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1. Introduction 

Human walking can be described as a cyclic pattern of body movements which moves forward an 

individual’s position [1]. The human gait cycle can be divided in two main phases representing the 

period when the foot is in contact with the ground (Stance phase) and the period when the foot is in 

the air for limb advancement (Swing phase) [2]. The transition between a swing and the subsequent 

stance phase is commonly referred to as heel-strike (HS), while the transition between a stance and 

the subsequent swing phase is referred to as toe-off (TO). Identifying the gait events allows to 

quantify the duration of all gait phases and analyse the gait activity. The current gold standard method 

for the detection of gait events involves the use of ground reaction force (vertical projection of centre 

of pressure of the body) measured by force platforms [3]. However, this method present relevant 

issues: foot drugging during swing phase provokes false force thresholds diminishing the accuracy of 

detection. This issue can be avoided determining gait events manually, anyway, is a process highly 

variable, time consuming and depend on operator competence. These issues were overcome 

introducing a computational method for the automatic gait event detection based on cinematic data 

collected using physical sensors [3]. However, gait events detection using physical sensor produces 

unnatural gait behaviour and doesn’t recognize enough the real subject’s intention.  

The human walking is controlled by the coordinated activities of several muscles of lower limb 

acting at hip, knee, and ankle, this means that gait phases can be deduced collecting information 

regarding muscle contraction with electromyographic signals. In particular, the surface 

electromyographic signals (sEMG) contain rich information about muscle excitation and are acquired 

on the surface of the muscle in a non-invasive way using surface electrodes [4]. Thus, surface 

electromyographic signals can be applied in several biomechanics studies, for instance, human 

gesture classification [5-6] or motion estimation [7], hence can be applied to recognize gait phases. 

In recent years, artificial-intelligence techniques have been proposed for the classification of stance 

vs. swing and for the assessment of HS and TO [8, 9]. Particularly valuable are those methodologies 

where machine and deep learning are implemented with the aim of limiting the number of sensors 

involved in the experimental set-up, such as electromyography-based approaches [9-15]. These 

studies are designed to classify gait phases and predict gait events from only surface 

electromyographic signals (sEMG), avoiding the requirement of directly measuring temporal data by 

means of additional systems or sensors (foot-switch sensors, IMUs, pressure mats, stereo-

photogrammetry). This would allow to reduce burden for patient, simplify clinical protocols, and 

make test faster, specifically in the evaluation of neuromuscular diseases or for walking-aid devices 
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where the acquisition of myoelectric signals is largely advised [16, 17]. To our knowledge, best-

performing results are achieved by the study proposed in [18]. 

However, the stance phase could be further split in three subphases [2]. During the first sub-phases, 

the body weight is supported by the limb in contact with the ground, then the body is led forward 

during the later stages of stance. The gait cycle is defined as a sequence of the following three sub-

phases of stance: Heel Contact (HC), Flat foot Contact (FFC), Push Off (PO), followed by the limb 

swing (S) [19-20] . HC phase represents the initial contact ground of the limb. It begins with HS event 

and ends when the foot is completely in contact with the ground. FFC is the phase in which the foot 

is completely in contact with the ground, the upper body loads the body weight on the leg. It ends 

when the heel leaves the ground. PO phase represents the stage in which the leg prepares for the swing 

phase. It begins when the heel starts to rise up from the ground and ends when toe loses contact with 

the ground (TO event). The transitions events between Heel Contact and Flat foot Contact phase and 

between the Flat foot Contact and Push Off phase are known as mid-foot strike (MS) and heel rise 

events (HR), respectively. To the best of our knowledge, the machine-learning-based approach 

mentioned above [18] has never been tested on the multi-class classification of the four gait-sub-

phases. This is expected to lead to a deterioration of classification performances, compared to a 

simpler binary classification. Thus, the possibility of providing a classification of 4 gait sub-phases 

by means of a reliable approach is still an open issue. 

In the present study, a recurrent neural network (LSTM neural network) approach is proposed for 

the classification of four gait sub phases of the gait cycle (Heel contact, flat foot contact, push off and 

swing phase) and the consequent prediction of gait events (Heel Strike, Mid foot strike, heel rise and 

toe off event), considering only sEMG signals as input to the LSTM model. To this, sEMG signals 

from Tibialis Anterior, Gastrocnemius Lateralis, Rectus Femoris, Vastus Lateralis, and Hamstring 

muscles were acquired from both legs of 30 healthy subjects walking barefoot on the floor for about 

5 min at their own pace following an eight-shaped path on the ground. Moreover, the aim of study is 

pursued in condition similar to everyday walking, characterized by a great variability of sEMG signals 

and spatial/temporal gait parameters due to acceleration, deceleration, reversing, and curves walked 

during the acquisition procedure [21-24]. This is expected to affect the performance of stride-time 

prediction compared to straight or treadmill walking but improve the generality of the results.                             

The thesis is organized in seven macro-chapters: Chapter 2 present a brief review of related works 

for gait phase classification based only on electromyographic signal (sEMG). Chapter 3 reports an 

overview of gait analysis and electromyographic signals. In addition, the gait sub-phases classified in 

this research are defined. Chapter 4 present the various machine learning techniques and in particular, 

the model implemented in this study. Chapter 5 describes the network set-up, the acquisition of sEMG 
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signals and signal pre-processing, the gait sub phase classification through a deep learning approach 

and gait event identification. Chapter 6 present the results of the described method. In chapter 7 all 

the results are discussed and study in the present research is concluded. 
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2. Related Works 

Human motion classification using sEMG signals is usually performed by means of machine 

learning approaches [25-27]. Recent studies proposed several methods for gait phase classification 

based on feature extraction of the electromyographic signal (EMG). In [10] four time-domain features 

were extracted from sEMG signals, a Hidden Markow Model (HMM) structure was determined 

corresponding to the division of the gait cycle. The parameters of the model were estimated with 

Braum-Welch algorithm. In [11] is described some standard feature extraction methods along with 

Linear Discriminant analysis classification algorithm to separate 8 different phases of the gait cycle 

by using electromyographic data of the lower limb. The sEMG signals were collected from 

quadricepes, hamstring, gastrocnemius, and tibialis anterior muscles. The angular data from the hip 

was used to assign labels to each EMG data. Principally, time-domain features were extracted from 

sEMG signals: mean absolute value, waveform length, variance, slope sign changes. The 

classification accuracy was defined as the number of times the test data is classified into their 

corresponding gait cycle phases correctly. It was reached a mean classification accuracy of 75%. In 

[28] sEMG data were acquired from vastus medialis, semitendinosus, adductor longus and tensor 

fasciae latae muscles on subjects performing walking on a treadmill. Five phases of gait were 

classified using support vector machine (SVM)  after EMG de-noising and time-domain feature 

extraction (integral of absolute value and variance).  An average classification accuracy of 93% was 

reached. In [29] is presented a gait phase classification method based on feature selection over sEMG 

signals collected from femoral rectus, lateral femoral, medial femoral, femoral two heads muscles 

and ensemble learning. 20 feature types in time and frequency domain were extracted such as mean, 

variance, zero crossing, mean frequency, sample entropy and wavelet transform. All sEMG data were 

collected from three subjects who performed a treadmill walk. Four machine learning algorithms 

were considered, two of them based on linear discriminator analysis, the other two based on gradient 

boosting decision tree algorithm. These multiclass classifiers were introduced in gait recognition for 

discriminating six different gait phases (Pre-Swing, Mid-swing, Terminal-swing, Pre-stance, Mid-

stance, and Terminal stance phase) The four learning methods were compared: tree decision 

algorithm reached an average classification accuracy of 94% on test data. In [30], it was studied a 

neural network classifier which combined an LSTM neural network with a MLP (multilayer 

perceptron) neural network to extract sEMG features and classify five gait sub-phases (pre-stance, 

mid-stance, terminal-stance, and swing phase). The sEMG signals were collected from three subjects 

who performed a treadmill walk under five different experimental conditions (at different walking 

speeds). sEMG data extracted from tensor fasciae latae, semitendinosus, adductor longus and vastus 
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medialis muscles of right leg and plantar pressure signals measured with pressure insoles placed under 

the toes and heels were used to train the neural network. The overall classification accuracy varied, 

passing from 94% to 88% in base of the type of experimental condition. All the studies just mentioned 

above, were based on feature extraction from sEMG signals collected from subjects (up to four) who 

performed a treadmill walk. In each study, the different sets of features were used as input to the 

machine learning stage. Furthermore, no article mentions the prediction error in detecting gait events, 

this means that, even if the accuracy value is high, if the errors are concentrated near the point of 

transitions, unsatisfactory results will be obtained in terms of time error of gait events. In more recent 

studies [15] a different approach was introduced: the original sEMG signal was first pre-processed 

(motion artifact, high frequency noise was removed) to obtain a smoothed signal, the envelope was 

extracted, and then neural networks were used to learn hidden features to classify the main gait phases 

(stance and swing phase) and then identify the Toe off and Heel strike event as the transitions between 

the two phases. The sEMG signals were acquired during level ground walking from tibialis anterior, 

gastrocnemius lateralis, medial hamstring and vastus lateralis muscles of each leg from 23 healthy 

adult subjects. The classifier (a multilayer perceptron neural network) was fed with the envelope of 

sEMG signals. Heel strike and toe off events were predicted with a mean absolute error of 21.6 ± 7.0 

ms and 38.1 ± 15.2 ms, respectively and an average accuracy of 99%.  The approach described in the 

present research, represent an evolution of the last one, moving from a binary classification to a multi-

class classification using recurrent neural networks. A classification of the main four sub-phases and 

the prediction of transitions moment between two phases is performed starting from sEMG only.   
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3. Gait Analysis 

The gait cycle (GC) is defined as the time interval between two successive occurrences of one of the 

repetitive events of walking. It begins in the instant at which one-foot contacts the ground. The floor 

contact is initiated with the heel defined as heel strike (HS), but not all the people have this capability, 

so the term Initial Contact is used to designate the onset of the gait cycle [1]. If it is decided to start 

with the initial contact of the right foot, then the cycle will continue until the right foot contacts the 

ground again. The left foot goes through the same series of events as the right foot but displaced in 

time by half a cycle. The main gait-phases of the cycle are Stance and Swing phase. Stance phase 

(which is also called ‘Support phase’ or ‘Contact phase’) is the period in which the foot is in contact 

with the ground, and it begins with the Heel contact (the onset of the stance phase). Swing phase is 

the period in which the foot is moving forward through the air, it begins as the foot is lifted from the 

floor defined as Toe-Off event (TO) [31]. In [31] the gait cycle is divided into eight periods, five of 

which occur in the stance phase and three in the swing phase as shown in Figure 3.1. The stance 

phase is subdivided in four sub phases: Initial Contact (Heel Contact),  Loading Response and Mid-

Stance (foot flat contact), Terminal Stance and Pre-swing (push off). The swing phase is divided into 

three sub-phases: Initial Swing, Mid-Swing, Terminal swing.   

 

 

Figure 3.1. Gait cycle subdivision (reference leg the shadow leg). Stance phase (60% GC) and Swing phase (40% GC). At the start 

and end of stance phase both the feet are in contact with the ground (double support phase). In the middle portion one foot is in 

contact with the ground (single support phase). 
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Both the start and the end of stance phase involves a period in which both feet are in contact with the 

ground (Double support), the body weight is shared equally by both feet.  In the middle portion of 

stance phase only one foot is in contact with the ground (single support phase), the entire’s body 

weight is supported by only one leg. The duration of a complete gait cycle is known as the cycle time 

(100% GC) which is divided into stance time (60% GC), the average duration of the stance phase is 

approximately 0.59 to 0.67 s, and swing time (40% GC), this phase lasts, on average, 0.38 to 0.42 s. 

The average duration of one gait cycle for men ranges from 0.98 to 1.07 s [32]. The initial double-

leg support represents the initial 10% of the GC, the single-leg support is the next 40%, and the 

terminal double-leg support concludes the stance period with another 10% of the GC. However, speed 

of walking can affect these percentages with respect to the subperiods of stance, where increases in 

speed will decrease the double-leg support sub-periods and increase single-leg support. Eventually, 

if we keep moving faster and start running, the double-leg support sub-periods will disappear. On the 

other hand, decreases in walking speed will have the exact opposite effect [1]. The gait cycle is also 

defined as stride, its duration is the interval between two consecutive initial contact carried out by the 

same limb (it is based on the actions of one limb) [33]. Each stride is constituted by two steps. At the 

midpoint of one stride the other foot contacts the ground to begin its next stance period. Figure 3.2 

shows some terms used to describe the placement of the feet on the ground.  

 

 

Figure 3.2. Stride length: distance between two successive placement of the same foot and It consists of two steps. The walking base: 

the side to side distance between the line of the two feet. Toe Out: angle in degree between the direction of progression and a 

reference line on the sole of the foot. 
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The sequential combination of the eight phases enables the limb to perform three tasks: weight 

acceptance (WA), single limb support (SLS), limb advancement (LA). WA begins with the first two 

gait phases of the stance phase (initial contact and loading response) [31]. The challenge is the transfer 

of body weight toward to the limb that has just finished swinging forward, it has an unstable 

alignment. 

Initial Contact (0-2% GC): this phase represents the moment in which the foot just touches the floor 

(HS event). The floor contact is made with the heel. This phase represents the first part of the initial 

double-leg support period. The stance phase is started with a heel rocker.  

Loading Response (0-10% GC): this phase is the rest of the initial double-leg support period. The 

body weight is transferred towards to the forward limb. It begins with initial floor contact and finishes 

when the other foot leaves the ground for swing.  

 

 

Figure 3.3. Reference limb is the shaded limb. 1. Initial Contact. The ankle is dorsiflexed (neutral position), the knee is extended, and 

the hip flexed. The ground contact is made with the heel. 2. Loading Response. the ankle plantar flexion limits the heel rocker by 

forefoot contact with the ground. 

 

SLS continues with the next two gait phases (mid-stance and terminal stance). The other foot is lifted 

the ground for swing, thus begins the single limb support interval for the stance limb until the opposite 

limb again contacts the ground. All body weight is supported by only one limb. The two main phases 

involved in SLS are mid stance and terminal stance phase [31].  

Mid-Stance (10-30% GC): this phase begins when the other foot is lifted from the ground and the 

ipsilateral forefoot strikes the ground, event defined as Mid foot strike (MS), so that  this is the first 

part of the single-leg support period. The body weight is aligned over the forefoot.   
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Terminal Stance (30-50% GC): this phase begins when the heel rises from the ground, event defined 

as Heel rise (HR); this phase represents the second part of the single-leg support period. the body 

weight moves ahead of the forefoot, and it finishes when the other foot contacts the ground again. 

 

 

Figure 3.4.  1. Mid Stance. Hip and Knee are extended. The limb advances by ankle dorsiflexion (ankle rocker). 2. Terminal Stance. 

Knee and hip increase extension. The heel rises and the limb advances over the forefoot rocker.  

 

At this point, the limb is ready to swing, it advances and is prepared for the next stance period. The 

last sub-phase of stance and three sub-phases of swing are involved in limb advancement [31]. 

Pre-swing (50-60% GC): this phase represents the terminal double-leg support period. It begins with 

initial contact of the opposite foot and ends with ipsilateral toe off event. 

Initial swing (60-73% GC): this phase begins when the foot leaves the ground (TO event) and ends 

when the same foot is opposite the stance foot. 

  

 

Figure 3.5.  Pre-Swing. Ankle plantar flexion increases, greater knee flexion and loss of hip extension. Initial Swing. The foot leaves 

the ground. Limb advances due to hip flexion and increased knee flexion. The ankle partially dorsiflexes. 
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Mid-swing (73-87% GC): when the limb is opposite to the stance limb, this phase begins. It ends 

when the swinging limb is forward with respect to the stance limb and the tibia is vertical.  

Terminal Swing (87-100% GC): this phase begins with a vertical tibia and ends before the foot strikes 

the floor. The limb advancement is complete when the shank moves ahead of the thigh. 

 

 

Figure 3.6.  Mid Swing. The ankle continues dorsiflexing reaching the neutral position. The knee extends in response to gravity, 

while the limb advances anterior to the body weight line thanks to hip flexion. Terminal Swing. The ankle reaches the neutral 

position, the limb advancement is completed thank to knee extension, the hip keeps its earlier flexion.  

 

3.1 Ankle Motion 

The ankle joint is related to the junction between the tibia and the talus, also called tibiotalar joint. 

During the gait cycle, the arcs of ankle motion are not large, it travels through four arcs of motion: it 

alternately plantar flexes (ankle’s downward motion) and then dorsiflexes (upward travel of the foot) 

[31]. During the swing phase, the ankle only dorsiflexes contributing to the limb advancement. The 

ankle begins stance phase plantar flexed (3°-5°). With the onset of forefoot contact (foot flat contact) 

the ankle changes its direction toward dorsiflexion that continues through midstance and first half of 

terminal stance reaching a peak of 10° by 50% GC. Then, there is an ankle plantar flexion reaching 

an angle of 30° at the end of the stance phase. The neutral position (around 0°) is reached during mid-

swing phase and maintained until the next initial contact phase. The ankle joint motion is controlled 

by dorsiflexors and plantar flexors muscles [31]. Principally, the plantar flexors muscles are active in 

stance phase, while the dorsiflexors (pretibial muscles) are swing phase muscle, but there is an 

exception during the loading response phase of stance, the dorsiflexor muscles participate to control 

the rate of ankle plantar flexion permitting the foot to be lowered gently to the ground [31]. The ankle 

range of motion during one gait cycle is reported in Figure 3.7. 
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Figure 3.7. Ankle Motion. Adult Normal range during one gait cycle. 

 

Three main muscles lie anterior to the ankle joint: tibialis anterior, extensor digitorum longus and 

extensor hallucis longus. Their activity starts during the pre-swing phase [31], the first to contract is 

the extensor hallucis longus then followed by tibialis anterior and extensor digitorum longus 

contraction during the mid-swing phase. At initial contact all pretibial muscles are active, they 

terminate their action by the end of the loading response phase. Seven muscles pass posterior to the 

ankle joint, but soleus and gastrocnemius are the main muscles involved for ankle motion, they form 

the triceps surae muscle that is the main responsible for plantar flexor motion of the ankle [31]. Near 

the end of the loading response phase, soleus muscle starts its activity and continues to act throughout 

mid-stance phase. The contraction of the soleus muscle decreases until to zero by the onset of pre-

swing phase. The contraction of gastrocnemius muscle follows the activity of the soleus muscle. It 

rises in mid stance but is less intense than the activity of the soleus muscle. Then there is a rapid 

decline and cessation after the onset of pre-swing phase. The loading response presents a high demand 

on the pretibial muscle group. In this short interval (5% GC), the body weight is dropped onto the 

heel, so the pretibial muscles are active to decelerate the rate of ankle plantar flexion. During single 

limb support phase, the first dorsiflexion arc occurs, it is an interval in which gastrocnemius and 

soleus muscle contract to decelerate the rate of tibial advancement over the foot against the body’s 

progressional forces. During the swing phase, a second dorsiflexion action occur, only the weight of 

the foot must be controlled by tibialis anterior and toe extensors. Figure 3.8 shows the main muscles 

acting on the ankle joint. 
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Figure 3.8. Gastrocnemius and Soleus muscle (right lower leg posterior view). Gastrocnemius tendon joins with that of the soleus to 

form the Achilles tendon which inserts into the back of the calcaneus. Tibialis anterior, extensor digitorum longus and extensor 

hallucis muscles (right lower leg anterior view). These muscles form the anterior tibial group. 

 

3.2 Knee Motion 

The knee is a complex joint characterized by a large range of motion. During stance, the knee is the 

basic determinant of limb stability, in swing, the knee flexion and extension is the primary factor in 

the limb’s freedom to advance. During the gait cycle, the knee passes through four arcs of motion: it  

shows two peaks of extension and flexion [31]. At initial contact is flexed about 5° and then flexes 

throughout the loading phase reaching the peak of flexion with the onset of single limb support (12% 

GC). During the mid-stance phase, the knee gradually extends. The minimum value of flexion (around 

3°) is reached in terminal stance phase (62% GC). Then, with the onset of double limb support the 

knee flexes again. 40° is reached by end of the pre-swing phase (62% GC). After a pause in mid 

swing, the knee begins to extend, the extension continues in terminal swing until full extension 

(around 3° of flexion) is reached. The final knee posture at the end of terminal swing averages 5° of  

flexion. Fourteen muscles contribute to knee control, they contract at specific intervals within the gait 

cycle [31]. In swing phase, both flexor and extensor muscles contribute to limb progression. Among 

the multiple muscles acting on the knee, six muscles don’t act at another joint. These muscles are the 

four vasti heads of the quadriceps that extends the knee and two knee flexors, popliteus, and short 

head of the biceps femoris. All the other muscles, except the gastrocnemius muscle which has a 
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primary role as an ankle plantar flexor, also control hip motion (flexion or extension). Figure 3.9 

depicts the knee range of motion during one gait cycle. 

 

 

Figure 3.9. Knee Motion. Adult Normal range during one gait cycle. 

 

The quadriceps is the main muscle group at the knee and is the only muscle which extends the knee. 

Four heads (vastus intermedius, vastus lateralis, vastus medialis oblique and vastus medialis longus) 

cross only the knee joint (Figure 3.11). The fifth head (rectus femoris) includes both the knee and hip 

[31]. The vasti muscles begins their activity in terminal swing (90% GC) reaching the maximum 

intensity during the loading response phase. By the 15% of GC, with the onset of mid stance, the 

quadriceps reduces its effort and ceases. The activity of rectus femoris has a short period of action 

between late pre-swing (56% GC) and early initial swing (64% GC). Popliteus and the short head of 

the biceps femoris provide direct knee flexion. The three hamstring muscles (semimembranosis, 

biceps femoris long head and semitendinosis) are hip extensor but exert a flexor role at the knee 

(Figure 1.14) [31]. In mid and terminal swing until to the first level of loading response phase, these 

muscles have most intense action. The gastrocnemius muscle is an additional stance phase muscle 

that principally act at the ankle but is also knee flexor. The gastrocnemius increases its intensity 

throughout the terminal stance phase (50% GC), then there is a rapid decline of action until it ceases 

with the onset of pre-swing phase.  
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Figure 3.10. Hip Motion. Adult Normal range during one gait cycle. 

 

3.3 Hip Motion 

The hip represents the junction between the passenger and locomotor units. During stance, the role 

of the hip muscles is the stabilization of the trunk, while in swing, the limb control is the primary 

objective. The hip, during the gait cycle, moves through two arcs of motion: extension during stance 

and flexion in swing (Figure 3.10) [31]. Taking a vertical line as reference line, at initial contact the 

thigh is flexed 20°. With the onset of mid stance, the hip progressively extends, the thigh reaches 

neutral alignment at the 38% of GC. During the pre-swing phase the hip reverses its direction of 

movement and begins flexing. At the end of stance phase (60% GC), the hip reaches a neutral position 

(0°). Then, the flexion motion continues through the first two phases of gait cycle. The final 25° 

flexed position of the thigh is maintained within five degrees through terminal swing. During stance 

phase, extensor and abductors muscles control the hip motion. In stance flexor muscles participate 

controlling hip motion during limb advancement. The adductors tend to participate during the interval 

of exchange between swing and stance phase.  
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Figure 3.11. Vastus Medialis, vastus intermedius vastus lateralis and rectus femoris are the four  elements of the quadriceps muscle 

(right leg anterior view). Adductor magnus, adductor brevis and adductor longus are the major adductor muscles (right leg anterior 

view)  Semimembranosis, semitendinosis and biceps femoris are the four elements of the hamstring muscles (right leg posterior 

view).  

 

The hip extensor muscles (hamstring muscles) occur from late and mid swing through the loading 

response [31]. The hamstring muscles (semimembranosis, semitendinosis and long biceps femoris) 

start to contract in mid swing (80% GC). The peak effort is reached in terminal swing. Then, all the 

three hamstring muscles cease their activity during the rest of gait cycle. the adductor magnus begins 

to contract near the end of terminal swing and progressively the intensity increases throughout the 

phase. During loading response phase, it remains active and then relaxes. Lower gluteus maximus 

muscle begins with the end of terminal swing. During loading response phase, it increases its effort 

level, then rapidly decreases its activity level by the end of loading response phase (10% GC).  The 

abductors are another muscle group functioning during the initial half of stance [31]. Principally, the 

upper gluteus maximus is the main muscle involved, it begins in terminal swing (95% GC), then the 

intensity rises during loading response and continues through mid-stance. The flexor muscle action 

begins in late terminal stance and continues through initial swing and early mid swing. The adductor 

longus is the first and most important hip flexor, its activity begins in late terminal stance, and it 

remains active into initial swing. Then, the rectus femoris begins its activity with a brief period of 

action in pre-swing and early initial swing. High demand for muscular control in stance period is 

introduced to stabilize the trunk mass, while in swing period, the second demand on the hip 

musculature to initiate limb advancement is less intense.  
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In Figure 3.12 is summarized the typical activity of the major muscles during one gait cycle (0-100% 

GC). Gluteus maximus, Quadriceps muscles and Triceps surae muscle are principally involved in 

stance phase, while Iliopsoas, hamstring muscles and tibialis anterior are mainly involved in swing 

phase. 

 

 

Figure 3.12. Gluteus maximus, iliopsoas, hamstring, quadriceps, triceps surae and tibialis anterior activities during a gait cycle. the 

blue line identifies the instant (around 60% GC) in which Toe off event occurs. Dashed lines indicate some gait events that occur 

between two gait phases.  

 

3.4 Gait Cycle Segmentation  

In the present study, it has been considered the segmentation of gait cycles following the approach 

adopted in [19] where each stride is defined as a sequence of the following three sub-phases of stance: 

Heel Contact (HC), Flat Foot Contact (FFC), Push Off (PO), followed by the limb swing (S).  Heel 

Contact phase (0-10 % GC) begins, by the definition, with the heel strike (HS). Heel strike event 

represents the initial contact ground of the limb during walking. At HC phase the foot functions are 

to absorb shock and ensure a stable position. This phase ends when the foot is completely in contact 

with the ground. The event Mid Foot Strike (MS), where a ground contact of the mid-foot is obtained, 

indicates the transition moment from the HC phase to the FFC phase.  FFC contact phase (10-40 % 

GC) correspond the period in which the foot assumes more of a support and overall stability role. 
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During this phase the foot has transformed from a shock absorber and is now in stability role. The 

body weight is moved forward over the fixed limb and the foot commences a change toward 

propulsion. The FFC phase ends as the heel begins to leave the ground. The event HR indicates the 

transition moment from FFC phase to the PO phase. The PO phase (40-60 %) is the final stage of the 

stance phase. During PO phase the body is propelled forward, and this propulsive moment causes the 

final TO event where the contact between toes and floor is lost, and the swing phase begins. During 

the S phase (60-100 % GC) the swinging limb moves in front of the stance limb leading to a forward 

progression. Figure 3.13 shows the gait cycle division with the approach just described.  

 

 

Figure 3.13. Shadow Leg (Reference Leg). Gait Cycle division in Stance and Swing Phase. The stance phase is divided in Heel 

Contact phase (HC), Flat foot Contact phase (FFC), Push Off phase (PO) and Swing Phase (S). The limits of these phases are defined 

by four events identified as Heel Strike (HS), Mid foot strike (MS), Heel Rise (HR) and Toe Off (TO).  

 

In the study described in the following chapter, the classification of Heel Contact, Flat Foot Contact, 

Push Off and Swing Phase and the prediction of the transition moments (HS, MS, HR and TO) 

between them was performed. In all the studies, the sEMG signals acquired from Tibialis Anterior, 

Gastrocnemius Lateralis, Rectus Femoris, Vastus Lateralis and Hamstring muscles of both legs were 

used to feed an artificial neural network. More precisely, the envelopes of the EMG signal were used 

to train the net. According to the approach described in [20] the footswitch signals were processed in 

order to identify the different gait cycles and the sub-phases (HC, FFC, PO and S phase). The 

information derived from the footswitch signals was used as ground truth for the net.  
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3.5 Overview of the electromyographic Signals (EMGs) 

Electromyographic signal is a biomedical signal that measures the electrical activity generated in the 

muscle due to its contraction representing neuromuscular activity [34]. The muscles exist in three 

forms: skeletal muscles, cardiac muscles, and smooth muscles. Skeletal and cardiac muscles are 

classified as striated muscles, characterized by alternating light and dark bands. All three muscle 

tissues have properties in common: they all exhibit a quality called excitability, as their 

plasma membranes can change their electrical states sending electrical impulses called action 

potentials that travel along their membrane [35]. 

 

3.5.1 Muscle Contraction 

The signal to initiate muscle contraction is an intracellular calcium signal, and movement is created 

when a motor protein called myosin uses energy from ATP to change its conformation. The skeletal 

muscle constitutes about the 40% of the total body weight. They position and move the skeleton, 

attaching to bones by tendons made of collagen. Each muscle is a collection of muscle cells called 

muscle fibers that, inside each skeletal muscle, such fibres are organized into bundles. Each muscle 

cell consists of several structures devoted to movements called myofibrils, that represent every single 

filament into the muscle cells that stretches or contract to generate motion [34]. The arrangement of 

such filaments, actin, and myosin, provoke the striated appearance of the skeletal muscle fiber.   The 

plasma membrane of muscle fibers is called the sarcolemma, the cytoplasm is referred to as 

sarcoplasm. Actin and myosin and their regulatory proteins (troponin and tropomyosin) form the 

sarcomere representing the functional unit of the muscle fiber (a myofibril represent a succession of 

them) as shown in Figure 3.14. The thin filaments are formed by the actin and troponin-tropomyosin 

complex, while the thick filaments present the myosin structure, so these types of filaments present 

higher mass with respect to the previous one.  

Each sarcomere has the following elements: 

• I Bands: contain the actin filaments (only thin filaments). 

• A band: contain mainly the myosin filaments, the thick and thin filaments  at the outer edges 

of the A band overlap. 

• H zone: Represents the central region of the A band, it is occupied by only myosin filaments. 

• M line: it divides the A band in half 
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Figure 3.14. Skeletal Muscle, Muscle Fiber, Myofibrils and Sarcomere with the following elements: Z disks, I band, A band. 

 

When the muscle is relaxed, so not signalled by a motor neuron, myosin and actin filaments are not 

connected, but during contraction with the consumption of energy, actin, and myosin fibers overlap. 

Actin, myosin are two proteins that constitutes the thin and thick filaments respectively that are 

involved in the muscle contraction with other two proteins: Tropomyosin and Troponin. When an 

electrical stimulus is not sent to the muscle, tropomyosin is bind to troponin to form a troponin-

tropomyosin complex that prevent the myosin from binding to the actin filaments [34]. 

 

 

Figure 3.15. Troponin-tropomyosin complex prevent the myosin heads to bind on the actinmicrofilaments. 
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Before starting the contraction of the fiber muscle, the electrical impulse travels from the efferent 

neuron ( alpha motor neuron) to the muscle fiber by means a neuromuscular junction (synapse formed 

by the contact between a motor neuron and muscle fiber), then the contraction is a combination of 

electrical and mechanical events: the action potential reaches the synapse and initiates the action in 

the muscle  fiber thanks to the action of a neurotransmitter (Acetylcholine). Inside the membrane of 

the muscle fiber, if a certain threshold level exceeds (because of NA+ influx that provoke a 

depolarization of the membrane) an action potential is caused, changing the membrane potential value 

from its resting value of -80 mV to 30 mV. The resting action potential is restored by means of a 

repolarization process and followed by a hyperpolarization period of the membrane (Figure 3.16) 

[35].  

 

 

Figure 3.16. Action Potential generated on the muscle fiber membrane. It ranges from a value of -80 mV to 30 mV. 

 

Thus, starting from the motor plate (neuromuscular junction) the muscle action potential spreads 

along the muscle fiber  provoking the calcium release from the sarcoplasmic reticulum that combines 

with troponin starting the contraction. Infact the shape of the troponin-tropomyosin complex changes 

leaving free the myosin binding sites, the myosin binds with the actin filaments pulling them towards 

to the centre line of the H zone provoking a contraction. This process continues until Ca++
 ions are 

available. Chemical energy ATP support the process in this way muscle contraction take places [36]. 

A single motor neuron synapse with a group of muscle fibers, this group together is called motor unit.  
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Figure 3.17. Muscle Contraction. Action Potential travels along the muscle fiber provoking the release of 𝐶𝑎++ions that combines 

with troponin starting the contraction. 

 

 

3.5.2 Surface EMG Signal 

The Emg signal is based on action potentials generated at the muscle fiber membrane resulting from 

depolarization and repolarization processes. These cycles form an electrical dipole that travels along 

the surface of the muscle fiber. In general, bipolar electrode configurations, as shown in Figure 3.18, 

are used for EMG measures [37]. In this case, for simplicity, only one action potential traveling on a 

single muscle fiber is depicted. 

 

 

Figure 3.18. Bipolar electrode configuration. 
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The dipole, depending on the distance between the two electrodes forms a potential difference. 

Actually,  as already said, a motor neuron consists of many muscle fibers, so the electrodes reflect 

the amplitude of all innervated fibers within the motor neuron. Thus, all the action potentials sum up 

to, what is called, triphasic Motor Unit Action Potential (MUAP) [38]. The motor unit action 

potentials of all active motor units detectable under the electrode side are electrically superposed (the 

resulting signal detected by the electrode is a bipolar signal characterized by positive and negative 

values). The recruitment (more than one activation of the motor units producing more contraction of 

the muscle) and the firing frequency (activation frequency of one motor unit) of the MUAP influence 

the amplitude of the resultant signal (EMG signal).  

 

 

Figure 3.19. All the Motor Unit Action Potential are superposed. The resulting signal is characterized by positive and negative peaks. 

 

The raw Emg signal is the unfiltered and unprocessed signal that detects the superimposed MUAP 

[37]. The raw sEMG spikes may reproduce the activation of one or more motor units: if they are 

activated and are near to the electrodes, the signal detected produce a strong superposed spike. 

Typically, raw sEMG signal range between +/- 5000 mV and have a frequency content between 6-

500 Hz. the most frequency power ranges between 20 and 150 Hz. The raw sEMG measured by 

surface electrodes, are influenced by all the tissues that stands between the electrodes and the source 

of the signal [37]. sEMG  characteristics and shapes can also be influenced by: 

• Muscle Cross Talk: it is caused by EMG signals coming from the adjacent muscles. It is 

possible to eliminate it adjusting the distance between two electrodes (approximately 2 cm) 

and the electrodes must be placed at the middle of muscle belly. 
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• External Noise: electrical noise reproduced by external devices. 

• Electrodes and Amplifiers: the quality of electrodes and amplifier may interfere the EMG 

baseline (that must not be higher than 3-5 microvolts). 

 

 

Figure 3.20. Raw sEMG signals of Tibialis Anterior and Gastrocnemius Muscles (T=10s). Sampling Frequency at 2000 Hz. Muscle 

Cross Talk and Power Line are overlapped on the EMG signal. The Amplitude is given in mV.  

 

The EMG amplifiers act as differential amplifiers to eliminate any type of artifact on EMG signal 

detected that, due to its sensitive nature, it can be influenced by external noise sources or other type 

of artefacts [37]. Infact, these amplifiers (built in the cables or positioned on the top of the electrodes), 

detects the potential difference between electrodes and avoid any other type of interference. Then, 

the signal is amplified by a factor of at least 500 and a bandpass filter is applied by the amplifier with 

a frequency range starts from 10 Hz and go up to 500 Hz [39-40].  In Figure 3.21, for example, the 

contribute of Power Noise on sEMG signal is reported. Other main artifacts are:  

• Power Noise: it comes from the power line and is transmitted by electrical devices placed near 

the EMG data acquisition device. (50-60 Hz power line interference). 

• DC Offset: Caused by impedance difference between skin and electrodes. It adds an offset 

value on the raw signal; hence it is not centred to zero. 

• Movement Artifacts: artifacts on EMG signal due to the movement of electrodes or cables. 

• ECG artifacts: the signal generated by the heart can be picked up by the EMG signal. 
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Figure 3.21. Power noise: it comes from the power line. Interference 50 Hz-60Hz.  

 

Before the signal can be analyzed on a computer, an analog and digital conversion is applied with a 

sampling frequency of at least 1000 Hz in order to preserve sensitive information about the muscles. 

On the sEMG signals additional digital filters can be applied to remove completely all artifact. The 

finite impulse response filters (FIR) are filter whose response has a finite duration because it passes 

to zero in a finite time [41]. For what concern digital FIR filters of order N each value of the output 

sequence is a weighted sum of the recent input. It is defined by the following equation: 

 

𝑦[𝑛] =  𝑏𝑜𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1] + ⋯ + 𝑏𝑁𝑥[𝑛 − 𝑁]                     

 

Where: 

• 𝑥[𝑛]: input signal. 

• 𝑦[𝑛]: output signal. 

• 𝑁: filter order. 

• 𝑏𝑖: Value of the impulse response at the 𝑖𝑡ℎ instant for 0 ≤ 𝑖 ≤ 𝑁 of an 𝑁𝑡ℎ order FIR filter. 

 

 

An FIR filter is designed by finding the coefficients (𝑏𝑖) and filter order (𝑁) in base of the specific 

type of task.  Once the sEMG signal is digitally filtered, the linear envelope can be extracted to clarify 

                3.1 
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the characteristics of the sEMG signal following two-step process [42-44]: Full-wave rectification 

(negative amplitudes are converted to positive amplitudes, so negative spikes are moved up to 

positive) and low-pass filter (2nd order low-pass Butterworth filter at a 5 Hz cut-off frequency). The 

last step that is possible to do is the normalization process. Infact, one drawback of the EMG analysis 

is that the amplitude of signal strongly depends on a given signal acquisition. Different measures are 

obtained even if the same muscle site is measured. One solution is to normalize to a reference value, 

for example, the maximum voluntary contraction (MVC) value (patients reproduce a maximal 

contraction) [37]. The MVC test is performed for each muscle that is investigated during the 

experiment. Another normalization process can be done using the peak value of an Emg signal as 

reference point (applied on filtered rectified EMG signal) and the main effect that is obtained is the 

reduction of the variability (variance) of the signal [37]. By means of the normalization process all 

the data are scaled from microvolts values to percent with respect to the reference value. The shape 

of the EMG curve doesn’t change, but Y-axis is scaled.  

 

 

Figure 3.22. sEMG signal acquired from hamstring muscles during level ground walking (T=10s). Low-pass and high pass FIR 

digital filter (cut-off frequency of 450 Hz and 20 Hz respectively). Full-Wave rectification and Normalization were performed. The 

peak value of the Emg signal was used as reference for the normalization. The amplitude is expressed as percentage of the reference 

value.   
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4. An Overview of Machine and Deep Learning 

Artificial intelligence (AI) is a very large research field, where machines show cognitive 

capabilities, for instance learning behaviours, proactive interaction with the environment, inference 

and deduction, computer vision, speech recognition, problem solving, knowledge representation, 

perception. Artificial Intelligence represents any activity in which machines simulates intelligent 

behaviours shown by humans [45]. It takes inspiration from elements of computer science, 

mathematics, and statistics. The Machine learning (ML) is a subbranch of AI that focuses on teaching 

computers how to learn without the need to be programmed for specific tasks. The idea behind 

machine learning is that it is possible to create algorithms that learn from data and then is able to 

make predictions [45]. There are three wide categories of Machine Learning: 

• Supervised Learning: In supervised training, both the inputs and the outputs are provided. The 

network then processes the inputs and compares its resulting outputs against the desired 

outputs. Errors are then propagated back through the system, causing the system to adjust the 

weights which control the network. This process occurs over and over as the weights are 

continually updated. The set of data which enables the training is called the training set, which 

is used to fit the parameters (weight connections). During the training of a network the same 

set of data are processed many times in order to optimize connection weights. The set of data 

in which the model is used to predict the responses is the validation set that provides an 

evaluation of the model fit. Finally,  the test data set is a data set used to provide an unbiased 

evaluation of a final model fit on the training data set. 

• Unsupervised Learning: input data are given to the machine; it has to find the best structure 

by itself with no external supervision.  

Deep learning (DL) is a particular subset of Machine Learning methodologies using artificial neural 

networks (ANN) slightly inspired by the structure of neurons located in the human brain [45]. 

The word “deep” refers to the presence of many layers in the artificial neural network, a network is 

considered as deep when it has hundreds of layers. In a Deep Learning artificial neural network, the 

hidden layers have the function of learning features of the input data that best fit the task at hand. 

This makes so that inputs of a Deep Learning model are often raw data, without the need for features 

engineering, which is performed internally by the neural network [45]. 

 

 



27 

 

4.1 Neural Network 

Artificial neural networks (briefly, nets) represent a class of machine learning models, loosely 

inspired by studies about the central nervous systems of mammals. Each net is made up of several 

interconnected neurons, organized in layers, which exchange messages (they fire) when certain 

conditions happen [46]. The network takes inspiration from the human brain. The brain is a collection 

of about 10 billion interconnected neurons. The neurons are uniquely shaped cells with long processes 

that extends outward from the nerve cell body into the cell’s processes, that are usually classified as 

either dendrites, which receive the incoming signals, or axons, which carry outgoing information 

(Figure 4.1) [47]. Thus, by means of dendrites and axons, neurons can communicate with other cells 

or between their selves, forming networks. The region where an axon terminal meets its target cell is 

called a synapse.   A neuron's dendritic tree is connected to a thousand neighbouring neurons. When 

one of those neurons fire, a positive or negative charge is received by one of the dendrites. The 

strengths of all the received charges are added together through the processes of spatial and temporal 

summation.  

 

 

Figure 4.1. Biological Neuron. Each neuron is a cell that uses biochemical reactions to receive, process and transmit information. 

 

In the neural network, neurons are arranged in layers, each neuron is a simple processing unit which 

takes one or more input and produces an output. At each neuron, every input has an associated weight 

which modifies the strength of each input. The neuron simply adds together all the inputs and 

calculates an output to be passed on as shown in Figure 4.2. The neuron structure can be split in two 

parts: in the first part weights associated to input values and bias are summed, the second part 

computes the neuron’s output by means of the activation function [45]. 
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Figure 4.2. Neuron structure. The output of the neuron is given by the output of the activation function that takes as input weight 

associated to the input and a bias value associated to the neuron.  

 

The perceptron is a simple function which, given an input vector 𝑥 of 𝑚 values (𝑝1, 𝑝2. ..., 

𝑝𝑛) often called input features or simply features, outputs either 1 (yes) or 0 (no) [45]. 

Mathematically, the function is defined as: 

𝑓(𝑥) =  {
1  𝑤𝑥 + 𝑏 > 0
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝑤 represents the weight and 𝑏 the bias. According to the values assigned to 𝑤 and 𝑏, the 

hyperplane defined as 𝑝𝑖𝑤𝑖 + 𝑏 changes its position. The output of the algorithm can be 1 (yes) or 0 

(no). The training process occurs in order to define the values of 𝑤 and 𝑏. Ideally,  a set of training 

data are provided to the network, in this way the computer adjusts the weight and bias in such a way 

the errors produced in the output are minimized. Unfortunately, the perceptron does not show 

this little-by-little behaviour, this means that between 0 and 1 there is a big jump. Thus, exist smooth 

functions that are function that progressively changes from 0 to 1 with no discontinuity (continuous 

functions).  

 

 

 

 

4.1 
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4.2 Multilayer Perceptron Neural Network 

The model with a single linear layer was given the name of perceptron. A model that has multiple 

layers is called multilayer perceptron neural network [45]. In the Figure 4.3 is represented a generic 

neural network with one input layer, one hidden layer and one output layer. 

 

 

Figure 4.3. Generic Structure of a multilayer perceptron neural network. X represents the input vector; Y represents the output vector 

(Predictions of the network). 

 

In the diagram, we can observe that each node in the first layer receives an input and fires according 

to the predefined local decision boundaries. Then, the output of the first layer is passed to 

the second layer, the results of which are passed to the final output layer consisting of more than one 

neurons. The net is dense, meaning that each neuron in a layer is connected to all neurons located in 

the previous layer and to all the neurons in the following layers. The activation function is used to  

map the resulting values in a range between 0 to 1 or -1 to 1, depending on the activation function: 

Sigmoid, ReLU, or Tanh. This allows to then choose a threshold (0.5 or 0 as default values) to 

distinguish false from positive results [45]. 

The Sigmoid function overcomes the limits presented by the perceptron algorithm. It is defined as: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 4.2 



30 

 

The input varies between negative values and positive values, it produces small output changes 

between 0 and 1. So, mathematically this function is continuous. The sigmoid function can be used 

to produce nonlinear output. A neuron with sigmoid function, as activation function, has a behaviour 

similar to the perceptron algorithm, but the changes are gradual [45]. In Figure 4.4 is reported an 

example of sigmoid function.  

 

 

Figure 4.4. Sigmoid Function. Y axis function’s output (0-1). X axis input vector z (sum of the products between weight (𝑤𝑖) and 

input  (𝑥𝑖)  and the bias value). 

 

The sigmoid function is not the unique smooth function present in the neural networks. The Rectified 

Linear Unit function (ReLU) is defined as: 

𝑓(𝑥) = max(0, 𝑥) 

The function is 0 for negative values and it grows linearly for positive values.  

4.3 
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Figure 4.5. ReLU activation function. The output values are different from zero for positive values of the input vector. 

 

Tanh activation function is similar to the sigmoid function (s-shaped), but the range of tanh function 

is between [-1 1].       

 

 

Figure 4.6. Tanh activation function. It ranges between -1 and 1. 

 

The multilayer perceptrons neural network learn from training data by means a process called 

backpropagation [45]. Each neural network layer is characterized by a set of weights that determines, 

for a set of input data, the output values. The process of backpropagation means that mistakes are 

progressively correct once they are detected. At the beginning all the weights have a random 

assignment. Each value of input in the training set is propagated forward from the input stage, the 

neurons process the input data giving in output the resultant values that travel layer by layer until the 
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result reach the output layer where the prediction is made. The ground truth (the actual value) for 

each input value is known, it is compared with the estimated output and the error made in prediction 

can be measured (error value). Then, the working key of the backpropagation process is to propagate 

the error back, from the output layer to the input layer trough the hidden layers, an appropriate 

optimization function is used to update the weights in the network with the goal of reducing the error 

value. Tuning the weights has the effect of teaching the network. The network learns. This process is 

repeated several times until the error is minimized (below a certain threshold value).  

 

 

Figure 4.7. Error Back Propagation using a specific optimization algorithm. The neural network weights are adjusted to reduce the 

error value. 

 

4.3 Recurrent Neural Network (RNN) 

The Recurrent Neural Network (RNN) are a class of neural network that exploits the sequential nature 

of their input [45]. Considering the traditional multilayer perceptron neural network in which all the 

inputs are considered independent of each other, in a RNN the assumption is that they are arranged 

in a sequence (e.g., temporal). For instance, inputs could be time series values where the occurrence 

of one element in the series depend on the elements that appeared before it, exhibit a dependence on 

past data. The overall RNN can be thought as a net of RNN cells and, for each element of the 

sequence, the RNN cell performs the same operation. Each cell has a hidden state (memory slot) that 

considers the dependencies of the present data with the past data that RNN cell has already seen. The 

value of this hidden state at the instant of time 𝑡 depends on the value of the hidden state at the 
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previous time instant and the value of the current input at the time instant t as shown in the equation 

below: 

ℎ𝑡 =  𝜑(ℎ𝑡−1, 𝑥𝑡) 

 

Where ℎ𝑡−1is defined as ℎ𝑡−2 multiplied by 𝑥𝑡−1, thus the hidden state considers all past input values 

until to the beginning of the sequence. The RNN incorporates information from long sequences. A 

simple representation of the recurrent neural network is shown in Figure 4.8: 

 

 

Figure 4.8. RNN’s cell. U, V, W are the weight matrices.  

 

Considering the instant of time 𝑡1, the cell takes as in input 𝑥1 and produces the output 𝑦1. The internal 

state of the cell at the time 1 is given by the sum of the product of the hidden state at the previous 

time instant (ℎ0) multiplied by the wight matrix W and the product between the wight matrix U and 

the input 𝑥1, the activation function tanh is applied to the result. Then, the output vector 𝑦1 is the 

product between the weight matrix V and the hidden state at the time instant 1. A sigmoid function is 

applied to that product. These recurrent equations are applied for all data at each time instant.  

ℎ𝑡 = tanh (𝑊ℎ𝑡−1 + 𝑈𝑥𝑡) 

𝑦𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑉ℎ𝑡) 

 

 

4.5 

4.4 
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4.4 Long Short-Term Memory Neural Network (LSTM) 

Long-short term memory network (LSTM neural network) is the best popular recurrent neural 

structure in deep learning field. LSTM neural network learns which information from the series to 

remember and which not, by means of three gated units: forget gate, input, and output gates through 

which the memory of past states can be efficiently controlled [48]. LSTM neural network is used in 

many areas, mostly in machine learning application field, including speech recognition, natural 

language processing and other pattern recognition applications [49]. The LSTM neural network can 

learn long term dependencies. The LSTM networks, instead of considering a single tanh layer to 

implement recurrence and update the hidden state of the cell, it uses four layers (tanh and sigmoid 

layers) [45]. The cell remembers values over arbitrary time intervals and the three gates regulate the 

flow of information into and out of the cell. LSTM networks are well-suited 

to classifying, processing, and making predictions based on time series data, since there can be lags 

of unknown duration between important events in a time series [48]. In Figure 4.9 is shown how the 

hidden state of the cell is updated from the previous state.  

 

 

Figure 4.9. LSTM layer uses tanh layer and the other three layers to update the hidden state. 

 

Sigmoid and tanh layers are used to implement recurrence [45]. It is possible to identify the main 

parameters involved in the updating phase of the hidden state: c(t) (line on the top of the diagram) 

represents the internal memory of the processing unit. h(t) (bottom line) represents the internal state, 

𝑖 (input gate), 𝑓 (forget gate), 𝑜 (output gate) and 𝑔 are gates, mechanisms by which the LSTM work. 
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During the learning process the gates values modulate the  LSTM’s hidden state. The following 

equations are applied to compute the hidden state at the time instant 𝑡 [45].  

 

𝑖 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡) 

𝑓 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 

𝑜 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑔𝑥𝑡) 

𝑔 = tanh(𝑊𝑔ℎ𝑡−1 + 𝑈𝑔𝑥𝑡) 

𝑐𝑡 = (𝑐𝑡−1𝑋 𝑓) + (𝑔 𝑋 𝑖) 

ℎ𝑡 = tanh(𝑐𝑡) 𝑋 𝑜 

 

Where: 

𝑖: defines how much the current input (𝑥𝑡) will influence the current computed state. 

𝑓: defines if the previous state h (t-1) is allowed to pass through the layer. 

𝑜: defines how much of the hidden state h (t) you want to pass to the next layer. 

Given 𝑖, 𝑓, 𝑜 and 𝑔, it is possible to calculate the internal memory of the unit 𝑐𝑡 at the time instant t 

that depends on the previous value of internal memory computed in the previous time instant and the 

gait values. if 𝑖 gate is set to zero, the memory is not updated, while setting to 0 𝑓 gate, the old memory 

is ignored. Finally, the hidden state ℎ𝑡 is computed, it is given by the product between the internal 

memory at the time instant t and the output gate 𝑜. A tanh optimization function is applied.  

 

 

 

 

4.6 
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5. Materials and Methods 

In the study described in the following chapter, we tried to classify gait sub-phases and predict gait 

events (transition moments between two gait phases) from sEMG signals. In all the studies, the sEMG 

signals collected from Tibialis Anterior, Gastrocnemius Lateralis, Rectus Femoris, Vastus Lateralis 

and Hamstring muscles of both legs were used to feed an artificial neural network (LSTM neural 

network). More precisely, the envelopes of the sEMG signal were used to train the net. An LSTM 

neural network was used to classify the main gait sub-phases: Heel Contact (Class 1), Flat Foot 

Contact (Class 0), Push Off (Class 2) and Swing phase (Class 3). Once the classification is computed, 

according to the physiological constraints of the gait cycle, the predicted signal was cleaned removing 

those phases that were too short. On the cleaned signal, gait events between two gait sub-phases were 

detected: the transition moment between Swing and Heel contact phase (Heel Strike event), the 

transition instant between from Heel contact and Flat Foot Contact phase (Mid-Foot Strike event), 

the transition instant between Flat Foot Contact to Push Off phase (Heel Rise event) and the transition 

moment between Push Off and Swing Phase (Toe Off event). Thus, heel strike (HS) event was 

identified as the sample in which  the transition between the class 3 and 1 occurred, Mid-Foot Strike 

(MS) the transition sample between class 1 and 0, Heel Rise (HS) the transition sample between class 

0 and 2, finally Toe Off (TO) was identified as the sample in which the transition between class 2 and 

3 occurred. Finally, to evaluate the performance in predicting the basographic signal, standard 

classification metrics were used (Precision, Recall, F1-Score) and the mean average error (MAE) 

defined as the time difference between the predicted event with respect the same event in the reference 

signal was computed in order to analyze the time transition error between two gait sub-phases. An 

additional  study was done and provided a classification of the two main phases of the gait cycles: 

Stance (Class 0) and Swing phase (Class 1) and the prediction of the floor foot contact signal (HS 

and TO events) from only sEMG signals during level ground walking. sEMG envelopes were used 

to train the net. Then, on the net output, TO event was detected identifying the sample in which the 

transition between Stance and Swing occurred, HS event was identified as the sample in which the 

transition between Swing and Stance occurred. This last approach has been already faced in literature 

[14,15,18,50,51]. Results in predicting HS and TO events provided by this additional study were 

compared with the ones achieved in literature [14,15,18] to test the reliability of prediction. The 

studies just described were performed using the open-source web application Jupyter Notebook that 

uses Python as the programming language. 
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5.1 Dataset and Signal Acquisition 

The dataset included foot-floor contact and sEMG signals recorded during walking on a sample of 30 

healthy subjects (16 female, 14 male). These data have been acquired in the Analysis Laboratory of 

Movement of the University of Politecnica of Marche, Ancona. Subject’s characteristics reported as 

mean value ± standard deviation (SD) was height = 174 ±9 cm;  mass = 64.1 ±11.2 kg; age = 23.6±1.7 

years. Subjects with a disorder of the nervous system or with a history of orthopaedic surgery were 

not considered in the study since could affect the performance of walking. 

The multichannel recording system, Step 32 (Medical Technology, Italy, Version PCI-32 ch2.0.1. 

DV, resolution: 12 bit; sampling rate: 2000 Hz) was used to acquire surface electromyographic 

(sEMG) and basographic signals (signals detected from footswitches). The basographic sensor 

consists of a rectangular membrane switch, with a side of 11 mm, placed at the end of a strip of 

flexible plastic material and insulating. At the opposite end, a connector is applied, necessary for 

connection to the preamplifier / decoder. The basographic sensor make it possible to collect the data 

relative to the foot-floor contact phase. The footswitches are placed in 3 independent zones: heel (T), 

first (M) and fifth (L) metatarsal heads and are connected through a wire to a computer. Each lower 

limb was instrumented with three footswitches under the foot and five sEMG probes, as shown in 

Figure 5.1. The footswitches were activated by a force of  3 N [15].  

 

 

Figure 5.1. Five sEMG signals from each leg were acquired. Rectus Femoris (RF), Vastus Lateralis (VL), Hamstrings (HM), Tibialis 

Anterior (TA), Gastrocnemius Lateralis (GL) muscles. The footswitches are placed under the Heel, first and fifth metatarsal head.  

 



38 

 

 

Figure 5.2. 8 gait phases reduced in 4 gait phases. 0 = Flat Foot Contact (FFC), 1 = Heel Contact (HC), 2 = Push Off (PO), 3 = 

Swing Phase (S).  

All the subjects walked following a specific path, information from the footswitches was gradually 

collected [20]: the Heel Contact phase (HC) occurred when  only the footswitch under the heel was 

closed. The Flat Foot Contact phase (FFC) occurred when the heel footswitch was closed, and at least 

one of the footswitches under the forefoot was also closed. The Push-Off phase (PO) occurred when 

the footswitch under the heel is open, and at least one of the footswitches under the forefoot was 

closed. The Swing phase (S) occurred when all the footswitches were open. Then, gait events were 

defined as the transition instants between two gait phases: Heel Strike (HS) between S and HC, 

Midfoot strike (MS) between HC and FFC phase, Heel Rise (HR) between FFC and PO phase, Toe 

Off  (TO) between PO and Swing phase.  The Figure 5.3 schematizes the four on/off combinations 

of the footswitches and the corresponding gait phases. 

 

Figure 5.3. Gait phases for one leg: Heel Contact (HC), Flat Foot Contact (FFC), Push Off phase (PO), Swing Phase (S). HC, FFC 

and PO belong to Stance Phase (60 % of gait cycle). 
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sEMG signals collected from tibialis anterior (TA), gastrocnemius lateralis (GL) and medial 

hamstring (MH), were registered by means of three single-differential probes with fixed geometry: 

(Ag/Ag-Cl disk; electrode diameter: 0.4 cm; gain: 1000; high-pass filter: 10 Hz; input impedance: 1.5 

G; CMRR > 126 dB; input referred noise: 1 Vrms) two electrodes are linked to the probe and are at a 

fixed distance of 8 mm. Furthermore, sEMG signals collected from vastus lateralis (VL) and rectus 

femoris (RF) were registered by means of two single-differential probes with variable geometry: 

(Ag/Ag-Cl disks; gain: 1000, high-pass filter: 10 Hz, input impedance >1.5 G, CMRR >126 dB, input 

referred noise 200 nVrms) two electrodes are positioned at a variable distance on the patient, starting 

from a minimum of 12 mm.  

 

 

Figure 5.4. On the left, electrode with a fixed geometry. On the right, electrode with variable geometry.  

 

 The European SENIAM (Surface Electromyography for the Non-Invasive Assessment of Muscles) 

recommendations were followed for what concern the location and orientation of the electrodes [52-

54]. Following the directive, the electrode should be placed between a motor point and the tendon 

insertion or between two motor points, and along the longitudinal midline of the muscle. The 

longitudinal axis of the electrode (which passes through both detection surfaces) should be aligned 

parallel to the length of the muscle fiber. The electrodes should not be placed in correspondence of 

the motor point and out of the edges of the muscle. The motor point provides the worst location to 

detect EMG signal. In this region action potentials travel caudally and rostrally along the muscle 

fibres. While, outside the edges of the muscle, the electrode detects crosstalk signals from adjacent 

muscles. Both situations should be avoided.  Before the application of the electrodes, what is 

important to get a good signal and avoid artifact is a proper skin preparation. In fact, the skin was 

shaved, cleansed with an abrasive paste, and wet with a damp cloth. Probes were placed over rectus 
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femoris (RF), tibialis anterior (TA), gastrocnemius lateralis (GL), hamstrings (HM) and vastus 

lateralis (VL). Each subject walked barefoot on the floor for about 5 min at their own pace following 

an eight-shaped path [55], which includes natural deceleration, reversing, curve and acceleration  as 

shown in Figure 5.5.  

 

Figure 5.5. Eight-shaped path performed by each subject during walking.  

 

5.2 Signal Pre-Processing 

Several steps were followed to pre-process the sEMG data before taking as input to the neural 

network. The sEMG signals collected from each leg of each subject, before the amplification, had an 

amplitude ranging from 0 to 10 mV. The frequency spectrum of an EMG signal ranges between 0- 

500 Hz [56]. Each sEMG signal was amplified, motion artifact and high frequency noise were 

removed by means of a high-pass filter (finite linear filter FIR: cut-off frequency: 20 Hz) and low-

pass filter (finite linear filter FIR: cut-off frequency: 450 Hz) respectively [15]. For each sEMG 

signal, the envelope was extracted following two step processes: Full-wave rectification and Low-

pass filter (second order low-pass Butterworth filter was applied with a cut-off frequency of 5 Hz) 

[56]. Zero shift was avoided by means of a zero-digital filtering. The last step was the normalization 

of the sEMG signals (the maximum peak value was considered as reference value) collected from 

each muscle of each subject in a restricted amplitude ranging between 0 and 1 [15]. In Figure 2.24 

and Figure 2.25 sEMG signals from Tibialis Anterior, Gastrocnemius, Rectus Femoris, Hamstring, 

and Vastus Lateralis of both legs of one subject are reported. The basographic signals collected from 

the foot switches placed under the foot (right foot) were processed to identify the main sub-gait 

phases: Heel Contact (HC), Flat Foot Contact (FFC), Push Off (PO) and Swing Phase (S). The 

information derived from the basographic signals were used as ground truth for the neural network.  
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Figure 5.6. Basographic signal of the Left leg and the envelope resulting from the pre-processing of the sEMG of the muscles Left 

leg are reported. Red lines correspond the instant of time in which Heel Rise and Mid foot event occurred. Heel rise and Mid Foot 

event were followed by  Push Off phase (PO) and Flat Foot Contact (FFC) respectively.  Blue lines indicate the instant of time in 

which  Heel Strike and Toe Off occurred. Heel Strike and Toe Offs events were followed by Heel Contact phase (HC) and Swing 

phase (S). The image shows the first four gait cycles (5 seconds) computed by one subject.  

 

 

Figure 5.7. Basographic signal of the Right leg and the envelope resulting from the pre-processing of the sEMG of the muscles Right 

leg are reported. Red lines correspond the instant of time in which Heel Rise and Mid foot event occurred. Heel rise and Mid Foot 

event were followed by  Push Off phase (PO) and Flat Foot Contact (FFC) respectively.  Blue lines indicate the instant of time in 

which  Heel Strike and Toe Off occurred. Heel Strike and Toe Offs events were followed by Heel Contact phase (HC) and Swing 

phase (S). The image shows the first four gait cycles (5 seconds) computed by one subject. 
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Figure 5.8. Left Foot Basographic Signal (Blue Line) overlapped with sEMG muscles of the left leg related to one subject. The 

sequence of classes 0 (Flat Foot Contact phase), 2 (Push Off phase), 3 (Swing phase), 1 (Heel Contact phase) define one gait cycle. 

Typical activity of Left Tibialis Anterior (TA-L), Left Gastrocnemius (GM-L), Left Rectus Femoris (RF-L), Left Hamstring (HM-L), 

Left Vastus Lateralis (VL-L) during some gait cycles. 

 

 

 

Figure 5.9. Right Foot Basographic Signal (Blue Line) overlapped with sEMG muscles of the right leg related to one subject. The 

sequence of classes 0 (Flat Foot Contact phase), 2 (Push Off phase), 3 (Swing phase), 1 (Heel Contact phase) define one gait cycle. 

Typical activity of Right Tibialis Anterior (TA-R), Right Gastrocnemius (GM-R), Right Rectus Femoris (RF-R), Right Hamstring 

(HM-R), Right Vastus Lateralis (VL-R) during some gait cycles. 
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5.3 Data Preparation 

The sEMG envelopes were used to train the neural network classifier to perform a classification of 

gait sub-phases (HC, FFC, PO, S phases)  and detecting the transitions moment between two phases. 

In a preliminary study, the first 30.000 samples of sEMG signals of each subject were considered, 

and a cross-validation using 30 folds was performed, each of which uses data from 29 subjects in 

training and 1 in test. At each fold, a different subject was used as the test subject. More precisely, 

the training set collected sEMG envelopes (first 30.000 samples) of each subject (approximately 15 

seconds of walking), the test set contained sEMG envelopes of a unique subject considering always 

the first 30.000 samples. Thus, this first step was done to observe, principally, the training process 

time work considering partial length sEMG signals of each subject. The final study provided the 

classification of gait sub-phases (HC, FFC, PO, S phases) and prediction floor foot contact signal, but  

currently considering the complete sEMG signal acquired during walking on 30 subjects. A cross-

validation using 5 folds was performed, each of which uses data from 24 subjects in training set 

(Learned subjects) and 6 subjects in test set (Unseen subjects). Each fold was composed by different 

subjects in test set. The information derived from the flat-foot contact signal was used as ground truth 

for the net and useful to define, in the dataset, the number of gait events (HS, MS, HR, TO) present 

in each fold both in training and test set. More precisely, the number of gait events identified by the 

basographic signal is referred to the 24 subjects in training set and the 6 subjects in test set: 

• Fold 1 included, in training set, 5568 HS, 5588 MS, 5584 HR, 5596 TO events  while the test 

set was constituted by 1390 HS, 1397 MS, 1396 HR, 1399 TO events. 

• Fold 2 included 6444 HS, 6538 MS, 6508 HR, 6560 TO events in training set while the test 

set include  1611 HS, 1632 MS, 1627 HR, 1640 TO events. 

• Fold 3 the training set was constituted by 4780 HS, 4848 MS, 4784 HR, 4804 TO events while 

the test set included 1195 HS, 1212 MS, 1196 HR, 1201 TO events. 

• Fold 4 included, in training set, 5292 HS, 5344 MS , 5332 HR, 5368 TO events while the test 

set included 1323 HS, 1336 MS, 1333 HR, 1342 TO events. 

• Fold 5 included 4908 HS, 4936 MS, 4932 HR, 4936 TO events in training set while the test 

set included 1227 HS, 1234 MS, 1233 HR, 1234 TO events. 

The classification of gait phases and prediction of the basographic signals from sEMG signals were 

performed on subjects walking on the level ground, in natural conditions as shown in Figure 5.5. 
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Figure 5.10. Each Fold was constituted by 6 subjects in test set. Fold 1 (Sub 25,26,27,28,29,30), Fold 2 (Sub 1,2,3,4,5,6), Fold 3 

(Sub 7,8,9,10,11,12), Fold 4 (Sub 13,14,15,16,17,18), Fold 5 (19,20,21,22,23,24). 

 

The  sEMG envelopes were used to train the LSTM neural network, (considered the most suitable for 

a multi-class classification in this work. Sequence of sEMG envelopes were given as input to the net 

attempting that  it automatically learns relevant hidden features. Classification of gait phases were 

performed using the open-source web application Jupyter Notebook that uses Python as the 

programming language. All the sEMG envelope computed for each subject were loaded by means of 

specific libraries: NumPy and Pandas libraries. For each subject, all ten sEMG time-series signals 

from rectus femoris (RF), tibialis anterior (TA), gastrocnemius lateralis (GL), hamstrings (HM) and 

vastus lateralis (VL) of both legs were synchronized so that a vector of 10 elements was constructed 

for each instant of time. Thus, the dataset consisted of a time-series of sEMG signals. All the data, 

for the training of the network,  of each subject were concatenated  by means a specific function 

defined in the NumPy library to obtain a unique training vector, used to feed the LSTM neural 

network. The ground truth, represented by the value of the basographic signal was assigned to each 

input vector  and a one hot encoding technique on the target data was performed. The categorical 

features digit with the value k in [0-3], in which 0 represents Flat Foot Contact phase, 1=Heel Strike 

phase, 2=Push Off phase and 3=Swing phase, have been encoded into a binary vector with 4 positions, 

which always has 0 value, except the k-th position where a 1 is assigned. This type of representation 

is called one-hot encoding (OHE) [57]. Then, in all the experiments, each sEMG signal was split into 

500-sample windows (corresponding to 250 ms). A chronological sequence of 500-sample windows 

was created, the input training size was constituted by windows of 500 samples for each sEMG signal. 

For instance, considering the first window input, the first element is characterized by the 10 sEMG 

signals values at the first sample, the second element of the window is characterized by the 10 sEMG 
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signals values at the second sample and so on. Thus, the training input size was characterized by the 

following shape: number of windows, 500, 10. The first element corresponds to the total number of 

the window, the second element represents the amplitude of the window and finally the third element 

represents the number of sEMG signals collected from each subject considering both the legs. The 

same procedure has been repeated for all the subjects used as test set. 

 

5.4 Gait sub-phase Classification 

Keras libraries were used to load and then work with the net for the classification of  gait sub-phases. 

In all the studies the LSTM neural network  used for the classification is available on GitHub [58], it 

is possible to download it as JSON file and work with it directly opening any note program. The 

neural network consisted of 3 hidden bidirectional LSTM layers with 32 hidden units (the number of 

neural units was modified, the original one was composed by 800 units per layer) . Each processing 

unit corresponds to one neuron. Tanh and Sigmoid optimization functions were defined in each layer. 

Then, each layer was followed by a dropout layer with a rate of 0.2. A dropout layer helps prevent 

overfitting (condition in which the net fits too much on a set of data and therefore fail to fit additional 

data, unknown data for it, or predict future observations reliably) ignoring, randomly, some neurons 

during training (in this case 20% of neurons) [45]. The input layer was set to take as input 3-

dimensional vector in which the first element corresponds to the number of windows, the second 

element represents the number of samples in each window and finally the third element the values of 

sEMG signals collected from both legs. The final layer, the one-time distributed layer, was used to 

classify all the 4 gait sub-phases (Heel Contact, Flat Foot Contact, Push Off and Swing Phase)  and 

the sigmoid function was used as optimization function. Sigmoid function squeezes the k-dimensional 

vector of arbitrary values into a k-dimensional vector of real values in the range of (0,1) [45]. It 

aggregates all the answers provided by the previous layers with 4 neurons (k=4, each neuron 

corresponds to the specific gait sub-phase class); The number of the hidden layers and the number of 

processing units chosen represents a good compromise between network performance and  the 

training process time work. Then, the model was loaded on Jupyter Notebook application using  

python libraries. In Figure 5.11 the overall layout of the neural network for a multi-class classification 

is reported. 
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Figure 5.11. LSTM neural network layout for a multiclass classification (4 phases). 3 hidden bidirectional layer and time distributed 

layer as final layer. For each layer the output shape and the number of parameters is reported. Alle the parameters can be trainable. 

The terms “n” is not fixed, it represents the number of windows that the neural network takes as input.  

 

Once the model is defined, the neural network was compiled using TensorFlow and keras as backend. 

In compilation phase, three functions were defined: the optimization function, the loss function and 

the metrics used to measure the performance of the classification [59]. The first algorithm, while the 

training process was being performed, was used to update the weights between neuron connections; 

the second algorithm (loss function) was used by the optimization algorithm to navigate in the space 

of weights (the process of optimization is also called process of minimization of the loss function). 

In mathematical optimization, represents the cost associated to an event or value of one variable 

which its goal is to minimize the error associated to the estimated variable with respect to the actual 

value of the same variable. Finally, the last algorithm, the metric was used to evaluate the trained 

model.  

The optimizer function used was Adam. Adam optimization is a stochastic gradient descent method 

that is based on adaptive estimation of first order and second-order moments [60]. Unlike the others 

stochastic gradient descent methods, the learning rate changes dynamically during training, each time 

the weight is updated. It works with three parameters: learning rate (α term), first order moment (𝛽1 

term) and second order moment (𝛽2 term). Specifically, the Adam optimization algorithm uses the 

advantages of two extensions of stochastic gradient descent AdaGrad and RMSProp. Adaptive 

Gradient Algorithm (AdaGrad) that keeps a per-parameter learning rate that improves performance 

on problems with sparse gradients. Root Mean Square Propagation (RMSProp) that also maintains 

per-parameter learning rates that are adapted based on the average of recent magnitudes of the 
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gradients for the weight. Instead of adapting the parameter learning rates based on the average first 

moment as in RMSProp, Adam also makes use of the average of the second moments of the gradients. 

Specifically, the algorithm calculates an exponential moving average of the gradient and the squared 

gradient, and the parameters 𝛽1 and 𝛽2 control the decay rates of these moving averages. The initial 

value of the moving averages and 𝛽1  and 𝛽2 values close to 1 result in a bias of moment estimates 

towards zero. This bias is overcome by first calculating the biased estimates before then calculating 

bias-corrected estimates. Within Adam function the parameters as learning rate, 𝛽1 and 𝛽2 were set 

with their default values. The learning rate is a tuning parameter that determines the step size at each 

iteration while moving toward a minimum of a loss function. It represents the speed at which a 

machine learning model learns. It was set to 0.001, 𝛽1 was set to 0.9 and 𝛽2 was set to 0.99 (default 

values). 

The loss function chosen was the categorical cross-entropy. It represents a multi-class logarithmic 

loss [59]. For instance, considering a  target value 𝑡𝑖,𝑗 and its prediction 𝑝𝑖,𝑗 from the network (𝑡𝑖,𝑗, 

and 𝑝𝑖,𝑗  were expressed in one-hot) the error between the target and prediction value is computed by 

the following equation representing the categorical cross-entropy:  

𝐿𝑖 =  − ∑ 𝑡𝑖,𝑗log (𝑝𝑖,𝑗)
𝑗

 

Accuracy was the metric function used to measure the performance of the trained model. It is defined 

as the ratio between the predictions of the network and the actual values as targets. It is expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

Once the model is compiled, the net can be trained. Remaining hyperparameters were set before 

starting the training process: the number of epochs and the batch size value. The epochs represent the 

number of times the training process is repeated over the training data. At each iteration the optimizer 

adjusts the weights so that the loss function is minimized. Batch size is the number of input elements 

observed before applying the weight update. The number of epochs was set to 20 with a batch size of 

32. Furthermore, at each epoch, all the network’s weights and training times were saved for all the 

folds. All the weights, at each epoch, were saved as HDF5 format. In all the studies, training and test 

set were rigorously separated ( There was no point in evaluating a model on a specific data that has 

already been used for training). In Figure 5.12, Train Accuracy and Loss Function development in 

the first 20 epochs related to a multi-class classification are reported. 

5.1 

5.2 
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Figure 5.12. Train and Loss function development (first 20 epochs) related  to a multi-class classification: Heel Contact, Flat Foot 

Contact, Push Off and Swing phases. 

       

Once the net is trained, it was used to make predictions on test set  by means of the following function: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑑𝑎𝑡𝑎. 𝑡𝑒𝑠𝑡) 

This  function provided as output, a matrix of predictions with 4 columns (each column represented 

a specific class) for each element of 500 samples window in dataset used as test set. The matrix of 

predictions represents, simply, the output of the sigmoid function of the final layer (all the values 

range between 0 and 1 in each column). The digit with the highest value, given by the sigmoid 

function, was chosen as prediction and the label 1 was assigned, the other digits, in the remaining 3 

columns, were set to 0. Then, in each raw of the matrix of predictions, the positions of the labels 1 

were used to construct a categorical prediction vector assigning, in base of the position of the label 1, 

the values 0,1,2 or 3 corresponding to HC, FFC, PO and S phase respectively. Finally, once the 

prediction signal was obtained, it was saved as csv file. 

 

 

 

 

 

5.3 
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5.5 Gait Events Time Detection. 

The categorical output of the neural network was chronological arranged to predict the basographic 

signal. Thus, the output of the network, saved as csv file, was composed of sequences of 1 (Heel 

Contact phase), 0 (Flat Foot Contact phase), 2 (Push Off phase) and 3 (Swing phase). An algorithm 

was developed  in order to detect the transitions between gait phases, so called gait events: from 3 to 

1 (Heel Strike), from 1 to 0 (Mid Foot Strike), from 0 to 2 (Heel Rise) and from 2 to 3 (Toe Off). 

First, the predicted signal was cleaned in order to remove false phases classified by the network, 

phases too short according to physiological constraints of the gait cycle [2, 31]. Two threshold values 

were set: 300 samples (150 ms) for MS, HR and TO; 60 samples (30 ms) for HS. Thus, starting from 

the first event detected, the following samples, according to the threshold value, were scanned to find 

and remove all the events which assumes values different from the value of those event. For instance, 

starting from the first HR event, the following 300 samples were scanned, all the samples which 

assume value different from 2, hence 0,1 or 3 were removed. Then, the cleaned vector was scanned 

again to detect the transitions between two phases and the timing of gait events. Finally, the cleaned 

prediction output was saved as csv file. 

At this point, the performance (accuracy) of the classifier in assigning the correct label to the input 

set containing sEMG segments was measured for the multiclass classification, in assigning 1 for HS 

phase, 0 for FFC phase, 2 for PO phase and 3 for Swing phase. Anyway, this measure has one limit: 

even if the accuracy value is high, if the errors are concentrated near the point of transitions, 

unsatisfactory results will be obtained in terms of time error of gait events. For this reason, a post-

processing algorithm was applied to remove false predictions and increase performance. Then, is 

adopted the following approach to evaluate, used in literature, to evaluate gait events prediction [61, 

62]. A temporal tolerance (𝑇) of 300 samples (150 ms) was set, this means that a gait event is 

considered as a true positive at the time instant 𝑡𝑖 if an event of the same type exists in the reference 

signal (basographic signal) at time 𝑡𝑝  such that |𝑡𝑝 − 𝑡𝑖| < 𝑇. Otherwise, the predicted event is 

considered as False Positive [61, 62]. For each gait event, precision, recall and F1 Score were 

measured for all true positive.  

Precision is defined as the ratio between the number of true positives divided by the total number of 

true positive and false positive. It is defined by the following equation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

5.4 
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Recall is defined as the ratio between the number of true positives divided by the number of true 

positive summed with false negative. It is defined by the following equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where: 

• TP: True Positives of a predicted event at the time 𝑡𝑖 if the same event exists in the reference 

signal at the time  𝑡𝑝 such that  |𝑡𝑝 − 𝑡𝑖| < 𝑇.   

• FP: False Positive of a predicted event at the time at the time 𝑡𝑖 if the same event doesn’t exist 

in the reference signal. 

• FN: False Negative of a predicted event if it doesn’t exist but exists in the reference signal. 

F1-Score is defined as the harmonic mean between Precision and Recall. It is computed by the 

following equation: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Furthermore, for all true positives, the mean average error (MAE) was computed measuring the 

temporal distance between the predicted event and the actual one in the reference signal.   
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5.6 Additional Approach: Stance and Swing Phase Classification  

An additional study provided a classification of the two main phases of the gait cycles: Stance and 

Swing phase and the prediction of the floor foot contact signal (HS and TO events) from sEMG 

signals. In this case, the first 30.000 samples of  each sEMG signal acquired from both legs for each 

subject were considered and a cross-validation using 30 folds was performed, each of which uses data 

from 29 subjects in training and 1 in test. Heel Contact, Flat Foot Contact and Push Off phases were 

included in Stance Phase. The basographic signal values have been modified so that the value 0 

corresponds to the Stance phase (HC, FFC, PO labels were set to 0), while 1 to the Swing phase (S 

label from 3 was set to 1). Then, a binary classification was computed. The label 0 was assigned to 

each input vector, which signals belong to the Stance phase and 1 if sEMG signals belong  to Swing 

phase. sEMG envelopes were used to feed a LSTM neural network. The net was constituted by 3 

hidden LSTM layer followed by a dropout layer. Finally, a one-time distributed layer with 2 

processing units was used to classify Stance and Swing phase. The output of the classifier was 

chronological arranged to predict the basographic signal. It was composed of sequences of 0 (Stance 

phase) and 1 (Swing phase). A post-processing algorithm, applied on the binary output of the neural 

network, was used to remove false Swing or false Stance phases classified by the net. Finally, 

performances in assessing HS and TO events were reported in terms of F1-Score and MAE. Figure 

5.13 shows the overall layout of the neural network for a binary classification. 

 

 

Figure 5.13. LSTM neural network layout for a binary classification (2 phases). 3 hidden bidirectional layer and time distributed 

layer as final layer. For each layer the output shape and the number of parameters is reported. Alle the parameters can be trainable. 

The terms “n” is not fixed, it represents the number of windows that the neural network takes as input.  
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6. Results 

The final study provided an attempt to classify gait sub-phases (HC, FFC, PO, S phases) by means of 

deep learning techniques from sEMG signals acquired from subjects performing a level ground walk. 

A cross-validation using 5 folds was performed, each of which uses data from 24 subjects in training 

set (Learned subjects) and 6 subjects in test set (Unseen subjects). Table 6.1 shows the classification 

accuracy obtained for Fold 1, Fold 2, Fold 3, Fold 4, and Fold 5 for both Learned subjects and Unseen 

subjects. Furthermore, the mean classification accuracy and  standard deviation (the measure of the 

grade of dispersion of the values around the mean value)  obtained over 5 folds is reported both for 

Learned subjects and Unseen subjects.  

 

       Folds               Learned Subjects       Unseen Subjects 

      Fold 1                          90%                          87%  

      Fold 2                          90%                          82% 

      Fold 3                          90%                          85% 

      Fold 4                          89%                          84% 

      Fold 5                          88%                          88%                                                              

   MV (±SD)                  89 ± 1.0%                 85 ± 2.0%                                            

 

Table 6.1. Gait phase classification Accuracies (±SD) of Fold 1, Fold 2, Fold 3, Fold 4, and Fold 5 and the averaged one (MV). 

 

One can notice that the average accuracy of gait phases classification (Heel Contact, Flat Foot 

Contact, Push Off and Swing phase) for subjects in training set is higher than for subjects in test set 

(89% vs. 85%). Furthermore, looking the value of the Standard Deviation (SD), one can notice a 

higher variability of accuracy considering unseen subjects set than Learned subjects set (1.0% vs. 

2.0%). Anyway, this limited gap (2.0%) on unseen subjects suggests that the LSTM neural network 

worked well and is able to perform and predict data that it has never seen, unknown to it. Gait sub-

phase classification of Fold 1, Fold 2 and Fold 3 performed best on Learned subjects (90%). While 

the average accuracy on unseen subjects on the five folds varies, which are 87%, 82%, 85%, 84% and 

88% respectively. Starting from the result of the classification, the evaluation of the performance in 

predicting the basographic signal was performed before the application of  the post-processing 
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algorithm on the net output. A temporal tolerance (150 ms) was set, and performance, in terms of 

MAE and F1-Score in assessing HS, MS, HR and TO events on unseen subjects was computed. Table 

6.2 shows the performance results in predicting gait events for unseen subjects in each Fold. The 

average prediction error (MAE) computed over the 5 folds on unseen subjects  is 20.3 ± 4.4 ms for 

HS, 32.7 ± 2.5 ms for MS, 20.3 ± 4.4 ms, 51±9.5 ms for HR, 30.38±5.5 ms for TO. Fold 5 performed 

best in terms of gait events identification on unseen subjects (F1-Score: 90% HS, 81% MS, 83% HR, 

83% TO) and prediction error of gait events (MAE: 17.9 ms for HS, 29.3 ms for MS, 40.3 ms for HR, 

29 ms for TO). Group of unseen subjects in Fold 2 performed worst in identifying Mid foot strikes 

(F1-Score 72%), Heel Rise (F1-Score 72%) and Toe Off events (F1-Score 76%). In general, as for 

prediction accuracy of each gait event, Heel Strike event performed best (F1-Score 90 ± 4.0%). Toe 

Off event is also good (F1-Score 86 ± 4.0%) except for low value of performance in Fold 2. Mid Foot 

Strike event and Heel rise event have the lowest performance with none of accuracies achieved 90% 

and have the lowest values of table on Unseen subjects of Fold 2.  

 

 

Table 6.2. F1-Score (±SD) and Mean Average Error (MAE) measured on unseen subjects of each Fold. The evaluation of the 

predicted gait events is performed considering the prediction signal directly coming out of the neural network. 

                                                    Heel Strike            Mid-Foot Strike               Heel Rise                  Toe Off   

                F1-Score                           91%                           82%                            82%                         90% 

                MAE (ms)                      19.89                          32.24                           44.52                       21.96                                      

                F1-Score                           88%                           72%                            72%                         76% 

                MAE (ms)                      27.59                          36.74                           51.94                       33.14 

                F1-Score                           97%                           96%                            85%                         97% 

                MAE (ms)                      16.08                          33.15                           65.15                       34.33 

                F1-Score                           85%                           81%                            86%                         82% 

                MAE (ms)                      20.02                          31.49                           53.47                       33.48 

                F1-Score                           90%                           81%                           83%                          83% 

                MAE (ms)                      17.93                          29.98                           40.34                       28.99 

                F1-Score                      90 ± 4.0%                 80 ± 12.0%                 82 ± 6.0%                 86 ± 8.0% 

                MAE (ms)                   20.30±4.38                32.72±2.54                 51.08±9.52               30.38±5.14 

 Fold 1 

Fold 2 

Fold 1 

 

  Fold 3 

 Fold 4 

 Fold 5 

MV           

(± SD) 
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Considering the mean average error value, one can notice that net shown more difficulty in predicting 

HR events. In fact, the highest time prediction error occurred for HR event (51.08 ± 9.52 ms).            

As already said in Section 5.5, the output of the network is influenced by false phases classified by 

the net. A post-processing algorithm has been applied to remove false phases and phases too short 

according to physiological constraints of the gait cycle [2, 31]. Then, the cleaned vector was scanned 

to detect the transitions between two phases and the timing of gait events. Table 6.3 shows the 

performance in terms of F1-Score and MAE in identifying and predicting gait events HS, MS, HR 

and TO once the post processing algorithm is applied. The table reports the results related on Unseen 

subject in each Fold. Comparing the results reported in Table 6.2 with the results reported in Table 

6.3, one can notice that the performance in identifying gait events is augmented once the post-

processing algorithm is applied: F1-Score HS: 90% vs 92%, F1-Score HR: 82% vs 90%, F1-Score 

TO: 86% vs 97% and F1-Score MS:80% vs 96% respectively. For what concern the prediction time 

error expressed as the time distance between the instant of time in which the event takes place and 

the estimated one (MAE), it remained almost unchanged, more precisely, post-processing output 

show a slight increase of time error prediction: MAE HS: 20.3 ms vs 20.6 ms, MAE HR: 51.1 ms vs 

53.8, MAE TO: 30.4 ms vs 30.9 ms and MAE MS: 32.1 ms vs 35 ms. One can notice that, also in 

this case, Fold 5 performs best in terms of gait event identification and gait event time error prediction. 

The F1-Score reaches values near to 100% for HS (98%), MS (98%), and TO (98%) event 

identification. HR event is also good reaching a F1-Score of 94%. Also in the case, in this specific 

fold, the time error prediction is slightly augmented (MAE HS: 19.4 ms, MAE MS: 32.5 ms, HR:44.1, 

TO: 30.2). Unlike the previous case, the performance in identifying gait events on Unseen subjects 

in Fold 2 is greatly increased and in line with the performances obtained on Unseen subjects of the 

other folds. Furthermore, one can notice that the best performance, in terms of F1-Score, obtained 

over the 5 folds are performed by MS (F1 Score 96%) and TO (F1 Score 97%) events, in contrast 

with the results shown in Table 3.2 in which HS and TO events shown the best performance. Anyway, 

HS and HR event obtained a good performance achieving an F1-Score of 92% and 90% respectively. 

For what concern the time error prediction (MAE), the best performances are achieved by HS and 

TO events with an average time error over the 5 folds of 20.7 ± 4.8 ms and 30.9 ± 5.0 ms respectively. 

More detailed results (F1-Score and MAE values) related to each Unseen subject in each Fold are 

reported in Appendix.  
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Table 6.3. F1-Score (±SD) and Mean Average Error (MAE) measured on unseen subjects of each Fold. The evaluation of the 

predicted gait events is performed on the post-processing signal.  

 

Figures 6.1, 6.2 and 6.3 show an example of prediction of the foot floor contact signal (blue line) 

provided by this approach compared with the ground truth (red line) represented by the basographic 

signal of three unseen subjects (subjects 19, 20, 21) in Fold 5. The figures show the predictions made 

in the first 15 seconds. The sequence of classes 1, 0, 2, 3 represent one gait cycle corresponding to a 

series of Heel Contact, Flat Foot Contact, Push Off and Swing phases respectively. Gait events are 

defined as transition moments between gait phases. One can notice that this approach, provide a good 

prediction of the flat foot contact signal, each predicted gait cycle overlaps with the reference one 

also in the presence of irregular walking activity (subjects walked on the ground performing an eight-

shape path). Figure 3.1 shows the prediction of the ground flat foot contact signal of subject 19. A 

good prediction is obtained for this specific subject, almost all gait events are correctly identified (F1 

Score HS: 95%, F1 Score MS: 98%, F1 Score HR: 91%, F1 Score TO: 96%) with an average time 

error of prediction (MAE) of  27.0 ms for HS, 47.2 ms for MS, 30.0 ms for HR, 23.6 ms for TO event. 

One can notice that in the first 15 seconds all the gait events are correctly predicted, gait phases (Heel 

                                                  Heel Strike               Mid-Foot Strike               Heel Rise                  Toe Off   

                F1-Score                         88%                             94%                            93%                          99% 

                MAE (ms)                     17.93                           41.50                           50.45                         22.45                                      

                F1-Score                         89%                             98%                            86%                          95% 

                MAE (ms)                      28.47                          34.12                          54.34                         33.26 

                F1-Score                         98%                             97%                            85%                          97% 

                MAE (ms)                      16.08                          33.15                          65.15                         34.32 

                F1-Score                         89%                             94%                            89%                          96% 

                MAE (ms)                      21.39                          34.06                          54.97                         34.09 

                F1-Score                         98%                             98%                            94%                          98% 

                MAE (ms)                      19.44                          32.47                          44.07                         30.17 

                F1-Score                     92 ± 4.0%                    96 ± 2.0%                  90 ± 4.0%                 97 ± 2.0% 

                MAE (ms)                 20.66±4.78                  35.06±3.66                53.80±7.69               30.86±4.98 

 Fold 1 

Fold 2 

Fold 1 

 

  Fold 3 

 Fold 4 

 Fold 5 

MV           

(± SD) 
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Contact, Flat Foot Contact, Push Off and Swing phases) are well defined except in the first gait cycle 

in which an additional swing phase has been classified immediately after the previous Heel contact 

phase. Anyway, the predicted signal is able to clearly follow the ground truth represented by the foot 

floor contact signal.  Note that Heel Contact phase is the shortest phase, it corresponds to only 2% of 

gait cycle.  

 

 

Figure 6.1. Unseen subject 19 in Fold 5. Blue Line predicted signal. Red line reference one (floor foot contact signal). Class 0=FFC 

phase, Class 1=HC phase, Class 2=PO phase, Class 3=Swing phase. HS event between class 3-1, MS event between class 1-0, HR 

event between class 0-2, TO event between class 2-3. 

 

Figure 6.2 shows the prediction of the ground flat foot contact signal of subject 20. An excellent 

prediction is obtained for this specific subject, almost all gait events are correctly identified, in 

particular TO events are all correctly predicted (F1-Score HS: 99%, F1-Score MS: 99%, F1-Score 

HR: 96%, F1-Score TO: 100%) with an average time error of prediction (MAE) of  18.4 ms for HS, 

38.5 ms for MS, 60.6 ms for HR, 32.8 ms for TO events. In the first 15 seconds shown in the figure, 

one can notice that a good prediction of HS, MS, HR and TO events occur (predicted and foot floor 

contact signals are almost completely overlapped), gait phases (Heel Contact, Flat Foot Contact, Push 

Off and Swing phases) are correctly classified in all gait cycles. Unlike the previous subject, one can 

notice the predicted timing error of HR events in some gait cycles especially in the first one. However, 

this is a very small error since also in this case the predicted signal is able to faithfully follow the 

reference signal as for the previous subject.  
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Figure 6.2. Unseen subject 20 in Fold 5. Blue Line predicted signal. Red line reference one (floor foot contact signal). Class 0=FFC 

phase, Class 1=HC phase, Class 2=PO phase, Class 3=Swing phase. HS event between class 3-1, MS event between class 1-0, HR 

event between class 0-2, TO event between class 2-3. 

 

Figure 6.3 shows the prediction of the ground flat foot contact signal of subject 21. An excellent 

prediction is obtained for this specific subject, almost all gait events are correctly identified, in 

particular TO events are all correctly predicted (F1-Score HS: 97%, F1-Score MS: 99%, F1-Score 

HR: 96%, F1-Score TO: 97%) with an average time error of prediction (MAE) of  21.7 ms for HS, 

19.7 ms for MS, 30.7 ms for HR, 33.6 ms for TO events. In the first 15 seconds shown in the figure, 

one can notice that a good prediction of HS, MS, HR and TO events occur (predicted and foot floor 

contact signals are almost completely overlapped).  In one gait cycle there is an additional heel contact 

phase that should not be there, so a false positive event (HS) has been detected. 

 

Figure 6.3. Unseen subject 21 in Fold 5. Blue Line predicted signal. Red line reference one (floor foot contact signal). Class 0=FFC 

phase, Class 1=HC phase, Class 2=PO phase, Class 3=Swing phase. HS event between class 3-1, MS event between class 1-0, HR 

event between class 0-2, TO event between class 2-3. 
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In the additional study a binary classification was performed. sEMG envelopes were used to feed a 

LSTM neural network to classify the main gait phases: Stance and Swing phase. Table 6.4 shows the 

average classification accuracy (±SD) obtained over the 30 folds on Learned subjects and Unseen 

subjects. The net was able to classify the main gait phases with an average accuracy of 95 ± 0.4% on 

Learned subjects and 93 ± 3.0% on unseen subjects. 

 

                              Learned Subjects        Unseen Subject 

Accuracy (±SD)          94 ± 0.4%                   93 ± 3% 

 

Table 6.4. Average classification Accuracy (±SD) obtained over the 30 folds for Learned Subjects and Unseen Subjects.  

 

One can notice that the average accuracy of gait phases classification (Stance and Swing phase) for 

subjects in training set is higher than for subjects in test set (89% vs. 85%). Furthermore, looking the 

value of the Standard Deviation (SD), one can notice a higher variability of accuracy across the 30 

folds considering unseen subjects set than Learned subjects set (0.4 vs. 3.0). Also in this case, the 

limited gap, around 3.0 %, on unseen subjects suggests that the LSTM neural network worked well 

and was able to classify data that it has never seen. The performance in detecting HS and TO events 

was measured on post-processing net output in terms of F1-Score and MAE. Over the 30 folds, on 

unseen subjects, HS events were predicted in 25.14±12.28 ms and TO events were predicted in 

35.32±14.37 ms with an F1-Score of 95 % ± 6.0 and  93 % ± 7.0 respectively (Table 6.5). The 

approach, followed in this study, allows to reach better performances in predicting Heel Strike events 

rather than Toe Off events.  

 

MV (±SD)                                  Heel Strike                                           Toe Off                   

F1-Score                                      95 ± 6.0%                                           93 ± 7.0% 

MAE (ms)                                  25.14±12.28                                       35.32±14.37 

 

Table 6.5. Evaluation of Prediction of basographic signal. Average MAE and F1-Score (±SD) results obtained over the 30 folds on 

unseen subjects.  

 



59 

 

7. Discussion and Conclusion 

The goal of this study is to propose a novel approach for classifying the main gait sub-phases (Heel 

Contact, Flat Foot Contact, Push Off and Swing phase) and assessing HS, MS, HR and TO events by 

means of a deep learning approach based on the analysis of sEMG signals acquired from five muscles 

of both legs during walking. Foot-switches signals were adopted as the ground truth since it is a very 

accurate approach for assessing spatial-temporal parameters and allows to acquire numerous 

consecutive strides [19].  A LSTM recurrent neural network composed by three hidden layers with 

32 units was chosen. A one-time distributed layer was chosen as output layer to classify the four gait 

sub-phases. All the inputs data are arranged in a temporal sequence. Considering the complexity of 

classification of sub phases due to the high variability of temporal and spatial parameters of the sEMG 

signals in natural walking condition, the LSTM recurrent neural network was considered more 

suitable to the aim of this study. In general, time and frequency domain features are extracted to train 

the model in order to classify EMG signals from lower-limb muscles [63]. However, the choice of 

the feature could affect the performance of classification. For this reason, the present study directly 

used the envelope of sEMG signal to train the networks, attempting to automatically learn relevant 

higher level (hidden) features, following the procedure proposed in [15]. The training process was 

repeated 5 times, each time using different six subjects as test set. Thus, a cross-validation with 5 

folds was performed. The Table 6.1 shows the average sub phase classification accuracy over 5 folds 

(±SD) of  89 ± 1.0% for Learned Set and 85 ± 2.0% for test set. On unseen subjects a reduction of 

accuracy is detected, and as expected, the standard deviation is higher, indicating a large variability 

of classification for subjects not used during training phase. Anyway, the classification accuracy 

achieved on unseen subjects is still ≥ 85%, suggesting that the model is able to perform a reliable gait 

sub-phase classification even testing on subjects that it has never seen before. Accuracy values < 90% 

are likely due to different factors. The main one is that the sEMG dataset was quite imbalanced. In 

fact, the sEMG data were segmented into 4 classes, following the physiological definition of gait sub-

phases; thus, each class had a different duration (i.e., different number of samples to classify). The 

Swing phase covered the biggest part of the dataset (it corresponds to the 40-45% of the gait cycle) 

followed by flat foot contact phase (20-30% of the gait cycle), push off (15-25% of the gait cycle) 

and Heel contact phase (the shortest phase corresponding to the 5-10% of gait cycle). This issue could 

be improved by augmenting the dataset and making it more balanced. The second factor is due to the 

large variability of the sEMG and foot-floor-contact signals that could affect the performance of the 

classifier. The subjects, indeed, followed an eight shaped path on the ground during the experimental 

protocol and this introduce gait variability such as number of steps and cadence, walking speed and 
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changes in sEMG activation, due to curves, reversing, acceleration, deceleration with respect to the 

treadmill walking. The impact of this issue has been partially limited by using a great amount of data 

to train the model (ten sEMG signals were acquired from both legs per subject and around 11.000 

gait cycles considering the 24 subjects in training).                                                                                

The identification of gait events was performed both directly on the net output and after an effective 

post-processing of model output, ensuring values of F1-Score above 90%. Table 6.2 and Table 6.3 

show a comparison between the prediction of gait events before the application of the post-processing 

algorithm on model output and the prediction of gait events after an effective post-processing of 

model output. In the first case (no post processing), a mean F1-Score over the 5 folds on unseen 

subjects of  90 ± 4.0%, 80 ± 12%, 82 ± 6.0%, 86 ± 8.0% was reached in identifying HS, MS, HR and 

TO events respectively (Table 6.2). Furthermore, a mean MAE over the 5 folds of 20.3 ± 4.4 ms, 32.7 

± 2.5 ms, 51.1 ± 9.5 ms, 30.4 ± 5.1 ms is achieved in predicting HS, MS, HR, TO events respectively. 

As expected, gait events within the stance phase such as mid foot strike and heel rise events performed 

worst respect to heel strike event, representing the transition moment between swing and stance 

phase, and toe off event, representing the transition moment between stance and swing phase. 

Anyway, prediction error up to 50 ms can be considered acceptable from the clinical point of view 

because 50 ms corresponds to a percentage of gait cycle < 5%. In the second case application of the 

post-processing procedure), the predicted signal was cleaned in order to remove false positives in 

phase classification and phases too short according to physiological constraints of the gait cycle [2, 

31]. This approach allows to achieve better performances in terms of F1-Score, it allows significant 

improvement, especially for Mid foot strike events, of 12% reaching an F1-Score of 96%. Anyway, 

better performances in terms of F1-Score are achieved by all gait events with respect to the previous 

case: F1-Score HS: 92% (+ 2%), F1-Score HR: 90% (+ 8%), F1-Score TO: 97% (+ 11%), and F1-

Score MS: 96% (+ 16%), respectively (Table 6.3). It is important to notice that also SD values 

decreased (from 12 to 2% for MS, from 6 to 4% for HR and from 8 to 2% for TO) except for HS 

event which remained invariant. This suggests that the introduction of a post-processing procedure 

allows to reach a high repeatability of prediction quality among the five folds. Concomitantly, MAE 

values remain practically unaltered between the two approaches. One could notice that the 

performances of this approach mainly deteriorate in detecting HR events (gait event which precedes 

the push off phase) showing a prediction time error higher than that achieved by other gait events 

(53.8 ms). Although the heel rise event is the hardest to predict, the MAE remains around 50 ms, 

hence may be acceptable from a clinical point of view. Moreover, it is important to remind that these 

performances are achieved in a condition of high variability of foot floor contact due to the eight 

shape path followed by each subject. In literature, there are some studies that performed a 



61 

 

classification of gait sub phases by means of a machine learning approach using sEMG only 

[10,11,29,30,64]. The study presented in [29] achieves the better results in terms of only mean 

classification accuracy of six gait sub phases using a machine learning approach. However, none of 

these studies attempted to predict all gait events (HS, MS, HR and TO), thus the prediction error of 

gait events is not available for comparison. Furthermore, in these studies the experiments were 

performed on few subjects who walked on treadmill yielding more performing the classification 

process of gait sub phases. Thus, to date there are no better all gait event predictions (HS, MS, HR 

and TO) than those obtained in this research.   

In Appendix detailed performances in terms of F1-Score and MAE are reported for each Unseen 

subject in each fold. It is possible to notice that there is not a great variability around the mean value 

in all gait events; only few subjects distinguish from the mean values. More precisely, only subjects 

2 and 5 in Fold 2 present a higher time error (MAE) of 95 ms and 97 ms for HR prediction, 

respectively. However, the net achieved on the same subjects excellent values in the predictions of 

the other transition instants, in particular on HS and MS events with a time prediction error (MAE) 

of 30.1 ms on subject 2 and 26.1 on subject 5 for HS event and a MAE of 37.9 ms on subject 2 and 

21.0 ms on subject 5 for MS event. Otherwise, there are several good-performing predictions of gait 

events where MAE for HR event remains lower than 50 ms. Excellent performances are achieved, 

for example, on subjects 12 (Fold 3), 13 (Fold 4), 21 (Fold 5) and 28 (Fold 1). More precisely, subject 

12 shows the best performance in terms of MAE in detecting HS event (10.4 ms), subjects 13 obtained 

the bast MAE in detecting MS (17.8 ms), subject 21 shows the best MAE in identify HR events (30.7 

ms) and subject 28 performed best not only in detecting TO events (MAE: 17.7 ms) but performed 

best also in terms of F1-Score achieving 100 % for all gait events. The approach faced in this study 

shown its reliability especially in identifying Heel strike, Mid foot strike and Toe off events with a 

mean prediction error (MAE) of 20.6 ms, 35.1 ms and 30.9 ms respectively. Anyway, these 

performing results were achieved thanks to the high number of gait cycles considered per subjects 

(around 400-500 gait cycles per subject) and the five EMG signals acquired from each leg. In future 

projects it is possible to try to reduce the number of Emg signals acquired from each subject in order 

to reduce the invasiveness of the experimental protocol; this study has demonstrated that by means a 

deep learning approach, is possible to predict gait events on subjects performing a natural walking 

without the need of external sensors such as IMUs devices, stereophotogrammetric systems or foot 

switches sensors. Future projects could focus on reducing the number of EMG signals acquired from 

each subject in order to reduce the invasiveness of the experimental protocol.    

A further effort has been done in the present study: we tried also to test the ability of the approach in 

binary classifying the two main gait phases (Stance and Swing phases) and predict the transition 
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moment between them (HS and TO events). Table 6.4 shows the average classification accuracy 

(±SD) obtained over 30 folds on Learned subjects and Unseen subjects. The LSTM neural network 

was able to classify the main gait phases with an average accuracy of 95 ± 0.4% on Learned subjects 

and 93 ± 5.0% on Unseen subjects. One can notice that SD is higher for unseen subjects than Learned 

subjects. Notice that, the average accuracy across the 30 folds do not show a significant variability 

(very small, around 0.4%). It may be due the subdivision of data between training set and test set: in 

each fold only one subject was used as test set, while the data of the other 29 subjects were used as 

training set. The higher variability on Unseen subjects (around 5.0%) could be because the first 

30.000 samples of each sEMG signal were considered to train the neural network. Thus, considering 

only few samples of sEMG data made the classification harder on subjects that the net has never seen. 

The performance in detecting HS and TO events was measured after post-processing in terms of F1-

Score and MAE. Over the 30 folds, MAE was 25.14±12.28 ms in HS prediction and 35.32±14.37 ms 

in TO prediction. Correspondent F1-Score values were of 95 ± 6.0% and  93 ± 7.0% respectively. To 

test the reliability of HS and TO predictions, the results provided by this additional study were 

compared to the results in predicting HS and TO events achieved in literature where a stance and 

swing classification was performed by deep learning approaches based on only sEMG signals. In [14] 

five time-domain features were extracted from electromyographic signals to feed a single hidden 

layer neural network to classify stance and swing phases. The data were acquired from eight subjects 

performing walking on a treadmill for about 5 seconds. Despite this, the results reported in this 

approach shown a mean average error of 35 ± 25 ms for HS and 49 ± 15 ms for TO. Thus, the approach 

faced in this additional study performed better in terms of time error compared to the results obtained 

in [14] confirming that the LSTM neural network succeeded in learning hidden features relevant to 

the task to be performed compared to the  features used in the previous study. The best results were 

achieved in [15] where sEMG envelopes were used to feed a multilayer perceptron neural network to 

classify stance and swing phases. sEMG data were acquired from 23 subjects performing walking on 

the level ground following an eight shape path. The sEMG signals were acquired from 4 leg muscles. 

A cross validation with 23 folds was performed using 22 subjects in training set and a different subject 

as test set. The evaluation of performance was measured in terms of F1-Score and Mae. On unseen 

subjects, the study achieved a mean time prediction error over the 30 folds of 21.6  ± 7.0 ms for HS 

and 38.1  ± 15.2 ms for TO. In [18] the same group of researchers proposed an intra-subject approach 

for stance and swing classification and the prediction of gait events by means of deep learning 

techniques based only on sEMG signals. The sEMG signals were acquired from 5 leg muscles in 

about 10.000 gait cycles from 23 healthy subjects. They demonstrated that an intra-subject approach 

was able to achieve better performances than the inter-subject one in HS and TO predictions. A time 
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prediction error of 14.4 ± 4.7 ms for HS and 23.7 ± 11.3 ms  for TO events was achieved. The 

approach faced in this additional study is an inter subject approach, in which sEMG data of different 

subjects were used to feed a recurrent neural network, a net more complex to train respect to a 

multilayer perceptron neural network. Anyway, the results obtained in this additional study can be 

considerable in line with that reported in [14,15,18] and support the reliability of the results provided 

by the same model in classifying 4 gait sub-phases and predicting four gait events.  

In conclusion, the present research proposed a novel method to classify the main four gait sub-phases 

and predict the transition instants between them by means of a deep learning approach based on the 

interpretation of only sEMG signals acquired during level ground walking. More precisely, sEMG 

envelopes were used to feed an artificial neural network attempting that the net learns hidden relevant 

features. Good performances are achieved in terms of F1-Score and MAE in predicting Heel Strike, 

Mid foot Strike, Heel Rise, and Toe off events. From the clinical point of view, the results obtained 

in this research, can be considerable encouraging because by means of a deep learning approach based 

only on sEMG signals is possible to carry out a gait analysis on patients performing a natural walking 

without the need of further external sensors to measure foot-floor-contact signal, such as IMUs 

devices,  or foot switches sensors, thus reducing the invasiveness, the time consumption, and the cost 

of the experimental set-up. Automatic recognition of gait phases and detection of gait events could 

also be important to drive power limb exoskeleton or assistive devices that have been developed in 

the last decades aiming at helping humans to enhance their walking ability [65, 66]. In future research, 

an  attempt could be to reduce the number of sEMG signals acquired from lower limbs, passing from 

five monitored muscles to four, and observe how much the performance is affected in predicting gait 

events in order to further simplify the experimental set-up. 
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Appendix 

 

Fold 1  MAE (HS) MAE (MS) MAE(HR) MAE (TO) F1-Score(HS) F1-Score(MS) F1-Score(HR) F1-Score(TO)  

25              22.1         32.5           50.7        21.3            99%              100%               95%             100% 

26              13.3         31.1           48.9        21.8            92%                97%               93%               97% 

27              16.3         38.4           47.5        21.8            92%                96%               93%               98% 

28              13.2         43.6           38.5        17.7          100%              100%             100%             100% 

29              41.8         60.0           59.6        27.9            41%                77%               88%               99%              

30              15.8         29.3           58.3        23.2            95%                98%               91%               99% 

MV           17.9         41.5            50.4        22.4            88%               94%               93%               99%                     

 

Fold 1: Subjects 25, 26, 27, 28, 29 and 30 (Unseen Subjects). MAE (ms) and F1-Score related on each Unseen Subject. MV=Mean 

Average Value over the 6 subjects. 

 

Fold 2  MAE (HS) MAE (MS) MAE(HR) MAE (TO) F1-Score(HS) F1-Score(MS) F1-Score(HR) F1-Score(TO)  

1               28.7          31.5           42.2       39.2               95%              98%               96%              95%                     

2               30.1          37.9           95.3       33.9               85%              90%               68%              88%             

3               39.0          60.6           57.6       78.4               23%              83%               80%              59%  

4               35.4          39.3           28.4       17.8               94%              98%               94%              97%   

5               26.2          21.0           97.5       35.7               99%            100%               71%              97%  

6               20.5          21.8           38.1       21.1               99%              99%               98%            100%  

MV           28.5          34.1           54.1       32.3              89%              95%               86%              91%   

 

Fold 2: Subjects 1, 2, 3, 4, 5 and 6 (Unseen Subjects). MAE (ms) and F1-Score related on each Unseen Subject. MV=Mean Average 

Value over the 6 subjects. 
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Fold 3 MAE (HS) MAE (MS) MAE(HR) MAE (TO)  F1-Score(HS) F1-Score(MS) F1-Score(HR) F1-Score(TO)  

7               13.8           20.9          75.3         39.1              99%              100%              78%              99% 

8               18.5           31.0          88.9         29.8              95%                92%              98%              95% 

9               18.0           47.4          55.5         24.2              98%                96%              85%              99% 

10             25.8           37.9          52.7         23.7              99%                95%              76%              94% 

11             14.2           29.2          67.0         68.0              92%                98%              85%              94% 

12             10.4           30.5          68.7         32.8            100%                96%              95%              99% 

MV           16.1          33.2           65.2         34.3              98%               97%              85%              97% 

 

Fold 3: Subjects 7, 8, 9, 10, 11 and 12 (Unseen Subjects). MAE (ms) and F1-Score related on each Unseen Subject. MV=Mean 

Average Value over the 6 subjects. 

 

Fold 4 MAE (HS) MAE (MS) MAE(HR) MAE (TO)  F1-Score(HS) F1-Score(MS) F1-Score(HR) F1-Score(TO)  

13             15.1          17.8            39.2        26.6              94%               91%             93%              92% 

14             13.7          24.1            67.0        33.1              98%               95%             95%              99% 

15             20.1          45.7            55.4        34.5              59%               88%             85%              97%           

16             18.5          23.6            39.8        53.4              95%               99%             75%              90% 

17             36.7          51.8            72.7        25.9            100%               95%             92%              99% 

18             18.9          44.4            37.8        32.4              66%             100%             99%              99% 

MV           21.4         34.1             55.0        34.1              89%               94%             89%             96% 

 

Fold 4: Subjects 13, 14, 15, 16, 17 and 18 (Unseen Subjects). MAE (ms) and F1-Score related on each Unseen Subject. MV=Mean 

Average Value over the 6 subjects. 
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Fold 5 MAE (HS) MAE (MS) MAE(HR) MAE (TO)  F1-Score(HS) F1-Score(MS) F1-Score(HR) F1-Score(TO)  

19             27.0           47.22         30.0        23.6             95%                 98%            91%              96%  

20             18.4            38.5          60.6        32.8             99%                 99%            96%            100% 

21             21.7            19.7          30.7        33.6             97%                 99%            96%              97% 

22             14.0            56.6          47.3        32.4           100%                 83%            92%              98%       

23             16.0            30.9          71.4        25.7             99%               100%            90%              99% 

24             16.3            22.0          37.2        32.3             98%               100%            99%            100% 

MV           19.4            32.5          44.1        30.2            98%                 98%             94%             98% 

 

Fold 5: Subjects 19, 20, 21, 22, 23 and 24 (Unseen Subjects). MAE (ms) and F1-Score related on each Unseen Subject. MV=Mean 

Average Value over the 6 subjects. 

 


