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CHAPTER 1 – Introduction 

Electroencephalography (EEG), a state-of-the-art technological innovation, possesses a 

potential that remains largely untapped. Its applications are not confined to the diagnosis of 

brain lesions, epilepsy, or other neurological disorders. Rather, it is emerging as a promising 

medical tool for the exploration, modelling, and elucidation of the intricate processes and 

mechanisms underpinning human brain function.  

 

In the context of this research, an EEG Muse Monitor device was deployed to record neural 

signals while subjects were stimulated via acoustic stimuli during a jury test. These signals 

were subsequently processed using sophisticated software tools, namely EEGLAB and 

Matlab. One of the primary challenges encountered during this process pertained to the 

interpretation of EEG frequency bands most sensitive to the acoustic perception. Our current 

understanding of these frequency bands, while comprehensive in relation to sleep cycles and 

general brain activity, is limited when it comes to their response to motor activity, attention 

span, emotional states, the influence of various substances and specifically the perception of 

acoustic stimuli. 

 

Following an exhaustive review of a wide array of scientific publications, it was 

hypothesized that the theta-beta ratio and the alpha-beta ratio are two critical parameters in 

qualifying a sound input and its subsequent impact on our mood and so, for future studies, 

sensory sensitivity in neurodevelopmental disorders. These ratios serve as valuable 

indicators, shedding light on the complex interplay between auditory stimuli and emotional 

responses. This finding underscores the potential of EEG technology in advancing our 

understanding of the human brain and opens up new avenues for future research.  
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CHAPTER 2 – The nervous system 

The human brain is an astounding organ with an approximate weight of 1.5 kg [2.1] and is 

comprised of billions of cells. It is responsible for our capacity to perceive the world, think 

critically, and communicate effectively. As the human brain is commonly hailed as the most 

intricate organ within the body, its complexity continues to baffle researchers, leaving us 

with a profound lack of understanding regarding its functioning. For this reason, 

computational modelling and theoretical analysis have consistently proven essential in 

characterizing and comprehending the functions of nervous systems, as well as determining 

the interconnections between variables, timing, and causation involved in the process. [2.2] 

 

An expression of this is neural coding, which is assuming a pivotal role in the study of 

cognitive functions. It is a field within neuroscience that focuses on understanding the 

hypothetical correlation between stimuli and neuronal responses, as well as the relationship 

among the electrical activities of the neurons within a group.  

Building upon the theory that all information, sensory and otherwise, is represented in the 

brain through networks of neurons, it is believed that they can encode both digital and analog 

information. Statistical methods, probability theory, and stochastic point processes have 

been extensively employed to describe and analyse neuronal firing patterns. Thanks to 

advancements in large-scale neural recording and decoding technologies, researchers have 

commenced deciphering the neural code gaining initial insights into its real-time functioning 

during the formation and retrieval of memories in the hippocampus, a brain region crucial 

for memory consolidation [2.1] [2.3]. 

 

2.1 Central nervous system and brain anatomy  

The central nervous system is composed by the union of the brain and the spinal cord. In its 

entirety, it consists of three fundamental parts, namely the cerebrum, the brainstem, and the 

cerebellum, as sketched in Figure 2.1. Functionally, the brain plays a critical role in 

governing and coordinating a wide range of bodily functions. It accomplishes this by 

collecting, organising, and integrating data from multiple sensory receptors. Furthermore, 

the intricate structures of the brain facilitate the recognition process, allowing us to make 
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rational decisions and effectively communicate instructions to other physiological 

components. [2.2] 

 

 

Figure 2.1 Main Parts of the Brain and Their Functions, Johns Hopkins Medicine website 

(https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain) 

 

The cerebrum, the largest component of the human brain, receives and processes conscious 

sensations, generates thought, and regulates conscious behaviour. It is the brain's uppermost 

and largest part, divided into left and right hemispheres that are connected and communicate 

via the corpus callosum, allowing them to share information and work together. As a result, 

this bridge between the hemispheres is critical for integrating and coordinating various 

cognitive, sensory, and motor functions on both sides of the brain.[2.2] The decussation, word 

used to describe a crossing of nerve fibers, is the point where the nerves cross from one side 

of the brain to the other one, and it’s why the left hemisphere controls the right arm 

movements, for example. It is the down-terminal part of hindbrain. [2.8] 

 

Each hemisphere is composed by an inner core of white matter and an outer layer known as 

the cerebral cortex, composed of grey matter. The cerebral cortex further comprises the 

neocortex, forming the outermost layer, and the inner allocortex. Within the neocortex, there 

are six distinct neuronal layers, whereas the allocortex is formed by one main layer of 
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projection neurons sandwiched between layers that are rich in axons, dendrites and local 

circuit neurons.  

Conventionally, each cerebral hemisphere is divided into five lobes, four of which have the 

same name as the bone over them: the frontal lobe, the parietal lobe, the occipital lobe, and 

the temporal lobe, see Figure 2.2. A fifth lobe, the insula or Island of Reil, lies deep within 

the lateral sulcus. [2.2] 

 

 

Figure 2.2 illustration of the different cerebrum lobes, U.S. National Cancer Institute's Surveillance, Epidemiology and 

End Results (SEER) Program website (https://training.seer.cancer.gov/index.html) 

 

● The frontal lobe is responsible for executive functions, including self-control, 

planning, problem solving, and abstract thinking.  

● The temporal lobe is responsible for sensory processing. Therefore, it also plays a 

role in memory formation and language comprehension. 

● The parietal lobe is responsible for sensory integration, such as touch, temperature, 

and pain. It additionally assumes a significant function in the comprehension of 

spatial orientation and the perception of our surroundings.  

● The occipital lobe bears the responsibility for the processing of visual stimuli. It is 

the recipient and processor of visual information originating from the ocular organs. 

Within each lobe, specific regions of the cortex are associated with sensory, motor, and 

association functions. Furthermore, while the left and right hemispheres share many 

similarities in structure and operation, certain functions are lateralized, for example, 
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language is primarily located in the left hemisphere and visual-spatial ability in the right 

hemisphere. The connection between the hemispheres is facilitated by commissural nerve 

tracts, with the corpus callosum, serving as the largest tract. [2.2] 

 

The cerebrum is interconnected with the spinal cord through the brainstem, as outlined in 

Figure 2.3. The latter is a critical part of the central nervous system and is composed of three 

distinct parts: the midbrain, pons, and medulla oblongata. The midbrain is the most superior 

part of the brainstem and is responsible for several functions, including vision, hearing, 

motor control, sleep and wakefulness, arousal, and temperature regulation. The pons is 

located in the middle of the brainstem and is responsible for relaying signals between 

different parts of the brain, as well as regulating breathing and sleep. The medulla oblongata 

is the most inferior part of the brainstem and is responsible for several autonomic functions, 

such as regulating heart rate, blood pressure, and breathing. [2.2] 

 

 

Figure 2.3 brain stem anatomy, Shutterstock website for scientific (STEM) illustrations 
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Together with the brain, our cranium contains the ventricular system. It is a network of 

interconnected cavities within the brain that are filled with cerebrospinal fluid (CSF), which 

is produced by the choroid plexus. The ventricular system is comprised of a quartet of 

ventricles: a pair of lateral ventricles, in conjunction with the third and fourth ones. The first 

two are the largest and are located in the cerebral hemispheres. The third ventricle is located 

in the diencephalon, while the fourth is located between the brainstem and the cerebellum. 

The ventricular system plays a crucial role in the production, circulation, and absorption of 

CSF, which provides mechanical and immunological protection to the brain and spinal cord. 

[2.2] 

 

Beneath the cerebral cortex, several essential structures can be found. The thalamus is a 

large, egg-shaped structure that is located in the centre of the brain. It acts as a relay station 

for sensory information, processing and transmitting signals from the body to the cerebral 

cortex. The epithalamus is a small region of the brain that contains the pineal gland, which 

secretes the hormone melatonin and is involved in the regulation of circadian rhythms. The 

hypothalamus is a small but complex region of the brain that is involved in the regulation of 

many vital functions, including hunger, thirst, body temperature, and sleep. The pituitary 

gland, a structure of diminutive size akin to a pea, is situated at the basal region of the brain. 

It is frequently designated as the “master gland” due to its role in the synthesis of hormones 

that govern the functionality of other endocrine glands within the organism. The 

subthalamus, a compact region within the brain, participates in the orchestration of 

movement. [2.2] 

 

In figure 2.4 it is schematized the cortical neuronal structure: cortical columns differ in terms 

of the number of layers, each having its own set of cell types and communication routes. The 

granular cortex consists of six different layers, the fourth of which contains granule cells that 

amplify and disseminate thalamocortical input. It also contains many spiny pyramidal 

neurons in its infragranular and supragranular layers. [2.10] 

In contrast, the agranular cortex lacks a completely formed layer IV and has a hazy border 

between layers II and III. The top layers have fewer pyramidal neurons than layers V and 

VI. Despite the lack of a distinct layer IV, it continues to receive thalamic projections, but 
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the sensory information is amplified and redistributed less than in the granular cortex. The 

dysgranular cortex, found in transition zones between granular and agranular regions, has a 

small but defined layer IV and a distinctive layer II and III. [2.10] 

 

 

Figure 2.4 Organization and cellular architecture of cortical layers [2.10] 

 

In Figure 2.5, instead, it is possible to visualise the limbic system. It is a group of 

interconnected structures posed at the centre of the skull, part of the brain, that are involved 

in the regulation of emotions, memory, and motivation. The amygdalae are almond-shaped 

structures that are situated in the temporal lobes of the brain. They are involved in the 

processing of emotions, particularly fear and anxiety. The hippocampi are a pair of curved 

structures that are located in the medial temporal lobes of the brain. They are involved in the 

formation and retrieval of memories. The claustrum is a thin sheet of grey matter that is 

located between the insula and the putamen. Its function is not well understood, but it has 

been suggested it plays a role in consciousness. The basal ganglia are a group of nuclei in 

the brain that are involved in the regulation of movement. The basal forebrain structures are 

a group of nuclei in the brain that are involved in the regulation of attention, learning, and 

memory. The circumventricular organs are specialised structures in the brain that lack a 
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blood-brain barrier and are involved in the regulation of fluid balance, body temperature, 

and hormone secretion. [2.4] [2.2] 

 

A dysfunctional limbic system is associated with many clinical manifestations, such as 

epilepsy, limbic encephalitis, dementia, anxiety disorder and schizophrenia. [2.5] 

 

 

Figure 2.5 cross-section through the brain showing the limbic system and all related structures, Shutterstock website for 

scientific (STEM) illustrations. 

 

The spinal cord is a long, tube-like band of tissue that runs through the centre of your spine, 

from your brainstem to your low back. It carries nerve signals for movement, sensation and 

reflexes. The spinal cord’s main purpose is to carry nerve signals throughout your body. 

These nerve messages have three crucial functions. [2.2]  

The operations and movements of the body are regulated by them. The brain dispatches 

signals to various parts of your body, dictating your actions. These signals also supervise 
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unconscious functions such as the rhythm of your breath, the beat of your heart, the 

respiration rate, and the workings of your bowel and bladder. 

 

Signals from diverse parts of your body are relayed to your brain, aiding it in documenting 

and deciphering sensations like pain or pressure. [3.1] 

 

Your spinal cord is also in charge of your reflexes. It controls certain reflexes (unconscious 

immediate movements) without the involvement of your brain. For instance, your spinal cord 

is responsible for your patellar reflex, which is the involuntary movement of your leg when 

someone taps a specific spot on your shin. The spinal cord is a delicate structure that contains 

nerve bundles and cells that carry messages from your brain to the rest of your body. Any 

damage to your spinal cord can affect your movement or function. [2.2] 

 

2.2 Brain cells 

The brain is composed of two main types of cells: neurons and glial cells. [2.8] 

 

2.2.1 Neurons  

Neurons are the proactive cells of the brain, that communicate between them and within the 

body via electrochemical signals using electrical stimuli and neurotransmitters: chemical 

messengers that carry messages from one neuron to another target cells affecting the whole 

nervous system and the body. [1.8] There are plenty of different neurotransmitters and their 

functions isn’t always perfectly understood even nowadays. Some examples are: 

– GABA (gamma-aminobutyric acid) that is the main inhibitor of synapses. Its 

molecule is shown in Figure 1.6. When in high quantity induces relaxation and 

focus while in a small amount causes anxiety. In fact, the main substances that 

induce a rise in GABA levels are anticonvulsant and anti-anxiety meds (usually 

benzodiazepine). [2.8] 

 

Figure 2.6 Gaba molecule (γ-Aminobutyric acid) [2.6] 
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– Dopamine, the main neurosignal involved in motivation, reward and pleasure. 

Its molecule is shown in Figure 2.7. Low dopamine levels are linked with certain 

health conditions like Parkinson’s disease or depression, as well as disorders as 

ADHD. It could potentially heighten your propensity for risk-taking behaviour 

or the development of addictive tendencies. Can also cause problems with anger, 

low self-esteem, anxiety, forgetfulness, impulsiveness and lack of organizational 

skill. [2.8] 

 

Figure 2.7 dopamine molecule, Shutterstock website for scientific (STEM) images.  

 

– Glutamate, most abundant excitatory neurotransmitter in the human brain and 

central nervous system. Its molecule is shown in Figure 2.8. It plays a crucial role 

in various functions of the nervous system, including learning, memory, energy, 

sleep, and pain. Glutamate is naturally present in certain foods such as meats, 

seafood, milk, cheese, peas, tomatoes, and mushrooms. In high dosage is highly 

toxic for neurons. [2.8] 

 

Figure 2.8 glutamic acid, Shutterstock website for scientific (STEM) images 

 

– Serotonin, involved in pain sensation, digestion and sleep. Its molecule is shown 

in Figure 2.9. Is highly talked about as it is also involved in mood regulation and 

it is found in a low quantity in people who suffer from anxiety and depression 

and therefore is regulated by many antidepressants (for SSRIs) and anxiety 
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medications together with noradrenaline (as in the case of tricyclic 

antidepressants and SNRIs). [2.8] 

 

Figure 2.9 serotonin molecule, Shutterstock website for scientific (STEM) images 

 

– Noradrenaline (or norepinephrine) is involved in alertness, attention, and the 

process known as “fight or flight”. Its molecule is shown in Figure 2.10. A high 

noradrenaline level may cause anxiety while low concentrations are associated 

with low focus capacity and sleep disorders. [2.8] 

 

Figure 2.10 noradrenaline molecule, Shutterstock website for scientific (STEM) images 

 

Neurons have a structure composed by a body (soma) one ore multiple dendrites and 

a longer connection called axon (see Figure 2.11). [2.8] 
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Figure 2.11 neuron structure, Shutterstock website for scientific (STEM) images 

 

The soma contains the nucleus of the cell and keeps the cell alive, similarly as other 

eukaryotes cells. The dendrites are tree-like fibres that collect info and send it to the 

soma. The axon transmits the information using the transmembrane potential, a 

difference in electric potential between the interior and the exterior of a biological 

cell. [2.8] 

The resting membrane potential (also called transmembrane potential or membrane 

voltage) is between -60 and -70 mV, and it’s reached when electrical gradient (ions 

charge) is balanced by diffusion gradient (according to Fick’s law), and it’s 

maintained by the Na+/K+ ATPase pump (sodium-potassium pump, see Figure 

2.12), which pumps 3 Na+ ions out of the cell and 2 K+ ions into the cell, creating a 

concentration gradient for both ions. [2.8] 
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Figure 2.12 sodium-potassium pump, Shutterstock website for scientific (STEM) images 

 

When a neuron is stimulated, the membrane potential changes, and if the change is 

large enough, an action potential is generated. An action potential represents a 

consistent alteration in the membrane potential, which is consequent to the sequential 

opening and closing of voltage-gated ion channels present on the cellular membrane. 

When the membrane potential reaches a certain threshold, voltage-gated Na+ 

channels open, allowing Na+ ions to flow into the cell, further depolarizing the 

membrane. This depolarization opens more voltage-gated Na+ channels, creating a 

positive feedback loop that rapidly depolarizes the membrane. When the membrane 

potential reaches a peak, voltage-gated K+ channels open, allowing K+ ions to flow 

out of the cell, repolarizing the membrane. The K+ channels remain open for a short 

time after the membrane potential returns to its resting state, causing an 

afterhyperpolarization. The action potential then propagates down the axon, 

triggering the release of neurotransmitters at the synapse, and is followed by a 

refractory period in which it’s more difficult to reach newly the potential threshold 

needed. [2.8] 

Action potential is an all-or-none event because it is either generated or not. In fact, 

if the stimulus is sufficient to push the membrane potential to pass the firing threshold 

for the neuron, an action potential is generated, and it is independent on the stimulus, 

otherwise it is not generated. From a chemical point of view, action potential is an 
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all-or-none event because it is generated only if Sodium channels open, and they 

close only when the membrane potential has overcome the zero value. [2.8] 

 

The junction point of two different neurons is called synapse, so it’s the point where 

the exchange of info takes place. There are electrical and chemical synapses. 

Electrical synapses have direct physical contact and enable the bidirectional passage 

of currents: the presynaptic action potential propagates to the postsynaptic cell, while 

the membrane resting potential of postsynaptic cell simultaneously propagates to the 

presynaptic cell. Chemical synapses involve neurotransmitters: the energy coming 

from action potential opens Calcium channels, so Ca++ ions come through synapses 

and release information. Some Ca++ ions are re-absorbed by presynaptic cell, but 

it’s necessary that at least one ion reaches the postsynaptic to transmit the info, 

because when it attaches a receptor, the receptor opens Sodium channels. 

Postsynaptic potentials duration is between 10 and hundreds of milliseconds. 

Presynaptic potential duration is 2 ms and it’s biphasic, while postsynaptic potential 

duration is more than 10 ms and it’s monophasic (only depolarization). [2.8] 

 

Electrical synapses have direct physical contact and enable the bidirectional passage 

of currents (see Figure 2.13): the presynaptic action potential propagates to the 

postsynaptic cell, while the membrane resting potential of postsynaptic cell 

simultaneously propagates to the presynaptic cell. Chemical synapses involve 

neurotransmitters: the energy coming from action potential opens Calcium channels, 

so Ca++ ions come through synapses and release information. Some Ca++ ions are 

re-absorbed by presynaptic cell, but it’s necessary that at least one ion reaches the 

postsynaptic to transmit the info, because when it attaches a receptor, the receptor 

opens Sodium channels. Postsynaptic potentials duration is between 10 and hundreds 

of milliseconds. Presynaptic potential duration is 2 ms and it’s biphasic, while 

postsynaptic potential duration is more than 10 ms and it’s monophasic (only 

depolarization). [2.8] 
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Figure 2.13 synapse, Shutterstock website for scientific (STEM) images 

 

Summation of postsynaptic potential can be temporal or spatial. Temporal 

summation means that some close (in time) impulses are able to generate an action 

potential because the potential has no time to decrease. Spatial summation means 

that some impulses that are placed in different positions at the same time are able to 

generate an action potential. Impulses can be excitatory (EPSP, depolarizing) or 

inhibitory (IPSP, hyperpolarizing), and the number of useful impulses is the 

difference between these two types.  

The Hebbian theory articulates that when the axon of a cell, denoted as ‘A’, is in 

sufficient proximity to stimulate cell ‘B’, or persistently contributes to its activation, 

a certain growth or metabolic modification transpires in one or both cells. This results 

in an enhancement of 'A’s efficacy in its role as one of the cells triggering the firing 

of ‘B’. This process is resumed by the phrase: fire together, wire together. So, two 

cells or systems of cells that are repeatedly active at the same time will tend to 

become associated, so that activity in one cell facilitates the activity in the other one. 

This phenomenon takes the name of functional brain plasticity. [2.8] 
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There are two levels of brain plasticity observation: cellular changes, due to learning, 

and large-scale changes, that means the cortical remapping in response to injury. So, 

the two kinds of brain plasticity are structural and functional. Structural plasticity, 

otherwise, is due both to new synaptic connections and to new nerve cells growing, 

so new neural networks are generated. Ramon y Cajal said that, given new cells 

cannot be produced, it can be supposed that cerebral exercise will lead to the 

development of new dendritic processes and axonal collaterals beyond that normal 

observed, forcing the establishment of new and more extensive intracortical 

connection. [2.8] 

 

Neurons’ structure can be divided into unipolar, bipolar or multipolar, as sketched 

as an example in Figure 2.14. [2.8] Physiologically, true unipolar neurons do not exist 

in the mature vertebrate nervous system. Therefore, all of the peripherical nervous 

system's basic sensory neurons are bipolar or pseudounipolar. Multipolar neurons 

contain multiple variably branching processes that extend in several directions; being 

the most frequent form of vertebrate neuron, they are the distinguishing feature of 

the human CNS. [2.11] 
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Figure 1.14 three general kinds of neurons are recognized: unipolar, bipolar, and multipolar. [2.11] 

 

Unipolar neurons have a single process which divides into two branches: one to the 

CNS and the other one to the PNS; they generally are sensory neurons. Bipolar 

neurons have two processes: a dendrite and an axon; they generally are sensory 

neurons and can be found in sensory areas (ears, eyes, or nose). Multipolar neurons 

have an axon and many dendrites; the 99% of them are in the CNS and the mostly 

part of them are motor neurons. [2.8] 

 

Functionally, instead, neurons can play three main roles: sensory, motor or can be 

interneurons. Sensory neurons collect info from internal (soft organs) or external 

environment, then they send info to CNS. Motor neurons transmit messages away 

from CNS to effector organs, employing peripheral neurons. Interneurons are in the 

CNS, they are generally multipolar and transmit info from one part of CNS to another 

one, so they process, store and receive info and make decisions in response. [2.8] 
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Neurons can also be described according the “direction” of the signal: they may be 

afferent (mainly sensory neurons) or efferent (mainly motor neurons). Afferent 

neurons transmit info from PNS to CNS, efferent from CNS to PNS. [2.8] 

 

 

2.2.2 Glial cells  

Glial cells compose the majority of the brain cell and provide physical and chemical 

support to neurons and their environment homeostasis. Their classification is shown 

in Figure 2.15. [2.8] 

 

Figure 2.15 glial cells, Shutterstock website for scientific (STEM) images 

 

There are 6 different types of glial cells, 4 of them are situated in the central nervous 

system and 2 in the peripherical nervous system. [2.8] 

 

In the CNS there are astrocytes, oligodendrocytes, ependymal and microglia.  

Astrocytes prevent the entering of undesirable substances in the brain via blood 

vessels, that they constrain by forming the Blood Brain Barrier. Furthermore, they 

help oligodendrocytes to perform better and are also important for the nutrition and 

structure of the NS. 

Oligodendrocytes make myelin sheets around the axon (in CNS, while Schwann cells 

play the same role in PNS). 

Ependymal cells line the cavities of the brain and spinal cord, and they regulate the 

exchange of several substances between the cerebrospinal fluid and the nervous 

tissue, so they are important for structure of the NS. 

Microglia are phagocytes, so they engulf bacteria to protect the NS. [2.8] 
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In the PNS there are Schwann and satellites cells.  

Satellites (PNS), support cell bodies (structural function). They are similar to the 

Schwann cells but are located around the cell bodies. Schwann cells make myelin 

sheets around the axon. [2.8] 
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CHAPTER 3 – EEG instrumentation devices     

 

3.1 EEG instrumentation  

Electroencephalography (EEG) is a common non-invasive neuroimaging method designed 

to measures the extracellular current flow generated by the spatio-temporal sum of post-

synaptic potentials using electrodes, typically made of a conductive material such as silver 

chloride, positioned on the scalp of the patient arranged in a specific pattern on the cap, or 

net, to cover different regions of the brain. These postsynaptic action potentials have a 

duration that varies from tens of thousands of milliseconds, higher than that of the action 

potential and a maximum amplitude of 20mV, which tends to attenuate during propagation. 

The cerebral cortex, being the part of the brain closest to the scalp, is the one that contributes 

most to the development of potentials which are then measured with surface electrodes. The 

perceived signal is in fact the sum of the variations in the membrane potential of entire 

populations of neurons of the cortex. The neurons contained in the cortex are called cortical 

neurons and are distribute in 6 layers along the depth of the cortex, usually identified by I 

(the most near the cortex) to VI. The neurons contained here can be divided into pyramidal 

and non-pyramidal pyramidal depending on their shape. By observing this electrical activity, 

scientists can gain a better understanding of how the brain functions and how various 

cognitive processes occur. [3.3] 

 

Measuring the electrical activity of neurons in the visual cortex, for example, can aid 

researchers in understanding how the brain processes sensory information or it can provide 

insights into how the brain regulates movement. Identifying abnormal patterns of electrical 

activity in the brain can also provide help in understanding the underlying mechanisms of 

neurological disorders such as epilepsy, Parkinson's disease, and Alzheimer's disease, 

helping develop new treatments and therapies for these conditions by identifying abnormal 

patterns of electrical activity in the brain. See Figure 3.1, 3.2 and 3.3 to have a hint about the 

typical signal anomalies related to neurological disease. [3.2] [3.3] 

 

Observing the electrical activity of neurons can also assist researchers in the development of 

brain-computer interfaces (BCIs), which are assistive technology devices that allow people 
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to control computers or other electronics via brain activity. [3.1] For example the control of 

robotic prosthetic limbs, communication assistive devices, and cognitive enhancement 

devices for some neurological condition patients or neurodevelopmental disorders 

compensation training.  [3.3] 

 

 

Figure 3.1 – spike 200ms per division.[3.2] || Figure 3.2 – sharp wave followed by a slow wave. 200ms oer division.[3.2] 

Examples of EEG abnormalities that are present in patients with brain lesions and epilepsy  

 

 

Figure 2.3 herpes simplex encephalitis showing periodic discharges; a right-sided focal seizure. 100 ms between vertical 

lines [2.2]  

  

Several elements are included in the EEG apparatus. As previously stated, electrodes are an 

essential component. Each electrode is applied to the scalp with conductive gel or paste to 
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improve the contact between the electrode and the skin, and to reduce electrical impedance. 

[3.1] [3.3] The electrodes are usually arranged on the scalp according to the 10/20 standard, 

adopted by the American EEG Society (Barlow et al, 1974). 

The standard initially proposed included 21 electrodes, which are arranged at 10% and 20% 

of the arcs coronal, sagittal, circumferential, between 4 points: nasion, inion (2 anatomical 

landmarks), A1, A2 (as it is visible in figure 3.4 and 3.5). The electrodes are identified by 

an alphanumeric code depending on their position on the head: Fp for fronto-polar, F for 

frontal, C for central, P for parietal, T for temporal, and O for occipital. Odd numbers refer 

to electrodes on the left side and vice versa, while z denotes electrodes along the line median. 

In order to make accurate EEG readings, the reference electrode is crucial as well. It offers 

a starting point (or so-called point of comparison) for measuring the electrical activity of the 

brain. Among the electrodes, the ground electrode is placed in a neutral zone of the head, 

usually the forehead. [3.3] 

 

 

 

 

Figure 3.4 International 10/20-system. [3.3] 
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Figure 3.5 International 10/20-system. [3.3]  

 

 Additional electrode placement techniques can employ high-density EEG systems, availing 

a larger number of electrodes, that can expect up to 128 acquisition points, and providing 

more precise spatial resolution of brain activity. These systems often are used with 

customized electrode caps with predefined electrode positions. [3.1] [3.3] 

 

Electrodes can be differentiated by the different materials involved [3.4]: 

▪ Soft gel-based electrodes connect to the scalp by placing a conductive gel in each 

electrode's designated pocket. After the experiment, clean the headset by removing the 

gel and thoroughly cleaning the electrodes. Alcohol is commonly used for this cleaning 

process because of its evaporative properties.  
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▪ Some EEG headsets use conductive gel to create a low-impedance electrical connection 

between the skin and the sensor electrode. In these headsets, electrodes are connected by 

applying saline solution to each one. 

▪ Dry: These devices do not require gel or saline to establish electrode-to-scalp contact, 

making it easier to record EEG data without the assistance of a trained technician. 

Furthermore, dry devices require significantly less setup time than wet headsets. 

▪ Others: Some EEG sensor connection types do not fit cleanly into either of these two 

categories. Conductive substances in a solid gel state, exemplified by those fabricated by 

Enobio, have been efficaciously utilized in electroencephalogram apparatuses. 

The typical measurement chain of an EEG system is given in Figure 3.6. 

 

 

Figure 3.6 block diagram of an EEG instrumentation device, with both analogue and digital components. [3.4] 
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The EEG signals are transmitted from the electrodes to the Jackbox, labelled according to 

the 10-20 standard, and then get to the electrode selector where you can set bipolar or 

unipolar leads; in the case of an analogue machine, the selector is a large panel containing 

switches that allow the user to choose the various pairs of electrodes to subtract. In the 

modern digital electroencephalographs, a unipolar assembly is often preferred which allows 

to choose any different type of editing after digitization. [3.4] 

 

The electrodes are connected to the jackbox by the input cable. The EEG patient cable is 

designed to be flexible and comfortable for the patient, allowing them to move and be 

comfortable during the diagnostic or monitoring procedure. It is often made with lightweight 

materials and may have a length suitable for the specific needs of the healthcare facility. The 

cable length choice is important for the signal quality too: the length of the EEG cable should 

be sufficient to connect the EEG electrodes on the participant’s head to the EEG amplifier, 

but longer cables may increase the chance of signal degradation and interference. [3.3] [3.4] 

It’s also important to ensure that the EEG system, including the cables, is properly shielded 

to minimize electrical noise. It is important to periodically inspect cables for damage and 

replace or repair them when necessary to maintain optimal recording quality as it’s well 

known in the field that the patient cable, due to its frequent handling during EEG setup and 

removal, can be prone to wear and tear. [3.3] 

In addition to transmitting the electrical signals, the patient cable may also include additional 

features such as impedance testing. This allows the healthcare professional to ensure that the 

electrodes are properly attached, and the signal quality is optimal. 

Another essential element of EEG gear is the amplifier. The raw EEG signal has amplitudes 

of the order of µV and contains frequency components above 300 Hz. Since the incoming 

electrical impulses have low amplitude, cleaning them from interference or noise is crucial 

to allow a clean reading and analysis. A good amplifier should have high input impedance, 

low noise, and wide bandwidth to accurately detect and amplify the brain signals. The ability 

to digitise signals and store them for subsequent examination is a characteristic of modern 

amplifiers.  [3.3] 



30 
 

The amplified EEG signals are pre-processed by signal conditioning circuits to remove 

noise, filter undesired frequencies, and increase the signal amplitude from the desired 

frequency bands. EEG machines can be stand alone or a computer-based system equipped 

with data acquisition interfaces. [3.1]  

  

Other characteristics of a device include: 

-sampling rate, that determines the temporal resolution of the recorded brain signals and 

should be high enough to capture the desired frequency content of the brain activity.  

The typical sampling rate for electroencephalography (EEG) is based on the Nyquist-

Shannon theorem. The minimum sampling rate should be at least 256 samples per second; 

however, a sampling rate of 512 Hertz (Hz) is preferred to prevent "aliasing", which is high 

frequencies falsely appearing as lower frequencies on screens of high resolution computers. 

Generally, a sampling rate between 250 Hz and 1000 Hz can be sufficient. [3.7] 

-electrode impedance monitoring, and impedance checkers, that measure the electrical 

resistance between the electrode and the scalp, providing real-time feedback on the 

electrode-skin contact. [3.1]  

  

Furthermore, open-source software programmes such as MNE-Python and EEGLAB are 

frequently used to process EEG data. EEG signal analysis can be performed with a wide 

range of methods, including spectral power analysis, which evaluates the power distribution 

of different frequencies in the EEG signal, and coherence analysis, which investigates signal 

synchronisation between different regions of the brain. [3.1] 

 

3.2 EEG signals analysis 

As a non-stationary and asymmetric physiological signal, EEG has a low signal-to-noise 

ratio (SNR), which brings great challenges to the extraction and selection of robust features 

of emotional EEG. Traditional EEG features mainly include time domain features, frequency 

domain features and time–frequency domain features. [3.5] 
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Compared with the other two kinds of EEG features, frequency domain features have been 

proved to be more effective. The common method of frequency domain feature extraction is 

to decompose EEG signals into: 

➢ Delta band (0,5-4Hz) – present mostly the first year of life, in adults usually 

associated with deep sleep. It can also detect anomalies even in the absence of 

documented structural lesions. [3.2][2.8] 

➢ Theta band (4–7 Hz) – usually irregular in the awake state and is of greatest 

amplitude in the posterior temporal region. [3.2] It’s considered normal in young 

children and can be observed during drowsiness, light sleep stages, arousal [3.8] [3.9] in 

older individuals, and even during meditation. [3.2] [2.8] 

➢ Alpha band (8–13 Hz) – the dominant rhythm present during wakefulness, mostly 

over the posterior region of the brain: usually the maximum amplitudes (belox 50 

μV) are visible over the occipital area. Best seen with eyes closed and during physical 

relaxation and relative mental inactivity. [3.2][2.8] 

➢ Beta band (14– 30 Hz) – mostly associated with normal waking consciousness. Low-

amplitude Beta waves with multiple and variable frequencies are often associated 

with active, busy or anxious thoughts and active concentration. Above the motor 

cortex, Beta waves are associated with muscle contractions that occur in isotonic 

movements and are suppressed before and during movement changes. [2.8] 

Frequency domain features mainly include power spectral density (PSD) feature, differential 

entropy (DE) feature, differential asymmetry (DASM) feature and rational asymmetry 

(RASM) feature, among which DE feature has the best performance. [3.5] 

 

Some studies like Zheng et al. [3.6] utilized deep neural networks to identify the most 

effective frequency bands for EEG-based emotional response recognition, revealing for 

example that Beta and Gamma bands are most effective for classification tasks, and suggest 

that EEG signals from different emotional states show significant spatial, frequency, and 

temporal variations. 
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CHAPTER 4 – Latest research on EEG 

The significance of the magnitude of the power spectrum density, derived from the 

differential frequency bands, is not solely associated with the commonly recognized levels 

of wakefulness. Extensive research has been conducted to explore the utility of EEG in the 

examination and observation of movement disorders such as ataxia, tremor, and dystonia. 

These studies have focused on the synchronization of cerebellar activity both internally and 

in conjunction with the cerebral cortex [4.1]. 

 

Furthermore, EEG has been employed to evaluate the efficacy of pharmaceutical treatments 

[4.2] and to possibly diagnose disorders such as Alzheimer’s disease [4.3]. It has also proven 

instrumental in the study of more intricate sleep disorders [4.4].  

 

Of paramount interest to this project is the exploration of the correlation between EEG 

frequency waves and the recognition of complex human emotions. Specifically, we aim to 

investigate potential parameters that can be extracted from EEG data, thereby providing a 

robust framework for emotion recognition. This endeavour holds significant promise for 

advancing our understanding of the intricate interplay between neurophysiological signals 

and emotional states. Previous study indicates that increased brain activity correlates with 

emotional and cognitive functions. Frequencies were categorised based on their prominence 

in different mental states. High frequency bands (Beta and Gamma) provide greater 

discriminative information for emotion identification compared to lower ones. [4.15] 

 

The investigation of annoyance, and more broadly, the evaluation of emotional responses 

following exposure to stimuli through EEG signal analysis, represents a burgeoning area of 

research. Numerous studies have delved into the relationship between alpha waves and 

annoyance, especially within the context of sensory irritants such as noise. Findings suggest 

that annoyance is correlated with a decrease in alpha wave power, indicative of increased 

attention and vigilance towards the irritating stimulus. The alpha-band has emerged as a 

prominent EEG indicator in this regard, demonstrating robust measurement, test reliability, 

and high reproducibility. Furthermore, it has been shown to be capable of detecting early 

stages of fatigue and annoyance, underscoring its potential utility in this field of study [4.5]. 

The enhancement of alpha waves has been the subject of extensive research, particularly in 
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relation to the treatment of cognitive disorders. This includes conditions such as Alzheimer’s 

disease, where the modulation of alpha wave activity may hold therapeutic potential. This 

line of inquiry underscores the pivotal role of alpha waves in cognitive functioning and the 

broader implications for neurodegenerative disease management. [4.6].  

Two key articles have explored the relationship between alpha waves and attention. These 

could prove valuable in studying sensory stimuli, as when they are perceived as enjoyable 

are thought to be more effective in capturing attention: 

• Barry et al. [4.11] reviews the event-related potential (ERP) literature in relation to 

attention-deficit/hyperactivity disorder (ADHD). It explores various aspects of brain 

functioning in ADHD, ranging from early preparatory processes to a focus on the 

auditory and visual attention systems, and the frontal inhibition system1. The 

research to date has identified a substantial number of ERP correlates of ADHD. 

However, the article does not specifically mention beta waves. 

• Klimesch et al. [4.12] discusses the role of alpha-band oscillations in the human 

brain. It suggests that alpha-band oscillations have two roles (inhibition and timing) 

that are closely linked to two fundamental functions of attention (suppression and 

selection), which enable controlled knowledge access and semantic orientation2. 

This paper does not specifically discuss beta waves. 

 

Another key frequency bands discernible in EEG signals is the theta band [4.7]. Theta waves 

are typically associated with states of deep relaxation, meditation, and creativity. They are 

frequently observed during periods of drowsiness or tasks that necessitate focused attention. 

In the context of sensory stimuli, an increase in theta power may signify a state of relaxation 

or engagement with a novel sensory stimulus, a demanding cognitive task, or a situation 

requiring substantial cognitive resources in general [4.8] [4.9] [4.10]. 

 

Three primary articles have been consulted regarding alpha and theta wave analysis: 

• Klimesch et al. (1999) [4.8] examines the relationship between EEG alpha and theta 

oscillations and cognitive and memory performance. The author discusses two types 

of EEG phenomena associated with good performance: an overall increase in alpha 

power and a decrease in theta power, and a specific event-related decrease in alpha 
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power and increase in theta power depending on the memory demands. The article 

highlights that a higher degree of alpha desynchronization is linked to better long-

term memory performance, specifically semantic memory. Additionally, the author 

finds that theta synchronization is positively correlated with the ability to encode new 

information. 

• Snipes et al. [4.9] examines the differences in theta oscillations during cognitive tasks 

and sleep deprivation. They found that both cognitive load and sleep deprivation led 

to increased theta power in the medial prefrontal cortical areas. However, sleep 

deprivation also resulted in additional increases in theta activity in mostly frontal 

areas. The specific sources of theta activity during sleep deprivation varied 

depending on the task being performed. 

• Başar et al. [4.10] presents the argument that specific delta, theta, alpha, and gamma 

oscillatory systems are distributed selectively and serve as resonant communication 

networks involving numerous neurons. Consequently, these oscillatory processes 

likely have a crucial function in facilitating communication and coordination within 

the brain, particularly regarding memory and integrative functions. The paper 

discusses the role of alpha-band oscillations in the human brain. Alpha-band 

oscillations are the dominant oscillations in the human brain and recent research 

indicates that they have an inhibitory function. However, the paper also suggests that 

alpha-band oscillations play an active role in information processing. 

This study proposes that alpha-band oscillations have two roles: inhibition and 

timing. These roles are closely linked to two fundamental functions of attention: 

suppression and selection. These functions enable controlled knowledge access and 

semantic orientation, which is the ability to be consciously oriented in time, space, 

and context. 

 

Conversely, beta waves are high-frequency oscillations ranging between 12 and 30 hertz. 

They are often linked to the ability to think clearly and active mental activity. When engaged 

in tasks that require focus, problem-solving, or sensory processing, beta activity tends to 

increase. An increase in Beta power in the context of sensory inputs might indicate 

heightened attention or cognitive processing [4.8] [4.11] [4.12]. Beta waves have been studied for 

their potential to differentiate emotions such as happiness, sadness, calmness, and anger [4.13]: 
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• In the conducted experiment of Mehmet Bilal Er et al. [4.13], 9 individuals 

participated in a quiet and dark environment. A selection of songs from various music 

genres were played to the participants. While listening to the music, the EEG signals 

of these subjects were recorded on a computer with an EEG recorder simultaneously. 

At the end of each song, the subject was asked about the emotion they experienced 

and labeled the recorded EEG signals accordingly. These labels were described as 

feelings of anger, sadness, happiness, or relaxation. 

The recorded and labelled EEG signals were initially passed through a bandpass filter 

to obtain individual spectrogram images in the alpha and beta frequency bands. No 

additional effort was made to extract the feature. After a data augmentation process 

was applied to the obtained spectrograms, a transfer learning process was applied 

using previously trained deep networks. AlexNet and VGG16 were used as deep 

networks. 

The best classification result was obtained with the Beta frequency band 

spectrograms and VGG16 at 73.28%. According to the results, it is asserted that pre-

trained deep learning models could be used for the problem of recognizing human 

emotions. It was also determined that pre-trained deep architectures are a very 

effective method, even if the original training data is limited. 

 

To gain a deeper understanding of the role of theta and beta waves in sensory processing, 

researchers often compute specific ratios. The theta-beta ratio, which compares the power of 

the theta and beta bands, is one such metric. A higher theta-beta ratio may indicate a relaxed 

mood or enhanced sensitivity to sensory inputs, while a lower ratio may suggest a more 

concentrated or engaged state [4.14]. 

Similarly, the alpha-beta ratio compares the strength of the alpha band to that of the beta 

band. Given that the alpha band is frequently associated with states of relaxation and ease, a 

higher alpha-beta ratio may indicate a relaxed state or reduced sensory processing. 

Conversely, a lower ratio may suggest more active cognitive engagement with sensory 

stimuli [4.14]. 
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The parameters referenced represent merely a fraction of the potential variables considered 

throughout the duration of the studies [4.16]. Over time, a multitude of additional metrics have 

been developed, evaluated, and compared, as depicted in Figure 4.1 

 

 

Figure 4.1 EEG annoyance indexes [4.16] 

 

The analysis of frequency bands and their associated ratios in EEG data provides valuable 

insights into the brain’s response to sensory inputs. This contributes to our understanding of 

the cognitive processes involved in sensory processing, relaxation, and concentration. By 

investigating the different parameters discussed, it is possible to gain a more comprehensive 

understanding of how the brain responds and adjusts to diverse sensory inputs in different 

cognitive states. 

 

In summary, we can conclude that EEG features most fitting with annoyance are alfa, beta 

and theta waves and even more the alpha/beta and theta/beta ratios. The correlation of those 

features with pleasant and annoying sounds are reported in Table 1. 
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Table 5.1 Feature – annoyance correlation 

Feature Pleasant Annoying 

Alpha ↑ ↓ 

Beta ↓ ↑ 

Theta ↑ ↓ 

Alpha/beta ↑↑ ↓↓ 

Theta/beta ↑↑ ↓↓ 
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CHAPTER 5 – Acquisition procedure  

 

5.1 Experimental setup 

The experiment was performed on 44 subjects, in an isolated location. The subjects were 

asked to avoid food and water one hour before the procedure took place in order to avoid 

external influence on neural activity [5.1] [5.2].  

The volume of the headphones was meticulously adjusted in accordance with each 

participant’s personal tolerance level, ensuring a comfortable and consistent auditory 

experience across the board. Cameras were strategically positioned to enable continuous 

observation of the participants throughout the duration of the experiment. The participants 

were seated in a comfortable chair at a distance of about 70 cm from the screen, see Figure 

4.1. They were instructed to sit still, relax their muscles and try to minimize eyes movements 

during the course of a trial. The headband was adjusted to the comfort of the participant.  

 

 

Figure 5.1 example of experimental setup of a subject during the test 
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The volunteers were presented with a privacy information sheet to sign, along with another 

document elucidating the purpose and objectives of the study. This was followed by a 

comprehensive briefing session where each participant was instructed on the protocol of the 

test, thereby preparing them for the expected conduct during the experiment. 

 

At this point, three different audio emissions have been alternated with pauses in which the 

subject’s brain had time to return to neutrality, to avoid sensory overload and correctly 

separate different EEG signal adaptation to auditory stimuli without each other influence: 

the first audio was the sound of a car engine speeding up, which can be considered a neutral 

stimulus since can be perceived subjectively both pleasant and unpleasant. The second 

stimulus was a soothing and presumably appealing song played on the piano, while the third 

and last audio was a negative and irritating emotion triggering sound made by a crowd of 

people in a public area.  

  

60s 60s 60s 60s 60s 60s 

Silence Engine sound Silence Relaxing tune Silence Crowd noise 

 

In order to facilitate a comparative analysis of the results, the participants were provided 

with a questionnaire designed to capture their perception of the auditory stimuli: subsequent 

to the data collection process, a rigorous anonymization procedure was implemented to 

ensure the privacy and confidentiality of the participants. 

The participants were then directed to use their smartphones to scan a QR code, which led 

them to an online questionnaire created using Google Form. This questionnaire was designed 

to collect a range of personal information from each participant, including their first name, 

last name, age, gender, country of origin, and the volume value set on the computer for the 

test.  

These questions were organized into three sets, each containing three questions to be 

answered immediately after the conclusion of each audio segment. The questions were 

designed to gauge the participants’ perception of the auditory stimuli, specifically in terms 

of how annoying or pleasant, relaxing or stressful, and quiet or loud they found each 

particular audio segment. 
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A consent form was given for privacy, confidentiality, and information purposes about ECO 

DRIVE - Development of innovative lightweight and highly insulating energy efficient 

components and associated enabling materials for cost-effective retrofitting and new 

construction of curtain wall facades.  

ECO DRIVE is a research project to develop new technologies for the testing and simulation 

of eco-powertrains. The project offers a multi-disciplinary research-training program to 

Early-Stage-Researchers, with the ultimate aim being to create a new generation of NVH 

professionals for the transport sector. ECO DRIVE deals with the complex challenges related 

to combustion noise, the irritating sound from electric motors, transmission induced NVH 

(Noise, Vibration and Harshness) and driveline torsional vibrations, leading to new designs 

with improved eco-efficiency and NVH performance.  

  

The EEG signal was recorded by Muse Monitor sensors and recording device and 4 different 

electrodes were employed in the acquisition: two placed on the temporal lobes (TP9 and 

TP10) and two on the frontal lobe (AF7 and AF8), achieved to be subsequently 

elaborated using MATLAB and EEGLAB. 

 

5.2 Muse Monitor sensors and recording device 

Muse Monitor is an EEG measurement system consisting of: 

1. An EEG device for the acquisition of EEG signal, see Figure 5.2 

2. a mobile app designed by Muse that enables real-time monitoring and recording of 

electroencephalogram (EEG) signals while wearing a custom EEG headset. The app 

is available for iOS and Android devices and uses Bluetooth Low Energy (BLE) 

technology to interface with the mobile device, processing signals and displaying 

brain activity on the device's screen.  

The system provides users with rapid feedback and enables them to see how it changes in 

response to various stimuli or cognitive activities. [5.3]  
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Figure 5.2 The 2016 Muse EEG system made by InterAxon Inc [5.4] 

 

The arrangement of electrodes adhered to a specific protocol. The reference electrode, 

designated as FPz, was strategically positioned on the forehead. The input electrodes, 

identified as AF7 and AF8, were composed of silver and were situated on the left and right 

sides of the reference, respectively. In addition, two posterior electrodes, TP9 and TP10, 

were affixed above each ear, utilizing conductive silicone-rubber material. Prior to the 

placement of the headband on the subjects’ heads, the skin at the electrode sites was 

meticulously cleaned with alcohol swipes, and a thin layer of water was applied to the 

electrodes using a sponge to enhance the quality of the signal. The MUSE device captured 

signals at a sampling frequency of 256 Hz.  

 

Muse Monitor also allows to record and archive EEG sessions for future further 

investigations. The program, in fact, could be used in conjunction with a variety of third-

party solutions as biofeedback software, games, or other applications that utilise EEG input. 

Muse Monitor can thus be used as an input device to control various user interfaces or to 

build interactive experiences based on brain activity. The program includes extensive 

analytics tools to measure and assess the documented brain activity during recording. For 

example, it is able to calculate EEG frequency bands such as delta, theta, alpha, beta, and 
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gamma and present them in clear, easy-to-understand graphs. This study, known as power 

spectrum density, allows to determine which type of frequency band is dominant at any given 

time or in reaction to a certain stimulus and can reveal more information about patient’s 

consciousness [5.3]. 

  

Muse Monitor also allows to customise the Muse headset's settings, such as increasing the 

sensitivity of the sensors and electrodes or modifying the time of recording sessions. These 

options enable to personalise the gadget to the user's individual needs and achieve more 

precise and dependable results.  

 

5.3 EEGLAB 

EEGLAB is an advanced, high-level, and interactive toolbox that has been designed for the 

MATLAB environment. Its primary purpose is to facilitate the comprehensive processing of 

continuous and event-related Electroencephalogram (EEG), Magnetoencephalography 

(MEG), and other forms of electrophysiological data. 

 

The toolbox is complex in its structure, embodying a multitude of features that cater to a 

wide array of needs in the field of electrophysiological data analysis. One of its key features 

is the implementation of Independent Component Analysis (ICA), a statistical technique 

used to separate a multivariate signal into additive subcomponents. 

 

In addition to ICA, EEGLAB also incorporates time/frequency analysis, a method used to 

examine the temporal evolution of spectral power in different frequency bands. This feature 

is particularly useful in the study of oscillatory brain activity. 

 

Artifact rejection is another significant feature of EEGLAB. This functionality allows users 

to identify and remove various types of noise and artifacts from the electrophysiological 

data, thereby enhancing the accuracy of the results. 

 

Furthermore, EEGLAB provides capabilities for conducting event-related statistics. This 

feature enables users to perform statistical analyses on event-related potentials (ERPs), 
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which are brain responses that are directly the result of a specific sensory, cognitive, or motor 

event. 

 

Lastly, EEGLAB offers several useful modes of visualization for both averaged and single-

trial data. These visualization tools provide users with the means to effectively examine and 

interpret their data, thereby facilitating a deeper understanding of the underlying neural 

processes. [5.5] [5.6] 

 

The software provides an interactive graphical user interface (GUI), enabling users to 

process high-density EEG and other dynamic brain data in a flexible and interactive manner. 

It supports the use of independent component analysis (ICA) and/or time/frequency analysis 

(TFA), as well as standard averaging methods. EEGLAB also incorporates extensive tutorial 

and help windows, plus a command history function that eases users’ transition from GUI-

based data exploration to building and running batch or custom data analysis scripts. [5.5] [5.6] 

 

When associated with Matlab, EEGLAB offers a structured programming environment that 

allows for the storage, access, measurement, manipulation, and visualization of event-related 

EEG data. It also provides an extensible, open-source platform that enables them to share 

new methods with the global research community by publishing EEGLAB ‘plug-in’ 

functions that appear automatically in the EEGLAB menu of users who download them. For 

example, novel EEGLAB plug-ins might be built and released to ‘pick peaks’ in ERP or 

time/frequency results, or to perform specialized import/export, data visualization, or inverse 

source modeling of EEG, MEG, and/or ECOG data. [5.5] [5.6] 

 

In this study, to avoid having to load and work with datasets one at a time, a specific function 

for importing data, ‘pop_musemonitor’, was extracted from a specific open-source plug-in. 

This function was used to import data acquired exclusively with the Muse Headband, 

enabling the creation, work with, and customization of a script in MATLAB. The 

‘pop_musemonitor’ function not only allowed the import of data acquired with the Muse 

Headband but also facilitated an initial clean-up of the data thanks to the automatic process 

performed by the plug-in. In particular, several parameters were set: the sampling rate, 

checkboxes that allowed cleaning bad channels and data corrupted by artifacts with their 
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respective thresholds, and finally a first high-pass filter with a frequency of 0.5 Hz, as 

reported in Figure 5.3. 

 

 

Figure 5.3 GUI window in EEGLAB Toolbox that allow to import .CSV file recorded with Muse Headband Device. 
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CHAPTER 6 – Data processing 

Following the recording of the various EEG signal samples, they were divided by subject 

and according to the event in progress during the acquisition. Three different methods to 

observe the signals were compared: Muse Monitor autocleaning EEGLAB plugin, that was 

designed specifically for the used instrumentation, raw signal elaboration, and Autoreject 

algorithm, an automated artifact impacted signal dismissal for MEG and EEG data. 

 

6.1 Muse Monitor autocleaning  

During the empty dataset deleting step, the number of participants was reduced from 44 to 

40, and, after using the Muse Monitor cleaning function, the 37 subjects temporal lobe 

signals were preserved, while the frontal lobe signals were almost entirely deleted. Then, to 

better visualize the signals, the power spectrum density was computed using the MATLAB 

function "pwelch". The Welch method is based on the idea of estimating power spectral 

density (PSD) from a signal that has been converted from the time domain to the frequency 

domain. Welch's method improves on the classic spectral density estimation method by 

lowering noise in the calculated power spectra. Noise reduction from Welch's approach is 

frequently required due to the noise created by imprecise and finite data (Welch 1967). The 

method separates the time series into (potentially overlapping) segments before calculating 

a modified spectrogram for each segment and averaging the PSD estimates. When compared 

to a single spectrogram estimate of the whole data record, this strategy reduces the variation 

of the estimate. However, this strategy reduces the estimator's resolution, implying that there 

is a trade-off between variance reduction and frequency resolution. In this work, we utilised 

50% overlapping Hann tapers of 0.5 s to estimate the PSD in both theta and beta frequency 

ranges for the Welch's technique analysis [6.1]. 

 

The power spectrum density related to the frontal lobe, AF7 and AF8, were heavily discarded 

by the function, so it was impossible to compute the following steps and obtain enough data 

to proceed with the parameters calculation, while the number of the subjects with both TP9 

and TP10, using the temporal lobe electrode signals, lowered to 37. The PSD of the TP9 

electrode is reported in Figure 6.1 (cleaned data) and in Figure 6.2 (raw data). The PSD of 

the TP10 electrode is reported in Figure 6.3 (cleaned data) and in Figure 6.4 (raw data).  
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Figure 6.1 TP9 electrode Power Spectrum Density image using Muse Monitor autocleaning function. 

  

 

Figure 6.2 TP9 electrode Power Spectrum Density image using raw data. 
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Figure 6.3 TP10 electrode image using Muse Monitor autocleaning function. 

 

 

Figure 6.4 TP10 electrode Power Spectrum Density image using raw data.  

 

To get a better understanding of the trend that is present when the subject is experiencing 

different emotions, for example different stress or involvement levels, by the various 

frequency waves content, it was important to remove the outliers, that can be caused by 

different kinds of error during the acquisitions and can significantly change the presumed 
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power spectrum density of frequency bands. The function involved was “rmoutliers”. The 

PSDs remaining after the outliers removal are shown in Figure 6.5 and Figure 6.7, for TP9 

and TP8 respectively. The outliers removal has been done also for the PSD calculated from 

the raw data: see Figure 6.6 and Figure 6.8. 

 

Figure 6.5 TP9 electrode Power Spectrum Density image using Muse Monitor autocleaning function. 

 

 

Figure 6.6 TP9 electrode Power Spectrum Density image using raw data 
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Figure 5.7 TP10 electrode Power Spectrum Density image using Muse Monitor autocleaning function. 

  

 

 

Figure 5.8 TP10 electrode Power Spectrum Density image using raw data. 

 

Some limitations of this signal cleaning process can be attributed to excessive removal 

during the process, which can lead to information and accuracy loss, not only in frontal lobe 

signals but also in the temporal lobe ones. Some were reduced to slightly more than 5 



50 
 

seconds while the original time window was 60 seconds long. Figure 5.9 reports two 

examples of TP9 time histories registered from two different subjects (subject n. 8 and n. 

37) while listening to audio 3 and cleaned with the Muse Monitor autocleaning function. It 

is clear that the signal cleaned for subject 8 has been strongly affected. The remaining part 

was only 5 seconds long. On the other hand, the cleaning for signal from subject 37 was less 

invasive, since its length remains of about 40 seconds.  

 

Figure 6.9 TP9 time history after Muse Monitor autocleaning function use. 

 

 

6.2 Autoreject algorithms  

The autocleaning implemented inside the Muse Monitor was too invasive, as demonstrated 

in the previous paragraph (for instance the signal coming from the AF electrodes were 

completed removed). For this reason, the EEG signals have been cleaned with an autoreject 

algorithm implemented directly in Matlab. In this case the signal cleaning was less invasive. 
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The shortest segment of the cleaned signals was of 2565 samples, which corresponds to 

about 10 seconds at 256 Hz sampling frequency. In order to perform a coherent analysis of 

all the signals. Clean data analysis was performed using the last 10 seconds of each sample, 

as the brain takes some time adjusting to the new information and the emotional reaction is 

delayed in time [6.2]. Working only on this timeframe gives us to have more clean-cut values 

to work on for the parameters of interest for the analysis of the reaction of these 3 stimuli. 

 

Starting from these samples, the Power Spectrum Density was calculated using the "pwelch" 

function implemented in Matlab. 

 

 

Figure 6.10 Power Spectrum Density divided by time segment (3 audio stimuli execution and 3 silences 

alternated to them) for AF8. 
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Figure 6.11 Power Spectrum Density divided by time segment (3 audio stimuli execution and 3 silences 

alternated to them) for AF7.  

 

 
Figure 6.12 Power Spectrum Density divided by time segment (3 audio stimuli execution and 3 silences 

alternated to them) for TP9. 
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Figure 6.13 Power Spectrum Density divided by time segment (3 audio stimuli execution and 3 silences 

alternated to them) for TP10. 

 

In this case the outlier removal has not been done on the PSD, but directly on the extracted 

features, specifically on the alpha wave frequency band, theta-beta ratio, and alpha-beta 

ratios. 

 

6.3 Features calculation 

 

6.3.1 Alpha wave  

Alpha band frequency wave, that comprehends the range between 8 and 13 Hz, has been 

filtered for each subject in the 6 different cases, and the dataset cleaning has been restricted 

to this interval using the function “rmoutliers” as, cleaning the dataset before selecting the 

intended frequency range, could have been limiting for the purpose. 

 

A mean value has been identified for each sample using the ‘rms’ function on Matlab, as the 

root mean square function was the chosen method to identify a single alpha band frequency 

value for each case with the related standard error (Figure 6.14 and 6.15). 

 

The Root Mean Square (RMS), also known as the quadratic mean, is a statistical measure of 

the magnitude of a varying quantity. In details, the RMS of a set of numbers is defined as 
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the square root of the mean square (the arithmetic mean of the squares) of the set. For a set 

of n numbers or values of a discrete distribution xi, ..., xn, the RMS is the square root of the 

mean of the values xi
2, namely: 

 

𝑋𝑅𝑀𝑆 = √
𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛2

𝑛
= √

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛
 

 

In estimation theory, the root-mean-square deviation of an estimator is a measure of the 

imperfection of the fit of the estimator to the data.  

 

The term “Standard Error” (SE), instead, is employed to quantify the precision with which 

a sample epitomizes the underlying population. The standard error is essentially the standard 

deviation of the sampling distribution of a statistic. When the statistic in question is the 

sample mean, the term “Standard Error of the Mean” (SEM) is used. 

 

The standard error serves as a fundamental component in the construction of confidence 

intervals. It provides an estimate of the degree of variation one might expect in the sample 

mean, should the study be replicated with new samples drawn from the same population. 

This measure of variability is instrumental in gauging the reliability of the sample mean as 

an estimator of the true population mean, thereby justifying its use in this research. 

 

The formula for the standard error of the mean is: 

𝑆𝐸 =
𝜎

√𝑛
 

where: 

- σ is the standard deviation of the population, 

- n is the size (number of observations) of the sample. 
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Figure 6.14 alpha frequency band mean value for each case for AF7 and AF8 electrodes, with standard error. 

 

Figure 6.15 alpha frequency band mean value for each case for TP9 and TP10 electrodes, with standard 

error. 
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6.3.2 Alpha-beta ratio 

Same process applied in the calculation of Alpha wave can be applied for Beta frequency 

band sample rate (Figure 6.16 and 6.17) to visualize a mean value for the 3 different sensory 

input cases, ±SE, the standard error. Beta waves, as previously stated, are a type of neural 

oscillations, or brainwaves, that have a frequency range of between 12.5 and 30 Hz (12.5 to 

30 cycles per second). 

 

 

 

Figure 6.16 beta frequency band mean value for each case for AF7 and AF8 electrodes, with standard error. 
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Figure 6.17 beta frequency band mean value for each case for TP9 and TP10 electrodes, with standard error. 

 

In the computation of the alpha-beta ratio, the methodology employed for the preceding 

frequency wave was similarly applied to the Beta band range. The ‘rms’ function was 

utilized to ascertain a singular value for both the Alpha and Beta bands. Subsequently, the 

ratio function was employed to analyse the difference in spectral power values for each 

subject, thereby facilitating an observation of its variation across three distinct audio inputs. 

 

The data set was then segregated from the outlier using the ‘rmoutliers’ function. The data 

identified as outliers were flagged for elimination, effectively removing the entire data set 

corresponding to that subject. This measure was implemented to circumvent potential 

complications associated with movement artifacts or other issues linked to the acquisition 

procedure and the device. Figures from 6.18 and 6.19 show the alpha/beta ratio for the 

different sounds at the different electrodes. 
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Fig 6.18 Alpha-Beta ratio calculated for frontal lobe electrodes (AF7 and AF8) with standard error 

 

Fig 6.19 Alpha-Beta ratio calculated for temporal lobes electrodes (TP9 and TP10) with standard error 
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6.3 Theta-Beta Ratio 

In order to calculate the theta-beta ratio, the exact same methodology as employed for the 

previous frequency wave parameters was applied to the Theta band range (Figure 6.20 and 

6.21). The ‘rms’ function was utilized to ascertain a singular value for both the Theta and 

Beta bands. Subsequently, the ratio function was employed to compare the spectral power 

value differences for each subject, thereby facilitating an observation of how it varies across 

three distinct audio inputs. 

 

The data set was subsequently separated from the outliers using the ‘rmoutliers’ function. 

The data identified as outliers were flagged for deletion, effectively removing the entire data 

set corresponding to that subject. This measure was taken, again, to circumvent potential 

issues associated with movement artifacts or other complications linked to the acquisition 

procedure and the device. The theta/beta ratio for the different sounds at the different 

electrodes are shown in Figure 6.22 and Figure 6.23. 

 

 

Figure 6.20 theta frequency band mean value for each case for frontal lobe electrodes (AF7 and AF8) with standard 

error. 
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Figure 6.21 theta frequency band mean value for each case for temporal lobes electrodes (TP9 and TP10) with standard 

error. 

 

Figure 6.22 Theta-Beta Ratio for frontal lobe electrodes (AF7 and AF8) with standard error 
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Figure 6.23 Theta-Beta Ratio for temporal lobes electrodes (TP9 and TP10) with standard error 

 

6.4 Coherence analysis  

The qualitative investigation of the signal features accuracy is significantly facilitated by the 

analysis of Coherence, between the left and the right hemisphere, which serves as a crucial 

and advantageous mathematical instrument.  

 

The effectiveness of these methodologies is fundamentally anchored in the interaction, 

initially evidenced in 1995 [6.6], between the oscillations of the central and peripheral nervous 

systems, approximately at 20 Hz (so in the range of β band).  

These studies have revealed the existence of communication mechanisms not only between 

the CNS and PNS but also within diverse structures of the brain itself, employing signals at 

varying frequencies contingent on the distance that the information is required to cover [6.7]. 

These interactions can exhibit substantial variations from one individual to another and are 

particularly noticeable in the presence of motor disorders such as Parkinson’s disease or 

myoclonic epilepsy [6.8]. It suggests that while the coherence may be minimal in healthy 

subjects with excellent motor skills, its role in motor tasks is still significant. 
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During a hold-ramp-hold task, the coherence was found to be smaller under isometric 

conditions compared to compliant conditions, indicating a positive correlation between 

coherence strength and object compliance in the 15–30 Hz range. This suggests that 

corticomuscular coherence might be associated with specific parameters of hand motor 

function, potentially reflecting a functionally important process such as the recalibration of 

length-tension ratios. The study also discusses a study testing the effect of diazepam and its 

antagonist flumazenil on corticomuscular coherence. [6.8] 

 

The coherence between two signals, denoted as x(t) and y(t) and interpreted as stochastic 

processes, is articulated in the frequency domain, bearing a resemblance to the form of the 

correlation coefficient. This mathematical representation underscores the profound 

interconnectedness and mutual influence between the two signals, thereby providing a robust 

framework for their comprehensive analysis: 

 

𝐶𝑜ℎ𝑥𝑦(𝑓) ≜
𝑃𝑥𝑦(𝑓)

√|𝑃𝑥(𝑓)| ∙√|𝑃𝑦(𝑓)|

 

 

In which 𝑃𝑥(𝑓) and 𝑃𝑦(𝑓) are the Power Spectrum densities of, respectively, x and y, while 

𝑃𝑥𝑦(𝑓) =
1

𝑛
∑ 𝑋𝑖(𝑓)𝑌𝑖

∗(𝑓)𝑛
𝑖=1  is the Cross Power Spectral Density, CPSD. 

 

The magnitude-squared coherence (MSC) [6.9], then, between the two one-dimensional wide-

sense stationary signals x(t) and y(t) is defined as: 

 

𝐶𝑥𝑦(𝑓) ≜ |𝐶𝑜ℎ𝑥𝑦(𝑓)|
2
≜

|𝑃𝑥𝑦(𝑓)|
2

|𝑃𝑥(𝑓)| ∙ |𝑃𝑦(𝑓)|
 

 

By the Cauchy–Schwarz inequality, as described in Malekpour et al. [6.9] this value is a real 

number between zero and one, for all frequencies f if and only if x(t) and y(t) are related 

through a linear time-invariant system, i.e., the two signals are linearly dependent over time.  
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Through this methodology, it becomes feasible to ascertain the degree of expected coherence 

divergence amongst the various signals, which are concurrently acquired from the same 

subject. This approach provides a robust framework for comprehending the intricate 

interplay of these signals and their potential variations. As it is possible to visualize in Figure 

6.24, the electrodes on the left are AF7 and TP9, while the ones situated on the right part of 

the brain are AF8 and TP10. 

 

On EEGLAB, the MSC function that is used to compute this is ‘mscohere’. Then, the Root 

Mean Square was again used to obtain a single value for each subject and the median of the 

subjects’ value was computed to visualize the Coherence in a more efficient way, as seen in 

Figure 6.25 and 6.26.  

 

 
 

Figure 6.24 position of the 4 electrodes on the scalp: AF7 AF8 TP9 TP10 
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Figure 6.25 Coherence index for each subject between frontal lobe electrodes (AF7 and AF8), and mean of each 

Coherence index represented as continuous function 

 

Figure 6.26 Coherence index for each subject between temporal lobes electrodes (TP9 and TP10), and mean of each 

Coherence index represented as continuous function  
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7. CONCLUSION 

As illustrated in Figures 6.18 and 6.19, the alpha-beta ratio exhibits a significant elevation 

when the subjects are subjected to a relaxing tune in comparison to the crowd noise. This 

data implies an enhanced state of relaxation among the subjects. 

 

Alpha waves are generally linked with a state of consciousness that transpires during periods 

of relaxation with eyes closed, excluding sleep. On the contrary, Beta waves are dominant 

during a state of normal consciousness, alertness, or active concentration. 

Hence, a pattern suggestive of stress can be manifested by an escalation in power in the Beta 

band and a reduction in power in the Alpha band, particularly in the prefrontal cortex (PFC) 

[4.14]. The PFC is instrumental in regulating short-term memory, planning, and 

concentration. Consequently, these findings offer substantial insights into the physiological 

responses to diverse auditory stimuli. 

 

Conversely, a decrease in the Theta/Beta ratio is indicative of an enhanced stimulus-driven 

attention, suggesting that the subjects possess a superior ability to concentrate. It is plausible 

that the Theta/Beta ratio could be effectively employed as an additional predictive measure 

in the investigation of stress and cognitive processing capacity since noise is well-knowingly 

a factor that increases stress and diminishes comprehension levels.  

In everyday life, in fact, the damages are not limited to the increase in daily life stress: a too 

high background noise in a working environment – even if too low to cause problems to the 

auditory apparatus - can cause a decrease in noradrenaline or cortisol, thus leading to deficits 

in motivation level and problem-solving capacity [7.1]. On the long run, it also increases the 

likelihood of abandoning correct ergonomic and postural positions, increasing the risk of 

developing musculoskeletal disorders [7.1], an increase in the sense of fatigue [7.2], and damage 

to long-term memory due to disturbances in slow wave sleep quality [7.3]. 

 

The observed distinction between the results between both the frontal and temporal lobes is 

corroborated by the low Coherence index exhibited in both the electrodes of the frontal and 

temporal lobes. While predominantly, it can be confidently asserted that the alpha-beta ratio 

serves as a superior indicator of sensory response. 
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Future studies may wish to substantiate the hypothesis that the alpha-beta ratio and theta-

beta ratio are parameters that can be manifested at more elevated values in individuals with 

neurodevelopmental disorders characterized with a higher sensory sensitivity, such as 

Autism Spectrum Disorder (ASD) and ADHD, and it may be beneficial to explore the 

potential involvement of certain pharmaceuticals, including stimulants and dopamine 

regulators, as they could potentially alleviate distress in instances of heightened sensory 

discomfort. This could potentially establish Electroencephalography (EEG) as a valid 

diagnostic instrument and a means to expand our knowledge on the matter in the future. 
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