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ABSTRACT 

With the worrying increase of diabetes cases all over the world and the importance of early 

diagnosis for a successful management of the disease, the use of machine learning models is 

emerging as a powerful tool to support the diagnostic process in a reliable and efficient manner. 

Continuous Glucose Monitoring (CGM) data represents a rich and relatively unexplored source 

of information that it is worth exploiting for the classification of the metabolic state of healthy 

and diabetic subjects.  

This thesis proposes a dual approach for the classification of subjects as type 2 diabetic or 

normoglycemic, based on CGM data.  

The first approach used CGM recordings spanning across multiple days, belonging to a 

population of 57 subjects, of which 38 normoglycemic and 14 prediabetic/diabetic. From an 

initial set of 13 features extracted from CGM data, five candidate sets of predictors of different 

sizes were outputted by a wrapper type feature selection algorithm based on the maximization 

of the classification sensitivity. Among these sets, the one with 6 predictors was finally selected 

and PCA was then applied to it.  A logistic regression model, fed with the selected features has 

been validated using 5-fold cross validation, and the model so obtained was called M6+PCA. 

This model showed mean accuracy and sensitivity of 0.81±0.10 and 0.85±0.18 respectively, 

with a mean Area Under the Receiver Operating Characteristic Curve equal to 0.88. 

 

The second approach used CGM data recorded during a standardized meal test of 3 h, that is 

the postprandial glycemic response. From each of the 151 CGM recordings, of which 105 

belonged to healthy subjects and 46 to prediabetic/diabetic subjects, 19 features were extracted. 

Feature selection was carried out in two steps, namely: a filter type feature selection (first step) 

based on the scatterplot matrix and point biserial correlation and a wrapper type feature 

selection (second step) based on the deviance of the fit. A logistic regression model, fed either 

with the features selected after the filter type or after the wrapper type feature selection, has 

been validated using a 5-fold cross-validation. The resulting classification models, indicated as 

MFT (14 features) and MFT+WT (9 features), showed mean accuracy of 0.82±0.10 vs. 0.84±0.05, 

and mean sensitivity of 0.82±0.13 vs. 0.85±0.13, with Area Under the Receiver Operating 

Characteristic Curve respectively equal to 0.94 and 0.93. 

In conclusion, both approaches represent a suitable solution to discriminate healthy subjects 

from prediabetic/diabetic ones using CGM data.
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INTRODUCTION 

Diabetes is one of the most widespread diseases of these times, with approximately 463 million 

people in the world who currently suffer from one form of this disease. The World Health 

Organization estimated that every year diabetes causes about 1.6 million deaths worldwide, 

while other 3.7 million people die due to complications of diabetes and high blood glucose. 

The prevalence of diabetes is rising at an alarming rate, especially in low- and middle-income 

countries, with a projected increase to 700 million by 2045.  

The most common form of diabetes, whose proportion is increasing in most countries, is type 

2 diabetes, which is often associated to unhealthy lifestyle and diet, physical inactivity and 

obesity. To contrast the risk of developing type 2 diabetes, besides changes to lifestyle and diet, 

it is very important to keep blood glucose levels under control by regular check-ups. Indeed, 

the International Diabetes Federation estimated that about 50% of people with diabetes are not 

diagnosed, and untreated diabetes may lead to serious health complications. For this reason, 

prevention and early detection of type 2 diabetes plays a key role in the management of the 

disease. 

The long-established method to diagnose diabetes relies on single time-point measurements 

derived from blood tests, which however represent the overall metabolic state of the subject.  

In the last decades, a new technology based on frequent sampling of glucose is emerging as a 

promising tool for an optimized and easier management of diabetes, especially for type 1,  

namely Continuous Glucose Monitoring (CGM) systems. These systems consist in a sensing 

part placed subcutaneously (needle), which reads interstitial glucose values usually every 5 

minutes and wirelessly sends them to either a device that stores data for visualization and 

analysis or to an insulin pump that delivers insulin based on glucose readings. 

The use of these devices for research and diagnostic purposes has recently been brought to 

attention for its enormous unexplored potential. Indeed, the information carried inside the 

glucose dynamics can reveal important insights of the metabolic state of the subject which 

would not be possible to extrapolate from sporadic sampling of blood glucose.  

A powerful tool to discover hidden patterns inside data is offered by machine learning 

algorithms, whose unique inductive capabilities can tackle problems in several domains, 

including healthcare. When the mathematical models of machine learning are used to make 

predictions, classify, recognize patterns and in general help the diagnostic process, we can talk 
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about clinical decision support systems. The first step in the development of a proper decision 

support system is to find models for a given type of data, capable of achieving accurate and 

reliable results.   

The purpose of this thesis is to use machine learning to recognize whether a continuous glucose 

recording belongs to a diabetic subject or to a normoglycemic one, that is classification; to 

tackle this problem, two approaches have been taken: the first one was based on the 

classification of daily CGM recordings, that are recordings spanning across multiple days, 

while the second one was based on the classification of CGM recordings during a standardized 

meal test, that is the postprandial glycemic response. 
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1. GLUCOSE METABOLISM 

In humans and other complex organisms many regulatory processes occur simultaneously and 

continuously in order to keep the internal environment as stable as possible. This tendency to 

maintain a relatively constant internal environment is called homeostasis (from the Greek 

homeo, similar + stasis, state of standing) and it is absolutely crucial to an organism’s survival. 

Homeostatic regulation occurs at many levels as a response to potentially dangerous changes 

in the external or internal environment, and they usually involve negative feedback control 

mechanisms which tend to minimize those changes and restore the internal balance. [1] 

Homeostatic regulation of the blood glucose concentration is just one of the numerous control 

mechanisms existent in human body, such as the thermoregulation, or the control of blood 

pressure and pH, and it will be the focus of this chapter. 

Glucose is the primary energy source for human body, and it is central for the physiologic brain 

functioning. The high energy demand of neurons requires a continuous delivery of glucose 

from the blood (about 5.6 mg of glucose per 100 g of brain tissue per minute), therefore a tight 

regulation of blood glucose levels is crucial for the individual’s survival [2]. 

In physiologic conditions, basal plasma glucose concentration ranges between 70 and 110 mg/ 

dL, with an average of 80 to 90 mg/dL [1, 3, 4].  

The most important hormones involved in blood glucose control are insulin and glucagon and 

they are both secreted by the pancreas [3, 4]. 

1.1 Anatomy and physiology of the pancreas 

The pancreas is a large gland (about 15 cm long) located between the inferior part of the 

stomach and the proximal portion of the small intestine (duodenum). Its head lies within the 

curvature of the duodenum and the body extends laterally toward the spleen, where it ends with 

a narrow and rounded tail (Figure 1). The pancreas is mainly made up of exocrine cells as they 

represent 99% of its volume. These cells, called pancreatic acini, secrete about 1 liter of 

digestive enzymes per day into the duodenum through a network of pancreatic ducts, making 

them the main actors of digestion in the small intestine. [1] 

The endocrine cells of the pancreas, which are grouped in clusters known as pancreatic islets 

or islets of Langerhans scattered around exocrine cells, secrete hormones into the bloodstream 

that are vital for our survival. Despite constituting only about 1% of the pancreatic volume,  
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FIGURE 1 – SCHEMATIC REPRESENTATION OF THE GROSS ANATOMY OF THE PANCREAS WITH FOCUS ON 

PANCREATIC ISLET [1] 

 

there are approximately 2 million of islets in a healthy pancreas, and each islet contains on 

average 2500 cells of four types [1]: 

• Alpha (α) cells which secrete glucagon, a hormone responsible for blood glucose level 

increase [1]. 

• Beta (β) cells which produce insulin, a hormone that lowers blood glucose level [1]. 

• Delta (δ) cells which produce somatostatin, a hormone which inhibits insulin and 

glucagon secretion and slows nutrient absorption and enzyme secretion rates [1]. 

• Pancreatic polypeptide cells (PP cells) which secrete the hormone pancreatic 

polypeptide (PP) that inhibits gallbladder contraction and regulates the production of 

pancreatic enzymes [1]. 

 

1.2 Blood glucose regulation 

The maintenance of blood glucose level within the normal range is ensured by the combined 

secretion of insulin and glucagon (Figure 2). The action of these regulating hormones are 

opposite:  insulin is secreted by pancreatic β cells when blood glucose concentration increases 

(hyperglycemia), and it promotes the uptake and use of glucose by target cells, thus lowering 

blood glucose concentration; glucagon is secreted by pancreatic α cell in response to a low 

blood glucose concentration (hypoglycemia), and it stimulates the mobilization of energy 

reserves in order to restore an adequate blood glucose concentration. [1] 

In physiologic condition, the counter-regulatory hormones keep blood glucose levels inside the 

normality range after large inputs associated with food intake and following large usage rates  
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FIGURE 2 – HOMEOSTATIC REGULATION OF THE BLOOD GLUCOSE CONCENTRATION [1] 

 

related to physical exercise. This is possible thanks to the ability of human body to store excess 

glucose in different forms, and to use it between meals, during exercises or prolonged fasting 

[5]. 

Most of the energy reserve (75%) is stored as triglycerides in adipose tissue, which constitutes 

up to 30% of body weight in healthy individuals and it can reach 80% in obese ones. Fat is a 

very efficient energy storage, but very little is synthetized from glucose (10 – 12 g per day) [3]. 

Proteins account for almost 25% of the energy storage, but they are used as a source of energy 

just in extreme cases of starvation [3]. Carbohydrates are stored in form of a glucose polymer 

called glycogen, and although representing less than 1% of the total energy reserve, it is 

essential for the CNS metabolism and to support intense muscle work [3]. About 25% of the 

glycogen store is localized in the liver and it can be broken down through glycogenolysis and 

made available to other tissues in form of glucose [3]. The remainder glycogen is stored in 

muscle fibers and it can’t be used anywhere else because muscular tissue is not provided of 

glucose-6-phosphatase, an enzyme necessary for glucose release into the bloodstream [3]. 

Glycogen can be synthetized from glucose, galactose and fructose introduced through the diet, 

or de novo in the liver and to a lesser extent in the kidneys, through a process called 

gluconeogenesis, which derives glucose from non-carbohydrate precursors [3, 5]. 

When a food intake causes blood glucose level to rise, insulin secretion increases while 

glucagon secretion decreases. The increase of plasma insulin concentration above basal 

promotes glucose uptake and use by insulin dependent cells, whose plasma membrane contain 
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insulin receptors. When insulin reaches the plasma membrane of a target cell through the 

bloodstream, it binds to its receptor inducing a cascade of reactions that causes the mobilization 

of glucose transporters to the plasma membrane, where they facilitate glucose entry from the 

bloodstream to the cytoplasm of the target cell [1, 3]. 

Once glucose is inside the cell, a part of it is used to produce ATP and sustain the cell 

functioning, while the rest is stored in form of glycogen and triglycerides to be used when 

blood is poor of glucose [1]. Glycogen, obtained through gluconeogenesis, is mainly stored in 

the liver, while triglycerides are obtained by lipogenesis and stored in adipose tissue. 

This is what happens to insulin dependent cells, which are the majority of the cells of our body. 

There are other cells defined insulin independent, which do not have insulin receptors on their 

plasma membranes and they can accept and use glucose without insulin mediation. Insulin 

independent cells are those in the brain, in the kidneys, in the inner layer of the digestive tract 

and red blood cells [1]. As insulin enhances glucose uptake and use, the level of glucose in the 

blood returns in the normal range and consequently insulin secretion rate is restored to its basal 

value [5]. 

Between meals or during physical exercise, when glucose concentration falls below basal, 

insulin secretion decreases while glucagon secretion increases, mobilizing energy reserves. 

When glucagon is released into the bloodstream by pancreatic α cells, its main action is on the 

liver, where it binds to a hepatic plasma membrane glycoprotein receptor, triggering a cascade 

of reactions that stimulates glycogen breakdown (glycogenolysis). The glucose released by 

glycogenolysis is then used by skeletal muscle fibers or poured into the bloodstream by liver 

cells. After 12 to 15 hours of fasting or during intense physical work, hepatic glycogen reserves 

are depleted (in fact glycogen is a short-term energy storage), and gluconeogenesis becomes 

the source of blood glucose.  Gluconeogenesis mainly occurs in the liver, where hepatic cells 

synthetize glucose from pyruvate, lactate, glycerol and glucogenic amino acids which were 

released into the bloodstream by adipose tissue and muscles. Finally, the product of hepatic 

glucose production (gluconeogenesis) is released into the circulation. Gluconeogenesis is also 

supported by the breakdown of triglycerides (lipolysis) that releases fatty acids into the 

bloodstream for use by other tissues [1, 3, 5].  

The combined action of insulin and glucagon during glucose deficiency results in the reduction 

of glucose use and the release of more glucose into the bloodstream (endogenous production). 
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When glucose levels return within the normal range, also insulin and glucagon basal secretion 

rates are restored [1].  

These two antagonist hormones, insulin and glucagon, are secreted without endocrine or 

nervous stimuli because α and β cells are highly sensitive to changes in blood glucose 

concentration and can directly respond to them by enhancing or reducing hormonal secretions. 

However, insulin production is also influenced by autonomic activity: the brain has insulin 

receptors in multiple regions, including the hypothalamus, cerebellum, and hippocampus, and 

through sympathetic and parasympathetic innervations of the pancreas, it enhances or inhibits 

insulin secretion [1, 4]. 
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2. DIABETES MELLITUS 

The previous chapter described how blood glucose homeostasis is maintained in a healthy 

individual through a number of regulating mechanisms involving various hormones and 

organs. However, for several reasons, the regulation of blood glucose level might fail leading 

to a pathological condition known as diabetes mellitus or simply diabetes.   

Diabetes is a chronic metabolic condition characterized by hyperglycemia due to impaired 

insulin production or usage. In 2019, the worldwide prevalence of diabetes was estimated to 

be 463 million people (9.3% of the population), and it is expected to increase to 578 million 

(10.2%) by 2030 and to 700 million (10.9%) by 2045 [6]. The higher prevalence observed in 

urban areas and high-income countries (10.8% and 10.4% respectively) compared with rural 

areas and low-income countries (7.2% and 4.0% respectively) [6] suggests a positive 

correlation of the pathology with the lifestyle [7].  

Besides lifestyle, there are multiple factors that can trigger diabetes onset, and according to the 

cause, we can classify the disease in different types, and the most common ones are type 1 and 

type 2 diabetes. 

2.1 Type 1 diabetes 

Type 1 diabetes (T1D), once known as juvenile or insulin-dependent diabetes, represents about 

5-10% of all cases [5, 8], and it usually develops in children and young individuals [1]. 

In most cases, T1D is caused by the autoimmune destruction of pancreatic beta cells, which 

usually leads to absolute insulin deficiency [8]. The preclinical phase of the disease is 

distinguished by the presence of autoimmune markers such as islet cell autoantibodies or 

insulin autoantibodies, which however are not thought to directly cause the disease [8, 9]. The 

destruction of β-cells, which may occur at different rates (usually faster in infants and children 

and slower in adults), is related to genetic predispositions and environmental factors, still not 

fully clear [8]. The most prominent genetic factor points back to the human leukocyte antigen 

(HLA); however, at least other 47 non-HLA genetic factors are associated with the risk of T1D 

[9]. The main putative environmental factors include maternal factors (e.g. gestational 

infections, high maternal age), viral infections (e.g. mumps virus or rotavirus), dietary factors 

(e.g. bovine milk or short breastfeeding, cereals, vitamin D deficiency), high birth weight and 

growth rate, psychologic stress (e.g. stress during pregnancy) and toxic substances (e.g. 

alloxan, streptozocin, vacor) [9].  
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A small fraction of T1D patients exhibits a permanent reduction in insulin secretion due to β-

cell function loss but without evidence of β-cell autoimmunity. This form of T1D is defined 

idiopathic, and it is highly inheritable and not associated with HLA. [9] 

Whether autoimmune or idiopathic type 1 diabetes, the onset of the disease is characterized by 

the loss of pancreatic β-cell secretory function. The absolute lack of insulin production inhibits 

glucose uptake by insulin-dependent tissues and the body reacts to cell starvation by 

augmenting glucagon secretion [9]. Increased levels of glucagon stimulate hepatic glucose 

production through glycogenolysis and gluconeogenesis which in turn causes glucose 

intolerance and finally hyperglycemia [3]. Furthermore, the state of fasting caused by the 

absence of insulin triggers the lipolysis of adipose tissue into free fatty acids, which are 

converted in the liver into ketone bodies through beta oxidation [9]. Ketone bodies represent 

an alternative source of energy for human body, and beside increasing glycemia, they turn the 

blood acidic (Diabetic Ketoacidosis or DKA) [10]. 

Diabetes ketoacidosis mainly occurs in T1D patients, but it may also appear in some patients 

with type 2 diabetes. It is a potentially life-threatening condition, usually accompanied by 

dehydration, deep and sighing respirations, sweet-smelling fetor on the breath caused by the 

ketone bodies, clouded consciousness, abdominal pain and vomiting [9]. Without medical 

intervention it can lead to coma and death [3, 9]. 

2.2 Type 2 diabetes 

Type 2 diabetes (T2D), also known as non-insulin-dependent diabetes, represents about 90-

95% of all cases [5, 8] and it is usually associated with obesity, sedentary lifestyle and elderly 

age; however, with the increasing incidence of the disease, it is now less uncommon in 

adolescent individuals [9]. 

During the first stages of the disease, the production of insulin is not altered, but there is an 

impairment in insulin-mediated blood glucose uptake by target tissues. The reduced 

responsiveness of tissues to insulin is commonly referred to as insulin resistance, a metabolic 

syndrome that precedes the disease onset and whose causes are mainly attributed to obesity, 

physical inactivity and genetic predisposition [5, 9, 11, 12]. Insulin resistance is a synonym for 

low insulin sensitivity. 

At first, in order to compensate for the lowered insulin sensitivity of tissues, the pancreas 

increases insulin secretion (hyperinsulinemia) enabling blood glucose to enter the cells and 

https://en.wikipedia.org/wiki/Beta_oxidation
https://context.reverso.net/translation/english-italian/accompanied+by
https://www.diabetes.co.uk/hyperinsulinemia.html
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glycemia to stay within the normal range [11, 12]. Over time, the pancreas loses the ability to 

keep up with the augmented demand for insulin as its β cells get smaller (hypotrophy) and 

eventually die (hypoplasia) [11]. Dysfunctionality of β cells soon leads to decreased insulin 

production and overt hyperglycemia, hence type 2 diabetes onset [9, 11]. It is interesting to 

remark that insulin resistance is furtherly worsened by chronic hyperglycemia, which itself 

causes insulin resistance [9]; for this reason, insulin resistance is present throughout the 

progression from preclinical phase to overt T2D [12]. However, insulin resistance doesn’t 

always progress into diabetes because in some subjects (about two third of obese, insulin-

resistant individuals) β cells are able to compensate for the decreased insulin effectiveness [12].  

Unlike T1D, in T2D a small amount of insulin is generally still produced by the pancreas so 

the insulin-glucagon balance is maintained and diabetic ketoacidosis is usually not developed 

[11]. Nevertheless, a condition typically involved with T2D is Hyperosmolar Hyperglycemic 

State (HHS): in case of hyperglycemia, because glucose molecules can’t passively diffuse 

across cell membrane, the water inside the cells diffuses by osmosis into the bloodstream 

inducing an increase in urination and finally causing total body dehydration [11]. 

The development of insulin resistance and eventually chronic hyperglycemia are often 

associated with an inflammatory state, whose main cause is attributed to visceral obesity [9].  

High energetic diets, especially rich in glucose and free fatty acids, induce stress in pancreatic 

islets and insulin-dependent tissues such as adipose tissue, causing the local production and 

release of cytokines and chemokines, two molecules involved with the immune system. As a 

consequence, inflammation is induced in adipose tissue and elsewhere such as in the liver and 

in the islets, leading to insulin resistance [9, 12].  

2.2.1 Prediabetes  

Type 2 diabetes is a chronic disease which can only be treated through drugs and changes in 

lifestyle and diet, but it can’t be reversed. However, during the first stages of the disease and 

when glucose levels are higher than normal, but still not so high to be diagnosed as diabetic, 

we are in a potentially reversible metabolic condition known as prediabetes.   

In 2017, the number of people in US with prediabetes was estimated to 84 million, and without 

intervention, 37% to 70% of them were expected to develop diabetes within the next 4 years 

[7]. Lifestyle interventions aiming to minimize the probability of the progression of prediabetes 
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in diabetes include weight loss, physical exercise and personalized diet. However, diagnosing 

prediabetes might not be straightforward, especially when the subject shows normal glycemia. 

 

2.3 Other types of diabetes 

There are other cases in which individuals experience hyperglycemia but they don’t fit in 

neither type 1 or type 2 diabetes category. In these cases, subjects experience specific types of 

diabetes, caused by certain circumstances or substances. 

• Gestational diabetes  

Pregnant women may experience hyperglycemia during the second or third trimester of 

pregnancy [8, 11] and although it may remit after delivery, it indicates a high risk for future 

type 2 diabetes outbreak [9]. The risks involved with gestational diabetes include fetal death 

or prematurity, congenital malformations, neonatal hypoglycemia, jaundice, macrosomia 

and increased risk of developing childhood obesity [9]. 

Although ultimately unknown, the exact cause of gestational diabetes is thought to be 

related to hormones secreted during pregnancy that could interfere on insulin receptor 

hence on insulin action [11].   

• Drug-induced diabetes 

Many commonly used drugs interfere with glucose homeostasis, causing or worsening  pre 

- existing hyperglycemia. Drugs that induce hyperglycemia in healthy patients usually (but 

not always) lead to reversible and not insulin-dependent diabetes, while for diabetic patients 

it is fundamental to investigate the diabetogenic properties of drugs to prevent deterioration 

in glycemic control. The underlying mechanisms through which drugs effect glucose 

homeostasis are of two types: reduction of insulin biosynthesis or secretion, or reduction 

of tissue sensitivity to insulin [9].  

Among the most commonly prescribed drugs, glucocorticoids have by far the greatest 

impact on glucose homeostasis, exacerbating hyperglycemia in T2D patients and, given in 

high doses, causing significant increases in blood glucose concentrations in normoglycemic 

individuals; however, hyperglycemia is generally reversible once glucocorticoids is quit, 

regardless the duration of drug treatment [9].  
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Oral contraceptive pills, especially those with high estrogen content or progesterone 

levonorgestrel, have been proven to cause hyperglycemia with a probability of developing 

impaired glucose tolerance of 35% or even greater in women with a history of gestational 

diabetes.  In contrast to the older high-estrogen pills, the current low-dosage contraceptive 

pills show only a minor risk of development of T2D; moreover, hyperglycemia induced by 

hormonal contraceptives is usually reversible on withdrawal of the pill [9].  

Other examples of chemicals affecting glucose homeostasis include thiazide diuretics, β - 

adrenoceptor antagonists and agonist, HIV protease inhibitors, antirejection drugs and 

antidepressants [9]. 

• Monogenic diabetes 

Monogenic diabetes has an incidence of 1-2% and it is due to inheritance of one or more 

mutations in a single gene that cause β-cell dysfunction or, rarely, insulin resistance. It is 

often initially misdiagnosed as type 1 or type 2 diabetes. [9]  

• Endocrine disorders and pancreatic disease related diabetes 

Endocrine disorders may cause diabetes when hormones that are antagonist to insulin 

(inhibiting insulin secretion and/or action) are excessively secreted. This is the case, for 

instance, of acromegaly, Cushing syndrome, polycystic ovarian syndrome or glucagonoma 

and somatostatinoma (rare islet cell tumors) [9]. 

Pancreatic disease account for less than 0.5% of all cases of diabetes, and examples of them 

include: acute and chronic pancreatitis, tropical calcific pancreatitis, pancreatic carcinoma, 

cystic fibrosis [9]. 

 

2.4 Clinical manifestation and diagnosis 

In both type 1 and type 2 diabetes, a variety of genetic and environmental factors can lead to a 

progressive loss of β-cell mass and/or function, that ultimately manifests as hyperglycemia. 

Regardless the type of diabetes, once hyperglycemia arises, patients are alike to develop the 

same chronic complications, although rates of progression may differ [8]. 

Clinical symptoms of uncontrolled diabetes include polyphagia, glycosuria, polyuria and 

polydipsia. Both type 1 and type 2 diabetic patients show high blood glucose concentrations 

due to insulin deficiency or resistance, and because glucose can’t enter insulin-dependent cells 
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without insulin, these cells starve for energy; in response, adipose and muscle tissues break 

down to provide nutrients to the cells but causing weight loss and sense of hunger (polyphagia). 

When blood glucose concentration is too high, kidneys fail to reabsorb excess glucose so it 

gets excreted through urine (glycosuria). At the same time, since glucose is osmotically active, 

water tends to dilute urine resulting in increased urination (polyuria), which leads to 

dehydration, hence increased sense of thirst (polydipsia) [11].   

Diabetic ketoacidosis is a serious complication of type 1 diabetes, occasionally present also in 

type 2 diabetes, while hyperosmolar hyperglycemic syndrome is a dangerous condition that 

can occur only in type 2 diabetes; both DKA and HHS have been described in paragraphs 2.1 

and 2.2 respectively. Other non-specific symptoms include tiredness, general malaise, blurred 

vision and repeated or persistent skin infections. [9] 

Unfortunately, in many cases diabetes may remain asymptomatic for years and at the time of 

diagnosis, the patient is likely to present long-term complication of diabetes. It is estimated that 

about 50.1% of people living with diabetes are not aware of their condition [6]; for this reason, 

screening tests are very important, especially for individuals at high-risk of diabetes [9].  

There are several ways to diagnose diabetes, and they usually rely on blood tests. The  most 

common tests to detect diabetes are based on glycated hemoglobin (HbA1c or A1c), Fasting 

Plasma Glucose (FPG), plasma glucose 2 hours after a 75-g oral glucose tolerance test (2-h PG 

after OGTT) and random (or casual) plasma glucose test. 

• Glycated hemoglobin  

Hemoglobin, the protein within red blood cells which transports oxygen throughout the 

body, becomes glycated when glucose chemically attaches to it, hence the name glycated 

hemoglobin [13]. Most monosaccharides, including glucose, spontaneously bind to 

hemoglobin through glycation; normal blood glucose concentrations generate a normal 

amount of glycated hemoglobin, and as blood glucose levels rise, the fraction of 

hemoglobin combined with glucose increases proportionally [14]. Since the average 

lifespan of red blood cells is about 4 months, the amount of glycated hemoglobin found in 

the blood reflects the average glycemia over the past 2 to 3 months prior to the test [13, 

14].  

• Fasting Plasma Glucose  

Fasting plasma glucose (FPG) test measures the level of glucose in the blood after a fasting 
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of at least 8 hours, hence it is generally performed before breakfast [15]. 

• Oral Glucose Tolerance Test 

During an Oral Glucose Tolerance Test (OGTT), a standard dose of 75g of glucose diluted 

in water is orally ingested and the glucose level is sampled at specific time intervals. The 

level of plasma glucose 2h after the OGTT is used as a diagnostic metric for diabetes.  

• Random plasma glucose test 

A random plasma glucose test is taken to measure blood glucose level at any time of the 

day, for instance in case of severe diabetes symptoms. 

 

With respect to FPG and 2hPG after OGTT, HbA1C test is more convenient as it doesn’t 

require fasting and it is representative of the average blood glucose levels in the past 2-3 months 

rather than being a single-time-point measure [7, 8, 9]. However, HbA1C test has a greater 

cost, and it has limitations on the age, ethnicity and hemoglobinopathies of the tested person 

[8].  

The American Diabetes Association (ADA) provides the reference values of Hba1c, FPG and 

2h-PG after OGTT to diagnose diabetes and prediabetes (Table 1) [15].   

Unless there are clear clinical manifestation of diabetes, for instance with classic symptoms of 

hyperglycemia or random plasma glucose greater than 200 mg/dL, the same test is repeated for 

two consecutive times, on different blood samples [8]. The diagnosis of diabetes is confirmed 

when two different tests or the same test repeated twice, show both positive results [8]. 

 

TABLE 1 - ADA GUIDELINES FOR DIABETES DIAGNOSIS 

 
HbA1c 

(%) 

FBG 

(mg/dL) 

2-h PG after OGTT 

(mg/dL) 

Healthy < 5.7 < 100 < 140 

Prediabetic ≥ 5.7 and < 6.5 ≥ 100 and < 126 ≥140  and ≤ 199 

Diabetic ≥ 6.5 ≥ 126 ≥ 200 
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2.4.1 Long-term complications of diabetes 

Untreated diabetes leads to a series of severe health problems that ultimately result in death. 

Diabetes management (see paragraph 2.5) focuses on reducing the risk of long-term 

complications through glycemic control and screening [9]. 

Chronic side effects of diabetes are generally divided in microvascular (diabetic nephropathy, 

neuropathy, and retinopathy) and macrovascular (coronary artery disease, peripheral arterial 

disease, and stroke) subgroups [9]. The risk of developing vascular complications related to 

diabetes increases in individuals exposed to longer periods of hyperglycemia [9]. Besides 

hyperglycemia, hypertension is an important risk factor for vascular damages [9]. 

At the level of small blood vessels, diabetes causes hyaline arteriolosclerosis, which makes 

arteriole hard and inflexible, and it thickens the basement membrane of capillaries, hindering 

the transfer of oxygen into the cells thus leading to hypoxia [11].  

• Diabetic nephropathy 

Diabetic nephropathy is an important complication of diabetes which involves the kidneys 

and it’s the primary cause of renal failure in the US [9, 16]. The nephron, the functional 

unit of the kidney, contains a net of capillaries involved with blood filtration; alterations to 

these small blood vessels, due to uncontrolled glycemia, leads to a series of consequences 

such as widespread capillary occlusion, microaneurysm formation, mesangial nodule 

formation and increased intraglomerular pressure that ultimately result in a progressive 

decrease in glomerular filtration rate (GFR) and eventually in the end-stage renal disease 

(ESRD) [9, 11, 16]. The hallmarks of diabetic nephropathy is the microalbuminuria 

(increased excretion of albumin in the urine) that eventually worsen in proteinuria [9, 16].  

• Diabetic neuropathy  

Diabetic neuropathy affects about 50% of diabetic patients and it is characterized by nerves 

damages in different parts of the body, but most commonly in legs and feet [17]. According 

to the nerves involved, there are different types of neuropathies: peripheral, autonomic, 

focal and proximal neuropathies, and more than one type can be present at the same time 

[17]. Peripheral neuropathy is the most common type and it affects the lower limbs and feet 

first, followed by the upper limbs and hands; it leads to decreased sensations, numbness, 

sharp pain and eventually foot problems, ulcers and infections [9, 11, 17]. 
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• Diabetic retinopathy 

Diabetic retinopathy is probably the most common microvascular complication of diabetes, 

responsible for about 10,000 new cases of blindness every year in the US [16]. Diabetic 

retinopathy is caused by damages to the capillaries that nourish the retina, including 

hemorrhages, microaneurysms and occlusions that eventually cause injuries to the retina 

with subsequent vision impairment or loss [9]. 

 

In large blood vessels, diabetes causes arterial wall damages, hence atherosclerosis [11], which 

leads to arterial walls narrowing throughout the body [16]. Atherosclerosis is directly linked to 

cardiovascular disease (CVD), which is the primary cause of death in people with diabetes 

[16].   

2.5 Treatment and prevention 

Until now, it is unfortunately impossible to cure diabetes, but it can be effectively treated, 

especially if diagnosed on time. Diabetes treatment’s goal is to reproduce the physiologic 

insulin profile and keep blood glucose level within the normal range without incurring 

significant risk of hypoglycemia [9].  

People with T1D are completely dependent on exogenous insulin because of their irreversible 

pancreatic β-cells function loss; the therapy for T1D not only needs to ensure adequate amounts 

of insulin after each meal, but it also need to provide basal insulin for the background control 

of glucose between meals [9]. The usual insulin therapy involves fingerstick testing of 

glycemia and subcutaneous insulin administration usually in the abdomen, thigh and deltoid 

[9]. In the last decades, the use of continuous subcutaneous insulin pumps and continuous 

glucose monitoring for T1D management has led to an improved metabolic control and 

increased lifestyle flexibility [9]. Indeed, these tools allow for a continuous monitoring of blood 

glucose level and a tight and automated control of insulin delivery, resulting in a closed-loop 

system known as artificial pancreas, which mimics the physiologic pancreatic insulin 

secretion, hence the name [9]. Continuous Glucose Monitoring is further discussed in Chapter 

3. 

People with T2D, as their pancreatic β-cells may still be producing some insulin, might not 

require continuous insulin therapy as T1D patients do; they are usually treated with oral 

hypoglycemic agents, which improve insulin sensitivity and safeguard β-cells function [18], 
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along with lifestyle and dietary modifications. However, more than 50% of T2D require insulin 

injections at some point of their lives [9]. 

Unfortunately, type 1 diabetes cannot currently be prevented, while there are some preventive 

actions that can significantly lower the risk of developing type 2 diabetes or at least prevent the 

side effects associated with any type of diabetes [19]. Preventive interventions include regular 

physical exercise, healthy and balanced diet, avoiding smoking, controlling blood pressure and 

adipose tissue, especially in the abdomen and of course screening tests [9, 19].   
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3. CONTINUOUS GLUCOSE MONITORING 

Early diagnosis and strict monitoring and treatment of diabetes are the key elements for a 

successful management of the disease, thus a significant risk reduction of long-term 

complications. Continuous glucose monitoring (CGM) systems not only dramatically facilitate 

diabetes monitoring but they also have the potential to be used for diabetes detection [20].  

The sensing part of a CGM system is a small sensor placed subcutaneously, usually in the arm 

or in the belly (Figure 3), which periodically measures the interstitial glucose level (glucose 

within the fluid surrounding the cells) [18]. The sensor samples glucose level usually every 5 

minutes and wirelessly sends it to a monitor or to a smartphone/tablet. Data can also be sent to 

an integrated system consisting of an insulin pump and a control unit which modulates insulin 

release based on the data received from the CGM sensor [18]. For this reason, CGM system 

are particularly used for T1D management.  

Monitoring glucose in real time helps the patient (or the automated system) to make more 

informed decisions about the insulin therapy, taking into account also food intakes and physical 

activity [18]. Indeed, CGM systems provide additional information about the dynamic of blood 

glucose level, in contrast with the traditional fingerstick tests which give accurate but isolated 

measures of glycemia.  

Once the sensor is placed, it can be worn for up to 7 days, depending on the model, and it 

continuously (day and night) records and sends data to a given device, e.g. an alarming system 

that alerts the patient or a second person when glycemia is too high or too low, or an insulin 

pump which automatically adjusts insulin bolus [18]. 

 

        

FIGURE 3 – CONTINUOUS GLUCOSE MONITORING SYSTEM ILLUSTRATION. PHOTO COURTESY: U.S. FOOD AND 

DRUG ADMINISTRATION 
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Some drawbacks of CGM systems are: 

• Lower accuracy of the results with respect to standard blood glucose meters. In fact, it 

is still necessary to check the validity of CGM glucose readings against finger-stick 

glucose test twice a day [18].  

• Most CGM models can’t be used to make treatment decisions alone, which should also 

rely on a finger-stick glucose test [18].  

• Higher price with respect to a standard glucose meter [18].  

On the other hand, a number of remarkable advantages are associated with the use of CGM, 

especially when integrated with an insulin pump: 

• Real time monitoring of glycemia with detailed information on glucose patterns and 

dynamic [9, 20]. 

• Improved metabolic control and quality of life in patients with type 1 diabetes [9].  

• Increased lifestyle flexibility [9]. 

• Reduced the risk for both hypoglycemia and hyperglycemia, often associated with a 

decrease in HbA1c [9].  

• Promising diagnostic tool [20]. 

The use of CGM for diagnostic purposes is still developing but it appears to be a promising 

application. Current methods to diagnose diabetes (or prediabetes) rely on single-time-point 

measurements or on average measures of glycemia, and they do not consider how blood 

glucose fluctuates over time. However, multiple studies have demonstrated that information 

hidden inside glucose dynamic are critical for assessing the metabolic status of a person. 

Particularly important is the quantification of the glycemic variability, which is thought to be 

an independent risk factor for diabetes development. Another important risk factor is the 

postprandial hyperglycemia, which induces oxidative stress, hypercoagulability, endothelial 

dysfunction, and inflammation, hence it is considered a sign of glucose dysregulation. Through 

the use of a CGM system, it is possible to spot glycemic variability in individuals otherwise 

considered nondiabetic by standard measures and, through diet and lifestyle modifications, 

planning an intervention aimed to minimize glucose variability hence reduce the risk of 

diabetes onset. Indeed, without intervention, 37% to 70% of prediabetic patients are expected 

to develop diabetes within 4 years, with increased incidence of diabetes complications. [7, 20] 
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3.1 Interstitial glucose and blood glucose 

The main difference between a standard blood glucose (BG) test and a CGM acquisition is the 

site of glucose sampling: while the first measures the glucose concentration directly in the 

blood, the latter senses the glucose concentration in the interstitial fluid (ISF), (Figure 4).  

It follows from this that BG and ISF glucose differ in a number of aspects: while blood 

distributes glucose throughout the whole body, the ISF only transfers glucose to cells; BG 

measurements provide limited insights about the dynamic of glucose fluctuations, while ISF 

glucose measurements, due to the significantly higher sampling rate, provide information about 

dynamic changes and patterns which can be deployed to optimize diabetes care; on the other 

hand, BG measurements are more reliable than ISF ones [21]. Another important difference is 

that the BG concentration represents an overall measure of the total currently available glucose 

in the bloodstream, while ISF glucose concentration is a marker of the local conditions in terms 

of glucose diffusing from the blood to the cells nearby the needle sensor; this means that the 

sampling volume of BG is significantly larger that ISF one [21]. 

Despite these differences, most of the time BG and ISF measurements can be used 

interchangeably for treatment plan; however, the difference between the two measurements 

increases when the dynamic changes very quickly [21]. 

For the sake of simplicity, in this work we will not make distinction between BG and ISF 

glucose measurements. 

 

 

FIGURE 4 - CGM SENSOR 
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4. EXPERIMENTAL PREMISES 

Before going into the details of the experimental part of this thesis, it seems appropriate to 

introduce the reader to the definition of clinical decision support systems and see how these 

promising tools may assist clinicians in the decision-making process. Then, the theoretical 

background of classification with some technical and practical aspects of learning will be 

outlined. 

4.1 Clinical decision support systems 

In the last decades, we have assisted to a massive increase of clinical data availability due to 

considerable improvements of the sensors’ electronics, computational power and storage 

capacities of machines. Alongside with data availability, remarkable advances in computer 

science and information technology have allowed the development of computer systems that 

use medical data to support the clinical decision process. These systems are generally referred 

to as clinical decision support systems (CDSSs), and they are never meant to replace the role 

of the medical doctor, but rather to help him/her with clinical decision-making tasks, e.g. the 

diagnosis of a certain disease, the programming of a treatment plan etc.. 

A main distinction between CDSSs is made between knowledge-based and data-driven systems 

(Figure 5): in knowledge-based systems, an artificial intelligence (AI) inference engine takes  

decisions on the basis of the scientific knowledge, usually encoded in the form of rules, while 

data driven systems use machine learning (ML) and deep learning (DL) models to find hidden 

patterns inside data.  

 

FIGURE 5 - ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, DEEP LEARNING HYERARCHY AND CLINICAL 

DECISION SUPPORT SYSTEMS TYPES 

 

Knowledge-
based systems 

Data-driven 
systems 

Clinical decision 
support  systems 
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AI is a field of computer science which aims to build systems capable of mimic human 

cognitive activities such as learning, reasoning, and perception to perform complex tasks that 

would otherwise require human intelligence. Although there is a debate about considering ML 

as a subfield of AI or rather seeing just the “intelligent” part of ML as a subset of AI, for the 

sake of simplicity we’ll stick to the first theory. 

ML uses mathematical models to automatically learn programs from large amount of data, so 

that once the model has been trained to perform a certain task, it can be used to predict the 

outcome given unseen input data. Basically, what ML aims to do is to generalize beyond the 

examples [22], and build models capable of tackling the task for which the systems has been 

trained, e.g. spam/fraud detection, credit scoring, recommender systems, web search etc.    DL 

is a subfield of ML whose models mimic human brain structure, hence called artificial neural 

networks, in order to independently learn and make intelligent decisions [23]. With respect to 

ML, DL models require less human intervention to learn and they can handle larger and 

unstructured data; in particular, deep neural networks learn the features while training, whereas 

feature extraction in ML models needs to be done manually (Figure 6) [23]. The peculiarity of 

DL to deal with large and unstructured data, makes it especially suitable for images, which are 

given as input to special neural networks called convolutional neural networks (CNN). 

In the healthcare domain, examples of knowledge-based systems are: diagnostic systems based 

on IF-THEN rules, risk assessment and patient monitoring systems based on fuzzy logic and 

diagnostic and treatment support systems based on Bayesian belief network.   

 

 

FIGURE 6 - MACHINE LEARNING VS DEEP LEARNING. IMAGE CLASSIFICATION (BREAST CANCER WISCONSIN 

DATASET) 

Machine Learning 

 

 

  

 

Deep Learning 
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Healthcare data driven systems include ML models for anomalous pattern recognition from 

physiological signals, disease diagnosis/prediction, cancer detection from medical images, 

medical image enhancement etc. In contrast with knowledge based models, which are known 

as “white box”, data driven systems are also called “black box” (Figure 7) because they provide 

a mathematical relationship between input and output data, but they often hide the insights of 

the underlying process, hence lacking in interpretability [24]. This is particularly true for DL, 

where much of the learning pipeline is automated, so the models are probably very good in 

terms of accuracy, but difficult to interpret and understand [23]. 

Especially in domains such life sciences, uninterpretable results are considered unreliable, and 

most medical doctors do not lean on them for diagnoses, but they rather use them as post-

diagnostic tools, to suggest patterns to look into in more depth. [24] 

It is worth exploiting the extraordinary capability of data science models to learn patterns from 

large data, combining it with the solid scientific knowledge; actual systems that try to integrate 

these two paradigms are known as “grey box” or “theory-guided data science” (TGDS) [24]. 

However, some data-driven health information systems still allow some degree of freedom for 

knowledge integration, e.g. one can encode the scientific knowledge dependent on the 

particular task under study through manual feature extraction (Figure 6). 

Regardless the type of CDSS, the ultimate goal of these tools is to improve the quality of care 

by increasing its efficacy, e.g. earlier detection of abnormalities, and efficiency, e.g. cost and 

time reduction. Another remarkable advantage of using these systems is that they would enable 

health democratization by standardizing medical care and by reaching isolated areas through 

telemedicine. Last but not least, CDSSs provide paradigm shift toward precision medicine 

hence care customization because complex data analysis can reveal differences among the 

patients with a given pathology that standard medical approaches might miss [25]. 

 

FIGURE 7 - A) KNOWLEDGE-BASED OR WHITE-BOX SYSTEM.  B) DATA-DRIVEN OR BLACK-BOX SYSTEM 

 

A) 

 

 

 

 

 

 

B) 
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4.2 Classification  

Classification is a supervised learning paradigm of ML (Figure 8) used for pattern recognition, 

which aims to predict qualitative outputs, i.e. descriptive labels rather than numerical values. 

A classification problem’s purpose is to identify to which of a set of categories (or classes) an 

observation belongs and the choice is based on a training dataset that contains labeled 

observations, i.e. instances whose category membership is known. An example would be 

assigning a diagnosis to a given patient based on the values of a predetermined set of 

characteristics (otherwise called features or predictors), e.g. heart rate, weight, gender, 

presence/absence of certain symptoms etc.. The algorithm implementing the classification is 

called classifier, and it is usually a mathematical function that maps input data to a category. 

The steps of a classification algorithm are schematized in Figure 9. Given a training dataset 

whose elements are labeled, a set of features is extracted from the data and fed to the algorithm. 

The algorithm takes as input the values of the features for each element of the dataset with the 

respective labels (thus supervised learning) and it trains itself to distinguish elements of 

different classes, based on the values assumed by the features; in other words, it learns how to 

recognize to which class an element belongs. After the classifier has been trained, when it 

receives a new unlabeled input, it will extract the same features extracted during the training, 

and based on what it has learned, it will label the new input with one of the possible classes. 

The word “learning” might seem inappropriate for a machine, but these systems are actually 

miming the human learning process; for example, an infant needs to see many cats and dogs 

before being able to recognize and distinguish them, and the underlying process that enables 

him to learn is exactly the same: at first the infant sees many examples of cats and dogs around 

and, as his parents will tell him which is a dog and which a cat (label), he will start to 

unconsciously select characteristics from the dogs and cats (feature extraction), that will enable 

him to distinguish the two species (training). 

 

FIGURE 8 - SUPERVISED AND UNSUPERVISED LEARNING PARADIGMS 
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FIGURE 9 - CLASSIFICATION ALGORITHM: TRAINING AND PREDICTION 

 

Once the infant has seen enough labeled examples of these pets, he will be able to 

autonomously recognize which is a dog and which a cat, based on the same features through 

which he has learned to distinguish them, e.g. size, shape, coat, sound, behavior, etc. 

(prediction). Clearly, the processes behind human learning are much more complex and barely 

known, but this analogy gives us an idea of what a classifier does. What a classifier actually 

“learns” are parameters or weights associated with features. 

The next section will be dedicated to the discussion of some important concepts about ML 

models in general with focus on classification. The theoretical background in this domain is so 

wide that an extensive discussion would be out of the scope of this work. For this reason, only 

the main implications will be described, prevalently using an intuitive approach.  

 

4.2.1 Generalization is the key 

The fundamental goal of ML is to generalize beyond the examples of the training set [26], 

namely inducing the law starting from observations, and this is possible only if we have a 

consistent amount of data [22]. 

Returning to the above example, the infant might not be able to correctly classify whether a 

given animal is a dog or a cat until he has seen enough examples of both species; to put it very 

simple, if the parents showed their son only 1 grey cat, 1 black kitten, 1 black dog and 1 grey 

puppy, and assuming the features to be the color and the size, then if the infant sees a large 

black cat, then his prediction might not be better than random guessing (Figure 10). 
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Alongside with data abundance, it is very important to have enough examples for all classes, 

ideally the same amount (balanced dataset). The reason is intuitive: a classification model can’t 

learn properly how to separate two classes if one of them is scarce in the training set, hence 

poorly represented. In the example of the infant, if he sees plenty of dogs and only few cats 

during the training phase, he will be surely very good at recognizing dogs, but it is also likely 

that he will confound a cat for a dog.  

Data availability and balanced classes are undoubtely necessary for generalization; however, 

data alone is not sufficient [22], but we also need some means to avoid sticking too much on 

training examples, see paragraph 4.2.3.  

 

4.2.2 The role of features in ML models 

In standard ML, feature extraction is done manually, hence it is crucial to choose the 

appropriate features for the classification task under consideration, because the performances 

of the classifier are highly dependent on them. 

Indeed,  extracting the “right” features from data means to extrapolate information which are 

relevant for the purpose of the specific classification task.  

Sometimes, the choice of the features might not be straightforward, and some features that one 

had believed to be relevant may not be so, and irrelevant features in the model may act as 

confounders and degrade classification accuracy. Moreover, there might be pairs of highly 

correlated features, which basically carry almost the same information, hence it would be 

pointless keeping both. For these reasons, the so called feature selection should follow feature 

extraction. To get an idea of what would be an irrelevant feature, we can think about trying to 

guess the gender of a person by the color of his/her eyes, which is totally irrelevant for gender 

classification. In addition to the issue of high correlation and irrelevance, reducing the number 

of features results in a simpler model, which implies both a better interpretability and a lower 

computational cost. 

A further reason to perform feature selection is discussed in section 4.2.3. 

There are three categories of feature selection: 

• Filter type feature selection → with filter type feature selection, the features are 

ranked on the base of their characteristics and on the relevance to the response variable. 

This type of feature selection is performed before training the model, hence it is 

uncorrelated to the training algorithm [27]. 
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• Wrapper type feature selection → wrapper type feature selection is based on the 

classification performances, hence it is carried out during training. From an initial 

set/subset of features, the algorithm starts to remove/add features based on a certain 

selection criterion, which measures the change in model performance resulting from 

removing/adding a feature. The algorithm stops when the stopping criteria is satisfied 

[27].  

• Embedded type feature selection → the embedded type feature selection incorporates 

feature selection in its learning process, hence it learns feature relevance [27].  

 

Going back to the example of the infant, in that case the process of feature extraction is not so 

simple as in standard ML, but above all, it is autonomous, e.g. the infant will not actively select 

any features to look for in the animal. 

DL models resemble this type of mechanism because the features are directly learned by the 

neural network and not fed to it as input; this implies the fact that the features learned by the 

network are optimal for the specific classification task, but on the other hand, they are difficult 

to interpret (Figure 6). 

In domains such as healthcare, the importance of the features is even greater because they can 

have a physiological meaning which is worth interpretating. 

 

  

FIGURE 10 – INTUITIVE EXAMPLE OF A CLASSIFICATION WITH A SMALL TRAINING DATASET 

 



26 

 

4.2.3 Curse of dimensionality and overfitting  

Another good reason to select features is to avoid the so called curse of dimensionality, which 

often occurs when dealing with high-dimensional data; we might indeed think that by adding 

more features we can better characterize the different classes within the dataset, but this is not 

always the case [28]: if we keep increasing the dimensionality without increasing the number 

of training samples, the classifier’s performance will increase until the optimal number of 

features is reached, and after that point the performance will decrease very fast [28]. In fact, as 

we increase the dimensionality of the problem, the density of the training samples decreases 

exponentially, becoming sparser and sparser; due to this sparsity, it becomes very easy to find 

an hyperplane which separates the classes perfectly. However, the same hyperplane is not likely 

to be good for separating new unseen data, hence we failed to generalize [22] or, in other words, 

we overfitted the model to the training data [28].  

We can better figure out this phenomenon by a visual example (Figure 10): 

Let’s say that we want to train a linear classifier to separate two classes (red and blue) based 

on 20 training instances (10 per class); by using only one feature (Figure 10, A), we can’t 

separate the two classes perfectly, so we try to add another feature (Figure 10, B), but it still 

won’t result in a linearly separable classification because it doesn’t exist a line that can 

perfectly separate red from blue. In three-dimensional feature space (Figure 10, C) there exists 

a plane which perfectly separates the classes, this means that a linear combination of the three 

features allows to obtain a perfect classification for our 20 samples. This example seems to 

suggest that we should increase the number of features until we obtain a perfect classification 

on the training set; however, we can notice that the density of the samples decreases 

exponentially as the dimensionality of the feature space increases, and when data are sparse we 

don’t have enough information from the data to choose the best hyperplane for that problem, 

hence we end up having an hyperplane which is perfect for the training set, but probably very 

bad for another unseen set of data. In this example, we should chose the model with two 

features and accept some misclassified samples rather than going for the model with 3 features 

and risking to lose in generalization. Indeed, generalizing correctly becomes exponentially 

harder as the dimensionality increases [22].  

How can we avoid losing in generalization (or overfitting)? 

The data available to build a classification model are assumed to be representative of the 

population from which they have been drawn, and the larger is the dataset, the more it resemble 



27 

 

the real population. This means that by increasing the number of training samples the model 

can generalize better and avoid overfitting (Figure 14, left). As already discussed in this section, 

also the number of features, hence the model complexity, plays a role in overfitting (Figure 14, 

right).  

The way to keep track of the generalization error is to use a test set and eventually a validation 

set (Figure 12). A validation set is simply a small fraction of the original dataset that is used to 

evaluate the performance of the classifier during training, while we keep adjusting 

hyperparameters and model specifications, whereas a test set is a small portion of the original 

dataset used for the final estimation of the model performances once the training is completed. 

A valid alternative to keep overfitting under control is cross validation (Figure 13): since 

holding out data reduces the size of the training set, it is possible to randomly divide the original 

dataset in k sets (or folds), e.g. 5-fold cross validation, and for k times validating on one set the 

model that was trained in the k-1 complementary sets [22]. The performance of the 

classification are calculated on the validation set for each fold and finally averaged so that we 

have a general idea of how good/bad the model performs on unseen data. 

 

FIGURE 11 - CURSE OF DIMENSIONALITY VISUALLY EXPLAINED 

A) B)

C)
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FIGURE 12 - DATASET SPLIT INTO TRAINING, VALIDATION AND TEST SETS 

 

 

 

FIGURE 13 - K-FOLD CROSS VALIDATION (K = 5) 

 

 

The other face of overfitting is underfitting (Figure 14, right) and it occurs when we poorly fit 

data to the training set, and the performance of the classification are scarce in both the training 

and test set. For instance, this could be the case of the classification red/blue above, when we 

only selected 1 feature (Figure 11, A). 

Other methods applied to avoid oversampling include regularization and dimensionality 

reduction. Dimensionality reduction aims to minimize the feature space while maximizing the 

information content; as opposed to feature selection, this method doesn’t just select a subset of 

features among the extracted ones, but it actually transforms the data from a high-dimensional 

into a lower-dimensional space [29]. One of the most widely used method for dimensionality 

reduction is the Principal Component Analysis (PCA), which transforms the features by 

projecting them onto a lower dimensional space. The idea behind PCA is to find a new basis 

to re-express the features in such a way that the transformed variables are linear functions of 

the original ones, that maximize the variance and that are uncorrelated with each other [30].  
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FIGURE 14 - TRAINING VS TEST ERROR WITH VARYING SAMPLE SIZE AND MODEL COMPLEXITY 

 

Figure 15 shows an intuitive graphical representation of the transformation applied by PCA: 

from the original space of features (x1, x2), PCA finds a new set of axis (z1, z2), such that the 

data are mainly spread along one axis, which is the dimension where the variance of the data 

is maximum (z1); in this way, the variance along the other axis (z2) is so small that we can make 

rid of this dimension without losing too much information. In this example, the principal 

component that we retained would be z1. In higher dimensional spaces, we can either decide 

how many components we want to keep, or keep a number of components such that an arbitrary 

percentage of the total variance is retained, e.g. 90%. 

 

 

FIGURE 15 – VISUAL REPRESENTATION OF PCA TRANSFORMATION 
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4.2.4 Performance metrics 

Once we trained our model, we need to test its performances on unseen data (the test set). By 

feeding our test set to the model, we can find the predicted label for each sample, e.g. healthy 

(or negative) and cancer (or positive), and compare it with the expected true label. The 

comparison leads to 4 possible outcomes, collected in the confusion matrix (Figure 16): 

• True negative (TN) → the sample is correctly classified as negative, e.g. predicted 

label  =  healthy, true label = healthy;  

• True positive (TP) → the sample is correctly classified as positive, e.g. predicted label  

=  cancer, true label = cancer;  

• False negative (FN) → the sample is wrongly classified as negative, e.g. predicted label  

=  healthy, true label = cancer;  

• False positive (FP) → the sample is wrongly classified as positive, e.g. predicted label  

=  cancer, true label = healthy; 

 

FIGURE 16 - CONFUSION MATRIX FOR BINARY CLASSIFICATION. "+" IS THE POSITIVE CLASS AND "-" IS THE 

NEGATIVE CLASS 

 

From the confusion matrix, it is possible to derive a number of  statistical measures which 

indicate how well the classifier correctly identifies or excludes a condition on the test set:  

• 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝐴𝐶𝐶) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

It’s the ratio between the number of correct classifications among the total number of 

classified samples.  

• 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 (𝑆𝐸) 𝑜𝑟 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

It’s the ratio between the true positives and the total number of actually positive 

samples. E.g. it’s the probability of a positive prediction, given that the subject has the 

disease.  
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• 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 (𝑆𝑃) 𝑜𝑟 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑇𝑁𝑅) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

It’s the ratio between the true negatives and the total number of actually negative 

samples. E.g. it’s the probability of a negative prediction, given that the subject is 

healthy. 

• 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑜𝑟 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒗𝒆 𝑽𝒂𝒍𝒖𝒆 (𝑃𝑃𝑉) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

It’s the ratio between the true positives and the total number of samples classified as 

positive. E.g. it’s the probability that a subject with a positive prediction truly has the 

disease. 

• 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒗𝒆 𝑽𝒂𝒍𝒖𝒆 (𝑁𝑃𝑉) =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

It’s the ratio between the true negatives and the total number of samples classified as 

negative. E.g. it’s the probability that a subject with a negative prediction is truly 

healthy. 

• 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝐹𝑃𝑅) =  1 − 𝑇𝑁𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

It’s the ratio between the false positives and the total number of actually negative 

samples. 

• 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝐹𝑁𝑅) =  1 − 𝑇𝑃𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 

It’s the ratio between the false negatives and the total number of actually positive 

samples. 

• 𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑏𝐴𝐶𝐶) =  
𝑇𝑃𝑅+𝑇𝑁𝑅

2
 

Accuracy might not be a suitable metric for unbalanced datasets, i.e. different class 

sizes. In these cases, we can use balanced accuracy, which is the average between true 

positives normalized by the number of  positive samples (TPR) and true negatives 

normalized by number of negative samples (TNR). 

• 𝑭𝟏 𝒔𝒄𝒐𝒓𝒆, 𝑭 𝒔𝒄𝒐𝒓𝒆 𝑜𝑟 𝑭 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 (𝐹1) =  2 ∙
𝑃𝑃𝑉∙𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
  

It’s a measure of a test’s accuracy and it is calculated as the harmonic mean of precision 

and sensitivity. 

 

Taking a step back, the predictions of the classifier are usually not labels but probabilities, i.e. 

probabilistic classification; namely, for each sample, the output vector contains the 

probabilities of the sample to belong to each class (the sum of these probabilities is always 

one). In general, the label is assigned by determining the class corresponding to the maximum 
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value in the output vector of probabilities, that is, in binary classification, setting the decision 

threshold to 0.5, e.g. if the probability of a given sample to belong to the healthy class is 0.6 

(>0.5), the sample will be labeled as “healthy”, otherwise as “cancer”. 

However, sometimes we might want to investigate how the performance of the classification 

would change with decision threshold different from 0.5, e.g. if we fix the decision threshold 

to 0.7, a probability of 0.6 to belong to the healthy class, would lead to a “cancer” label. There 

are indeed some applications the decision threshold can be choose strategically, to favour a 

certain classification outcome, e.g. in diagnostic application, a false negative (predicting no 

disease when the subject is sick) is way worse than a false positive (predicting a disease when 

the subject is healthy), therefore, we can play with the decision threshold to discourage false 

negatives.  

For this purpose, it is useful to plot the Receiver Operating Characteristic (ROC) Curve, which 

represents the TPR as function of the FPR, for different values of decision threshold. In fact, 

we want to find a trade-off between the TPR and FPR, such that changing the threshold of 

classification will change the balance of predictions towards improving the TPR at the expense 

of FPR, or vice versa. Figure 17 represents ROC curves of a generic classifier (solid line), a 

perfect classifier (dash-dotted line) and a random classifier (dashed line). The shaded area is 

the Area Under the Curve (AUC), and it is a general indicator of the classifier performance in 

terms of how well the classifier can separate the classes: the closer to 1, the better. Finally, the 

Equal Error Rate (EER), is the point on the ROC curve  corresponding to an equal probability 

of miss-classifying a positive or negative sample. By minimizing the EER, one can optimize 

the trade-off between FPR and TPR. 

 

FIGURE 17 - RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 
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4.2.5 The three components of learning 

Despite the diversity of application’s domains and the impressive variety of algorithms 

available in machine learning, the fundamental components of learning are always the same 

three: representation, evaluation and optimization [22].  

Let’s consider a training set of n samples {(x(1), y(1)), (x(2), y(2)), … , (x(n), y(n))}, where x(k)
 is the 

input variable of the k-th example and y(k)
 is the corresponding output variable, which in the 

case of binary classification assumes discrete values, e.g. 𝑦 𝜖 0,1 or 𝑦 𝜖 − 1,1. Each example 

input x(i)
 is represented by its feature vector 𝒙(𝑖) = (𝑥0

(𝑖)
, 𝑥1

(𝑖)
, 𝑥2

(𝑖)
, … , 𝑥𝑚

(𝑖)
)

𝑇

 , where 𝑥0
(𝑖)

= 1 

and it’s called the bias term. Given these premises, we want to find: 

• A representation of our data [22], that is the mathematical model used to approximate 

the unknown relationship between input and output data [26]. This model, called the 

hypothesis function, actually maps the input variables to the output through a 

mathematical relationship [31]. The hypothesis function depends on the input variables 

and on parameters (or weights) 𝒘 = (𝑤0 
 , 𝑤1

 , 𝑤2, … , 𝑤𝑚
 )𝑇 , that we want to estimate. 

• An evaluation function (commonly referred to as cost or loss function), which is the 

function that the algorithm uses internally to evaluate the classifier [22] and quantify 

how close (or far) are the predicted outputs to the real ones. Note that the evaluation 

function used internally by the algorithm may differ from the external one, i.e. 

performance metrics [31] (see paragraph 4.2.4). 

• An optimization technique to apply to the loss function in order to improve the 

performance of the classifier [22]. This corresponds to finding the best parameters w 

that lead to the lowest error between the real output and the predicted one [31]. 

Common examples of these three components are reported in Figure 18. 

 

FIGURE 18 - THE COMPONENTS OF ANY LEARNING ALGORITHM [22]  
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4.2.6 Logistic regression 

ONE OF THE MOST SIMPLE AND COMMON MODELS FOR CLASSIFICATION IS LOGISTIC REGRESSION, WHICH 

OWES ITS NAME TO THE LOGISTIC FUNCTION (EQ. (4) AND   

Figure 19), and in its basic form is used for binary problems. Despite its name, logistic 

regression is not used for regression, hence it does not predict a continuous outcome, but the 

category of membership of the dependent variable. However, logistic regression and linear 

regression are somehow related as the first makes use of the latter to build its prediction.  

Linear models are characterized by the linear combination of the input variables (features and 

weights) in the form 𝑠 = 𝒘𝑇 ∙ 𝒙, where w is the vector of weights and x is the matrix of features 

[32]. In linear regression (Eq. (1)), this signal is directly used as output, indeed s belongs to the 

real numbers and it is unbounded [32]. Linear classification (Eq. (2)), uses a hard threshold on 

the signal s to produce ±1 as output [32]. Logistic regression (Eq. (3)) is in-between these two 

cases because it applies the logistic function to the signal s and it produces an output which 

smoothly varies between 0 and 1. In practice, it yields a probability, which will be later 

interpreted and turned into a class membership according to the decision threshold [32]. 

 ℎ𝑤(𝑥) = 𝒘𝑇 ∙ 𝒙 
 

 

 ℎ𝑤(𝑥) = 𝑠𝑖𝑔𝑛(𝒘𝑇 ∙ 𝒙) 
 

 

 
 

ℎ𝑤(𝑥) = 𝜃(𝒘𝑇 ∙ 𝒙) 
 

 

 

 

  
where       𝜃(𝑠) =  

1

1+𝑒−𝑠         is the logistic function 
 

 

 

 

 

 

 hence the explicit form of hypothesis function for logistic regression is: 

ℎ𝑤(𝑥) =  
1

1 + 𝑒−𝒘𝑇∙𝒙
 

 

 

 

  

FIGURE 19 - LOGISTIC FUNCTION, ALSO CALLED SIGMOID FUNCTION DUE TO ITS S-SHAPE 
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Since the predicted output of logistic regression is a probability, i.e. Pr(𝑦𝑝𝑟𝑒𝑑 = 1|𝒙; 𝒘) =

 
1

1+𝑒−𝒘𝑇∙𝒙
 , we want to find a cost function which modulates the error associated with each 

sample with its output probability. In other words, the outcome of logistic regression is not 

simply the class membership, i.e. 0 or 1, that would mean either a correct or wrong prediction, 

but it is rather a measure of how close/far the prediction is from the real output, and this 

measure is in fact the probability of that sample to belong to one class (or the other). 

For example, given the true output of sample i-th is equal to class 1, i.e.  𝑦𝑡𝑟𝑢𝑒
(𝑖)

= 1, we find 2 

sets of parameters, w1 and w2, such that  Pr(𝑦𝑝𝑟𝑒𝑑
(𝑖)

= 1|𝒙; 𝒘𝟏) =  0.4 and 

Pr(𝑦𝑝𝑟𝑒𝑑
(𝑖)

= 1|𝒙; 𝒘𝟐) = 0.1. 

Assuming the decision threshold being equal to 0.5, both models misclassify this sample. 

However, the first one is closer to the real solution than the latter, and this needs to be taken 

into account when quantifying the misclassification error. For this reason, we want to find a 

cost function that when the true output is one would associate a null error to a predicted 

probability that tends to 1 and an infinite error to a predicted probability that tends to 0, and 

vice versa for a true output equal to 0. 

The mapping between the interval [0, 1] (probability) to the interval [0, ꝏ] (error) can be 

achieved with the logarithmic function (Figure 20), hence the cost function of logistic 

regression, called log-likelihood, takes the form of Eq. (6). Note that the log of a number 

between 0 and one is always minor or equal to 0, hence the value inside the square brackets is 

always negative (or equal to 0 in case of 100% correct classifications). It is possible to either 

leave the function negative or to multiply it by -1 and reverse the overall sign to positive as in 

Eq. (6). 

  

FIGURE 20 - VISUAL REPRESENTATION OF COST FUNCTION FOR LOGISTIC REGRESSION 
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Now that we have the hypothesis function and the cost function, it’s time to find the best w, 

that are the values of w that would make the cost function as close as possible to zero (log-

likelihood maximization for negative J(w) and log-likelihood minimization for positive J(w)). 

The cost function minimization (or maximization) in logistic regression is usually performed 

by running the gradient descent algorithm. 

Without going into details, gradient descent is an iterative optimization method which seeks 

for a local minimum of a differentiable function by moving in the direction of the steepest 

descent. 

TABLE 2 - THE THREE COMPONENTS OF LOGISTIC REGRESSION 

Hypothesis function Cost function Optimizer 

ℎ𝑤(𝑥) =  
1

1 + 𝑒−𝒘𝑇∙𝒙
 Log-likelihood Gradient descent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝐽(𝒘) = −
1

𝑛
[∑ 𝑦(𝑖) 𝑙𝑜𝑔2 (𝑃𝑟(𝑦𝑝𝑟𝑒𝑑 = 1|𝝒(𝑖); 𝒘))

𝑛

𝑖=1

+ (1 − 𝑦(𝑖)) 𝑙𝑜𝑔2 (1 − 𝑃𝑟(𝑦𝑝𝑟𝑒𝑑 = 1|𝝒(𝑖); 𝒘))] 
 

 

 

(6) 
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5. DAILY CGM CLASSIFICATION 

In paragraph 2.4, we have seen that diabetes diagnosis usually relies on physiological 

parameters measured by means of blood tests. Under the assumption that dysfunctions in 

glucose metabolism reflect in the glucose dynamics, we want to build a system to discriminate 

a normoglycemic from a non-normoglycemic individual based on CGM data. For this, we will 

combine the learning ability of ML models with clinical knowledge, encoded in the form of 

features of the systems.  

In this chapter we will build a classification system based on CGM data recorded across days, 

while in the next chapter we’ll use CGM data of short duration, recorded during a standardized 

meal test, that is a postprandial glycemic response. 

5.1 Methods  

Data visualization, pre-processing and manipulation have been entirely handled in MATLAB® 

R2020b environment. 

5.1.1 Dataset  

The dataset used in this chapter was found from a collection of links to publicly available CGM 

datasets [33], and it goes under the name © 2018 Hall et al. [7]. The article related to this 

dataset is open access and distributed under the terms of the Creative Commons Attribution 

License (https://creativecommons.org/licenses/by/4.0/).  

The dataset contains CGM recordings of 57 healthy adult participants without prior diagnosis 

of diabetes, aged between 25 and 76 years old (median 51), of which 32 are females and 25 

males. CGM data were recorded in the normal environment of the participants for at least 7 

days, using Dexcom G4 CGM devices, which records interstitial glucose every 5 minutes. 

Participants were instructed to calibrate monitors once to twice a day using glucose meters. 

They were blinded to the results of monitoring, hence their dietary habits were not influenced 

by the glucose recordings [7]. Although all participants were supposed to be healthy, during 

screening tests, 14 of them met criteria for having prediabetes and 5 T2D, while the remainder 

were normoglycemic (Table 3) [7]. The diagnosis has been made on the basis of ADA guideline 

reported in Table 1.  

Table 3 resumes the participant’s characteristics as mean ± standard deviation. 
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TABLE 3 - PARTICIPANTS CHARACTERISTICS  

Participants 

Characteristics 
All  Healthy Prediabetes T2D 

n 57 38 14 5 

Age [years] 49 ± 14 45 ± 13 57 ± 14 57 ± 7 

BMI [kg/m²] 26.68 ± 4.70 25.44 ± 3.88 29.82 ± 5.27 27.22 ± 5.53 

SSPG [mg/dL] 129.76 ± 71.28 122.64 ± 63.38 119.67 ± 77.70 187.8 ± 89.92 

FBI [mIU/L] 7.75 ± 4.44 6.68 ± 4.15 8.93 ± 4.29 11.8 ± 4.32 

FBG [mg/dL] 93.21 ± 12.61 87.30 ± 5.07 100.43 ± 11.02 '116.8 ± 18.93 

2h-OGTT [mg/dL] 124.76 ± 41.49 106.05 ± 21.59 150.85 ± 35.40 213 ± 46.50 

HbA1C [%] 5.41 ± 0.42 5.20 ± 0.20 5.68 ± 0.31 6.14 ± 0.63 

hsCRP [mg/L] 1.84 ± 2.36 1.51 ± 1.80 2.78 ± 3.47 1.7 ± 2.22 

Tri/HDL [-] 1.76 ± 1.61 1.43 ± 1.05 1.86 ± 1.26 3.94 ± 3.71 

BMI = body mass index; SSPG = steady state plasma glucose concentration; FBI = fasting blood insulin concentration; FBG = fasting blood 

glucose concentration; 2h-OGTT =  2-hour plasma glucose after oral glucose tolerance test; HbA1c = glycated hemoglobin; hsCRP = high-

sensitivity c-reactive protein; Tri/HDL = triglyceride to high-density lipoprotein ratio, an approximation of insulin resistance. Values are 

expressed as mean ± standard deviation. 

 

Data inspection revealed that the length of the subjects’ recordings varied from 7 to 17 days, 

being sometimes discontinuous, with gaps of minutes/hours/days/months. Filling the missing 

values was not needed for our purposes, however, it was necessary to separate the recordings 

from day to day for each subject in the dataset. Figure 21 represents the CGM recording of an 

healthy subject across 7 days; we can see gaps of few hours or minutes as well as days where 

the recording lasted only few hours. Figure 22 shows the same recording of Figure 21, 

structured day by day and time aligned. The CGM recording over the 24h time will be called 

daily CGM. 

Besides adjustments to the structure of the CGM recordings, pre-processing included also the 

manual labeling of the 57 instances of the dataset based on the values of HbA1c, FBG and 2h-

OGTT (see Table 1) with two classes: “control” (38 samples) for healthy subjects and 

“highRisk” (19 samples), for diabetic or prediabetic subjects. 
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FIGURE 21 - CGM RECORDING ACROSS 7 DAYS OF A NORMOGLYCEMIC SUBJECT 

 

 

 

FIGURE 22 – CGM RECORDING OF A NORMOGLYCEMIC SUBJECT STRUCTURED BY DAYS (DAILY CGMS) 
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5.1.2 Classification problem 

The classification in “control” or “highRisk” group of the instances of the dataset has been 

performed through logistic regression (see paragraph 4.2.6), which was implemented by fitting 

data to a generalized linear model (GLM) with binomial distribution of the error around the 

response variable and logit function as link function. A GLM is a generalization of the ordinary 

linear regression model, that allows some degrees of choice on the error distribution of the 

response variable and on the function that links the linear model to the response variable (link 

function) [34]. In our case, since the response variable is bounded between 0 and 1 

(probability), the related error will have a binomial distribution. The link function for logistic 

regression is the sigmoid function, indeed the logit function is exactly its inverse. 

The function used to fit the GLM is fitglm, part of MATLAB® Statistics and Machine Learning 

Toolbox. The decision threshold for classification was set to 0.5. 

 

5.1.3 Feature extraction and selection 

Even though the dataset contains multiple daily CGM recordings for each participant, they 

haven’t been considered as single instances of the dataset, but they are all related to the subjects 

to which they belong. Indeed, the instances of the dataset are exactly the subjects, each with 

his/her set of daily CGM recordings. Given this premise, each subject of the dataset will be 

represented by a unique set of features, extracted from his/her overall CGM timeseries. In 

particular, the features for a given subject will be extracted from each of the single daily CGM 

recordings and then averaged across days. 

For instance, with reference to Figure 22, these daily CGM recordings belong to a single 

person, and we want to extract two features 𝐹1 and 𝐹2 from his/her overall CGM signal; first, 

we extract the features 𝑓1
(𝑖)

 and 𝑓2
(𝑖)

 from each of the seven daily recordings, i.e. 𝑖 = [1, 2, … ,7], 

and then we average them among the seven days, i.e. 𝐹1 =
1

7
∑ 𝑓1

(𝑖)7
𝑖=1  and 𝐹2 =

1

7
∑ 𝑓2

(𝑖)7
𝑖=1 . 

These two features 𝐹1 and 𝐹2will represent in the model the subject to which they belong. 

The features extracted from the CGM recordings were meant to either characterize the overall 

signal, quantify the glucose variability or measure the complexity of the dynamic. They are 

summarized in Table 4, and their detailed description is reported below.  
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TABLE 4 - FEATURES EXTRACTED FROM DAILY CGM TIMESERIES 

 Feature Description 

 

meanG Mean of glucose signal 

AUCG Area Under the glucose Curve 

sdG Standard deviation of glucose 

TBR  Time Below Range (BG<70 mg/dL) 

TIR  Time In Range (70≤BG≤180 mg/dL) 

TAR Time Above Range (BG>180 mg/dL) 

HBGI High Blood Glucose Index 

LBGI Low Blood Glucose Index 

meanGD Mean of glucose difference signal 

maxGD Maximum of glucose difference signal 

sdGD sd of glucose difference signal 

MSEs1 Sample entropy 

MSECI5 Multiscale Entropy Complexity Index 

 

 

• Indices of the overall glucose dynamic  

These indices are the most simple and intuitive ones, and they try to quantify 

characteristics of the glucose dynamic that are usually detectable by visual observation.  

‣ meanG, AUC 

The most common and simple indicator of the overall glucose dynamic is the mean 

value (Eq. (7)). It is highly correlated with HbA1c and it is especially influenced by 

hyperglycemia [35]. AUC is the area under the glucose curve (Eq. (8)), it is 

indicative of whole glucose excursion and it is often used as a clinical parameter to 

diagnose impaired glucose tolerance. 

 

 

 

 𝑚𝑒𝑎𝑛𝐺 =  
1

𝑁
∑ 𝐵𝐺(𝑖)

𝑁

𝑖=1

 

 

 

 
 

𝐴𝑈𝐶𝐺 =  ∫ 𝐵𝐺(𝑡) 𝑑𝑡
𝑁

1

 

 

 

 

(7) 

 

(8) 
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• Indices of glucose variability  

In the detection and management of diabetes, high blood glucose level is not the only risk 

factor to be considered, but also the occurrence of abnormal glucose variability (GV), 

which is indeed thought to be related to the development of diabetes complications [35]. 

Several indices have been proposed to quantify GV, but here we report only those used as 

features of the model. 

‣ sdG 

The most common statistical measure that quantifies the variability of the signal is the 

standard deviation (Eq. (9)), which is a measure of the dispersion of data around the 

mean value. It is influenced by non-Gaussian distributions and outliers [35].  

 

 

‣ TBR, TIR, TAR 

This international consensus report [36], distinguishes 5 levels of glucose ranges 

(Figure 23): Very low (BG < 54 mg/dL), Low (54 ≤ BG ≤ 69 mg/dL), Target (70 ≤ BG 

≤ 180 mg/dL), High (181 ≤ BG ≤ 250 mg/dL) and Very high (BG >250 mg/dL). 

Given a CGM recording of arbitrary length, the percentage of time spent in each of 

these levels is an important indicator of the metabolic condition of an individual, and 

new strategies for blood glucose regulation in diabetic patients are based on the 

maximization of the time spent in the target range alongside with the minimization of 

the time spent in the low and high ranges [36]. 

These percentages are referred to as: TBR_L2 (Time Below Range, level 2; time (%) 

spent in the very low range), TBR_L1 (Time Below Range, level 1; time (%) spent in 

the low range), TIR (Time in Range; time (%) spent in the target range), TAR_L1 (Time 

Above Range, level 1; time (%) spent in the high range), TAR_L2 (Time Above Range, 

level 2; time (%) spent in the very high range).  

However, other works [35] define only three time in ranges: Time Below Range (TBR, 

that is the time (%) BG < 70 mg/dL), Time in Range (TIR, that is the time 70 ≤ BG ≤  

 

𝑠𝑑𝐺 = √
∑ (𝐵𝐺(𝑖) − 𝑚𝑒𝑎𝑛𝐺)2𝑁

𝑖=1

𝑁
 

 

 

 

(9) 
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FIGURE 23 - GLUCOSE RANGES ACCORDING TO INTERNATIONAL CONSENSUS REPORT [36] 

 

180 mg/dL) and Time Above Range (TAR, that is the time (%) BG > 180 mg/dL). In 

other words, TBR joins together TBR_L1 and TBR_L2 and TAR joins together 

TAR_L1 and TAR_L2. 

 

‣ HBGI, LBGI 

High Blood Glucose Index (HBGI) and Low Blood Glucose index (LBGI) quantify 

respectively the risk of hyperglycemia and hypoglycemia from glucose timeseries [35]. 

They are derived from a logarithmic transformation of the BG range, described in 

details by Kovatchev et al. in [37], which aims to symmetrize the range of all possible 

BG values around zero [35]. Indeed, assuming the range of all possible BG values to 

be 20-600 mg/dL, the hypoglycemic (BG < 70 mg/dL) and hyperglycemic (BG > 180 

mg/dL) ranges have significantly different sizes, and this causes the target range (70-

180 mg/dL) to be not centered [35]. As a direct consequence, the center of the target 

range (about 112.5 mg/dL) doesn’t correspond to the centre of the range of all possible 

BG values (about 300 mg/dL) and this makes the BG distribution skewed and 

asymmetric [35]. For BG values expressed in mg/dL, the nonlinear transformation is 

given by (Eq. (10)), where log is the natural logarithm, and its graphic representation is 

showed in Figure 24, left. It is straightforward noticing that the target range has been 

mapped between -1 and 1 on a new symmetric centered scale (y axis). Based on this 

transformation, a risk function was designed to assigns a certain degree of risk to each 

BG reading (Eq. (11)), i.e. maximum risk assigned to hypoglycemic and hyperglycemic 
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BG levels.to 20 and 600 mg/dL and zero risk assigned to 112.5 mg/dL (Figure 24, 

right).  

 
𝑓(𝐵𝐺) = 1.509 · ( [log(BG)]1.084 − 5.381) 

 

 

  
𝑟(𝐵𝐺) = 10 · 𝑓(BG)2

 
 

 

 
 

    

FIGURE 24 - KOVATCHEV SYMMETRIZATION AND RISK FUNCTIONS 

      

Finally, HBGI is obtained by averaging the risk associated with each BG reading 

greater than 112.5 mg/dL while LBGI is obtained by averaging the risk associated with 

each BG reading lower than 112.5 mg/dL. 

 

{

𝐻𝐵𝐺𝐼 =
1

𝑁
∑ 𝑟(𝐵𝐺),     𝐵𝐺 > 112.5𝑁

𝑖=1
𝑚𝑔

𝑑𝐿

|

𝐿𝐵𝐺𝐼 =
1

𝑁
∑ 𝑟(𝐵𝐺)𝑁

𝑖=1 ,     𝐵𝐺 < 112.5
𝑚𝑔

𝑑𝐿

       

 

 

 

 

‣ meanGD, maxGD, sdGD 

Given a glucose time series 𝐺 = {𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑁} of N samples, we define the glucose 

difference signal (Figure 25) as the signal of the differences between consecutive 

samples 𝐺𝐷 = {(𝑔2 − 𝑔1), (𝑔3 − 𝑔2), (𝑔4 − 𝑔3), … , (𝑔𝑁 − 𝑔𝑁−1)}. 

The idea is to use this signal to quantify how rapidly the dynamic of the signal changes, 

e.g. large values of glucose difference indicate a fast changing dynamic of the signal. 

From the glucose difference signal we extract 3 features: the mean (meanGD), the 

standard deviation (sdGD) and the maximum of its absolute value (maxGD). 

(10) 

(11) 

(12) 

(13) 



45 

 

 

FIGURE 25 - GLUCOSE DIFFERENCE SIGNAL 

 

• Indices of glucose dynamics complexity  

Due to the complexity of biological systems, physiological signals contain information that 

might not be detectable with traditional signal processing algorithms. In the last decades, 

algorithms based on the entropy of the signal are emerging as an appropriate technique to 

quantify the complexity of physiological time series dynamics [38, 39]. 

 

‣ MSEs1, MSECI5  

The concept of entropy is deployed by a wide range of domains, such as information 

theory, statistics and neural networks, but regardless the field of application, it is used 

to determine the  degree of disorder or uncertainty within a system [38]. For 

physiological timeseries, this translates in the possibility of quantifying the randomness 

of the signal, or inversely, of determining the regularity of data based on the existence 

of patterns [39], which is finally related to the complexity of the dynamics.  

A number of studies [40, 41, 42] have found that diabetic patients show a decreased 

complexity in their glucose dynamics with respect to control subjects due to an 

increased repetition of patterns in the timeseries, probably attributable to impairments 

in underlying glucose control mechanisms [40]. Over the years, several definitions of 

entropy have been proposed, and those used to quantify the complexity of a time series 

are the approximate entropy (ApEn) and the sample entropy (SampEn). SampEn is a 
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variation of ApEn, which was proposed to replace this one as it overcomes its 

disadvantages [38, 39, 43]. Here we report the mathematical formulation of  SampEn 

[39, 43]. 

Given a time series of N uniformly sampled points 𝑢(𝑗) = {𝑢(1), 𝑢(2), … , 𝑢(𝑁)}, a 

positive integer m (with m<N), and a positive real number r, we define N-m+1 vectors  

𝑋𝑚(𝑖) = {𝑥𝑚(1), 𝑥𝑚(2), … , 𝑥𝑚(𝑁 − 𝑚 + 1)} where 𝑥𝑚(𝑖) is a vector of m data points 

from 𝑢(𝑖) to 𝑢(𝑖 + 𝑚 − 1). Then, we calculate the distance between any pair of such 

vectors as the maximum distance of their corresponding scalar component 

𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] = max(|𝑢(𝑖 + 𝑘) − 𝑢(𝑗 + 𝑘)| ∶ 0 ≤ 𝑘 ≤ 𝑚 − 1). 

Afterwards, we compute, for each template vector 𝑥𝑚(𝑖), how many vectors 𝑥𝑚(𝑗) are 

within distance r, i.e. 𝐵𝑖 =  𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] ≤ 𝑟, with 𝑗 ≤ 𝑁 − 𝑚 + 1 𝑎𝑛𝑑 𝑗 ≠ 𝑖.  

At this point we repeat the same steps using m+1 instead of m, hence obtaining 𝐴𝑖 =

 𝑑[𝑥𝑚+1(𝑖), 𝑥𝑚+1(𝑗)] ≤ 𝑟, with 𝑗 ≤ 𝑁 − 𝑚 + 1 𝑎𝑛𝑑 𝑗 ≠ 𝑖. 

The sample entropy is finally defined as: 

 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = − log
𝐴

𝐵
=

 − log
∑ ∑ [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑[|𝑥𝑚+1(𝑖)−𝑥𝑚+1(𝑗)|]<𝑟]𝑁−𝑚

𝑗=1,𝑗≠𝑖
𝑁−𝑚
𝑖=1

∑ ∑ [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑[|𝑥𝑚(𝑖)−𝑥𝑚(𝑗)|]<𝑟]𝑁−𝑚
𝑗=1,𝑗≠𝑖

𝑁−𝑚
𝑖=1

        

 

 

 

 

Since A is always smaller or equal to B, SampEn will be always greater or equal to zero. 

The parameters on which SampEn depend are: the number or samples of the signal, N, 

the length of the sequences to be compared, m and the tolerance value for accepting 

sequence matchings, r. In order to allow the comparison of entropy measures between 

datasets with different amplitudes, the tolerance is usually set equal to 𝑝 ∙ 𝑠𝑑(𝑢) [43], 

where 𝑠𝑑(𝑢) is the standard deviation of the signal and 0 < 𝑝 < 1. Using as tolerance 

a fraction of the standard deviation of the signal is equivalent to normalizing the signal 

to unit variance and zero mean before calculating SampEn [40]. Typical values of p are 

0.15 or 0.20, while m is usually set to 2 [40].  A schematic representation of the steps 

of SampEn calculation is shown in Figure 26. 

 

(14) 
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FIGURE 26 - SAMPEN ALGORITHM 

 

It is clear from the definition (Eq. (14)) that the lower is SampEn, the more regular and 

repetitive is the signal. 

The complexity of biological systems lies in the fact that non-random fluctuations are 

present at different time scales [41] and this is also certainly true for glucose dynamics.  

Multiscale entropy (MSE) analysis has been extensively used to measure the 

complexity of physiological signals on different time scales, and it is based on SampEn 

algorithm. Besides its application in diabetes, MSE analysis has been used to quantify 

the complexity of EEG signal, gait, posture etc. [41]. 

Given the signal u(j) and a positive integer value , the method to compute its MSE 

involves the following steps [40]: 

1 – Derivation of a set of time series from u(j) representing the signal on different time 

scales through a coarse-graining procedure (Figure 27). 

2 – Calculation of SampEn for each time series extracted in the previous step. 

3 – Computation of complexity indices as the sum of SampEn values over a given 

number of time scales (Eq. (15)).  
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FIGURE 27 - COARSE-GRAINING PROCEDURE FOR SCALES FROM 1 (ORIGINAL SIGNAL) TO 4. 

 

MSECI5 (Eq. (15)) and MSEs1 (Eq. (16)) have been used as features of the model, with 

m = 2 and r = 0.1 ·sdG.  

   

𝑴𝑺𝑬𝑪𝑰𝟓 =   ∑ 𝑆𝑎𝑚𝑝𝐸𝑛(𝑠)

5

𝑠=1

 

 

 

 

 

 

 

 

𝑴𝑺𝑬𝒔𝟏 =   ∑ 𝑆𝑎𝑚𝑝𝐸𝑛(𝑠)

1

𝑠=1

= 𝑆𝑎𝑚𝑝𝐸𝑛(𝑠1) 

 

 

Note that MSECI5 is the complexity index calculated as the sum of SampEn over 5 scales 

of time, while MSEs1 is simply the sample entropy of the original glucose signal (time 

scale = 1). 

 

After selecting a total of 13 features from the CGM time series (Table 4), it was carried out a 

wrapper type feature selection based on the maximization of the sensitivity of the model (see 

paragraph 4.2.4). Figure 28 shows the pseudocode of the implemented algorithm: given the 

initial set of 13 features, a minimum and a maximum number of selectable features has been 

fixed. For any number of selectable features in the range between minimum and maximum, the 

algorithm finds the combination of features which allows the highest classification sensitivity. 

The minimum and the maximum number of predictors have been set to 6 and 10 respectively; 

the resulting models have been named according to their number of predictors: M6 (with 6 

features), M7 (with 7 features), M8 (with 8 features), M9 (with 9 features) and M10 (with 10 

features).  

(15) 

(16) 
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FIGURE 28 - PSEUDOCODE OF SENSITIVITY-BASED WRAPPER TYPE FEATURE SELECTION 

 

After feature selection, M6 and M7 have been selected as the optimal ones, and subsequently, 

through the Kaiser-Meyer-Olkin (KMO) criterion, which is based on correlation, it was 

assessed whether or not it was appropriate to apply PCA on these two models [29]. The 

threshold value for KMO was set to 0.6, i.e. values greater that 0.6 indicate that PCA is feasible. 

Given that KMO criterion showed results greater than the threshold value, PCA was finally 

applied to M6 and M7. PCA was applied to normalized data during model training, and the 

obtained coefficients have been used to apply the same transformation to the validation set. 

Data normalization was obtained by removing the mean and dividing by the standard deviation, 

feature-wise, 
𝑋− �̅�

𝑠𝑑(𝑥)
. The number of components retained after PCA ensured the 95% explained 

variance. 

 

5.1.4 Model validation and performance measures 

Results have been validated using a 5-fold cross validation protocol, which takes 46 samples 

for training and 11 for validation for each fold. It was ensured the presence of instances of both 

classes in training and validation sets for every fold. 

The model has been evaluated in terms of ACC, SE, SP, PPV, NPV and bACC. These measures 

were extracted for every fold, and finally averaged to have an estimation of the overall model 

performances. Besides these metrics, also the deviance of the fit, the ROC curve and its AUC 

will be used to evaluate the performances of the models. 

 

5.2 Results and discussion 

In this chapter we propose a logistic regression model to classify a subject as 

prediabetic/diabetic (highRisk) or healthy (control), based on CGM data recorded in a timespan 
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of at least 7 days. The choice of merging the prediabetic and diabetic classes has been driven 

by the following reasons: 

1- The original dataset contains 38 instances of healthy subjects, 14 of prediabetic and 5 of 

diabetic subjects. Performing a multiclass classification on this dataset would be not 

feasible because of the highly imbalanced class distribution and the inadequate 

representation of the diabetic class. 

2- A preliminary analysis on the dataset revealed that the difference between the prediabetic 

and diabetic classes was not statistically significant. For all 13 features extracted from 

CGM signals, the Kruskal-Wallis test failed to reject the null hypothesis that the data from 

the two groups (prediabetic and diabetic) belonged to the same population, hence it 

confirmed that the two groups were not statistically significant different. The Kruskal-

Wallis test is a nonparametric form of ANOVA (ANalysis Of VAriance) test, used to 

compare the medians of two or more groups of data and determine whether they belong to 

the same population or not. 

3- The subjects labeled as “prediabetic” or “diabetic” actually were not aware of their 

condition before being involved in the study. This suggests that probably the dynamic of 

glucose fluctuations of these subjects might be very similar to each other. Given this 

premise, it makes more sense to define a highRisk group, comprising both prediabetic and 

diabetic subjects.  

 

The choice of logistic regression for this classification task meets the requirement of having a 

simple model, which at the same time decreases the risk of overfitting and is very intuitive and 

versatile.  

The initial set of features has been carefully selected trying to avoid redundancy or irrelevant 

information, however, using all of them to train our classifier turned out to be not the best 

option in terms of performances (mean ACC = 70%). For this reason, it was necessary to 

perform feature selection. The selection strategy, implemented through a simple algorithm 

shown in Figure 28, was based on the maximization of the model sensitivity; indeed, when it 

comes to applications in the healthcare domain, we definitely prefer to misclassify a negative 

(healthy) sample rather than a positive (disease) sample, which would imply missing the 

diagnosis (see paragraph 4.2.4). In other words, we want to penalize false negatives and one 

way to achieve this result is by enhancing the sensitivity of the model.  



51 

 

Based on the results of feature selection shown in Table 5, we can notice that some features 

were never or nearly never selected, i.e. meanGD and sdG , AUCG, sdGD while other ones were 

often or always selected. This suggests that we could rank the features based on how often they 

were selected. 

 

TABLE 5 - FEATURE SELECTION BASED ON SENSITIVITY MAXIMIZATION  

             Number of selected features 

  6 7 8 9 10 

F
 e

 a
 t

 u
 r

 e
 s

 

meanG       

AUCG      

sdG      

TBR      

TIR      

TAR      

HBGI      

LBGI      

meanGD      

maxGD      

sdGD      

MSEs1      

MSECI5      

 SE 0.85±0.18 0.85±0.18 0.85±0.18 0.80±0.28 0.77±0.28 

ACC 0.79±0.10 0.80±0.10 0.80±0.10 0.77±0.12 0.74±0.15 

SP 0.67±0.25 0.70±0.28 0.70±0.28 0.67±0.25 0.62±0.30 

PPV 0.73±0.05 0.80±0.10 0.80±0.10 0.70±0.10 0.68±0.10 

NPV 0.78±0.19 0.79±0.19 0.79±0.19 0.77±0.20 0.70±0.27 

bACC 0.76±0.15 0.77±0.15 0.77±0.15 0.73±0.18 0.70±0.20 

DEV 35.63±4.41 35.89±5.31 35.89±5.31 34.75±4.13 34.28±5.04 

SE = sensitivity; ACC = accuracy; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; bACC = 

balanced accuracy; DEV = deviance of the fit. Values are expressed as mean ± standard deviation. 

 

The lower section of Table 5 shows the performances of the models Mn (with n = number of 

features, from 6 to 10) cross-validated on the corresponding selected predictors: the best 
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sensitivity is ensured by M6, M7 and M8 (85%), so we could put aside M9 and M10; the 

performances of M7 and M8 are actually identical, hence we can infer that the predictor “TAR”, 

that is what makes these two model different, doesn’t add any information to the system, hence 

we can undoubtedly discard M8. M6 and  M7 show very comparable results, hence they can be 

interchangeably used as our definitive model. 

DEV is the deviance of the fit and it quantifies the “goodness” of the fit. A more detailed 

explanation of this parameter is given in the next chapter, paragraph 6.1.3.  

 

Regardless the relevance of the features for the classification model, it is worth making few 

remarks on some features: 

‣ Using TBR_L2, TBR_L1, TIR, TAR_L1, TAR_L2 (see paragraph 5.1.3) was not 

feasible because the outer levels were almost empty vectors, i.e. there were only 

few samples in the whole dataset that were included in the upper and lower levels. 

At the same time, TBR_L1 and TAR_L1 were poorly populated. In order to 

overcome this issue without excluding these important indices of glycemic 

variability, TBR_L1 has been joined with TBR_L2 and TAR_L1 has been joined 

with TAR_L2, hence obtaining TBR, TIR and TAR. 

‣ For what concerns the choice of the indices related to the entropy of the signal, it 

was based on empirical observation of the MSEs for control vs highRisk groups 

(Figure 29). The x axis represent the timescale expressed in minutes, and it is 

equivalent to the scale from 1 to 7, where 1 corresponds to CGM readings every 5 

minutes (original signal) and 7 corresponds to CGM readings every 35 (=5·7) 

minutes. As we could have expected from the premises given in paragraph 5.1.3, 

the MSE for the control group shows higher values of entropy, indicating a greater 

complexity in the glucose dynamics compared with highRisk group. Moreover, we 

can notice that the two curves cross each other at timescale equal to 30 minutes, 

(scale = 6), hence we compute the complexity index MSECI5 as the sum of the 

SampEn from scale 1 to scale 5. MSEs1 has been selected as a feature because the 

control group and the highRisk group show the maximum difference at scale = 1, 

hence it seemed to be a good candidate to separate the two classes.  
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FIGURE 29 - MULTISCALE ENTROPY FOR CGM SIGNAL. TIME SCALE FROM 5 TO 35 MINUTES. SQUARES ARE MEAN 

VALUES AND VERTICAL BARS ARE VARIANCES 

 

Due to the limited dimensions of the dataset and the problem of class imbalance, the holdout 

of a portion of the dataset for testing purposes was considered not feasible; for this reason, 

model validation has been carried out with a 5-fold cross validation, which ensures the presence 

of “enough” examples in each fold to train the model as well as “enough” examples in each 

fold to validate the model (a 10-fold cross validation probably wouldn’t ensure this condition). 

Although we can’t rigorously test the performances of the model without a test set, cross-

validation can give a qualitative measure of the classifier performances without subtracting 

data for training.  

Figure 30 shows ROC curves of M6 and M7 for the 5-folds of cross validation. In accordance 

with the results above, the behaviour of the two models are pretty much the same, having the 

mean AUC equal to 0.89 and 0.88 respectively. The curves have this discontinuous appearance 

due to the reduced size of the training sets (46 samples), and their values suggest that the classes 

are not well separable, probably due to class imbalance or anomalous dynamics among the 

healthy population.  

Even though the dimensionality of the feature space would be adequate for the dataset size, we 

may want to find out whether the model can benefit from dimensionality reduction. However, 

it is not guaranteed that the transformation applied by PCA leads to better performances of the 

model, simply because PCA is “blind” to the output variable (unsupervised), hence the new 

axes might not be consistent with the discriminatory features of the classification problem [29]. 
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FIGURE 30 - ROC CURVES FOR M6 AND M7 

 

The values of KMO for M6 and M7 were equal to 0.64 and 0.63 respectively, hence PCA was 

feasible and it was applied to both models.  

Table 6 compares the performances of M6 and M7 before and after applying PCA; we can notice 

a slight degradation of the performances of M7+PCA, and a general improvement of the 

performances of M6+PCA, in particular for the specificity (from 67% to 70%) and positive 

predictive value (from 73% to 80%). The ROC curves across the folds for M6+PCA and M7+PCA 

are very similar to the corresponding models before PCA (shown in Figure 30), namely they 

have mean AUCs equal to 0.88 and 0.87 respectively. 

In general, the performances of the output models are influenced by the reduces size of the 

dataset and this reflects in a quite high variability of the results across the folds (standard 

deviation) and suboptimal performances (for each fold, the model is validated on 11 samples 

only, therefore even misclassifying few of them will result in poor classification scores) . 

The class imbalance also plays a role in the performances of the classifier, especially for the 

correct classification of positive samples (highRisk): since the positive class has an occurrence 

of about 30% in the dataset, in both training and validation sets there are far fewer positive 

samples than negatives, so when the model is training it doesn’t have “enough” instances to 

learn how to identify the positive class, and when it’s validating, its performances tend to be 

poor. 

Now that we have gathered an idea of the classifier performances through cross validation, 

we want to learn our final classifier on the whole dataset. 
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TABLE 6 - CLASSSIFICATION PERFORMANCES BEFORE (M6 AND M7) AND AFTER PCA (M6+PCA AND M7+PCA) 

 SE ACC SP PPV NPV bACC 

M6 0.85±0.18 0.79±0.10 0.67±0.25 0.73±0.05 0.78±0.19 0.76±0.15 

M6+PCA 0.85±0.18 0.81±0.10 0.70±0.28 0.80±0.10 0.79±0.19 0.77±0.15 

M7 0.85±0.18 0.80±0.10 0.70±0.28 0.80±0.10 0.79±0.19 0.77±0.15 

M7+PCA 0.80±20 0.77±0.15 0.70±0.28 0.79±0.12 0.74±0.28 0.75±0.19 

SE = sensitivity; ACC = accuracy; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; bACC = 

balanced accuracy. Values are expressed as mean ± standard deviation. 

 

The set of features of this final model is the same used in M6+PCA (see Table 6). Performances 

are shown in terms of ROC curve and its AUC, confusion matrix and its related metrics (Figure 

31 and Figure 32). The issues due to small dataset size and class imbalance hold also for the 

final model. 

 

FIGURE 31 - ROC CURVE FOR THE FINAL MODEL (TRAINED ON THE WHOLE DATASET, USING M6+PCA   PREDICTORS) 

 

 

FIGURE 32 - CONFUSION MATRIX AND RELATED PERFORMANCE MEASURES FOR THE FINAL MODEL (TRAINED ON 

THE WHOLE DATASET, USING M6+PCA  PREDICTORS) 
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6. POSTPRANDIAL GLYCEMIC RESPONSE CLASSIFICATION 

As already mentioned in the introduction of chapter 5, in this chapter we want to build a 

classification system based on postprandial glycemic response of normoglycemic vs non-

normoglycemic individuals. Note that these data were still recorded through a CGM device, 

but only for the duration of a standardized meal test, and not for one or more days, as it was 

supposed to be for a CGM recording. 

6.1 Methods  

Data visualization, preprocessing and manipulation have been entirely handled in MATLAB® 

R2020b environment. 

6.1.1 Dataset 

The dataset used in this chapter was found from a collection of links to publicly available CGM 

datasets [33], and it goes under the name © 2018 Hall et al. [7]. The article related to this 

dataset is open access and distributed under the terms of the Creative Commons Attribution 

License (https://creativecommons.org/licenses/by/4.0/).  

The dataset contains CGM recordings of 30 healthy adult participants without prior diagnosis 

of diabetes, aged between 25 and 65 years old (median 37), of which 20 are females and 10 

males. CGM data were recorded during a standardized meal test, using Dexcom G4 CGM 

devices, which record interstitial glucose every 5 minutes. The postprandial glycemic response 

was recorded from 30 minutes prior to the start of the meal until 2.5 hours after the start of the 

meal [7] (Figure 33). 

 

FIGURE 33 - GLYCEMIC RESPONSE TO STANDARDIZED MEAL TEST. THE RECORDING STARTS 30 MINUTES BEFORE 

THE MEAL INTAKE AND IT ENDS 2H30 AFTER IT 
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Although all participants were supposed to be healthy, during screening tests, 7 of them met 

criteria for having prediabetes and 3 T2D, while the remainder 20 subjects were 

normoglycemic [7]. The diagnosis has been made on the basis of ADA guideline reported in 

Table 1. Table 7 resumes the participant’s characteristics as mean ± standard deviation. 

There were 3 types of standardized meal test, with similar caloric load but different amounts 

of proteins, fat and fibers: cornflakes and milk, bread and peanut butter and a protein bar (Table 

8). Theoretically, every participant received each type of meal twice, always at breakfast, for a 

total of six standardized meal tests per participant; however, some recordings were missing 

from the dataset, which contains instead a total of 176 standardized meal tests among the 30 

participants.  

Data inspection and pre-processing revealed that, some CGM recordings were shorter or longer 

than expected due to the presence of doubled and/or missing samples . Given that the sampling 

time is 5 minutes, and that the expected duration of the standardized meal test is 3h, we should 

have recordings of 37 samples (
60

5
∙ 3 + 1, where 1 has been arbitrarily added to account for 

the time spent to actually eat the meal). 

 

TABLE 7 - STANDARDIZED MEAL TEST PARTICIPANTS’ CHARACTERISTICS 

 

BMI = body mass index; SSPG = steady state plasma glucose concentration; FBI = fasting blood insulin concentration; FBG = fasting blood 

glucose concentration; 2h-OGTT =  2-hour plasma glucose after oral glucose tolerance test; HbA1c = glycated hemoglobin; hsCRP = high-

sensitivity c-reactive protein; Tri/HDL = triglyceride to high-density lipoprotein ratio, an approximation of insulin resistance. Values are 

expressed as mean ± standard deviation. 

 

Participants 

Characteristics 

All Healthy Prediabetes T2D 

n 30 20 7 3 

Age [years] 42±14 38±13 48±14 55±9 

BMI [kg/m²] 25.93±5.531' 23.08±2.65 32.23±5.85 30.2±5.18 

SSPG [mg/dL] 119±81.89 80.69±35.07 159.5±105.05 231±90.27 

FBI [mIU/L] 6.79±4.08 4.78±2.05 10.29±5 10.67±3.51 

FBG [mg/dL] 94.24±14.34 86.84±4.65 105±11.80 116±25.16 

2h-OGTT [mg/dL] 122.67±49.12 100.21±21.63 '152±40.05' 248±11.31 

HbA1C [%] 5.36±0.40 5.16±0.17 5.67±0.38 5.83±0.67 

hsCRP [mg/L] 1.55±2.10 0.9±1.0 3.04±3.24 2.37±2.83 

Tri/HDL [-] 1.39±1.13 0.93±0.62 2.26±1.53 2.43±1.17 
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TABLE 8 - NUTRITION FACTS FOR STANDARDIZED MEALS 

Nutrients Bread and  

peanut butter 

Protein bar Cornflakes and milk 

(with raisins) Calories (kcal) 430 370 280 

Fat (g) 20 18 2.5 

Carbohydrates (g) 51 48 54 

- Sugar (g) 12 19 35.2 

- Fiber (g) 12 6 3.3 

Protein (g) 18 9 11 

 

Figure 34 shows the length of the recordings in number of samples; there are some recordings 

significantly shorter than expected, e.g. a recording of 15 samples corresponds to a duration of 

75 minutes, which is less than 50% of the expected duration. Since it would not be possible to 

identify the meal timing in such short recordings, we discard those which are at least 25 minutes 

shorter than expected, i.e. less than 33 samples. To standardize the length of the recordings, 

doubled samples have been replaced by their average, missing values have been filled by 

computing the mean value between the previous and the following sample or by repeating the 

last available sample in case of missing values at the end of the signal. 

After length standardization, the dataset contains 151 postprandial glycemic response signals, 

of which 105 belong to healthy subjects, 32 to prediabetic and 14 to diabetic subjects (according 

to ADA guidelines). However, the instances of the dataset have been manually labelled with 

two classes: “control” (105 samples) for healthy subjects and “highRisk” (46 samples), for 

diabetic or prediabetic subjects. 

 

FIGURE 34 - NUMBER OF SAMPLES FOR EACH RECORDING. EXPECTED LENGTH: 37 SAMPLES; ACCEPTED LENGTH: 

GREATER OR EQUAL TO 34 SAMPLES 
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6.1.2 Classification problem 

The classification model used to classify each CGM recording in the control or highRisk class 

was based on a logistic regression model (see paragraph 4.2.6), which was implemented by 

fitting data to a generalized linear model (GLM) with binomial distribution of the error around 

the response variable and logit function as link function. A GLM is a generalization of the 

ordinary linear regression model, that allows some degrees of choice on the error distribution 

of the response variable and on the function that links the linear model to the response variable 

(link function) [34]. In our case, since the response variable is bounded between 0 and 1 

(probability), the related error will have a binomial distribution. The link function for logistic 

regression is the sigmoid function, indeed the logit function is exactly its inverse. 

The function used to fit the GLM is fitglm, part of MATLAB® Statistics and Machine Learning 

Toolbox. The decision threshold for classification was set to 0.5. 

 

6.1.3 Feature extraction and selection 

A total of 19 features were extracted from each recording, and they can roughly be divided in 

two groups: 

• Statistical-signal features → meanG (i.e., mean), [44], medianG
 (i.e., median), minG 

(i.e., minimum), maxG (i.e., maximum) [45], maxGidx (i.e., timing of the peak after 

the meal) [45], stdG (i.e., standard deviation) [44], rangeG (i.e., difference between 

maximum and minimum) [44], prePmeanG and postPmeanG (i.e., preprandial and 

postprandial mean) [44], prePtime and postPtime (i.e., fraction of time spent below 

the preprandial mean and above the postprandial mean, respectively) [46], slopeG (i.e., 

slope between meal time and maximum peak) [46], AUCG (i.e., area under the curve) 

[44] and skewG (i.e., skewness) of the CGM recording. 

• Spectral features → meanFFT (i.e., mean), medianFFT (i.e., median), minFFT (i.e., 

minimum), maxFFT (i.e., maximum) and stdFFT (i.e., standard deviation) of the Fast 

Fourier Transform of the CGM recording [47]. 

 

Since we don’t know a-priori if all these features are relevant to this classification task or if 

there are highly correlated features, we want to perform feature selection (see paragraph 4.2.2). 
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Feature selection was carried out in two steps: the first step was a filter type feature selection, 

and it was based on visual inspection of the scatterplot matrix (Figure 35), which shows 

pairwise relationships between any combination of features. For a given pair of highly 

correlated features, point biserial correlation (equivalent to the Pearson’s correlation) to class 

was computed and the one showing highest correlation was retained and the other discarded 

(Table 9, second column). For instance, stdG and rangeG seems high correlated, and the 

correlations to the target variable are  0.37 and 0.33 respectively, hence rangeG has been 

discarded. Note that the correlation to the target alone would not be a reliable method to assess 

the relevance of a feature because a combination with other features might instead be highly 

correlated to the target. 

The second step of feature selection was a wrapper type or sequential feature selection, based 

on the performances of the classification. It was carried out through a recursive algorithm based 

on the evaluation of the deviance of the fit (Eq. (17)), which is a generalization of the residual 

sum of squares [48] used to quantify the goodness of the fit of a given model. It is defined as 

twice the log-likelihood ratio of the saturated model compared to the reduced model, where the 

saturated model is a model having a parameter for every observation, hence perfectly fitting 

the data, while the reduced model is the model of which we want to estimate the goodness of 

the fit [48]. In other words, the deviance of the fit quantifies how much the model deviates 

from a perfect fit. The pseudo-code of this sequential feature selection in available in Figure 

36. 

 

FIGURE 35 - SCATTERPLOT MATRIX FOR FEATURE CORRELATION VISUALIZATION 



61 

 

  

FIGURE 36 - PSEUDO-CODE OF DEVIANCE-BASED WRAPPER TYPE FEATURE SELECTION 

 

Beginning with the full set of features selected in the previous step, the deviance of the fit was 

computed and used as reference (dev0); one feature at a time was removed from the model and 

the deviance of the reduced model (devR) was calculated and compared with the deviance of 

the full model: if devR was higher than dev0 augmented by a tolerance value, the feature just 

excluded was considered significant for the classification task, hence it was reintroduced in the 

model, otherwise it was judged irrelevant and it was discarded. The tolerance value was set to 

the 95th percentile for the chi-square distribution with 1 degree of freedom [48], i.e. tolerance 

equal to 3.84.  

 

 

𝐷(𝑦, �̂�) = 2(𝑙𝑜𝑔(𝑝(𝑦|�̂�𝑠)) − 𝑙𝑜𝑔(𝑝(𝑦|�̂�𝑟))) 

Where �̂�𝑠 and �̂�𝑟are the fitted parameters of the saturated and reduced models 

respectively and �̂� are the predictions to the observations y. 

 

 

 

 

 

6.1.4 Model validation and performance measures 

We can distinguish two models for this classification task (Figure 37): 

• MFT is the model with the features selected after the filter type feature selection 

• MFT+WT is the model with the features selected after the two consequential feature 

selections, the filter type and the wrapper type. 

 

 

1 features = features after filter 

selection; 

2 fullModel = ƒ(features); 

3 dev0 = fullModel.Deviance; 

4 tolerance = chi2inv(0.95,1); 

5 sort features in ascending order of 

correlation with the target; 

6 for f in features  

7    features = features – f; 

8    reducedModel  = ƒ(features); 

9    if reducedModel.Deviance > dev0 + 

tolerance 

10       features = features + f;  
11    end 
12 end 

(17) 

) 
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FIGURE 37 – MFT AND MFT+WT  FEATURE SELECTION TIMELINES. LR STANDS FOR LOGISTIC REGRESSION. 

 

The models have been validated using a 5-fold cross-validation protocol (see paragraph 4.2.3). 

Given that there were multiple recordings for each participant and that they were assumed as 

distinct observations in the dataset, whenever the dataset was split in training and validation 

sets during cross-validation, the observations of the same participant were included in either 

one of the two sets and not split between them. 

The classification performances of the two models have been evaluated and compared by 

means of ROC curve, AUC, confusion matrix and the related metrics (see paragraph 4.2.4) 

 

6.2 Results and discussion 

In this chapter we propose a logistic regression model to classify a subject as 

prediabetic/diabetic or healthy, based on CGM data recorded during a standardized meal test. 

Despite a multinomial classification (healthy vs prediabetes vs diabetes) would be preferable 

from the point of view of diagnosis and prevention, the prediabetic and diabetic classes have 

been merged in the highRisk class for two main reasons: 

1. After discarding short recordings (see paragraph 6.1.1), the dataset contains 105 

recordings of healthy, 32 of prediabetic and 14 of diabetic subjects. Performing a 

multinomial classification with this dataset would arise in technical problems related 

to class imbalance and inadequate representation of the minority class (see paragraph 

4.2.1).  
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2. All the subjects involved in the study were supposed to be healthy, but during screening 

tests some of them turned out to have one or more physiological parameters in the 

prediabetic or diabetic range. This means that these subjects were not aware of their 

condition, and an official and rigorous diagnosis would require further tests which are 

not available in our case. For this reason, rather than defining these people diabetic or 

prediabetic, it would be more accurate to consider them having a high risk of 

developing impairments in glucose regulation. 

Point 1 of the above list states that the dataset contains 151 recordings; this is indeed true, but 

we should remind that the subjects involved are just 30, therefore each of them contributes to 

the dataset with 5 recordings on average. The assumption is to consider the 151 recordings as 

independent instances, e.g. an healthy subject with 4 recordings contributes to the dataset with 

4 instances, each labelled as “control”. 

The choice of logistic regression for data classification has been determined by the intention of 

having a simple model that is both intuitive and that generalizes well. 

The initial set of features extracted from CGM data accounts for 19 predictors, which seems to 

be an adequate number with respect to the number of samples (see paragraph 4.2.3). However, 

we still need to verify the presence of highly correlated features, and eventually discard them 

(filter type feature selection); furthermore, we might want to minimize the number of features 

while keeping the quality of the model as high as possible (wrapper type feature selection). 

After the filter type feature selection, 14 features out of 19 were retained and the rest discarded, 

and the wrapper type feature selection furtherly dropped 5 features, hence arriving to 9 features. 

The deviance of the fit is equal to 89.44 for MFT and 93.21 for MFT+WT. This means that MFT+WT 

“fits worst” than MFT, but its deviance is still within the allowed value which is 93.28 (= 89.44 

+ tolerance, where tolerance = 3.84). The timeline of feature selection is schematized in Table 

9.  

Model validation has been carried out with a 5-fold cross validation, which ensures the 

presence of “enough” examples in each fold to train the model as well as “enough” examples 

in each fold to validate the model (a 10-fold cross validation probably wouldn’t ensure this 

condition). Due to the limited dimensions of the dataset and the problem of class imbalance, 

the holdout of a portion of the dataset for testing purposes was considered not feasible; 

however, cross-validation can give a qualitative measure of the classifier performances without 

subtracting data for training.  
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TABLE 9 - TIMELINE OF FEATURE SELECTION. MFT INCLUDES THE 14 HIGHLIGHTED FEATURES, 

OBTAINED AFTER FILTER TYPE FEATURE SELECTION; MFT+WT  INCLUDES THE 9 HIGHLIGHTED 

FEATURES, OBTAINED AFTER WRAPPER TYPE FEATURE SELECTION. 

Features Point biserial correlation Description MFT MFT+WT 

meanG 0.59 Mean glucose    

medianG 0.58 Median glucose   

minG 0.51 Minimum glucose    

maxG 0.49 Maximum glucose    

maxGidx 0.21 Timing of peak after meal   

stdG 0.37 SD of glucose   

rangeG 0.33 maximum - minimum   

prePmeanG 0.52 Pre-prandial mean glucose   

postPmeanG
 0.58 Post-prandial mean glucose   

prePtime -0.19 % time below prePmean   

postPtime 0.12 % time above postPmean   

slopeG 0.03 Slope between meal and peak   

AUCG 0.59 Area Under glucose Curve   

skewG -0.26 Skewness   

meanFFT 0.48 Mean of Fourier transform   

medianFFT 0.20 Median of Fourier transform   

minFFT 0.24 Min of Fourier transform   

maxFFT 0.59 Max of Fourier transform   

stdFFT 0.59 SD of Fourier transform   

 

 

The performances of the two models MFT and MFT+WT can be evaluated and compared by means 

of ROC curves and metrics derived from the confusion matrix: the mean AUC is 0.94 for MFT 

and 0.93 for MFT+WT (Figure 38), and this suggests that, in both cases, the classes are well 

separable, and the models are robust with respect to the choice of the decision threshold for 

classification.  

 

 

FIGURE 38 – ROC CURVES AND MEAN AUC FOR MFT AND MFT+WT 
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Despite the higher deviance of the fit of MFT+WT with respect to MFT, the results reported in Table 

10 reveal that MFT+WT represents the optimal choice between the two models. Indeed, besides an 

improvement of MFT+WT compared with MFT in terms of mean ACC, SE and NPV, a lower 

standard deviation across the folds in almost all MFT+WT measures (except SE) can be observed. 

This indicates that in MFT+WT the performances of the classifier are quite independent on the 

training and validation partitions used.  

 

TABLE 10 - MFT AND MFT+WT PERFORMANCE MEASURES  

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean ± sd 

ACC 
MFT 0.89 0.86 0.94 0.79 0.65 0.82 ± 0.10 

MFT+WT 0.85 0.86 0.91 0.82 0.74 0.84 ± 0.05 

SE 
MFT 0.84 0.63 0.95 0.96 0.73 0.82 ± 0.13 

MFT+WT 0.84 0.63 0.95 1.00 0.82 0.85 ± 0.13 

SP 
MFT 1.00 0.95 0.91 0.40 0.44 0.74 ± 0.26 

MFT+WT 0.88 0.95 0.82 0.40 0.56 0.72 ± 0.21 

PPV 
MFT 1.00 0.83 0.95 0.79 0.76 0.87 ± 0.09 

MFT+WT 0.94 0.83 0.91 0.79 0.82 0.86 ± 0.06 

NPV 
MFT 0.73 0.86 0.91 0.80 0.40 0.74 ± 0.18  

MFT+WT 0.70 0.86 0.90 1.00 0.56 0.80 ± 0.16 

bACC 
MFT 0.92 0.79 0.93 0.68 0.59 0.78 ± 0.13 

MFT+WT 0.86 0.79 0.89 0.70 0.69 0.78 ± 0.08 

ACC = accuracy; SE = sensitivity; SP = specificity; PPV = positive predictive value; NPV = negative predictive value; bACC = 

balanced accuracy. Values are expressed as mean ±standard deviation 

 

Since we have already gathered an idea of the classifier performances on unseen data with cross 

validation, we now want to learn our final classifier on the whole dataset (Figure 39 and Figure 

40). 

  

FIGURE 39 - ROC CURVE FOR THE FINAL MODEL (TRAINED ON THE WHOLE DATASET, USING MFT+WT PREDICTORS) 
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FIGURE 40 - CONFUSION MATRIX AND RELATED PERFORMANCE MEASURES FOR THE FINAL MODEL (TRAINED ON 

THE WHOLE DATASET, USING MFT+WT  PREDICTORS 

 

The set of features of this final model is the same used in MFT+WT (9 predictors, see Table 9). 

The low sensitivity (67%) is attributable to two factors: firstly, the positive class is the minority 

class, accounting for just the 30% of the samples, hence the model probably doesn’t have 

“enough” instances of this class to properly learn how to recognize it; secondly, the positive 

class exhibits a higher data variance since it includes CGM observations of both prediabetic 

and diabetic individuals (Figure 41). 

 

 

FIGURE 41 - MEAN GLYCEMIC RESPONSES IN CONTROL AND HIGH RISK SUBJECTS. VERTICAL BARS ARE STANDARD 

DEVIATIONS OF THE MEASUREMENTS.  
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CONCLUSION  

The purpose of this thesis was the development of a classification model able to distinguish 

healthy from diabetic subjects based on their CGM recordings.  

Previous works have dealt with similar problems with a variety of approaches: in Wang et al. 

[44], a double-class AdaBoost classifier was trained using 17 features extracted from (CGM) 

signals to classify patients in type 1 or type 2 diabetes classes, obtaining up to 90.3% accuracy; 

in Longato et al. [49, 50], support vector machine was used to classify CGM data as belonging 

to diabetic (T2) or impaired glucose tolerance subjects on the base of glycemic variability 

indices, obtaining up to 87.1% accuracy; Chen et al. [51], used physiological measurements 

and demographic data to build a hybrid prediction model that uses k-means clustering for data 

reduction and decision tree algorithm to classify patients as healthy or diabetic, obtaining an 

accuracy of 90.04 %. 

This thesis tackled the problem of classifying subjects as diabetic or healthy with a dual 

approach: by using CGM data spanning over several days and CGM data recorded only for the 

duration of a standardized meal test (3h).  

Both approaches used logistic regression, but the models were trained on different sets of 

features, extracted from the corresponding CGM signals and chosen through different feature 

selection strategies. Cross-validation of the two models, having respectively 6 and 9 predictors,  

led to 81% and 84% mean accuracy respectively, with 85% sensitivity in both cases. These 

results are quite encouraging considering the limitations of the present work, first among them 

the reduced dataset size and the class imbalance; some approximations on the dataset may also 

have had a negative impact, that are the combination of the prediabetic and diabetic class and, 

in the postprandial glycemic response classification model, having used the recordings of a 

single subject as independent instances of the dataset. 

Despite the limitations, these models have the advantages of being very simple and intuitive 

and offering a large margin of improvement, for example by overcoming the present 

constraints, by using other types of classifier, etc. 

Furthermore, with respect to other works based on physiological and demographical data [51], 

these models use CGM signals to discover hidden patterns that are otherwise not derivable 

from  static blood glucose measurements. The use of such data to characterize the health status 

of an individual, has the potential to account for individual differences that standard medical 
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approaches might miss [25]. In this sense, this work can be framed in the domain of precision 

medicine, both because CGM allows for precision monitoring, that because the logistic 

regression model implies a probability-based decision which is compatible with a precision 

diagnosis [25]. 

Future developments of the present work should include the extraction of other meaningful 

features, already existing or new ones, or the use of deep learning, to extrapolate relevant 

insights about glucose dynamics. Indeed, CGM data are still a largely untapped source of 

information, with an enormous potential for diagnosis as well as for treatment applications, and 

the role of machine learning in the exploitation of this resource is simply crucial. 
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