).
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Like Lee-Brickell algorithm, Stern’s original formulation considered binary codes

(F2), and was later generalized by Peters [7] to codes over Fq.

H =

k + ℓ n− k − ℓ

ℓ

n− k − ℓ

A 0

B In−k−ℓ

Figure 2.4: H standard form for Stern algorithm

Ax⊤
1 = 0,

B1x
⊤
1 = x⊤

2

(2.7)

Algorithm 3: Stern Solve subroutine

Data: p ∈ N, 0 ≤
⌊
k+ℓ
2

⌋
Input: A ∈ Fℓ×(k+ℓ)

q , ℓ ∈ N
Output: set X with solutions of the small instance, with weight 2p equally

partitioned

1 Write A = (A′,A′′), where A′ ∈ F
ℓ×⌊ k+ℓ

2 ⌋
q , A′′ ∈ F

ℓ×⌈ k+ℓ
2 ⌉

q ;

2 Set L1 =
{
(x′,x′A′⊤) | x′ ∈ S⌊ k+ℓ

2 ⌋,p
}
;

3 Set L2 =
{
(x′′,−x′′A′′⊤) | x′′ ∈ S⌈ k+ℓ

2 ⌉,p
}
;

4 Compute X , the set of all pairs (x′,x′′) ∈ Sp ×Sp such that
x′A′⊤ = −x′′A′′⊤;

5 return X

In order to analyze the performances of Stern ISD, we need to describe how the

meet-in-the-middle approach works. The basic idea is finding x1 trough a collision

search on two lists created through enumeration. We partition x1 in two components

x′
1,x

′′
1, of equal length

(k+ℓ)
2

(assuming k+ℓ even for the sake of simplicity) and equal

weight p, as shown in fig. 4.2. Then, two lists L1 and L2 are created through the

enumeration of Sp, and for each entry the partial syndrome is calculated. This is

done by splitting matrix A in two submatrices A′,A′′ ∈ Fℓ× k+ℓ
2

q ; elements in L1 and

L2 are multiplied respectively by A
′⊤ and −A′′⊤. A valid codeword must satisfy

the system in eq. (2.7), hence we must find (x′
1,x

′′) pairs such that:

x
′

1A
′⊤ = −x′′

1A
′′⊤ (2.8)
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x′
1

Length (k + ℓ)/2
Weight p

x′′
1

Length (k + ℓ)/2
Weight p

x2

Length n− k − ℓ
Weight w − 2p

Figure 2.5: Stern algorithm codeword partitioning

We look for such pairs by merging L1 and L2. This can be efficiently computed

using a sorting algorithm and applying a binary search approach, taking time

O (max {|L1| · log2(|L1|), |L2| · log2(|L2|)}) .

If we neglect the usage of floors and ceilings, by assuming k + ℓ even, lists sizes are

given by:

L = |L1| = |L2| =
(

k+ℓ
2

p

)
(q − 1)p. (2.9)

Getting rid of the logarithmic factor in our asymptotic estimation, and taking con-

sideration that the resulting list X needs to be somehow allocated, we can consider

the overall cost of the merging the two lists to be

O(max {|L1|, |L2|, |X |}) = O(max{|L|, |X |}).

When the two merged lists are formed by elements without any relevant structure, we

can safely consider that each pair of elements results in a collision with a probability

equal to the alphabet length to the power of the words length. In our case, each

pair of elements in L1 and L2 result in a collision with probability q−ℓ. This is a

frequently employed heuristic, that corresponds to the assumption that each entry

of the associated syndromes is uniformly distributed over Fq. When this is true, we

can set

|X | = |L1| · |L2|q−ℓ = L2q−ℓ. (2.10)

At this point, the rightmost partition of the codeword is achieved by applying the

second equation in eq. (2.7).

The resulting codeword partitioning is depicted in fig. 2.5.
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Proposition 2.4.3. Performances of Stern ISD

The time complexity of Stern algorithm’s Solve subroutine, with parameters p, ℓ ∈ N,
where 0 ≤ p ≤ ⌊k+ℓ

2
⌋, 0 ≤ ℓ ≤ n− k, is

tSolve(p, ℓ) = 2L+
L2

qℓ
,

where L =
( k+ℓ

2
p

)
(q − 1)p. The probability that a codeword c ∈ C is returned is

pISD =

(
(k+ℓ)/2

p

)2(n−k−ℓ
w−2p

)(
n
w

) .

Proof. The cost tSolve of the Solve subroutine is given by the cost of lists enumeration,

and the application of the meet-in-the-middle. By combining eq. (2.9) and eq. (2.10)

we get the value of tSolve specified in the proposition.

The success probability is given by the probability of having assumed the correct

weight distribution, that is represented by the number of codewords following the

distribution, over the total number of weight-w codewords. This clearly results in

the pISD stated in the proposition.



3 Generalized LDPC Ensemble

To analyze our algorithm we need to define the set of codes we will be working on.

To do so, we need to introduce a specific ensemble of codes, characterized by three

parameters:

- code length n;

- code rate R;

- density ν of the parity-check matrix H.

In our ensemble we will only consider binary codes, hoping to generalize this work

in the future, expanding the ensemble characterization to codes over arbitrary finite

fields Fq.

But first, let us describe what a random code is.

3.1 Random Codes

We denote by Un,R the uniform distribution of linear codes with length n and di-

mension k = Rn, over F2. It is well known that sampling a uniform random, Rn×n

matrix over F2 has full rank Rn with overwhelming probability. For random codes

the average weight distribution can be easily estimated.

Theorem 3.1.1.

Let C ∼ Un,R and mrnd
w = E [mC (w)]; then

mrnd
w =

(
n

w

)
2−n(1−R)

Let R be a constant and define µrnd
w = limn→∞

1
n
· log2(mw); then:

21
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- if w = o(n), then

µrnd
w =

w

n
log2

(n
w

)
- if w = Ω(n), then

µrnd
w = h(

w

n
)− (1−R)

For random codes a well known result esablishes their minimum distance.

Theorem 3.1.2. Gilbert-Varshamov Bound (GV) bound

Let H
$←− Fn(1−R)×n

2 and C be the linear code whose parity-check matrix is H. Then,

with overwhelming probability, C has minimum distance d = δrndn, where δ ∈ [0; 1]

is called relative minimum distance and δrnd = h−1(1−R).

This result is obtained by setting d as the minimum value of w such that µw ≥ 0.

3.2 Our ensemble

Definition 3.2.1. Let R ∈ [0; 1], n ∈ N and ν ∈ R, 0 < ν < 1
2
. Then, we define

Bn,R,ν as the distribution that return matrices with size (1−R)n×n, and such that

each entry in distributed according to the Binomial distribution with parameter ν.

We write H← Bn,R,ν when H is sampled according to Bn,R,ν , and P[H] to indicate

the probability that a specific matrix H is returned as output.

We aim to treat Bn,R,ν as a distribution for parity-check matrices. Thus, the right

kernel of each H can be deemed as a linear code with length n and dimension ≥ Rn.

The average weight distribution can be easily recovered.

For this analysis we will make use of the piling-up lemma:

Theorem 3.2.1. Piling-up lemma

Let x1, . . . , xt be t random variables taking values in F2. Then

P[x1 + · · ·+ xt = 0] =
1

2
+ 2t−1

t∏
i=1

(
P[xi = 0]− 1

2

)
.

Theorem 3.2.2.

Let H ← Bn,R,ν, C be the code with parity-check matrix H and mw = E[mC (w)];
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then

mw =

(
n

w

)
· 2−n(1−R) · (1 + (1− 2ν)w)−n(1−R).

Proof. Let r = (1−R)n, Sw be the Hamming sphere with radius w and P[H] denote

the probability that H is sampled from the distribution Bn,R,ν . The average weight

distribution is derived as

mw =
∑

H∈Fr×n
2

|{x ∈ Sw ∩ ker(H)}| · P[H] =
∑

H∈Fr×n
2

∑
x∈Sw

f(x,H) · P(H),

where f(x,H) = 1 if x ∈ ker(H) and 0 otherwise. We can swap the two sums in the

above equation and get

mw =
∑
x∈Sw

∑
H∈Fr×n

2

f(x,H) · P(H).

We now show that f(x,H) depends only on the weight of x. First, we indicate by

Bn,ν the Bernoulli distribution with parameter ν. Then x ∈ ker(H) if and only if,

for every row hi of H, it holds that hix
⊤ = 0. Sampling H from Bn,R,ν corresponds

to getting r samples h1, . . . ,hr from Bn,R,ν , thus, we have Hx⊤ = 0 if and only if

hix
⊤ = 0 for every i. For each x, the overall number of valid hi is

2n−w ·
∑

0≤j≤w
j even

(
w

j

)
.

Indeed, the above quantity counts the number of vectors hi which overlap with x in

an even number of positions. The probability to get such a vector is

mw =

(
n

w

)
·
(∑)

νj(1− ν)w−j.

Considering that there are r rows, and that the probability depends only on the

weight of x, we get

mw =

(
n

w

)
·

 ∑
0≤j≤w
j even

(
w

j

)
νj(1− ν)w−j


r

.

To conclude the proof, we simplify the expression by considering that
∑

0≤j≤w
j even

(
w
j

)
νj(1−
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10−11

10−8

10−5

10−2

101

w

m
w

v = 5
v = 7
v = 9
Random code

Figure 3.1: Average weight distribution for codes with n = 50, r = 42 and several
values of v. Dotted lines report the theoretical values while cross marks correspond
to empirical values, which have been obtained by averaging over 10 000 matrices.
The black line shows the average weight distribution for a random code with the
same values of n and r. v is the average column weight.

ν)w−j corresponds to the probability that the sum of w independent Bernoulli vari-

ables with parameters ν is equal to 0. This is a special case of the piling-up lemma

(theorem 3.2.1) in which all distributions are the same. Hence we rewrite this prob-

ability as

1

2
+ 2w−1

w∏
i=1

(P[xi = 0]− 1

2
) =

1

2
+ 2w−1

w∏
i=1

(
1

2
− ν) =

1

2
(1 + (1− 2ν)w).

See fig. 3.1 for a comparison between the formula and the well known distribution

for random codes. Moreover, we have compared the theoretical average distribution

with the emiprical one, estimated by sampling a large number o Bn,R,ν , computing

the weight enumerator function by exhaustive search over all codewords and then

averaging over all attempts.

Evidently the sparsity γ of parity-check in this ensemble is equal to ν.
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3.3 Bias with respect to random codes

We now study the bias in the weight distribution of our ensemble relative to that

of random codes. We performed numerical experiments on codes with constant rate

R = 0.4, and using several values of ν and n. We have analyzed how 1
n
log( mw)

grows, which represent the normalized weight distribution. The results of these

experiments are represented in fig. 3.2. We can see how, apart from ν = ln(n)
n

, for all

densities the weight distribution of the ensemble converges to that of random codes

with sufficiently large length n. Instead, for ν = ln(n)
n

, the behavior of the weight

distribution differs significantly from that of random codes.

Trying to formalize the achieved results, we were able to prove the following four

facts:

1. the coefficient mw is always of the form mw = mrnd
w · g(n,w), where g(n,w) =

(1 + (1− 2ν)w)n(1−R). In particular, g(n,w) ≥ 1 for any n and w;

2. when ν is constant, the coefficients g(n,w) has an impact on the weight dis-

tribution. In particular, the minimum distance is in o(n);

3. for any ν = O
(

ln(n)
n

)
, the coefficient g(n,w) has an impact on the weight

distribution. In particular, the minimum distance is o(n);

4. for any ν such that ln(n)
n

= o(ν), there is no significant difference with respect

to random codes.

We rewrite the coefficients in the weight distribution in a way which makes the

difference cleared.

Theorem 3.3.1.

For codes sampled from Bn,R,ν, we have

mw = mrnd
w · (1 + (1− 2ν)w)(n(1−R)),

µw = µrnd
w + (1−R) · log2(1 + (1− 2ν)w).

We observe that the only difference is due to the term

g(n,w) = n · (1−R) · log2(1 + (1− 2ν)w),
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Figure 3.2: Value of 1
n
· log2(mw), for several values of n and ν, and R = 0.4.

which we now study in several meaningful regimes. First, we notice that if ν = 1
2
,

then mw = mrnd
w and µw = µrnd

w .

We start by analyzing the behavior with ν constant.

Theorem 3.3.2.

Let ν ≤ 1
2
be a constant and d denote the minimum value of w such that µw ≥ 0.

Then, for increasing n, we have d = Ω(n); in particular, d = δ · n and δ ∼ δrnd.

Proof. As n grows, d becomes a function of n. We first show that d cannot o(n).
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Indeed, in this regime we can use the binomial asymptotic expansion

1

n
· log2

(
n

d

)
=

d

n
log2

(n
d

)
· (1 + o(1)).

Neglecting low order terms, asymptotically µd is

d

n
· log2

(n
d

)
− (1−R) · (1− log2(1 + (1− 2ν)d)).

If d = o(n), the term d
n
· log2(nd ) asymptotically vanishes, while 1− log2(1+(1−2ν)d)

is always positive. Indeed d is constant, then (1− 2ν)d is constant as well, and less

than 1, so that

1− log(1 + (1− 2ν)d) > 1− log2(1 + 1) = 0

If instead d grows with n, we get that (1− 2ν)d tends to 0, hence log2(1+ (1− 2ν)d)

tends to 0 as well. In both cases, the term 1− log(1+ (1− 2ν)d) tends to a positive

constant. This implies that for sufficiently large n, the value of µw is negative.

The situation changes when one considers d = Ω(n). We still have (1− 2ν)d = o(1),

hence log2(1 + (1− 2ν)d) = o(1), but now(
n

d

)
= 2n·h(δ)·(1+o(1)).

Then, apart from low order terms, µd is h(R)− (1−R) = µrnd
d .

We now consider what happens when ν grows with n.

Theorem 3.3.3.

Let ν = f(n)/n with f(n) > 0 for every n > 0, limn→∞ f(n) =∞ and f(n) = o(n),

i.e., limn→∞
1
n
· f(n) = 0. Then, for sufficiently large n:

- for any w such that w · f(n) = o(n), µw is non negative only if w ≤ n ·
e−(1−R)·f(n);

- for any w such that w · f(n) = Ω(n), µw is always negative

- for any w = Ω(n), µw ∼ µrnd
w
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Proof. Since limn→∞
n

f(n)
= 0, we get

(1− 2ν)w =

(
1− 2f(n)

n

)w

=

((
1− 2f(n)

n

) n
f(n)

)w·f(n)
n

∼ e
−2w·f(n)

n .

Therefore, the expression for µw becomes

µw =
1

n
· log2

(
n

2

)
− (1−R)(1− log2(1 + (1− 2ν)w))

∼ 1

n
· log2

(
n

w

)
(3.1)

We now distinguish between the three cases, as stated in the theorem.

- Case w ·f(n) = o(n): we have limn→∞ e−
2w·f(n)

n = e0 = 1. We use the following

expansion: for x = o(1), it holds that

1− log2(1 + e−x) =
1

2 ln(2)
· x+ o(x)

In our case x := w·f(n)
n

hence

1− log2

(
1 + e

−2w·f(n)
n

)
=

w · f(n)
n · ln(2)

+ o

(
2w · f(n)

n

)
=

w · f(n)
n · ln(2)

+ o(1).

Since w·f(n)
n

= o(1) and limn→∞ f(n) =∞, w grows slower than n
f(n)

so

0 ≤ lim
n→∞

w

n
≤ lim

n→∞

n

n · f(n)
= lim

n→∞

1

f(n)
= 0.

Hence w = o(n) and

1

n
· log2

(
n

2

)
=

w

n
· log2

(n
w

)
= o(1),

thus

µw =
w

n
·
(
log2

(n
2

)
− (1−R) · f(n)

ln(2)

)
+ o(1).

This is non negative whenever log2
(
n
2

)
− (1−R)·f(n)

ln(2)
≥ 0, which after some
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manipulations results into

w ≤ n · e−(1−R)·f(n).

- Case w · f(n) = Ω(n): now, w = Ω
(

n
f(n)

)
. Since limn→∞ f(n) = ∞, we

have w
n
= Ω

(
1

f(n)

)
= o(1). Thus also inthis case, w = o(n) and log2

(
n
w

)
=

w · log2
(
n
w

)
+ o(1). Let limn→∞

w·f(n)
n

= ζ, with ζ > 0 being a constant. Then,

β = lim
n→∞

1− log2

(
1 + e

−2w·f(n)
n

)
= 1− log2

(
1 + e−2ζ

)
> 1− log2(2) = 0.

We are then left with

µw = lim
n→∞

w

n
· log2

(n
w

)
− β(1−R)

= lim
n→∞

ζ

f(n)
· log2

(
f(n)

ζ

)
︸ ︷︷ ︸

→0

−β(1−R)

= −β(1−R) < 0

- Case w· = Ω(n): we now have limn→∞
w·f(n)

n
= ∞. We start again from

eq. (3.1) and consider that

lim
n→∞

log2

(
1 + e

−2w·f(n)
n︸ ︷︷ ︸

e−∞→0

)
= log2(1) = 0.

In other words, in this regime, limn→∞ g(n,w) = 1, hence µw ∼ µrnd
w .

As a special case of the above theorem, we have a significant deviation in the weight

distribution of codes drawn from the ensemble only if ν = O
(

log(n)
n

)
.

Theorem 3.3.4.

For w · f(n) = o(n), µw ≥ 0 only if f(n) ≤ ln(n)
1−R

. For f(n) = α · ln(n), µw ≥ 0 for

any w ≤ n1−α(1−R).
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Proof. From theorem 3.3.3 we have that

µw ≥ 0 =⇒ w ≤ n · e−(1−R)·f(n).

We are considering positive weights w ≥ 1, hence we want

1 ≤ n · e−(1−R)·f(n) = eln(n)−(1−r)·f(n)

=⇒ 0 ≤ ln(n)− (1−R) · f(n)

=⇒ f(n) ≤ ln(n)

(1−R)

Setting f(n) = α·ln(n), and considering the largest w such that w ≤ n·e−α(1−R)·ln(n),

we get the thesis.

3.4 Degenerate codes

We now show that, if the density is too low, sampling from our distribution leads

to parity-check matrices that are badly formed, e.g., have a large number of null

columns. We call these codes degenerate. This is coherent with the results of

theorem 3.3.3: we show that, whenever the density isO
(

ln(n)
n

)
, with high probability

the code contains a large number of null columns. This somehow motivates the fact

that, for such low densities, the minimum distance becomes subexponential in n.

Theorem 3.4.1.

Let ν = O
(

ln(n)
n

)
. Then, a parity-check matrix sampled from Bn,R,ν has an average

number of null column which is at least 1.

Proof. The probability that a column is null is (1−ν)(1−R). By hypothesis ν = o(1),

hence

(1− ν)n(1−R) =
(
(1− ν)

1
v

)ν·n(1−R)

∼ e−ν·n(1−R)

Hence, the average number of null columns is ∼ n · e−ν·n(1−R). Requiring it to be at

least 1 we get

1 ≤ n · e−ν·n(1−R) = eln(n)−ν·n(1−r)

=⇒ ν ≤ ln(n)

n(1−R)
≤ ln(n)

n
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Other properties of this degenerate codes can be proven, such as the the probability

that there are equal columns. We do not enter into such detail, and from now on

we exclude degenerate cases from our analysis and consider only densities that grow

faster then ln
n
, in other words, is ν is such that:

ln(n)

n
= o(ν).

From theorem 3.3.3, it follows that the ensembles of codes we are considering have

minimum distances properties very close to those of random codes. This is a prop-

erty we are interested in, as in code-based cryptography, schemes that are more

susceptible to attacks are those using codes with tight inherent structure, as this

might be exploited. The randomness of our ensembles is, therefore, a desired prop-

erty. Furthermore, the knowledge of the weight distributions help us to get estimates

on the performances of ISD algorithms.



4 Algorithm

In this chapter we present our variant of ISD, based on Stern’s algorithm, but

tailored to exploit the sparsity of low-density parity-check matrices. Consequently,

for the remainder of this dissertation we will refer to this algorithm as SparseISD.

We analyze the performances of the algorithm when used with codes from the en-

sembles we introduced in the previous chapter. For this reason, we characterize the

algorithm with the assumption that q = 2.

4.1 Rationale

In Stern’s algorithm the small instance is produced in form of a matrix with small

support. Put differently, this means the matrix can be used as generator of a subcode

of the dual code C ⊤, with support size less than n. This is obtained via PGE.

Applying gaussian elimination on a n − k × n matrix, any set of ℓ rows yields a

matrix with at least n − k − l null columns. In other words, the selection of ℓ

rows gives a matrix with support size ≤ k + ℓ. This can be less than k + ℓ only

if some other columns are null: each column is null with probability 2−ℓ, and the

average number of extra null columns is (k + ℓ)2−ℓ. Stern’s algorithm is normally

optimized by setting l = Ω(n), thus the average number of extra null columns decays

exponentially with n.

Remember that the parameter ℓ in Stern’s algorithm impacts several aspects of the

procedure:

- The success probability gets smaller as ℓ increases. It can be increased by

enlarging p, but it increases the lists sizes, as well;

- The lists sizes increase with ℓ, as the length of the small instance grows with

ℓ;

32
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- The probability that a collision happens for a given pair of list elements decays

exponentially with ℓ.

For sparse parity-check matrix H, the situation is rather different as one can find

small instances with more convenient parameters. We can see this by considering,

again, matrices sampled from Bn,R,ν . By picking a random ℓ, on average the number

of non null column is

z̄ = E[z] = n(1− (1− ν)ℓ)

(1− v)ℓ is the probability that a given column of the submatrix created by picking

ℓ rows is null. Therefore, 1 − (1 − ν)ℓ corresponds to the probability that at least

one coordinate is not null. Multiplying by n yields the average number of non null

columns. It is easy to see that z can stay small even if ℓ is large. For insance, let us

consider the case of ν = o(n); then

(1− ν)ℓ =
(
(1− ν)

1
ν )ℓν

)
∼ e−ℓν .

The way ℓ is chosen affects the parametrs of the small instance. We split this

parameter in two parameters ℓ1 and ℓ2, such that ℓ = ℓ1 + ℓ2. They have a different

effect on the size of the small instances of the algorithm, that will be later described.

This matter is studied in detail when analyzing the performances of the algorithm

we are presenting. First, we prove a result that will be instrumental in the design

of the algorithm.

Lemma 4.1.0.1.

Let H ∈ F(n−k)×n
2 be a matrix in the form

H =

n− uz u− z
u

ℓ1

n− k − ℓ1

A
0 0

B
C

Then, C has rank ≤ min {n− u, n− k − ℓ} and, in particular C is square ⇐⇒
u = k + ℓ
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Proof. The proof is obvious and just depends on the dimensions of the matrix C.

4.2 Description

We obtain a matrix as the one in 4.1 using the following procedure:

1. select at random ℓ1 rows of H and denote their supports by J1, ..., Jℓ1

2. set J =
⋃ℓ1

i=1 Ji and select a permutation π that moves J to the leftmost

positions. Let z = |J |;

3. apply a row permutation that brings the select rows in the first ℓ1 position,

then apply a column permutation that places n− z null columns on the right.

Let H′ denote the matrix obtained in this way. All the operation we have just

described can be applied using a row permutation matrix Pr and a column permu-

tation matrix Pc, so that H′ = Pr · H · Pc. Now, aiming to produce an identity

matrix in the bottomright coner, we apply a change of basis C. Since the first ℓ1

rows have only null coordinates on the rightmost n − u coordinates, such a matrix

can be of the form

S =

(
Iℓ1 0

0 S′

)
,

with S′ ∈ F(n−k−ℓ1)×(n−k−ℓ1)
q . Applying S on H′, we obtain H′′, that is the standard

form of the parity-check matrix for our algorithm. We can see how here comes into

play the parameter ℓ2, that we can tune to resize the bottomright identity matrix,

and the other submatrices accordingly. In fig. 4.1 it is possible to see a visualization

of the transformations operated on the parity check matrix by the algorithm.

Once we achieved the standard form, we search for a solution x in the form:

x′
1

Length z/2
Weight p1

x′′
1

Length z/2
Weight p1

x2

Length u− z
Weight p2

x3

Length n− u
Weight w − 2p1 − p2

Figure 4.2: SparseISD codeword weight partitioning
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H H′ =

n− uz/2 u− z

u

ℓ1

n− k − ℓ1

z/2

A1 A2 0 0

B C

Row permutation Pr,
column permutation Pc

H′′ =

n− uz/2z/2 u− z

u

ℓ1

ℓ2

n− k − ℓ

ℓ

A1 A2 0 0

B1 B2 0

In−k−ℓC

Change of basis S =

(
Iℓ1 0
0 S′

)
Change of basis S ·Pr,
column permutation Pc

Figure 4.1: Matrix transformations in the algorithm

which gives rise to the following system of equations:


A1x

′⊤
1 = A2x

′′⊤
1 ,

B1x
⊤
2 = B2(x

′
1,x

′′
1)

⊤,

C(x2,x
′
1,x

′′
1)

⊤ = x3.

(4.1)

Like Stern algorithm, SparseISD is based on performing meet-in-the-middle to solve

the small instances. We solve the system one solution after the other, that is:

1. we find all solutions (x′
1, x

′′
1) to the first equation, performing meet-in-the-

middle; we call the resulting list by L1;

2. we find x2 by solving the second equation, performing meet-in-the-middle

again; we call the resulting list by L2;

3. for each entry (x′
1,x

′′
1,x2) ∈ L2, we compute the corresponding x3 by solving

the third equation, and check its weight.

In algorithm 4 we give a formal description of the Solve subroutine of our algorithm,

performed after the transformation on the parity-check matrix are applied. There-

fore, a parity-check matrix in the form depicted in fig. 4.3 is considered as input for
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the subroutine.

H =

n− uz u− z
u

ℓ

n− k − ℓ

A 0 0

0

In−k−ℓ

B

C

Figure 4.3: H standard form for SparseISD algorithm

Algorithm 4: SparseISD Solve subroutine

Data: p ∈ N, 0 ≤
⌊
k+ℓ
2

⌋
Input: A ∈ Fℓ1×z

q , ℓ1 ∈ N, B ∈ Fℓ2×u
q , ℓ2 ∈ N, u ∈ N

Output: set X with solutions of the small instance, with weight 2p1 + p2

1 Write A = (A1,A2), where A1 ∈ F
ℓ1×⌊ z2⌋
q , A2 ∈ F

ℓ×⌈ z2⌉
q ;

2 Set L ′
1 =

{
(x′

1,x
′
1A

⊤
1 ) | x′

1 ∈ S⌊ z2⌋,p
}
;

3 Set L ′′
1 =

{
(x′′

1,x
′′
1A

⊤
2 ) | x′

2 ∈ S⌈ z2⌉,p
}
;

4 Compute L1, the set of all pairs (x′
1,x

′′
1) ∈ S⌊ z2⌋,p ×S⌈ z2⌉,p such that

x′
1A

⊤
1 = −x′′

1A
⊤
2 ;

5 Write B = (B1,B2), where B1 ∈ Fℓ2×z
q , B2 ∈ Fℓ2×u−z

q ;

6 Set L ′
2 =

{
(x1,x1B

⊤
1 ) | x1 ∈ L1

}
;

7 Set L ′′
2 =

{
(x2,x2B

⊤
2 ) | x2 ∈ Su−z,p

}
;

8 Compute L2, the set of all pairs (x1,x2) ∈ L1 ×Su−z,p such that
x1B

⊤
1 = −x2B

⊤
2 ;

9 return L2
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4.3 Complexity Analysis

We now analyze the computational complexity of SparseISD. Clearly, performing

the collision search via meet-in-the-middle twice, is what impacts the algorithm’s

cost the most. The first merge is performed on L ′
1 and L ′

1. For the sake of clarity,

we neglect floors and ceilings, hence we are considering two lists of equal length

L1 = |L ′
1| = |L ′′

1 | =
(
z/2

p1

)
. (4.2)

With the same assumption made during the description of Stern algorithm, we have

that the resulting list L1, on average has length

|L1| = |L ′
1| · |L ′′

1 |q−ℓ1 = L2
1q

−ℓ1 .

The second meet-in-the-middle involves L ′
2 and L2. The former has length equal

to L1, while the latter has length

L2 = |L ′′
2 | =

(
u− z

p2

)
. (4.3)

The merge results in list L2, which has length

|L2| = |L ′
2| · |L ′′

2 | = L2
1q

−ℓ1 · L2q
−ℓ2 = L2

1L2q
−ℓ1−ℓ2 . (4.4)

Drawing from this results, let us formally define the algorithm’s cost.

Proposition 4.3.1. Performances of SparseISD (1)

Let ℓ1, ℓ2, p1 and p2 be the parameters for SparseISD. Let ℓ = ℓ1, ℓ2 and u such that

n− u = n− k − ℓ =⇒ u = k + ℓ

Let z̄ = E[z]. Then, the time complexity of SparseISD’s Solve subroutine, is

tSolve(ℓ1, ℓ2, p1, p2, z̄) = 2L1 +
L2
1

qℓ1
+ L2 +

L2
1L2

qℓ1+ℓ2
,
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where

L1 =

(
z̄/2

p1

)
, L2 =

(
u− z̄

p2

)
.

The probability that a codeword c ∈ Cw is returned is:

pISD =

(
z/2
p1

)2(u−z
p2

)(
n−u

w−2p1−p2

)(
n
w

) .

Proof. The cost tSolve of the Solve subroutine is given by the cost of lists’ enumera-

tion, and the application of the 2 meet-in-the-middle procedures. The stated value

is obtained as a combination of eq. (4.2), eq. (4.3) and eq. (4.4).

The success probability is given by the probability of having assumed the correct

weight distribution, that is represented by the number of codewords following the

distribution, over the total number of weight-w codewords. This clearly results in

the pISD stated in the proposition.

Proposition 4.3.2. Performances of SparseISD (2)

On average, SparseISD runs in time

O

n3 + n ·
(
2L1 +

L2
1

qℓ1
+ L2 +

L2
1L2

qℓ1+ℓ2

)
(
z̄/2
p1

)2(u−z̄
p2

)(
n−u

w−2p1−p2

)
/
(
n
w

)


Proof. The proposition is a direct result of proposition 2.4.1 and proposition 4.3.1.

When working with the ensemble described in the previous chapter, one can get a

precise estimate of the expected value of z, that is the average size of the support

of the ℓ1 randomly selected rows:

z̄ = E[z] = n
(
1− (1− ν)ℓ1

)
(4.5)

This result makes it possible for us to execute numerical estimation of the behavior

of our algorithm when working with the different ensembles.
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4.4 Comparison with Stern algorithm

Since SparseISD is a modified version of Stern’s ISD, it is natural to compare the two

algorithms to understand their differences. Both algorithms were analyzed on the

two most promising ensembles introduced in chapter 3, namely those with densities

ν = ln(n)2

n
and ν =

√
n
n
. Numerical experiments were conducted by varying code

length n and code rate R.

The results of these experiments show that, in general, our algorithm tends to fol-

low or improve the performances when working with sparse parity-check matrices.

However, the entity of the improvement is strictly correlated to code properties. We

can see the best improvements for high code rates in both ensembles. Due to the

exponential nature of the algorithms, these differences become more appreciable as

n grows. The only exception is for R = 0.4 and ν = ln(n)
n

, where there’s even a slight

loss in performances for high n. Nevertheless, even in this case, for tractable code

sizes there’s still some, although small, improvement.

For the different cases analyzed, we present plots that illustrate the computational

cost behavior of the two algorithms. We chose to use a cost coefficient normalized

with respect to n, as this provides a clearer understanding of the asymptotic perfor-

mance across varying code lengths, and ensures a fair comparison. In other words,

if ops is the number of operations needed for one algorithms, on the axis we have n,

and on the y-axis we are plotting:

cost coeff. =
log2(ops)

n

Additionally, we include tables explicitly showing the computational costs, expressed

as powers of 2, to highlight the improvements achieved.

4.4.1 Ensemble with ν = lnn2

n (LDPC)

The first ensemble we examined is the one of codes with density ν = ln(n)2

n
. On

average these codes have a number of nonzero elements per row that is, clearly,

ln(n). This is a typical value for the construction of LDPC codes.

In figure fig. 4.4 we have plotted the cost coefficients for both algorithms. As already

stated, as R grows, the difference in performances between our algorithm and Stern

ISD grows too.



CHAPTER 4. ALGORITHM 40

2000 4000 6000 8000 10000

0.12

0.13

0.14

n

co
st

co
eff

.

(a) R = 0.4

2000 4000 6000 8000 10000

0.11

0.12

0.13

n

co
st

co
eff

.

(b) R = 0.6

2000 4000 6000 8000 10000

0.07

0.08

0.09

n

co
st

co
eff

.

(c) R = 0.8

SparseISD Stern

Figure 4.4: Cost coefficients for ν = ln(n)2

n
, for several values of n and R.
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SparseISD Stern Gain
n cost coeff. log2(ops) cost coeff. log2(ops) log2(gain)
500 0.142 71 0.143 71 0
1,000 0.13 129 0.131 130 1
1,500 0.125 187 0.126 189 2
2,000 0.122 244 0.124 247 2
2,500 0.121 302 0.122 305 2
3,000 0.12 360 0.121 363 3
3,500 0.12 418 0.12 421 2
4,000 0.119 476 0.12 479 2
4,500 0.119 535 0.119 537 1
5,000 0.119 593 0.119 595 1
5,500 0.119 652 0.119 652 0
6,000 0.119 711 0.119 711 −1
6,500 0.119 770 0.118 769 −2
7,000 0.118 828 0.118 827 −1
7,500 0.118 886 0.118 885 −1
8,000 0.118 944 0.118 944 −1
8,500 0.118 1,003 0.118 1,002 −1
9,000 0.118 1,062 0.118 1,061 −1
9,500 0.118 1,121 0.118 1,120 −1
10,000 0.118 1,179 0.118 1,179 −1

Table 4.1: SparseISD and Stern performances with R = 0.4, ν =
√
n
n

SparseISD Stern Gain
n cost coeff. log2(ops) cost coeff. log2(ops) log2(gain)
500 0.132 66 0.135 67 1
1,000 0.119 119 0.123 122 3
1,500 0.115 172 0.119 177 4
2,000 0.113 226 0.116 232 6
2,500 0.111 278 0.114 285 7
3,000 0.111 332 0.113 340 7
3,500 0.11 386 0.113 394 8
4,000 0.11 439 0.112 449 9
4,500 0.11 492 0.112 502 9
5,000 0.11 547 0.111 556 8
5,500 0.11 603 0.111 610 7
6,000 0.109 654 0.111 663 9
6,500 0.109 709 0.111 718 9
7,000 0.109 766 0.111 773 7
7,500 0.109 820 0.111 829 8
8,000 0.109 874 0.11 882 7
8,500 0.11 931 0.11 938 6
9,000 0.109 982 0.11 994 11
9,500 0.109 1,036 0.11 1,048 12
10,000 0.109 1,092 0.11 1,103 11

Table 4.2: SparseISD and Stern performances with R = 0.6, ν = log(n)2

n
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SparseISD Stern Gain
n cost coeff. log2(ops) cost coeff. log2(ops) log2(gain)
500 0.085 42 0.088 44 1
1,000 0.072 72 0.079 78 6
1,500 0.07 105 0.077 115 10
2,000 0.068 136 0.075 150 13
2,500 0.069 171 0.075 186 15
3,000 0.068 204 0.074 223 19
3,500 0.068 238 0.074 257 19
4,000 0.069 274 0.074 294 20
4,500 0.068 305 0.073 328 22
5,000 0.068 341 0.073 364 22
5,500 0.069 380 0.073 401 21
6,000 0.069 414 0.073 435 20
6,500 0.069 450 0.073 471 21
7,000 0.069 483 0.072 506 22
7,500 0.069 520 0.072 542 22
8,000 0.07 557 0.073 580 22
8,500 0.07 592 0.072 615 22
9,000 0.07 630 0.072 652 21
9,500 0.07 665 0.072 687 22
10,000 0.07 704 0.073 725 21

Table 4.3: Costs coefficients, R = 0.8, ν = log(n)2

n

In table 4.1, we observe that for R = 0.4, the two algorithms perform similarly

overall. However, there is a notable difference at n = 3000, where our algorithm is

6 times faster than Stern’s. After this peak, performance starts to decline, and by

n = 6500, our algorithm becomes 4 times slower than Stern’s.

ForR = 0.6 andR = 0.8, the number of saved operations increases as n grows. When

R = 0.6 (see table 4.2), the algorithm reaches its peak improvement at n = 9500,

running 212 times faster. When R = 0.8 (see table 4.3), the improvement is even

greater, reaching the same advantage of the previous case already at n = 2000, and

peaking at a speedup of 222.

4.4.2 Ensemble with ν =
√
n
n (MDPC)

Now we examine the ensemble of codes with density ν =
√
n
n
. It is easy to see that,

in this case, the average number of nonzero elements is ν =
√
n, making codes in

this ensemble similar to MDPC codes.

Numerical experiments, plotted in fig. 4.5, yield results similar to those of the pre-

vious ensemble,
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Figure 4.5: Cost coefficients for ν =
√
n
n
, for several values of n and R.
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SparseISD Stern Gain
n cost coeff. log2(ops) cost coeff. log2(ops) log2(gain)
500 0.141 70 0.143 71 1
1,000 0.127 127 0.13 129 2
1,500 0.124 186 0.126 189 3
2,000 0.122 243 0.124 247 3
2,500 0.121 301 0.122 305 3
3,000 0.12 359 0.121 363 3
3,500 0.119 417 0.12 421 3
4,000 0.119 476 0.12 479 2
4,500 0.119 534 0.119 537 2
5,000 0.119 593 0.119 595 1
5,500 0.119 652 0.119 652 0
6,000 0.119 711 0.119 711 −1
6,500 0.119 770 0.118 769 −2
7,000 0.119 829 0.118 827 −3
7,500 0.119 888 0.118 885 −4
8,000 0.118 947 0.118 944 −4
8,500 0.118 1,005 0.118 1,002 −4
9,000 0.118 1,064 0.118 1,061 −4
9,500 0.118 1,123 0.118 1,120 −3
10,000 0.118 1,182 0.118 1,179 −3

Table 4.4: Costs coefficients, R = 0.4, ν =
√
n
n

SparseISD Stern Gain
n cost coeff. log2(ops) cost coeff. log2(ops) log2(gain)
500 0.122 61 0.13 64 3
1,000 0.115 115 0.121 121 6
1,500 0.112 168 0.118 176 7
2,000 0.111 221 0.116 231 9
2,500 0.11 275 0.114 285 9
3,000 0.11 329 0.113 340 10
3,500 0.11 384 0.113 394 10
4,000 0.11 438 0.112 449 10
4,500 0.109 492 0.112 502 9
5,000 0.11 549 0.111 556 7
5,500 0.11 603 0.111 610 7
6,000 0.11 657 0.111 663 6
6,500 0.109 709 0.111 718 9
7,000 0.109 765 0.111 773 8
7,500 0.11 821 0.111 829 7
8,000 0.11 877 0.11 882 5
8,500 0.11 933 0.11 938 5
9,000 0.11 987 0.11 994 7
9,500 0.11 1,041 0.11 1,048 7
10,000 0.11 1,097 0.11 1,103 6

Table 4.5: Costs coefficients, R = 0.6, ν =
√
n
n
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SparseISD Stern Gain
n cost coeff. log2(ops) cost coeff. log2(ops) log2(gain)

1,500 0.056 83 0.063 94 11
2,000 0.06 120 0.068 136 16
2,500 0.062 156 0.07 175 19
3,000 0.065 193 0.071 214 20
3,500 0.066 230 0.072 253 22
4,000 0.067 266 0.072 289 23
4,500 0.067 302 0.072 326 23
5,000 0.068 342 0.073 364 22
5,500 0.069 380 0.073 401 21
6,000 0.07 418 0.073 437 19
6,500 0.07 451 0.073 471 19
7,000 0.07 488 0.073 508 20
7,500 0.07 524 0.073 545 20
8,000 0.07 561 0.073 582 20
8,500 0.07 599 0.073 619 20
9,000 0.07 633 0.073 654 20
9,500 0.071 671 0.073 692 20
10,000 0.071 708 0.073 729 21

Table 4.6: Costs coefficients, R = 0.8, ν =
√
n
n

Results are analog to those of the previous case, having larger speedups as R in-

creases. For R = 0.4 (see table 4.4) we have an initial gain, but decades rapidly,

becoming negative at n = 6000. For R = 0.6 (see table 4.5) our algorithm performs

better than Stern across all n, running 8 to 1024 times faster. For R = 0.8 (see

table 4.6) there’s an even more significant difference in performances, starting from

a speedup of 211 for n = 1500, and peaking at 223 for n = 4000.



5 Proof of Concept Implementation

In this chapter we present a proof of concept implementation of SparseISD. This

implementation serves solely to validate the theoretical model of our algorithm. Nev-

ertheless, design choices are justified, laying the foundations for a future optimized

and practical implementation.

5.1 Design

We implemented our algorithm using SageMath, a free and open-source mathe-

matical system, that offers a python-based language interface, built on top of other

important mathematical packages. There are many reasons behind this choice. First

and foremost, SageMath, unlike other programming languages, offers a very simple

and clean syntax for algebraic operations. Second of all, it handles error correction

codes, and offer related useful functions, such as calculating the hamming weight of a

codeword, or finding the minimum distance of a codeword through exhaustive search.

This last function, in particular, was used to calculate beforehand the minimum dis-

tance of the codes we have benchmarked our algorithm on. More specifically we

have used an algorithm supplied by the GUAVA package of the GAP library, trough

API available in SageMath. This, together with access to all libraries available for

the python language, makes SageMath is the best candidate for our proof of concept

implementation.

5.2 Collision search

We implemented a hash-based collision search, where collisions are found creating

hash tables and then searching for collisions in keys. Hash tables, also called dictio-

naries, are data structures that map keys to values, using a hash function to generate

unique indexes from keys, from which the values can recovered.
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Figure 5.1: Hash tables functioning.

The alternative approach is sorting both lists and then performing a binary search

on them, but for large lists this is computationally more expensive. The average time

complexity of sorting algorithms is O(n log2(n)). Same goes for the binary search,

which has a O(n log2(n)). Hence, the cost of the procedure would be O(n log(n)).

Hash tables, instead, on average have O(1) insertion time and O(1) lookup time.

Therefore, building our hash tables and performing the merge have both a cost

of O(n). On the other hand this is has a space complexity of O(n). This might

be infeasible for very large instances, which we will not analyze with our proof of

concept. The implementation of the collision search can be seen in Listing 5.1.

def collision search(list1, list2, A1, A2):

hash table1 = {tuple(x1∗A1.T) : x1 for x1 in list1}
hash table2 = {tuple(x2∗A2.T) : x2 for x2 in list2}

collisions = []

for key, x1 in hash table1.items():

if key in hash table2:

x2 = hash table2[key]

collisions.append(vector(GF(2), list(x1) + list(x2)))

return collisions

Listing 5.1: Collision search using hash tables
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5.3 Solve subroutine

In Listing 5.2 can see how the implementation of the Solve subroutine in SageMath

is really concise. The submatrices are generated at the beginning, then lists are

created through enumeration, and finally these lists are used for collision search.

def sparseISD Solve(H, l1, l2, z, p1, p2):

l = l1 + l2

A = H[:l1, :z]

z1 = floor(z/2); z2 = ceil(z/2)

A1 = A[:,:z1]; A2 = A[:,z1:]

B = H[l1:l, :k+l]

B1 = B[:, :z]; B2 = B[:, z:]

list1 1 = enum vectors(z1,p1)

list1 2 = enum vectors(z2,p1)

list1 = collision search(list1 1 ,list1 2 ,A1,A2)

list2 = enum vectors(k+l−z,p2)
solutions = collision search(list1,list2,B1,B2)

return solutions

Listing 5.2: SparseISD Solve subroutine.

5.3.1 Ensemble generation

The generation of parity-check matrices is straightforward. The Matrix method of

SageMath accepts a Lambda function for the generation of each element. In Listing

5.3, we can see how we generate elements according to the binomial distribution

with probability ν. To avoid the generation of degenerate codes, the parity-check

matrix is regenerated until it has no null columns.

def generate matrix(density):

H = Matrix(GF(2), r, n, lambda i, j: random.random() < density)

while any(col.is zero() for col in H.columns()):

H = Matrix(GF(2), r, n, lambda i, j: random.random() < density)

return H

Listing 5.3: H generation



6 Future developments

Our work was primarily focused on binary codes, but in the future we would like

to generalize our work to codes defined over arbitrary finite fields Fq. This means

expanding the analysis of our ensemble, so that it consider distributions wider than

the classic binomial one. Same goes for our implementation, that’s currently only

able to operate with binary codes.

We studied and characterized irregular LDPC codes through the introduced ensem-

ble, and we did it generalizing the classic ensemble of binary random codes. Our

analysis did not consider Tanner graphs, but in the future we would like to draw

some connections between LDPC codes and graphs. Many combinatorial objects,

like cycles and trapping sets, arise when studying these codes, and these structure

are widely characterized in studied in graph theory. Understanding these relation-

ship further, could help us improve our algorithm and design better heuristics that

make use of Tanner graph properties. This is strongly motivated by some results in

graph theory that are strictly related to problems in coding theory. For instance,

the clique problem, a typical NP-complete problem, gets significantly easier when

studying sparse graphs, becoming solvable in polynomial time.

For what concerns the implementation of SparseISD, we would like to develop a

faster and more practical version. The proof-of-concept, as such, doesn’t consider

a wide variety of optimizations that could be applied. In the current state, large

instances are unfeasible for our algorithm. We intend to reimplement the algorithm

using a lower level programming language such a C, opening the doors for a variety

of tweakings that can severely fasten the algorithm. Among these techniques, we

plan to exploit commonly used ones for ISD implementations, such as:

- Intermediate sums: technique used to speed up computations done on sets

of vectors. It consists on performing the computations starting from the easier

case and use the obtain results to perform the operation on harder cases. The
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natural application in our algorithm is the calculation of lists used in meet-in-

the-middle, starting from codewords of lower weight onward.

- Early abort: this technique is used when solutions of an algorithm need

to satisfy a constraint, but this can be evaluated before computing the entire

solution. An example related to our algorithm, that can help better understand

this technique, is when, after performing the Solve subroutine, we compute

the rightmost codeword partition. We usually check the codeword weight

after computing it all. Applying early abort, one could stop the computation

earlier if, after computing some elements, the given weight is already exceeded,

discarding the current codeword.

We aim to use system optimization when possible, such as leveraging the Single In-

struction Multiple Data (SIMD) parallel computing model, where as single instruc-

tion is operated on multiple elements simultaneously. This paradigm is particularly

suited when working with vectors and matrices. A direct example, is the compu-

tation of the product between 2 matrices, where multiple elements of the resulting

matrix could be computed simultaneously. Many modern CPU’s instruction sets

have SIMD extensions: common ones are AVX for x86 architectures, and NEON

for ARM architectures.



7 Conclusion

In this thesis a new ISD algorithm for finding the minimum distance of LDPC codes

was presented. A formal description of the algorithm, along with computational

complexity analysis, was provided. The algorithm performances were compared to

those of the most commonly used ISD algorithm, which is Stern algorithm. To

accomplish this, we introduced a new ensemble of codes, which is a generalization

of the ensemble of random codes. We proved that for densities that grow faster

than ln(n)
n

, LDPC codes have a weight distribution analog to those of random codes.

Through numerical experiments it was showed how, for code rates R ≥ 0.6, our algo-

rithm achieves an asymptotic speedup of 221×. The algorithm was further validated

through a proof-of-concept implementation, which was tested on a set of codes from

our ensemble. Benchmarks were executed on small instances, but we intend to test

larger instances in the future. Results show, as expected, that SparseISD has better

performances than Stern algorithm when applied to LDPC codes. We laid the foun-

dations for the development of new ISD algorithms, tailored to exploit the sparsity

of parity-check matrices. Furthermore, the presented ensemble shall be useful for

studying a variety of algorithms that work with LDPC codes, and it should not be

considered merely instrumental for our work. Nevertheless, our algorithm is still

exponential-time, but through analysis of the relations between LDPC codes and

graphs, we hope to improve our algorithm in the near future.

51



Bibliography

[1] Nicolas Aragon et al. “BIKE: bit flipping key encapsulation”. In: (2022).

[2] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent intractability

of certain coding problems (Corresp.)” In: IEEE Transactions on Information

Theory 24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.1055873.

[3] B Erlekamp. ER (1968): Algebraic coding theory.

[4] R. Gallager. “Low-density parity-check codes”. In: IRE Transactions on In-

formation Theory 8.1 (1962), pp. 21–28. doi: 10.1109/TIT.1962.1057683.

[5] Pil Joong Lee and Ernest F Brickell. “An observation on the security of

McEliece’s public-key cryptosystem”. In: Workshop on the Theory and Ap-

plication of of Cryptographic Techniques. Springer. 1988, pp. 275–280.

[6] Nicholas Patterson. “The algebraic decoding of Goppa codes”. In: IEEE Trans-

actions on Information Theory 21.2 (1975), pp. 203–207.

[7] Christiane Peters. “Information-Set Decoding for Linear Codes over Fq”. In:

Post-Quantum Cryptography. Ed. by Nicolas Sendrier. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 81–94. isbn: 978-3-642-12929-2.

[8] E. Prange. “The use of information sets in decoding cyclic codes”. In: IRE

Transactions on Information Theory 8.5 (1962), pp. 5–9. doi: 10.1109/TIT.

1962.1057777.

[9] Jacques Stern. “A method for finding codewords of small weight”. In: Cod-

ing Theory and Applications: 3rd International Colloquium Toulon, France,

November 2–4, 1988 Proceedings 3. Springer. 1989, pp. 106–113.

[10] Alexander Vardy. “The intractability of computing the minimum distance of

a code”. In: IEEE Transactions on Information Theory 43.6 (1997), pp. 1757–

1766.

[11] Violetta Weger, Niklas Gassner, and Joachim Rosenthal. “A survey on code-

based cryptography”. In: arXiv preprint arXiv:2201.07119 (2022).

52


