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Abstract 

The utilization of modern computers' computational capacity has become a decisive 

element in addressing engineering issues. The advancement of neural network algorithms, 

in particular, has enabled these computers to "learn" and "recognize," tasks that were 

previously exclusive to the human mind. 

These algorithms may be used to evaluate sound sources and determine which ones will 

irritate the human ear in a sound quality research. This is only feasible if the neural 

networks have been adequately "trained" on a huge database of noises, giving them a 

sense of how annoying each one is. 

It is easy to believe that there is a link between the listener's irritation and certain aspects 

of the sound they are hearing. The metrics define the major features of a sound. 

The objective of this thesis is to use neural network algorithms to evaluate sound metrics 

and establish a link with subjective data. 

 

 

 

Abstract: italian version 

Negli ultimi decenni, l’utilizzo della potenza di calcolo dei nostri computer è diventato un 

fattore determinante per la risoluzione di problemi ingegneristici. In particolare, lo sviluppo 

di algoritmi di reti neurali ha permesso a queste macchine di “apprendere” e “riconoscere”, 

funzioni che, fino a poco tempo fa, erano relegate alla sola mente umana. 

Nello studio della qualità del suono, questi algoritmi possono essere utilizzati per 

analizzare sorgenti sonore ed identificare quali risulteranno fastidiose all’orecchio umano. 

Questo è possibile solo se le reti neurali sono opportunamente “allenate” su un grande 

database di suoni, fornendo loro un’indicazione della fastidiosità di ognuno di essi. 

È naturale pensare che esista una relazione tra la fastidiosità percepita dall’ascoltatore e 

alcune caratteristiche del suono ascoltato. Le principali caratteristiche di un suono sono 

descritte dalle metriche.  

L’obiettivo di questa tesi è quello di analizzare le metriche del suono e di trovare una 

correlazione con i dati soggettivi utilizzando algoritmi di reti neurali. 
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1 – Introduction 

A study was done into how a number of sound quality metrics may be used to anticipate 

consumer reactions to noises from a certain type of product, as represented in product-

specific characteristics such as ratings of "acceptability" and "quality." We presume that a 

jury study has previously been done for such qualities, resulting in rating values for various 

product sounds, with the goal of determining which metrics or combinations of metrics may 

best be utilized to forecast user judgements for different versions of the product's sounds. 

In this thesis, we focused on the study of sounds from kitchen hoods and washing 

machines. 

Considering the hoods, we collected the judgements made by questioned listeners on the 

perceived unpleasant sound, in addition to the audio files. 

We computed the major sound metrics in Matlab and linked them to the respondents' 

comments using neural network techniques. We utilized and evaluated several calculating 

softwares for the actual calculation of the metrics: Matlab, Testlab, and Bruel. 

Finding this link would entail anticipating the sensations a person has while listening to a 

new sound with a high degree of accuracy. This could only be accomplished by analyzing 

the signal rather than interviewing individuals, saving both time and money. 
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2 – Metrics 

2.1 – Loudness 

The loudness of a sound is measured in sones. It's not the same as decibels. Sones 

account for the frequency and level dependent aspect of human hearing, whereas decibels 

do not fully account for this dependency. 

Many individuals believe that utilizing a decibel number to quantify the volume of a sound 

is the best way to do it. The volume of a sound is properly represented by decibel (dB) 

values, however the perceived loudness of a sound is not accurately represented by 

decibel (dB). In reality, there is a different sound quality metric called loudness (with units 

of sones or phons) that represents how humans perceive the volume of a sound 

considerably better. 

Figure 1 illustrates the human hearing domain. When looking at the lower limit (hearing 

threshold), it is clear that it fluctuates with frequency. At different frequencies, the threshold 

has various values. 

 

 

 

Figure 1 shows a dip between 3000Hz and 5000Hz. At these frequencies, humans can 

hear very well. Between 3 and 5 kHz, people can hear sounds at lower decibel levels than 

at any other frequency. 
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A 10dB sound at 5 kHz, for example, is audible to humans, while a 10dB sound at 50Hz is 

not. 

 

 

 

Both frequencies have the same dB value, yet the perceived loudness is vastly different — 

one is audible, while the other is inaudible. Clearly, dB is insufficient to describe a sound's 

perceived loudness. 

The loudness measure is based on how loud something is judged to be. As a result, the 

measure was created in collaboration with a human jury (unlike decibels which is simply a 

math equation). Each curve in the graph below shows a curve for sinusoidal tones of equal 

loudness. To produce an equally loud sound, the dB value must vary as frequency varies 

along a curve. 
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A jury of individuals with normal hearing was assembled to develop this measure. The 

jurors would hear a tone at 1000Hz with a specific dB level. Then, at a different frequency, 

a second tone would be played. The second tone's volume would be adjusted until it 

sounded as loud as the 1000Hz tone. 

The loudness level is measured in sones or phons, which are both loudness units. 

Because the sone is a linear unit, it is usually chosen over the phon. 

 

2.2 – Sharpness 

Sharpness is a metric that measures the balance of a sound's spectral richness between 

low and high frequencies. If a spectrum's energy is mainly concentrated in the low 

frequency band, the sharpness value will be low. The sharpness value will be high if the 

signal's energy is skewed toward the high frequency end of the hearing spectrum. An 

intermediate sharpness rating is produced by a flat spectrum with well-balanced energy 

across the frequency range.  

Sharpness, like Loudness, Tonality, and other sound quality indicators, may be used to 

distinguish between sounds that may have the same total decibel level but generate quite 

distinct subjective impressions. 

The unit of acum, which is derived from the Latin word for "sharp," is used to measure 

sharpness. A narrowband noise with a critical band width of one kHz and a level of 60 dB 

RMS is defined as 1.0 acum. The numbers generated by the sharpness computation are 

always non-negative integers, and their value is potentially limitless (depending on the 

formulation used, more on that in the next section). The sharpness of a signal with no 

content in audible frequencies is 0.0 acum. 
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The specific loudness spectrum, or loudness versus the Bark scale, is the starting point for 

calculating sharpness. The overall loudness may be determined using the specific 

loudness spectrum and then utilized in the sharpness calculation. Take two well-known 

test signals, White and Pink Noise, to demonstrate this procedure. Figure 4 illustrates the 

narrow band frequency spectra of these two signals. 

 

Figure 4: Narrow-band frequency spectra for white and pink noise.  

As demonstrated by the flat white line in Figure 4, white noise is defined by equal energy 

across the narrow-band frequency spectrum, or equal amplitude across all frequencies. 

The amplitude level of pink noise drops off continuously as a function of narrow-band 

frequency, as shown by the pink trace in Figure 4. Pink noise is energy-biased toward low 

frequency, and the amplitude level drops off continuously as a function of narrow-band 

frequency, as shown by the pink trace in Figure 4. 

Calculating the specific loudness spectrum for each sound is the first step in calculating 

sharpness. The psycho-acoustic loudness of a signal is represented by the specific 

loudness spectrum, which is spread throughout the frequency bands that people perceive 

in, known as Bark bands or the Bark scale. 
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Figure 5:  Specific loudness spectra for white and pink noise.  Specific loudness specifies the 

distribution of loudness over the 24 Bark bands.  

The loudness of pink noise is generally balanced between low and high Bark bands, 

whereas white noise is skewed toward the higher Bark bands, as seen in Figure 5. 

The total loudness (N), which is determined from the specific loudness spectrum, is the 

next step in the sharpness computation. In Figure 6, the equation for overall loudness is 

displayed. Total loudness is calculated by integrating the specific loudness spectrum over 

the 24 Bark bands and converting it to Sones. 

 

Figure 6:  Formulation of total loudness (N) calculated from specific loudness spectrum (N’).  

 

 

Sharpness may be calculated using a number of different formulas and criteria. 

Zwicker sharpness, for example, is determined using the method given in Figure 7. 

Sharpness is defined as a ratio of the weighted total loudness of the spectrum to the 

overall loudness, as shown in the equation. 

 

Figure 7:  Formulation of Sharpness (S) for Zwicker and DIN45692 methods. 
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2.3 – Fluctuation Strenght and Roughness 

These two sound metrics, unlike decibels, which only measures the absolute intensity of 

sound, combine the following characteristics of a sound (Figure 1) into a single number: 

• Modulation Frequency (fmod) – The number of peaks and falls in the sound per 
second 

• Modulation Level (ΔL) – The perceived magnitude level change throughout time 

The greater the values of Fluctuation Strength or Roughness, the more visible the 

modulation. 

 

Figure 8: The amplitude modulation of a sound is described by a frequency and level  

The Fluctuation Strength or Roughness measure may be suitable depending on the 

amount of modulations per second present in the sound: 

• Fluctuation Strength: Describes sounds with less than 20 modulations per 
second. 

• Roughness: Describes sounds with a minimum of 20 modulations per second and 
a maximum of 300 

Fluctuation Strength may be used to measure low-frequency modulations such as 
propeller plane droning, exhaust rumbling, or the lugging of an electric motor. 

Roughness may be used to measure high-frequency modulations such as an electronic 

razor's buzzing, a fan's fast blade passing noise, or fuel injectors' "sewing machine noise." 

There are two primary explanations for the fluctuation in sound levels over time: 

1. Amplitude: The sound's amplitude, or level, may rise and fall over time, as if 
someone were turning the radio's volume knob up and down. Even if the signal's 

frequency content remains constant, this can happen. 
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2. Frequency: The modulation is caused by constructive and destructive interference 
between several frequency tones present in the sound. 

When two tones of equal amplitude but different frequency are played at the same time, 

this is known as frequency based modulation. The phase between the two tones varies 
over time due to the frequency difference, as illustrated in Figure 3. The tones are 
sometimes in phase, and sometimes they are out of phase. 

 

Figure 9: When listened to simultaneously, a 100 Hertz tone and 120 Hertz tone will constructively 
and destructively interfere with each other 

Modulation frequencies below 20 Hz are described by Fluctuation Strength. A listener can 
hear each individual rise and fall in the sound because the sound fluctuates slowly over 

time (below 20 modulations per second). 

Fluctuation Strength is measured in Vacil units. This is a short version of the English word 
vacillate, and originates from the Latin word vacillātus. It's worth noting that the vacil value 

stabilizes after at least one modulation, which is an essential factor when computing this 
metric. It is critical to use the metric values from the stabilized section for a steady state 
signal. 

Modulations that occur more than 20 times per second and up to 300 times per second are 

described as rough. The human ear is unable to identify individual modulations when they 
occur more than 20 times per second. 

There is a sense of a steady, yet harsh tone with modulations of 20 to 150 times per 

second. Listeners frequently claim hearing three distinct tones at higher modulation 
frequencies (about 150 to 300 times per second). The "asper" is the unit used to indicate 
roughness. 
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2.4 – Articulation Index 

The Articulation Index (AI) is a sound metric that measures how much background noise 

interferes with human speech. 

Its value ranges from 0% (no speech comprehended) to 100% (complete understanding) 

(all speech understood). 

Initially, the Articulation Index was designed to assess voice privacy and communication 

system performance. Articulation Index is now used to assess car interior noise, white 

goods quietness, and other factors. 

Humans can hear frequencies ranging from 20 to 20,000 Hertz, but the frequencies 

generated in human speech are significantly smaller. The frequency and amplitudes that a 

person can hear are highlighted in light blue in Figure 10. The frequencies and amplitudes 

produced by typical human speech are shown in orange. 

 

Figure 10: Map of human hearing audio range with sound level in decibels versus frequency (light 

blue). The human speech frequency range (orange), is critical to speech being understood 

properly. 

The speech frequency ranges from 200 to 6000 Hertz. The background sound levels that 

occur within this frequency range are given the highest priority when calculating the 

Articulation Index, as they will interfere with human speaking. Outside of this range, 

background noises are unimportant. 

During World War II, Leo Beranek of Harvard University created one of the earliest 

definitions of Articulation Index. He utilized it to assess the efficacy of several aircraft 

headsets. While each standard may differ somewhat, the following procedures are usually 

used for calculating Articulation Index: 

1) Perform a background sound measurement at the place where a listener is positioned.              
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For instance, the interior of a vehicle at highway speeds, the interior of a cockpit during a 

flight, and so forth. Broadband background noises are commonly utilized with Articulation 

Index. 

2) From the measurement in the preceding step, calculate an A-weighted octave spectrum 

in decibels. 

3) Plot the background sound against the chart in Figure 11 to see how much each 1/3rd 

octave band's articulation window is "covered."  

When the sound level exceeds the articulation upper limit (red line in Figure 11), the 

octave band's window is entirely "covered." The octave band is partially "covered" if the 

level lies between the top and lower boundaries. 

 

Figure 11: The Articulation window is defined by a lower and upper limit, separated by 30 dB, for 

each octave band. 

For each 1/3 octave band, a coverage value is determined. 

Figure 12 shows the exact numbers that define the top and lower boundaries of the 

articulation window. The coverage values are then weighted in the following phase of the 

computation. 

The weighting variables mentioned in Figure 12 are multiplied by the coverage values from 

the previous step. 
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Figure 12: Articulation Index weighting factors for octaves from 200 Hz to 6300 Hz.  

The weighted coverage values for each octave band are totaled after weighting to 

generate a single Articulation Index number. 
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3 - Neural networks 

3.1 – Introduction to neural networks 

Today, most of the technology we use on a daily basis is based on a sophisticated 

structure of algorithms that are based on neural network theory. In actuality, these "things" 

are nothing more than more or less complicated algorithms that may "learn" to generalize 

specific ideas based on a training data set. There are several forms of neural networks 

that, depending on the situation, can be utilized to achieve the goals we have set for 

ourselves. 

A neural network is a mathematical model with layers of linked nodes that resembles the 

layered structure of the brain's network of neurons. A neural network may be trained to 

identify patterns, categorize data, and predict future events by learning from data. 

The biochemistry of a live being's brain is extremely complex: the nervous system has 

several billion neurons. The first, the dendrites, are branching extensions via which they 

receive electrical signals from other neurons (inputs); the second, the axons, are 

extensions of various lengths (from 1cm to a few meters) that finish in branches and serve 

to convey an electrical signal to other cells. 

In order to artificially replicate a human brain, we need a network of simple elements with a 

large distribution and the ability to function in parallel in order to learn and generalize 

(which means creating new knowledge starting from the basic elements learned in 

training). An artificial neural network's primary structure is the artificial neuron, which is a 

"thing" with multiple inputs and a single output. Each input has its own weight, which is the 

value of the input signal's intensity (conductivity). The weighted total of the inputs causes 

the neuron to turn on. 

 

3.2 – Theory 

The inputs to a neural network are broken down into layers of abstraction. It, like the 

human brain, can be trained to identify speech or picture patterns using a variety of 

examples. The way its component pieces are linked, as well as the strength, or weights, of 

those connections, determine its behavior. These weights are changed automatically 

during training according to a set of rules until the neural network completes the job 

properly. 

A neural network is a type of technology that integrates multiple levels of processing by 

employing basic pieces that run in parallel and is inspired by organic nerve systems. An 

input layer, one or more hidden layers, and an output layer make up the structure. Layers 

are connected by nodes or neurons, with each layer taking the preceding layer's output as 

input. 
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Figure 13: Typical neural network architecture. 

The following are some of the most common machine learning approaches for developing 

neural network applications: 

-Supervised learning: supervised neural networks are taught to generate desired outputs 

in response to sample inputs, making them especially well-suited to modeling and 

managing dynamic systems, categorizing noisy data, and forecasting future occurrences. 

-Classification: a form of supervised machine learning in which an algorithm "learns" to 

categorize fresh observations from examples of labeled data. 

-Regression: the connection between a response variable (output) and one or more 

explanatory factors is described by regression models (input). 

-Pattern recognition: in computer vision, radar processing, speech recognition, and text 

classification, pattern recognition is a critical component of neural network applications. It 

works by utilizing supervised or unsupervised categorization to divide incoming data into 

objects or classes based on essential features. 

-Uns supervision learning: the neural network is trained in an unsusserved manner by 

allowing it to adapt to new inputs on a continual basis. They are used to make inferences 

from datasets that do not have any labeled answers.  

-Clustering: clustering is a non-obvious learning method that use neural networks for 

exploratory data analysis to uncover hidden patterns or groups in data. This procedure 

entails categorizing data based on their similarity. 
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3.3 - Typical neural network design methodology 

Although each neural network application is different, the following stages are usually 

followed when developing a network: 

1) Get data and prepare it 

2) Build a neural network 

3) Set up the network's inputs and outputs 

4) Optimize network parameters (weights and biases) for best results. 

5) Train your network 

6) Check the results of the network 

7) Make the network function as part of a production system. 
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4 – Data analysis 

4.1 – Introduction to the Matlab analysis  

Our sound quality study is based on a dataset from kitchen hoods and washing machines, 

as stated in the introduction. 

Essentially, our Matlab-based program does two tasks: it produces sound quality metrics 

for the data set in question and then compares the matrix of metrics with the matrix of 

interviewees' judgments on sound discomfort. 

 

4.2 – Metrics calculation  

For the actual calculation of the sound metrics, we used the functions present in the 

Matlab Audio Toolbox package. 

As a result, we get a sequence of vectors corresponding to the various metrics (loudness, 

sharpness, roughness and articulation index). The matrix of metrics was then created by 

combining these vectors. 

 

4.3 – Linear correlations with the interviewees' judgments 

When we compare the opinions of the interviewees with the various acoustic metrics, we 

find a correlation with loudness and fluctuation strenght (as shown in Figure 14 and in 

Figure 15). 

 

 

Figure 14: Correlation between respondents' judgment and loudness 
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Figure 15: : Correlation between respondents' judgment and fluctuation strenght 

As a result, it is clear that the interviewees' judgment deteriorates as the loudness or 

fluctuation strength increases. 

 

4.4 – Neural network analysis 

In this type of analysis we used the Levenberg-Marquardt algorithm to correlate, through 

neural networks, the matrix of sound metrics with the matrix of judgments. 

First and foremost, both matrices must be standardized. The features will be rescaled as a 

consequence of standardization (or Z-score normalization) to guarantee that the mean and 

standard deviation are 0 and 1, respectively. The following is the equation (Figure 16): 

 

 

Figure 16: Standardization 

 

This method of rescaling features with a distribution value between 0 and 1 is helpful for 

optimization methods like gradient descent, which are used in machine learning 

techniques to weight inputs (e.g., regression and neural networks). 

 

At this point, using the algorithm: 
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Figure 17: Regression plot 

 

As a result, the input, the matrix of measurements, and the output, the respondents' 

judgments, have a nearly linear connection. Both matrices had been standardized earlier.  

A larger dataset would undoubtedly be required to fully explore the potential of neural 

networks. 
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4.5 – Comparison of kitchen hood data supplied by Matlab, Testlab, and 

Brüel  

The metrics study was carried out using three different calculating tools, as previously 

indicated, so it is fascinating to compare the findings. The graphs below present a 

comparison of kitchen hood metrics: 

 

Figure 18: Loudness comparision between Matlab, Testlab and Brüel 

Figure 18 shows an almost perfect match between the loudness data supplied by Testlab 

and those provided by Brüel, but the Matlab data deviate substantially despite retaining the 

same pattern. 

 

 

Figure 19: Sharpness comparision between Matlab, Testlab and Brüel 
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Figure 19 shows a small difference between the sharpness data supplied by the three 

software programs. The curves look to be misaligned by a considerable offset, but the 

trends appear to be congruent. 

 

 

 

Figure 20: Roughness comparision between Matlab, Testlab and Brüel 

Figure 20 shows how the three curves pertaining to the roughness data have three distinct 

tendencies. The statistics supplied by Testlab and Matlab, in particular, are of the same 

order of magnitude, but Bruel's are off the charts. 

 

 

Figure 21: Fluctuation Strenght comparision between Matlab, Testlab and Brüel 
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Figure 21 shows how the three curves pertaining to fluctuation strength each have their 

own order of magnitude that differs from the others. They also reveal a variety of trends. 

 

 

Figure 22: Articulation index comparision between Matlab, Testlab and Brüel 

 

Figure 22 shows an almost perfect correspondence between the data pertaining to the 

articulation index supplied by the three different computation tools. 

The results for the articulation index, loudness, and sharpness can clearly be deemed 

credible because they are nearly same across the three different calculating tools.  

The statistics pertaining to fluctuation strength and roughness, on the other hand, are 

clearly problematic since they are so dissimilar. 
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4.6 – Comparison of data supplied by Matlab, Testlab, and Brüel for 

washing machines 

In the case of the five washing machines examined, I will only publish statistics from one of 

them because it is indicative of the entire group. 

The comparison was limited to Matlab and Testlab in this example. Furthermore, the 

articulation index has not been computed because it is not required for the evaluation of a 

washing machine. 

 

 

Figure 23: Washing machine loudness comparision between Matlab and Testlab 

The trend of the loudness curves produced using Matlab and Testlab (with two alternative 

parameter values) is similar, as shown in figure 23, and the results, while not entirely 

consistent, are comparable. 

 

Figure 24: Matlab-Simcenter correlation on loudness data 
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Figure 24 shows that the data supplied by Matlab and those provided by Testlab have a 

nearly linear relationship. 

 

Figure 25: Washing machine sharpness comparision between Matlab and Testlab 

Figure 25 shows an unsatisfactory consistency between the sharpness data supplied by 

the two software programs; nonetheless, they are on the same order of magnitude and 

follow a similar pattern (the correlation is clear in figure 26). 

 

 

Figure 26: Matlab-Simcenter correlation on sharpness data 
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Figure 27: Washing machine roughness comparision between Matlab and Testlab 

 

The large disparity between the two data sets is instantly evident (in figure 27) when it 

comes to the data pertaining to the roughness calculated using the two techniques. 

 

 

Figure 28: Washing machine fluctuation comparision between Matlab and Testlab 

 

It is feasible to detect a disparity between the two data sets when evaluating the fluctuation 

strength. However, as seen in figure 28, the two curves appear to have a similar tendency. 
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5 – Conclusions 

Finally, the values of the metrics produced by the various calculating software show 

obvious variations.  

The results obtained for roughness and fluctuation strength, in particular, are very irregular 

and hence cannot be regarded entirely dependable.  

The results collected for the articulation index, loudness, and sharpness are all consistent 

and hence considered trustworthy. 

The major conclusion in terms of the link with the subjective data supplied by the 

respondents is that as the roughness or fluctuation strength rises, the judgement 

deteriorates. 

The technique outlined in this thesis might be seen as a source of inspiration for future 

studies using a larger dataset to allow neural networks to be used more effectively.  
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