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Abstract
English Version
The purpose of this report is to explain how basic Machine Learning and Deep
Learning works with everything that is involved with it: why it is so popular and
why it gets even more importance in the programming world day by day, using
some real life examples.

First of all, I must explain what is the real meaning of Machine Learning and
Deep Learning. I will explain, for each one, some useful algorithms for problems
solving.

At the end, I will show the techniques with the help of the programming lan-
guage Python. In the codes I will be using real datasets (CSV files filled with data)
taken by the Kaggle website, an online community of data scientists and machine
learners, owned by Google LLC.
Python is an interpreted, high-level, general-purpose programming language. It
can be used both OOP (Object-oriented programming) and imperative program-
ming. It offers Scikit-learn, which is a free software machine learning library for
the Python programming language.

RegardingDeep Learning, other frameworks are necessary and Tensorflow and
Keras are the commonly used. For improved performance, I could take advantage
of the remote use of a GPU machine, a processor designed to handle graphics
operations, which tends to compute Deep Learning algorithms faster because of
its high power.
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Abstract
Versione Italiana
Lo scopo di questa tesi è quello di spiegare come funzionano le basi del Machine
Learning (in italiano, Apprendimento Automatico), del Deep Learning e tutto ciò
che ne deriva: comemai è così popolare e comemai acquista sempre maggiore im-
portanza nel mondo della programmazione giorno dopo giorno, tramite l’utilizzo
di alcuni esempi comuni applicabili alla vita reale.

Prima di tutto, devo iniziare a spiegare qual’è il vero significato dietro il Ma-
chine Learning e il Deep Learning. Per ognuno spiegherò alcuni algoritmi utili
per la risoluzione di problemi (Problem Solving).

Alla fine, sono riportate tutte le tecniche riportate tramite l’utilizzo del lin-
guaggio di programmazione Python. Nel codice si fa utilizzo di dati reali (dei
file CSV riempiti di dati) presi dal sito internet di Kaggle, una comunità online di
‘data scientists’ e ‘machine learners’ (ovvero praticanti della materia qui trattata),
di proprietà di Google LLC.
Python è un linguaggio interpretato, di alto livello e con fini dediti alla program-
mazione generale. Può essere usato sia come OOP (programmazione orientata
agli oggetti) oppure come linguaggio imperativo. Inoltre offre Scikit-learn, una
libreria software gratis utilizzabile nel linguaggio di programmazione Python.

Per quanto riguarda il Deep Learning invece, sono necessari altri framework e
Tensorflow e Keras sono quelli più utilizzati. Per migliorare i risultati dello studio,
ho potuto avere il vantaggio di utilizzare da remoto una macchina GPU, ovvero un
processore efficiente nella manipolazione di operazioni grafiche, il quale tende a
compilare gli algoritmi di Deep Learning più velocemente grazie alla sua enorme
potenza.
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Chapter 1

Machine Learning

In general, Machine learning is an application of artificial intelligence (AI) that
provides systems the ability to automatically learn and improve from experience
without being explicitly programmed. Machine learning focuses on the develop-
ment of computer programs that can access data and use them learn by themselves.

The process of learning begins with observations or data, such as examples,
direct experience, or instruction, in order to look for patterns in data and make
better decisions in the future based on the examples that we provide. The primary
aim is to allow the computers learn automatically without human intervention or
assistance and adjust actions accordingly.

Machine learning algorithms are often categorized as supervised or unsuper-
vised, but more generally there are 4 categories (see the taxonomy of Figure 1.1):

• Supervised machine learning algorithms

• Un-supervised machine learning algorithms

• Semi-supervised machine learning algorithms

• Reinforcement learning algorithms

1.1 Supervised machine learning algorithms
They can apply what has been learned in the past to new data using labeled ex-
amples to predict future events. Starting from the analysis of a known training
dataset, the learning algorithm produces a function to make predictions about the
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output values. The system is able to provide targets for any new input after suffi-
cient training. The learning algorithm can also compare its output with the correct
output and find errors in order to modify the model accordingly.

During the internship, I was mainly focused on this kind of algorithms. In
particular, Supervised Machine Learning algorithms are divided in two problems:
classification and regression. Both are categorized under the same umbrella of
supervised machine learning and both share the same concept of utilizing known
datasets (referred to as training datasets) to make predictions.
The main difference between them is that the output variable in regression is nu-
merical (or continuous) while that for classification is categorical (or discrete).

In supervised learning, an algorithm is employed to learn the mapping function
from the input variable x to the output variable y; that is y = f (X). The objective
of such a problem is to approximate the mapping function f as accurately as pos-
sible such that whenever there is a new input data x, the output variable y for the
dataset can be predicted. [1]

Figure 1.1: Machine Learning taxonomy

1.1.1 Regression

Regression algorithms attempt to estimate the mapping function f from the input
variables x to numerical or continuous output variables y. In this case, y is a real
value, which can be an integer or a floating point value. Therefore, regression pre-
diction problems are usually quantities or sizes.
Examples of the common regression algorithms include Linear Regression, Poly-
nomial Regression and Kernel Regression.

Attention! Some algorithms, such as logistic regression, have the name “re-
gression” in their names but they are not regression algorithms.
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1.1.2 Classification
On the other hand, classification algorithms attempt to estimate the mapping func-
tion f from the input variables x to discrete or categorical output variables y. In
this case, y is a category that the mapping function predicts. If provided with a
single or several input variables, a classification model will attempt to predict the
value of a single or several conclusions. [1]
Examples of the common classification algorithms include Logistic Regression,
Naïve Bayes, Decision Trees and SVC.

1.1.3 Real world applications
Supervised Machine Learning applications are lots. Everything that can be recog-
nized, can be studied with Machine Learning. Some important example can be:
[2]

• Image recognition: one of the most common uses of machine learning is
image recognition. There are many situations where you can classify the
object as a digital image. For digital images, the measurements describe
the outputs of each pixel in the image. In the case of a black and white
image, the intensity of each pixel serves as one measurement; in the colored
image, each pixel considered as providing 3 measurements to the intensities
of 3 main color components RGB. Examples: face detection or character
recognition (Google Lens).

• Medical Diagnosis: it is being used for the analysis of the importance of
clinical parameters and of their combinations for prognosis, ex. prediction
of disease progression, for the extraction ofmedical knowledge for outcomes
research, for therapy planning and support, and for overall patient manage-
ment. The measurements in this application are typically the results of cer-
tain medical tests, medical images or basic physical information.

• Statistical Arbitrage: in finance, statistical arbitrage refers to automated
trading strategies that are typical of a short-term and involve a large num-
ber of securities. In such strategies, the user tries to implement a trading
algorithm for a set of securities on the basis of quantities such as historical
correlations and general economic variables.

1.2 Un-supervised machine learning algorithms
These algorithms are used when the information used to train is neither classified
nor labeled. This means that Unsupervised Machine Learning can not be directly
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applied to a regression because it is unknown what the output values could be,
therefore it is impossible to train the algorithm how you normally would.[3]
Unsupervised learning studies how systems can infer a function to describe a hid-
den structure from unlabeled data. The system does not figure out the right output,
but it explores the data and can find inferences from datasets to describe hidden
structures from unlabeled data.

1.2.1 Dimension reduction
Dimensionality is the number of variables present in the dataset. This dimensions
are represented as columns, and the goal is to reduce the number of them.
In most cases, those columns are correlated and, therefore, there is some informa-
tion that is redundant which increase the dataset’s noise. This redundant informa-
tion impacts negatively in Machine Learning model’s training and performance
and that is why using dimensionality reduction methods becomes important.
There are two main categories of dimensionality reduction:

• Feature Selection: we select a subset of features of the original dataset.
• Feature Extraction: we derive information from the orginal set to build a

new feature subspace.

1.2.2 Clustering
Clustering is the task of dividing the data points into a number of groups such that
data points in the same groups are more similar to other data points in the same
group and dissimilar to the data points in other groups. It is basically a collection
of objects on the basis of similarity and dissimilarity between them. [4]

1.2.3 Pattern Mining
PatternMining is a rule-basedmethod for discovering interesting relations between
variables in large databases. It is intended to identify strong rules discovered in
databases using some measures of interestingness.

1.3 Semi-supervised machine learning algorithms
They fall in between supervised and unsupervised learning, since they use both la-
beled and unlabeled data for training. The systems that use this method are able to
improve learning accuracy. In fact, the basic procedure involved is that at first, the
programmer will cluster similar data using an unsupervised learning algorithm,
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and then use the existing labeled data to label the rest of the unlabeled data.
The acquisition of labeled data for a learning problem often requires a skilled hu-
man agent or a physical experiment. The cost associated with the labeling process
may render a fully labeled training set impossible, while the acquisition of unla-
beled data is relatively easy.

1.4 Reinforcement learning algorithms
It is a learning method that interacts with its environment by producing actions
and discovers errors or gets rewards. Trial and error search and delayed reward are
the most important characteristics of reinforcement learning. This method allows
machines and software agents to automatically determine the ideal behavior within
a specific context in order to maximize its performance. Simple reward feedback
is required for the agent to learn which action is the best: this is known as the
reinforcement signal.
In comparison, Reinforcement algorithms differ by the Supervised ones for the
continue generation of its outputs, in order to improve the following one. Instead,
Supervised ones are already trained with test outputs, that are independent from
each others. Supervised algorithms usually get explicit information of his output,
while Reinforcement can get outputs only by rewards. So, if the target action is
given to the Reinforcement learning setting, it becomes a Supervised Learning
program.

10



Chapter 2

Supervised Machine Learning
algorithms

In this chapter, I will explain various Supervised algorithms that are useful in real
life problems to predict the output of the test set. Each algorithm has a different
area of application, so the programmer should usually do an accurate analysis of
the problem and then decide which one fits the most for the actual program.

The practitioner has some guidelines that helps him to understand which is the
appropriate algorithm to use:

1. Collect the data, so the particular dataset of the problem he wants to solve.
2. Check for anomalies, missing data and then clean the data; this is also known

as preprocessing. It is important because without this passage, the algo-
rithm might not work in the correct way.

3. Perform statistical analysis and initial visualization with the plot of each
dataset’s attribute. It gives an initial idea of the predictive outputs.

4. Build different mathematical model using each algorithm.
5. Check the accuracy of each model and then choose the best one.
6. At the end, present the results using informative plots of the model chosen.
Everything is performed by a method called validation: tipically, the dataset

is splitted in two different parts in order to train the model and then to state the ac-
curacy during the construction of the model. The train set is the part of the dataset
used to build the predictive function. The test set is the second part that we want
to use to verify the solution and the precision of the algorithm. The accuracy of
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every algorithm is calculated comparing the predicted output with the test output.
Validation is important for generalization (the ability of an algorithm to be effec-
tive across a range of inputs) and to avoid over-fitting (a model that models the
training data too well) other than the model selection.
Another selection method is the information criteria: it is an estimator for out-
of-sample deviance and the relative quality of statistical models for a given dataset.

Using the Scikit-learn library, the datasets’ splitting is really easy because you
just need to call a very simple function: basically, it divides the entire dataset in 4
different matrices that are input train, output train, input test, output test.
After the division, all you need to do is just fitting the program with the train data,
and then predicting the output. For each algorithm, there are different ways to
predict the result.
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2.1 Linear Regression
Linear regression is a basic and commonly used type of predictive analysis which
usually works on continuous data, as the name says. We will try to understand
linear regression based on an example[5]:

Figure 2.1: House Cost

Guido is trying to buy a house and is collecting housing data so that he can
estimate the “cost” of the house according to the “Living area” of the house in
feet. He observes the data and comes to the conclusion that the data is linear after
he sketches the scatter plot. For his first scatter plot, Guido uses two variables:
‘Living area’ and ‘Price’.

Figure 2.2: Price and feet scatter

As soon as he saw a pattern in the data, he planned to make a regression line
on the graph so that he can use the line to predict the ‘price of the house’.
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Using the training data (in this case ‘Price’ and ‘Living area’), a regression line is
obtained which will give the minimum error. To do that, he needs to make a line
that is closest to as many points as possible.
This ‘linear equation’ is then used for any new data so that he is able to predict the
required output:

Yi = �0 + �1Xi + "i

Here, the �1 is/are the parameters (called weights), �0 is the y-intercept (one of theparameters) and "i is the random error term whose role is to add bias.
The equation above is a simple ‘equation of a line’ that is

Ypredicted = (�1 ∗ x + �0) + Error

The values of the weights and of the y-intercept must be chosen so that they min-
imize the error. For example, to check the error we have to calculate the sum of
squared error and tune the parameters to try to reduce the error.

Error =
∑

(actualoutput − predictedoutput)2

or

J (�) = 1
2

m
∑

i=1
(ℎ�(x(i)) − y(i))2

Where: Ypredicted is also called the hypothesis function; J (�) is the cost function
(error function), our main goal is to minimize the value of the cost; y(i) is the pre-
dicted output; ℎ�(x(i)) is basically the Ypredicted value.

How do we reduce the error value? This can be done by using Gradient De-
scent[5]. The main goal of Gradient descent is to minimize the cost value. That
is: minJ (�0, �1).

14



Figure 2.3: Gradient Descent

Gradient Descent is the most used method for error reduction used in Machine
Learning and Deep Learning algorithms. Nowadays, the many others techniques
that were discovered are all originated by the Gradient Descent.
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2.2 Polynomial Regression

In the Linear Regression, we saw two variables in the data set were correlated. But
what happens if we know that our data is correlated, but the relationship does not
look linear? So depending on what the data looks like, we can do a polynomial
regression on the data to fit a polynomial equation to it.

Figure 2.4: Left: Linear Regression, Right: Polynomial Regression

The general equation of the polynomial regression is: [5]

Y = �0 + �1X + �2X2 + ... + �mXm + Error

The main difference between the linear and the polynomial regression is that you
can choose the degree of your curve.
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Figure 2.5: Example of degree by 1 (Linear) to 3 (Cubic)

For degree = 20, the model is also capturing the noise in the data. This is an
example of over-fitting. Even though this model passes through most of the data,
it will fail to generalize on unseen data.

Figure 2.6: Overfitting with degree 20

To prevent over-fitting, we can add more training samples so that the algorithm
does not learn the noise in the system and can become more generalized. [6]
This is how we can prevent over-fitting:

• Bias refers to the error due to the model’s simplistic assumptions in fitting
the data. A high bias means that the model is unable to capture the patterns
in the data and this results in under-fitting.
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• Variance refers to the error due to the complex model trying to fit the data.
High variance means the model passes through most of the data points and
it results in over-fitting the data.

Figure 2.7: Bias and Variance
From the below picture we can observe that as the model complexity increases,
the bias decreases and the variance increases and vice-versa. Ideally, a machine
learning model should have low variance and low bias. But practically it’s impos-
sible to have both. Therefore to achieve a good model that performs well both on
the train and unseen data, a trade-off is made. [6]

Figure 2.8: Trade-off between Bias and Variance
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2.3 Logistic Regression
In the above sections, I have explained about Linear and Polynomial Regression:
they are examples of regression, which means that the output is a continuous vari-
able.
Despite of what you are maybe thinking, Logistic Regression is not for regression,
but for classification, because its output can be only a binary value.
Logistic regression is named for the function used at the core of the method, the
logistic function. The logistic function, also called the sigmoid function was de-
veloped by statisticians to describe properties of population growth in ecology,
rising quickly and maxing out at the carrying capacity of the environment. It’s
an S-shaped curve that can take any real-valued number and map it into a value
between 0 and 1. [?]

y = 1
1 − e−x

Unlike the linear, we have sigmoid output: if Z goes to infinity, Ypred will become
1 and if Z goes to negative infinity, Ypred will become 0.

Figure 2.9: Logistic Function

The output from the hypothesis is the estimated probability. This is used to
infer how confident can predicted value be actual value when given an input X.
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P = 1
1 − e−(�0+�1X1+�2X2+...+�nXn)

= 1
1 − e−(�0+

∑

�iXi)

There are different types of Logistic Regression: [7]

• Binary: only two outputs exist, like 0 and 1.

• Multinomial: there are more than 2 ouputs, like 0, 1 and 2 or veg, vegan
and non-veg.

• Ordinal: there are more categories but they are ordered, like the movie
rating by 1 to 5 stars.

We expect our classifier to give us a set of outputs based on probability when we
pass the inputs through a prediction function and returns a probability score be-
tween 0 and 1. To predict which class a data belongs, a threshold can be set. Based
upon this threshold, the obtained estimated probability is classified into classes.
Example: if we have chosen a threshold of 0.5 and if the prediction function re-
turned a value of 0.7, then wewould classify this observation as 1. If our prediction
returned a value of 0.2 then we would classify the observation as 0.

2.3.1 Confusion Matrix

The Confusion Matrix is a matrix that can be easily built in Python. It tells us the
accuracy of every classification model where we use it.

Figure 2.10: Example of Confusion Matrix

Let’s try with the example of a medical disease: diabetes diagnosis. Here is
how we can explain the above confusion matrix:

20



Figure 2.11: Explanation of Confusion Matrix

As we can see, the main diagonal tells us about how many we predicted cor-
rectly about having or not having diabetes. Instead, in general, the off-diagonal
tells us about the mistakes that we made in the predicting values.
Here are the names of every cell:

Figure 2.12: Example of Confusion Matrix

27 people were classified to not have diabetes although they do. Even if the
model has a really high accuracy, we have to minimize the false negative (FN)
value because it is more important to save people from diabetes than having them
retrying for further diabetes tests, as the false positive (FP) people will do.
In order to succeed, we have to change the Logistic Regression’s threshold: the
best one will return zero on the false negative cell.
After that we can use the Negative Predictive Value (NPV) that is a function that
finds the new accuracy of the model.

NPV =
FalseNegative

FalseNegative + T rueNegative

There are many other indices that can be found using Confusion Matrix:
• True Positive Rate (TPR) or Sensibility, Recall is the proportion of people

who took the test with a condition and were correctly labeled as having the
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condition, diabetes in this case.

TPR = T rueP ositive
T rueP ositive + FalseNegative

• False PositiveRate (FPR) describes the rate of false alarms. It is the number
of people incorrectly thought to have diabetes although they do not.

FPR = FalseP ositive
FalseP ositive + T rueNegative

• Positive Predictive Value (PPV) or Precision expresses the proportion of
the data points our model says was relevant actually were relevant.

PPV = T rueP ositive
T rueP ositive + FalseP ositive

The ROC is a plot of the FPR (false alarms) in the X axis and TPR (finding ev-
eryone with the condition who really has it) in the Y axis. Without context, it is a
tool to measure classifier performance.

Figure 2.13: ROC plotting

If it is a perfect classifier, ROC gets almost like a rotated L shape. Otherwise,
it is an imperfect classifier: ROC is a straight line with a slope of about 1.
To measure classifier performance, we can also calculate the AUC (Area under
ROC curve). The area of the L-shaped perfect classifier is 1x1 = 1. The area of
the bad classifier is usually around 0.5. [8]
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2.4 Naïve Bayes
As you might have guessed watching the title, this requires us to view things from
a probabilistic point of view. This is theoretically very important, though its ap-
plications are very few.
Using this algorithm, we will be dealing with the probability distributions of the
variables in the dataset and predicting the probability of the response variable be-
longing to a particular value, given the the attributes of a new instance. [9]
This lets us examine the probability of an event based on the prior knowledge of
any event that related to the former event. For example, the probability that price of
a house is high, can be better assessed if we know the facilities around it, compared
to the assessment made without the knowledge of the location of the house.

2.4.1 Bayes’ theorem

Bayes’ theorem does exactly that.
P (A|B) =

P (B|A)P (A)
P (B)

Where A and B are events and:
• P(A|B) is the conditional probability that event A occurs, given that

B has occurred; also known as the posterior probability.
• P(A) and P(B) are the probabilities of A and Bwithout regard of each

other.
• P(B|A) is the conditional probability that event B occurs, given that

A has occurred.
Take a simple machine learning problem, where we need to learn our model
from a given set of attributes and then form a relation to a response variable.
Then we use this relation to predict a response, given attributes of a new in-
stance. Using the Bayes’ theorem, its possible to build a learner that predicts
the probability of the response variable belonging to some class, given a new
set of attributes.
Consider the previous equation again and now assume that A is the response
variable and B is the input attribute. So we have:

• P(A|B) is the conditional probability of response variable belonging
to a particular value, given the input attributes; also known as the
posterior probability.
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• P(A) is the prior probability of the response variable.
• P(B) is the probability of training data or simply the evidence.
• P(B|A) is known as the likelihood of the training data.

So:
Posterior = Likeliℎood ∗ Prior

Evidence
Now consider a problem where the number of attributes is equal to N and
the response is a boolean value, so it can be in one of the two classes. Also,
the attributes are categorical (2 categories). Now, to train the classifier,
we will need to calculate P (B|A), for all the values in the instance and
response space. This means, we will need to calculate 2(2N −1) parameters
for learning this model. This is unrealistic. [9]

The complexity of the Bayesian classifier needs to be reduced, for it to be prac-
tical. The naive Bayes algorithm does that by making an assumption of conditional
independence (over the training dataset).
The assumption of conditional independence states that, given random variables
X, Y andZ,X is conditionally independent of Y givenZ, if and only if the prob-
ability distribution governingX is independent of the value of Y given Z. Given,
N different attribute values, the likelihood now can be written as

P (X1...Xn|Y ) =
n
∏

i=1
P (Xi|Y )

X represents the attributes or features, Y is the response variable. Now, P (X|Y )
becomes equal to the products of probability distribution of each attributeX given
Y .
So, we must say that this algorithm is considered a Generative Model: it explic-
itly models the joint probability distribution P (B,A) and then uses the Bayes rule
to compute P (A|B). The opposite of a generative model is the Discriminative
Model (e.g. Logistic Regression) that directly models P (A|B) (e.g. using the
Sigmoid function).

Methods for finding parameters: [9]
• Maximizing a Posteriori: we are interested in finding the posterior proba-

bility, or P (Y |X). Now, for multiple values of Y , we will need to calculate
this expression for each of them.
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Given a new instance Xn, we need to calculate the probability that Y will
take on any given value, given the observed attribute values ofXn and giventhe distributions P (Y ) and P (X|Y ) estimated from the training data.
So we will predict the class of the response variable simply taking the most
probable or maximum of P (Y |X) values.

• Maximizing Likelihood: if we assume that the response variable is uni-
formly distributed, then we can further simplify the algorithm. With this
assumption the prior, or P (Y ), becomes a constant value, which is 1 be-
tween the categories of the response.
Now, the prior and evidence are independent of the response variable and
they can be removed from the equation. Therefore, the maximizing the pos-
teriori is reduced to maximizing the likelihood problem.

Some types of Naïve Bayes classifiers:
• Multinomial Naïve Bayes: mostly used for document classification prob-

lem, such as a document belonging to the category of sports, politics, tech-
nology etc. The features used by the classifier are the frequency of the words
in the document.

• Bernoulli Naïve Bayes: similar to the multinomial one but the features are
boolean variables. So, the parameters that we use to predict the class variable
take up only values yes or no.

• Gaussian Naïve Bayes: the features take up a continuous value and are
not discrete, so we assume that these values are sampled from a Gaussian
distribution. Since the way the values are present in the dataset changes, the
formula for conditional probability changes to:

P (xi|y) =
1

√

2��2y
exp

(

−
(xi − �y)2

2�2y

)

25



2.5 Decision Tree
A tree has many analogies in real life, and turns out that it has influenced a wide
area of machine learning, covering both classification and regression.
In decision analysis, a decision tree can be used to visually and explicitly repre-
sent decisions and decision making. As the name goes, it uses a tree-like model
of decisions. [10]
A decision tree is drawn upside down with its root at the top.

Figure 2.14: Tree example

Just like the figure, a decision tree has internal nodes which are based on some
condition. The answer to this condition makes the tree splits into branches. The
end of the branch that doesn’t split anymore is the leaf: in this case, whether the
passenger died or survived.
Although, a real dataset will have a lot more features and this will just be a branch
in a much bigger tree. The feature importance is clear and relations can be viewed
easily. This methodology is more commonly known as learning decision tree and
there are two kinds:

• Classification tree: the target is to classify results as a discrete number (two
or any number of classes), like the example above (Figure 2.14).

• Regression trees: represented in the same manner, just they predict contin-
uous values like price of a house.

Growing a tree involves deciding on which features to choose and what conditions
to use for splitting, even with knowing when to stop.
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The most common technique for splitting is Recursive Binary Splitting. We can
split the tree in function of the attributes we have. For example: in Figure 2.14,
the sex of the person is an attribute used for splitting.
Now we will calculate howmuch accuracy each split will cost us, using a function.
The split that costs least is chosen. This algorithm is recursive as the groups formed
can be sub-divided using same strategy.
This algorithm is also known as the greedy algorithm, as we want to lower the
cost. This makes the root node as best predictor/classifier. [10]
Cost of a split:

• Classification:
G =

∑

n
Pk(1 − Pk)

G means Gini, Pk is proportion of same class inputs present in a particular
group and the sum is calculated for each n split of the case. A Gini score
gives an idea of how good a split is by how mixed the response classes are
in the groups created by the split.
Example: a perfect class purity occurs when a group contains all inputs from
the same class, in which case Pk is either 1 or 0 and G = 0; if a node is hav-
ing a 50/50 split of classes in a group, it has the worst purity (for a binary
classification Pk = 0.5 and G = 0.5).
Other than Gini function, another option is to measure entropy to determine
how to split the tree. Entropy is a measure of the randomness in the infor-
mation being processed. The higher the entropy, the harder it is to draw any
conclusions from that information.

E = −
∑

n
p(x)log2p(x)

Where p(x) is a fraction of examples in a given class.
• Regression:

L =
∑

(y − ypred)2

L means Loss function. Here, the mean of responses of the training data in-
puts of particular group is considered as prediction for that group. The above
function is applied to all data points and cost is calculated for all candidate
splits. Split with lowest cost is chosen.

Once we decided how to split the tree, it remains for us to decide when to stop
splitting.
One way is to set a minimum number of training inputs to use on each leaf: for
example we can use a minimum of 10 passengers to reach a decision (died or sur-
vived), and ignore any leaf that takes less than 10 passengers. Another way is
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simply to set a maximum depth of your model, that is the the length of the longest
path from a root to a leaf.

The performance of a tree can be further increased by pruning. It involves re-
moving the branches that uses features with low importance. This way, we reduce
the complexity of tree, and we increase its predictive power by reducing over-
fitting. Two different methods of pruning exist:

• Pre-pruning: also known as forward or online pruning, it prevents the gen-
eration of non-significant branches at the start. It consists on using a ’termi-
nation condition’ to decide when it is desirable to terminate some branches
prematurely during the construction.

• Post-pruning: also known as backward pruning, it consists in removing
non-significant branches after the generation of the decision tree. The main
aim is to adjust it after the creation in order to improve the accuracy on
unseen instances. There are two principal methods of Post-Pruning: one
converts the tree to an equivalent set of rules. The second method aims to
retain the tree but replacing some of its subtrees with leaf nodes.
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2.6 Random Forest

Random forests are popularly applied to both data science competitions and practi-
cal problems. They are often accurate and do not require feature scaling. They can
also be more interpretable than other complex models such as neural networks.
Basically, a random forest is a combination of many decision trees into a single
model. So, a random forest consists of multiple random decision trees. Two types
of randomnesses are built into the trees. First, each tree is built on a random sample
from the original data. Second, at each tree node, a subset of features are randomly
selected to generate the best split. [11]
Rather than just simply averaging the prediction of trees (that is “forest”), this
model uses two key concepts that gives it the name random: [12]

• Random sampling of training data points when building trees: when
training, each tree in a random forest learns from a random sample of the data
points. The samples are drawn with replacement (bootstrapping), which
means that some samples will be used multiple times in a single tree. The
idea is that by training each tree on different samples, overall, the entire for-
est will have lower variance. At test time, predictions are made by averaging
the predictions of each decision tree. This procedure of training each indi-
vidual learner and then averaging the predictions is known as bagging (bag
= bootstrap aggregation).

• Random subsets of features considered when splitting nodes: the other
main concept in the random forest is that only a subset of all the features are
considered for splitting each node in each decision tree. Generally the num-
ber of selected features is set to√(Nfeatures) for classification: if there are 16features, at each node in each tree, only 4 random features will be considered
for splitting the node (the random forest can also be trained considering all
the features at every node as is common in regression).
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Figure 2.15: Random forest workflow

The gist of the matter is that the random forest algorithm combines hundreds or
thousands of decision trees, trains each one on a slightly different set of the obser-
vations, splitting nodes in each tree considering a limited number of the features.
The final predictions of the random forest are made by averaging the predictions
of each individual tree.
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2.7 Support Vector Machines
A Support Vector Machine (SVM) is a supervised learning algorithm that can be
used for classification (SVC) or regression. Support vector machines are used in
applications such as language processing and image recognition.
For classification problems, a SVC constructs an optimal hyperplane as a decision
surface where the margin of separation between the two (or more) classes in the
data is maximized.
Suppose you have a dataset as shown below and you need to classify the red rect-
angles from the blue ellipses (positives from the negatives).

Figure 2.16: Simple dataset

So you have to find a sort of line that separates this dataset in two classes (red
and blue). But, as you notice there is not a unique line that does the job. In fact,
we have infinite lines that can separate the two classes.

Figure 2.17: Separating lines
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So, with SVM algorithm we find the points closest to the line from both the
classes, called support vectors. Now, we find the distance between the line and
the support vectors and we find the margin. Our goal is to maximize the margin.
The hyperplane for which the margin is maximum is the optimal hyperplane.
Support vectors refer to a small subset of the training observations that are used as
support for the optimal location of the decision surface.

Figure 2.18: Margin and Support Vectors

What if the examples are not linearly separable? SVM fall under a class of ma-
chine learning algorithms called kernel methods, which means that SVM uses a
set of mathematical functions that are defined as the kernel. The function of kernel
is to take data as input and transform it into the required form.

Training for a support vector machine has two phases:
1. Transform predictors (input data) to a high-dimensional feature space. It is

sufficient to just specify the kernel for this step and the data is never explicitly
transformed to the feature space. This process is commonly known as the
kernel trick.

2. Solve a quadratic optimization problem to fit an optimal hyperplane to clas-
sify the transformed features into two classes. The number of transformed
features is determined by the number of support vectors.

N.B. Only the support vectors chosen from the training data are required to con-
struct the decision surface.

Popular kernels used with SVMs include: [13]
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• Linear:
K(x1, x2) = xT1 x2

• Polynomial:
K(x1, x2) = (xT1 x2 + c)

n

N is the order of the polynomial and C is a free parameter.
• Sigmoid:

K(x1, x2) = tanℎ(�0xT1 x2 + �1)
�0 and �1 are kernel parameters; it is similar to the sigmoid function of Lo-
gistic Regression.

• Gaussian or Radial Basis Function (RBF):

K(x1, x2) = exp
(

−
||x1 − x2||2

2�2
)

� is the width of the kernel. It is a general-purpose kernel; used when there
is no prior knowledge about the data.

SVM has even some important parameters calledTuning Parameters. Tuning
parameters are arguments that you can choose when you are creating your model.
They are Regularization parameter (C) and Gamma:

1. The first one, C, controls the trade off between smooth decision boundary
and classifying training points correctly. A large value of C means you will
get more training points correctly.
C is a parameter that can be changed inside a SVM’s implementation called
L2 regularization or weight decay [14]. Basically, it is a regularization
technique that adds a penalty to large weights in our error function to lower
model variance and so over-fitting.

w∗ = min
w
Error + �||w||2 where � = 1

C

Here, w is a weight vector and the Error function is called hinge loss func-
tion. In the linear SVM it is:

Error = 1
n

n
∑

i=1
max(0, 1 − yi(w ⋅ xi − b))

Where w are the weights, x is our data, b is the bias. "Hinge" describes the
fact that the error is 0 if the data point is classified correctly and it is not too
close to the decision boundary, and after that it keeps increasing. [15]
The second term of the L2 implementation is the regularization term, and �
is the regularization coefficient:
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• If � is too high, the model will be simple, but you run the risk of under-
fitting. The model won’t learn enough about the training data to make
useful predictions.

• If � value is too low, your model will be more complex, and you run the
risk of over-fitting. Your model will learn too much about the training
data, and won’t be able to generalize the new data.

Figure 2.19: C change

In the Figure 2.19, the green line creates a decision boundary which is quite
simple and linear but at cost of a few points being misclassified (called out-
liers). Changing the Regularization parameter you can get the orange line:
this one is getting almost all the training points correctly, but it is very com-
plicated and it is not going to generalize very well our data. The solution
is to try different values of C in order to find a perfectly balanced curve,
avoiding over-fitting.

2. The second one,  , is only used with the Radial Basis Function Kernel.

K(x1, x2) = exp
(

−
||x1 − x2||2

2�2
)

where  = 1
2�2

It defines how far the influence of a single training example reaches. If
gamma has a very high value, then the decision boundary is just going to be
dependent upon the points that are very close to the line and ignores some
of the points that are very far from the decision boundary. [16]
This is because the closer points get more weight (orange curve in Figure
2.19). On the other hand, if the gamma value is low even the far points get
weight and we get a more linear curve (green curve).
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Chapter 3

Deep Learning

Until now, we have learned in a really simplistic way what is general Machine
Learning. In few words, it is the capability of a AI system to acquire their own
knowledge, by extracting patterns from raw data. The performance of the above
algorithms depends heavily on the representation of the data they are given, so
on the features, which are each piece of information of the representation. [17]

Many tasks can be solved just giving to the AI the most correct and the easiest
set of features to extract for that task, and then providing them to one of the simple
algorithms. But it is not correct for every task: sometimes it might be difficult to
understand what features should be extracted. For example, describing each part
of a car image that should be detected, it is not so easy. The problem is that the
image could be influenced by environmental factors such as sun or shadows.
One solution to this problem is theRepresentationLearning: it discovers not only
the mapping to output, but also the representation itself. An example of represen-
tation learning algorithm is the Autoencoder, which is a combination of encoder
function (converts input data into a different representation) and decoder function
(convert the new representation back to the original format).

When designing features, our main plan is to separate the Factors of varia-
tion that explain the observed data. Factors are often not quantities that you can
observe. Some unobserved objects or forces can affect observable quantities. For
the above example of car image, the factors of variation include the position of the
car, its color or the angle of the sun. So, the major difficulty in many real-world AI
application is that the factors of variation can effect every piece of data you need to
observe and just a nearly human-level understanding of the data can identify those
factors.
Deep learning solves this central problem in representation learning by introduc-
ing representations that are split and expressed in terms of simpler ones. So, Deep
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Learning enables the system to build complex concepts in function of simpler con-
cepts.

Figure 3.1: Deep learning concepts splitting

The most common deep learning model is the feed-forward deep network
(Multilayer Perceptron or MLP). It is just a mathematical function mapping
some set of input values to output values. The function is formed by compos-
ing many simpler functions.
The major aspects of deep learning are the idea of learning the right representa-
tion of the data and that the depth enables the system to learn a multi-step program.
Sequential instruction offer great power because each step can refer to the results
of the previous one. Anyway, not all the information in a layer’s activation will
encode all the factors of variation that explain the output. It has nothing to do with
the content of the input, but it only helps the model to organize its processing.

There are two main ways of measuring the depth of a model, even if it is not
always clear which one is most relevant:

• Computational graph: it is the number of sequential instructions that must
be execute to evaluate the architecture. It is like the length of a decision tree.
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Figure 3.2: Computational graph: in the left, the depth is three because we use
addition, multiplication and sigmoids as elements; in the right, the depth is one
because logistic regression is an element itself.

• Probabilistic graph: it is the depth of the graph describing how concepts
are related to each other. It is used in deep probabilistic models and it can
be much deeper than the graph only for the concepts.

To summarize, we can say that deep learning is a particular kind of Machine
Learning that achieves great power and flexibility by representing the real-world
problems as a hierarchy of concepts, with each concept defined in relation to sim-
pler ones.

Figure 3.3: AI disciplines
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Deep Learning was studied in order to overcome some problems that are im-
possible to handle with normal Machine learning algorithms. The most impor-
tant ones are the Curse of Dimensionality and his high computational costs. The
Curse of Dimensionality is the phenomenon which happens when machine learn-
ing problems become too much difficult when the number of dimension in the data
is really high. [17]
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3.1 Deep Feed-forward Networks
The main goal of a MLP is to approximate some function f ∗. For example, for
a classifier, y = f ∗(x) maps an input x to a category y. A feedforward network
defines a mapping y = f (x, �) and learns the value of the parameters � that result
in the best function approximation.
These models are called feedforward because information flows through the func-
tion evaluated from x, through the computations used to define f , and finally to the
output y. There are no feedback connections in which outputs of the model are fed
back into itself, so there are not cycles or loop in the network. When feedforward
neural networks includes feedback connections, they are called recurrent neural
networks. [17]

Furthermore, feedforward neural network are called networks because they are
composed by many different functions together. For example, with three functions
f (1), f (2), f (3) connected in a chain, they form f (x) = f (3)(f (2)(f (1)(x))). These
chains are the most common structure of neural networks. f (1) is called the first
layer of the network, f (2) is called the second layer, and so on. The depth of the
model is the length of the chain: this is why the name deep learning.

In this case, the training data does not show the output of each layer, so they are
called hidden layers. As the normal machine learning, training data provides us
some approximate f ∗(x) evaluated at different points. It is then up to the learning
algorithm the decision how to use the layer of the chained function to produce the
desired output.

Another notifiable thing about the name is neural. This is because they are
inspired by Neuroscience. The hidden layers are typically vector valued and their
dimension determines the width of the model. We can think of the layer as many
units that act in parallel, where each unit remind to a neuron that receives the input
and computes its own activation value. [18]

To understand feedforward networks, it is better to start with linear models
and then to pass to how to overcome their limitations. An obvious limitation is
that the model capacity is limited to linear functions. To extend them to represent
non linear function of x we can just transform the input x to �(x) where � is a non
linear transformation. After this, we can just apply the kernel trick.
How to choose the mapping �?

• Very generic �.
• Manually engineer �, this was the dominant approach before deep learning.
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• Deep learning’s strategy is to learn�. Herewe have amodel y = f (x; �,w) =
�(x; �)T ∗ w. With parameters � we can learn � from a class of functions,
and with parametersw we map from the transformation. Here, � is defining
a hidden layer.

3.1.1 Single-layer Perceptron
The simplest kind of neural network is a single-layer network, which consists of a
single layer of output nodes; the inputs are fed directly to the outputs via a series
of weights. The sum of the products of the weights and the inputs is calculated
in each node, and if the value is above some threshold the neuron fires and takes
the activated value (typically 1); otherwise it takes the deactivated value (typically
−1). Neurons with this kind of activation function are also called artificial neurons
or linear threshold units. [19]

Perceptrons can be trained by a simple learning algorithm that is usually called
the delta rule. It calculates the errors between calculated output and sample output
data, and uses this to create an adjustment to the weights, thus implementing a form
of gradient descent.

Δwji = �(tj − yj)g′(ℎj)xi
Where: � is a small constant called learning rate, g(x) is the neuron’s activation
function, g′ is the derivative of g, tj is the target output, ℎj is the weighted sum of
the neuron’s inputs, yj is the actual output and xi is the i-th input.

A single-layer neural network can compute a continuous output instead of a
step function. A common choice is the logistic function: f (x) = 1

1+e−x
. With this

choice, the single-layer network is identical to the logistic regression model.

Figure 3.4: (a) Single-layer Perceptron; (b) Multi-layer Perceptron

3.1.2 Multi-layer Perceptron
This class of networks consists of multiple layers interconnected in a feed-forward
way. Each neuron in one layer has directed connections to the neurons of the sub-
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sequent layer. In many applications the units of these networks apply the sigmoid
function. [19]
The universal approximation theorem for neural networks states that every con-
tinuous function that maps intervals of real numbers to some output interval of real
numbers can be approximated arbitrarily closely by a multi-layer perceptron with
just one hidden layer. This result holds for a wide range of activation functions,
e.g. for the sigmoidal functions.

Multi-layer networks use a variety of learning techniques, the most popular is
back-propagation. Here, the output values are compared with the correct answer
to compute the value of some predefined error-function. By various techniques,
the error is then fed back through the network. Using this information, the al-
gorithm adjusts the weights of each connection in order to reduce the value of the
error function by some small amount. After repeating this process for a sufficiently
large number of training cycles, the network will usually converge to some state
where the error of the calculations is small.
To adjust weights properly, one applies the method for non-linear optimization of
the gradient descent. For this, the network calculates the derivative of the error
function with respect to the network weights, and changes the weights such that
the error decreases. For this reason, back-propagation can only be applied on net-
works with differentiable activation functions.

Some typical problems of the back-propagation algorithm are the speed of con-
vergence and the possibility of ending up in a local minimum of the error function.
Today there are practical methods that make back-propagation in multi-layer per-
ceptrons the tool of choice for many machine learning tasks.
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3.2 Convolutional Neural Networks
Convolutional networks, also known as convolutional neural networks or CNNs,
are a kind of neural networks for processing data that has a known grid-like topol-
ogy. CNNs’ name is derived by the mathematical operation, called convolution,
deployed inside the network. In fact, convolutional networks are simply neural
networks that use convolution in place of general matrix multiplication in at least
one of their layers. [17]

CNNs are really important in time-series data and image data.

Figure 3.5: CNN scheme

3.2.1 Convolution Operation
In a few words, Convolution is an operation on two functions of a real-valued ar-
gument.
Let’s suppose we are tracking the location of a spaceship with a laser. The laser
has output x(t), so position at time t. They are real-valued, so at each instant of
time we have different output.
Now let’s suppose that the laser is noisy. To obtain a less noisy output of the po-
sition, we should average several measurements considering the recent measure-
ments are the most important ones: this can be done with a weighted average, that
means using a weighted function w(a), where a is the age of a measurement. If
we apply w at every moment, we obtain a function s which provides a estimation
of the position of the spaceship:

s(t) = ∫ x(a)w(t − a)da

This is the convolution operation and it is typically denoted with an asterisk:
s(t) = (x ∗ w)(t)
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In convolution network terminology, the first argument (in the example, func-
tion x) to the convolution is the input, and the second (the functionw, here) is the
kernel. The output is the feature map.

Anyway our example can not be realistic. That is because, when we work with
data on a computer, time will be discretized. In our example, the discretized time
could be once per second. So the time t can be only an integer value. If we assume
that x and w are defined only on integer t, we can define the discrete convolution:

s(t) = (x ∗ w)(t) =
∞
∑

a=−∞
x(a)w(t − a)

In machine learning applications, the input is usually a multi-dimensional ar-
ray of data, and the kernel is a multi-dimensional array of parameters (referred as
tensors). Plus, we assume that these functions are zero everywhere but in the finite
set of points for which we store the values. It means that we can implement the
infinite summation as a summation over a finite number of array elements. Finally,
we can use convolutions to more than one axes in one time. Usually if we use 2-D
input, the kernel is 2-D either.

S(i, j) = (I ∗ K)(i, j) =
∑

m

∑

n
I(m, n)K(i − m, j − n)

Convolution is commutative, so:
S(i, j) = (K ∗ I)(i, j) =

∑

m

∑

n
I(i − m, j − n)K(m, n)

The commutative formula is not usually an important property of an implementa-
tion. Instead, many neural networks libraries implement a related function called
Cross-correlation (calling it Convolution), which is the same as convolution but
without flipping the kernel like the commutative one:

S(i, j) = (I ∧K)(i, j) =
∑

m

∑

n
I(i + m, j + n)K(m, n)

It is rare for convolution to be used alone in Machine learning application; instead,
it is used simultaneously with other functions.
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3.2.2 Pooling
A typical layer of a CNN consists of three stages.

1. At first, the layer performs several convolutions in parallel to produce a set
of linear activations.

2. In the second phase, each linear activations in run through a non linear acti-
vaction function, such as the ReLU (Rectified Linear Activation function).

f (x) = x+ = max (0, x) where x is the input
The rectified linear activation function is a piecewise linear function that will
output the input directly if is positive, otherwise, it will output zero. This
stage is called detector stage.

3. For third, it is common to use a pooling function to modify the output of
the layer further.

Pooling reduce the number of parameters in your network (pooling is also
called down-sampling for this reason). A pooling function replaces the output
of the net at a certain location with a summary statistic of the nearby outputs. One
example is the max pooling, it reports the maximum output within a rectangular
neighborhood.

Pooling helps to make the representation invariant to small translations of the
input. It means that, translating the input, the values of most of the pooled outputs
will not change. Invariance to translation can be a useful property if we care more
about whether some feature is present, than exactly where it is. For instance, if we
want to find out if an image contains a face, we do not need to know where the
eyes are placed, but only if a left and a right eye are present. Anyway this is not
always true. In fact, sometimes it is more important to preserve the location of the
feature than just knowing if it is present in the image.

44



3.3 Recurrent Neural Networks
Recurrent Neural Networks, or RNNs, are a family of neural networks specialized
for processing sequential data, such as a sequence of values x1, ..., xT . RNNs are
the choice when the problem is about scaling very long sequences of data, also
when the sequences have variable length.[17]

The most important idea behind the RNNs is that of sharing parameters across
different parts of a model. Parameters sharing make possible the extension of the
model to examples of different forms, or length, and make generalizations. Shar-
ing is even more important when a piece of information can occur multiple times
inside the sequence, for example when the problem is to find the same string in-
side different sentences. How do Recurrent Neural Networks share parameters?
We can say that each member of the output is a function of the previous members
of the output. Each member of the output is produced using the same update rule
applied to the previous ones.

Simple explained, we can say that RNNs operate on a sequence that contains
vectors xt with the time step index t ranging from 1 to �. Recurrent networks
usually operate on minibatches of the sequences, with a different sequence length
� for each member of the minibatch. We can say that the time step is not the real
passage of time in real life, but sometimes only refer to the position in the sequence.

Figure 3.6: RNN scheme

3.3.1 Vanishing and exploding gradient problem
Training a RNN is similar to training a traditional Neural Network. We also use
the backpropagation algorithm, but with a little twist. Because the parameters are
shared by all time steps in the network, the gradient at each output depends not
only on the calculations of the current time step, but also the previous time steps.
For example, in order to calculate the gradient at t=4 we would need to backprop-
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agate 3 steps and sum up the gradients. This is called Backpropagation Through
Time (BPTT).

But this algorithm has a problem, called vanishing problem. It mainly oc-
curs when we are dealing with large time series datasets. In fact, as we go back
to the lower layers, gradient often get smaller, eventually causing weights to never
change at lower layers. In the most difficult situations, it obliges the training to
stop.

The opposite problem is called exploding problem: when we go back to the
lower layers, gradient start increasing. This alarming increase eventually shoots
up the gradient to values of such high magnitudes that model blows up, or crashes.

The solution of these problems can be found in an RNN’ extension, so called
LSTM.

3.3.2 RNN’ extensions
Over the years researchers have developed more sophisticated types of RNNs to
deal with some of the problems of the vanilla RNN model. Here are some exam-
ples: [20]

Bidirectional RNNs are based on the idea that the output at time t may not
only depend on the previous elements in the sequence, but also on the future ele-
ments. For example, to predict a missing word in a sequence you want to look at
both the left and the right context. Bidirectional RNNs are quite simple, they are
just two RNNs stacked on top of each other. The output is then computed based
on the hidden state of both RNNs.

Echo state networks or ESNs andLiquid StateMachines are models created
with the idea to overcome a problem of the RNNs. We can say that the recurrent
weights mapping from ℎ(t−1) to ℎ(t) and the input weights mapping from x(t) to
ℎ(t) are some of the most difficult parameters to learn in a recurrent network. The
approach to avoid this difficulty is to set the recurrent weights so that the recurrent
hidden units can do a good job of capturing the history of past inputs, and learn
only the output weights. For LSMs, the latter is similar, except that it uses neurons
with binary outputs instead of the continuous-valued hidden units used for ESNs.
Both ESNs and liquid state machines are termed reservoir computing to denote
the fact that the hidden units form of reservoir of temporal features may capture
different aspects of the history of inputs.
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LSTM or Long Short-Term Memory are quite popular these days. LSTMs
don’t have a fundamentally different architecture from RNNs, but they use a dif-
ferent function to compute the hidden state. The memory in LSTMs are called
cells and you can think of them as black boxes that take as input the previous state
ℎ(t − 1) and current input x(t). Internally these cells decide what to keep in and
what to erase from memory. They then combine the previous state, the current
memory, and the input. It turns out that these types of units are very efficient at
capturing long-term dependencies, so they can easily avoid the vanishing or ex-
ploding problem.
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Chapter 4

Code

In this chapter, I will finally show the examples made during the Machine Learn-
ing’s studies.

For the basics, I created a program in Jupiter Notebook for each algorithm, but
I will not show all of them. I will point out some simple technique to improve the
accuracy and the important plots associated with them.

Regarding Deep Learning instead, plotting using a GPU machine would be
really difficult, so I will limit myself to show really simple code. In fact, the Ten-
sorflow Frameworks is already prepared for creating a model, only a few lines are
enough to build an efficient algorithm.

4.1 Linear and Polynomial Regression
The first program is obviously even the simpler one. Every program starts with
the libraries importing, so I might omit them with the others.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
import warnings #had to supress future warnings
warnings.simplefilter(action=’ignore’, category=FutureWarning)
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k = pd.read_csv(’Linear Regression - Sheet1.csv’)
k.describe()

Figure 4.1: Dataset described

After I have imported the libraries, I have to read the CSV file containing the
data I need to study. Pandas’ library is useful for this purpose, putting the dataset
inside a data structure. Here, the describe method shows a summary of the data.
We can see that it is composed only by one feature and one output, and it is a Re-
gression problem.

X = k.iloc[:, 0].values.reshape(-1,1)
y = k.iloc[:, 1].values.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.25, random_state = 0)
line = LinearRegression()
line.fit(X_train, y_train)
y_pred = line.predict(X_test)

The first two lines are used to reshape the data inside the k variable, in order
to allocate it in new variables. Then, we are finally going to split into train set and
test set using the Sklearn’s easy function train test split. [8]
The main part of the Machine Learning algorithm starts here and it is the same for
everyone: I initialize the Linear Regression, I fit the program using the train set
and then I predict the results using the input test.

plt.scatter(X,y, color=’black’)
plt.plot(X_test, y_pred, color=’pink’, linewidth = 1.5)
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plt.show()
print(’Linear accuracy: ’, line.score(X_test,y_test))

Figure 4.2: Linear Regression plotting and accuracy

At the end, using the matplotlib library, it is easy to see if the prediction was
successful. The black line is composed by every single information of dataset,
while the pink one shows every prediction of the program.
The score method computes by itself the prediction again: this is why the argument
passed is only the train data, without the predicted output previously calculated.

Using the same dataset, I implemented the Polynomial Regression algorithm.

pol = PolynomialFeatures(degree = 5)
X_pol = pol.fit_transform(X_train)
poly = LinearRegression()
poly.fit(X_pol, y_train)
yp_pred = poly.predict(pol.fit_transform(X_test))

The Polynomial Regression’s algorithm is almost the same as the Linear one.
The Linear Regression has to be initialized, but the Polynomial features have to be
created either. This means that the fit transform method is important to reshape
the input train matrix, with the inclusion of the number of features chosen (5 in
the example).
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plt.scatter(X,y, color=’black’)
plt.scatter(X_test, yp_pred, color=’pink’, linewidth = 1.5)
plt.show()
print(’Poly accuracy: ’,

poly.score(pol.fit_transform(X_test),y_test))

Figure 4.3: Polynomial Regression plotting and accuracy

4.2 Decision Tree

Here, I am trying to use a more difficult dataset, it is a Classification problem and
it is composed by four features and one output.
w =

pd.read_csv(r’C:\Users\MHI6\Guido\Datasets\bill_authentication.csv’)
w.hist(figsize=(15,9),bins=50)
w.describe()
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Figure 4.4: Dataset describe and histogram

The description and the histogram help to understand the dataset’s content, so
it is always useful to include them right at the start.
X = w.iloc[:, :4].values
y = w.iloc[:, 4].values
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, stratify=y)
dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
y_pred = dtc.predict(X_test)
accuracy_score(y_test, y_pred)

Out: 0.970873786407767

As the first example, we need to allocate the data inside two variables. We
split in train and test, this time using the attribute stratify: it splits the data in a
stratified fashion when the attributes are not proportional. [8]
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After fitting and predicting, we are using another accuracy function which is not
associated with the Decision Tree’s class. And it is getting a very high value!

dot_bill = StringIO()
tree.export_graphviz(dtc, out_file = dot_bill, feature_names =

w.columns.values[:4])
(graph,) = pydot.graph_from_dot_data(dot_bill.getvalue())
Image(graph.create_png())

Here, we are plotting the entire Decision Tree, created with the Gini criterion.

Figure 4.5: Decision Tree with Gini criterion

dtc2 = DecisionTreeClassifier(criterion=’entropy’)
dtc2.fit(X_train, y_train)
y_pred = dtc2.predict(X_test)
accuracy_score(y_test, y_pred)
dot_bill = StringIO()
tree.export_graphviz(dtc2, out_file = dot_bill, feature_names =

w.columns.values[:4])
(graph,) = pydot.graph_from_dot_data(dot_bill.getvalue())
Image(graph.create_png())

Out: 0.9927184466019418
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Changing the attribute criterion during the Decision Tree’s initialization, we
can modify it in the Entropy one. And the accuracy improves.

Figure 4.6: Decision Tree with Entropy criterion

dtc3 = DecisionTreeClassifier()
param_grid = {’criterion’:[’gini’,’entropy’],

’max_depth’:[3,5,7,20]}
gs_inst = GridSearchCV(dtc3, param_grid=param_grid, cv=5)
gs_inst.fit(X_train, y_train)
y_pred_gs = gs_inst.predict(X_test)
accuracy_score(y_test, y_pred_gs)

Out: 0.9927184466019418

A function can help in improving the accuracy of the model. The function is
the Grid Search.
Inside the function, we have to pass our initialized model, the parameters we want
to try and the cross validation value: in a few words, we vary the split scoring
criterion between Gini and Entropy and vary the max depth of a tree, trying them
in five different subsets of the training data. [8]
But this time the accuracy is not getting higher.

n_classes = 2

54



plot_colors = "rb"
plot_step = 0.02
target = np.arange(2)

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2],
[1, 3], [2, 3]]):

#We only take the two corresponding features
X2 = w.iloc[:, pair].values
y2 = w.iloc[:, 4].values

#Train
tree = DecisionTreeClassifier().fit(X2, y2)

#Plot the area of the output
plt.subplot(2, 3, pairidx + 1)
x_min, x_max = X2[:, 0].min() - 1, X2[:, 0].max() + 1
y_min, y_max = X2[:, 1].min() - 1, X2[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
Z = tree.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)
plt.xlabel(w.columns.values[pair[0]])
plt.ylabel(w.columns.values[pair[1]])

#Plot the training points
for i, color in zip(range(n_classes), plot_colors):

idx = np.where(y == i)
plt.scatter(X2[idx, 0], X2[idx, 1], c=color,

label=target[i],cmap=plt.cm.RdYlBu, edgecolor=’black’,
s=15)

plt.suptitle("Decision surface of a decision tree using paired
features")

plt.legend(loc=’lower right’, borderpad=0, handletextpad=0)
plt.axis("tight")
plt.figure()
plt.show()

The last part of the code is helpful to plot the Decision Boundary of the Deci-
sion Tree. A Decision Boundary is a hypersurface that partitions the underlying
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vector space into two sets (or more), one for each class.
The dataset is composed by many features, so we have to make a Decision Surface
for each pair of attributes.

Figure 4.7: Decision Boundary with paired features

4.3 Random Forest

adm =
pd.read_csv(r’C:\Users\MHI6\Guido\Datasets\Admission_Predict_Ver1.1.csv’)

adm.hist(figsize=(15,9),bins=50)
adm.describe()

The dataset chosen for the Random Forest shows the chances of admission in
function of many features. As we can see, the first feature is not important for the
program.
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Figure 4.8: Admission dataset describe and histogram

X = adm.iloc[:, 1:8].values
y = adm.iloc[:, 8].values
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, stratify = y)
rft = RandomForestRegressor()
rft.fit(X_train, y_train)
y_pred = rft.predict(X_test)

mean_absolute_error(y_test, y_pred)
Out: 0.049673333333333326

(np.abs(y_test - y_pred)/(y_test)).mean()
Out: 0.07940735256505903

Themean absolute error function calculates the error using only oneDecision
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Tree of the model, while the second function calculates the mean of the errors of
every tree of Random Forest.
for i in range (0,9):

dot_uni = StringIO()
tree.export_graphviz(rft.estimators_[i], out_file = dot_uni,

feature_names = adm.columns.values[1:8])
(graph,) = pydot.graph_from_dot_data(dot_uni.getvalue())
img = Image(graph.create_png())
display(img)

This loop plots every Decision Tree of the algorithm: the attribute estimators
outputs an array filled with every single tree, it can be easily read thanks to the use
of an index (see Figure 4.9).
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Figure 4.9: All the Random Forest’s trees
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rft.feature_importances_

Out: array([0.11067352, 0.03755564, 0.0125767 , 0.02357941,
0.01848026, 0.7840063 , 0.01312817])

pd.Series(rft.feature_importances_,
index=adm.columns.values[1:8]).nlargest(8).plot(color=’red’,
kind=’barh’)

The feature importances model’s attribute creates an array containing all the
attributes’ importances in order to predict the result. Using a simple row of code,
there is the plot.

Figure 4.10: Attributes importances

At the end, I tried to make the same Decision Boundary as the Decision Tree
example. But here we have a Regression problem, so it is really difficult to find
the correct way to visualize every output’s area associated with the inputs, even
pretending that the outputs are limited like a Classification problem.

4.4 Logistic Regression and SVC

w = pd.read_csv(r’C:\Users\MHI6\Guido\Datasets\diabetes2.csv’)
w.hist(figsize=(15,9),bins=50)
w.describe()

In this exercise, I am trying to use the medical parameters to predict the diag-
nosis of diabetes. Two different algorithms will be shown.
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Figure 4.11: Diabetes dataset describe and histogram

X = w.iloc[:, :8].values
y = w.iloc[:, 8].values

tsne = TSNE(n_components=2, random_state=0)
tsne_obj= tsne.fit_transform(X)
vis_x = tsne_obj[:, 0]
vis_y = tsne_obj[:, 1]
plt.scatter(vis_x, vis_y, c=y, cmap=plt.cm.get_cmap("jet", 2), s =

1)
plt.colorbar(ticks=range(2))
plt.show()
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Figure 4.12: t-SNE plot
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for

dimensionality reduction that is particularly well suited for the visualization of
high-dimensional datasets. So, t-SNE gives you a feel or intuition of how the data
is arranged in a high-dimensional space. Sklearn’s library includes a class which
can easily be included in the program.
The fit transform function takes the array X (composed of 8 features) and de-
crease its dimension into n components attribute specified in the initialization.
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.25, random_state=0)
X_train_2, X_test_2, y_train_2, y_test_2 =

train_test_split(X_train, y_train, test_size=0.25,
random_state=0)

svc_clf = SVC(kernel = ’linear’, random_state = 0).fit(X_train_2,
y_train_2)

lr_clf = LogisticRegression(random_state = 0).fit(X_train_2,
y_train_2)

svc_pred = svc_clf.predict(X_test_2)
print (’Accuracy of SVC:’, accuracy_score(y_test_2,svc_pred))
Out: Accuracy of SVC: 0.7777777777777778
print (’Accuracy of SVC on original Test Set:

’,accuracy_score(y_test, svc_clf.predict(X_test)))
Out: Accuracy of SVC on original Test Set: 0.796875

lr_pred = lr_clf.predict(X_test_2)
print (’Accuracy of LR:’, accuracy_score(y_test_2,lr_pred))
Out: Accuracy of LR: 0.7777777777777778
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In order to improve the accuracy, it is possible to further divide the train set
with cross validation technique and then we can predict the accuracy with the
divided ones. The accuracy is the same for both models. It is anyway easy to
predict the accuracy on the original test set.
svc_scores = cross_val_score(svc_clf, X_train, y_train, cv=4)
print (’Average SVC scores: ’, svc_scores.mean())
print (’Standard Deviation of SVC scores:’, svc_scores.std())
Out: Average SVC scores: 0.7568844948155293
Out: Standard Deviation of SVC scores: 0.017842790888631447

lr_scores = cross_val_score(lr_clf, X_train, y_train, cv=4)
print (’Average LR scores: ’, lr_scores.mean())
print (’Standard Deviation of LR scores: ’, lr_scores.std())
Out: Average LR scores: 0.7533397636845912
Out: Standard Deviation of LR scores: 0.027907292694692474

The cross val score function creates an array containing the scores reached for
each subset of the training set. Being it an array, it is enough the use of some maths
functions in order to calculate the mean and the standard deviation.
confusion_matrix(y_test_2, lr_pred,labels = [1,0])
Out: array([[29, 26],

[ 6, 83]], dtype=int64)

y_pred_proba = lr_clf.predict_proba(X_test)
y_pred_low = binarize(y_pred_proba, threshold=0.2)
confusion_matrix(y_test, y_pred_low[:,1],labels=[1,0])
Out: array([[61, 1],

[79, 51]], dtype=int64)

Let’s study the confusion matrix of the Logistic Regression model. In the main
diagonal, there are 29 people with a correct diagnosis of diabetes and 83 with a
correct diagnosis of not having diabetes. In the secondary diagonal instead, there
are 26 people with the diagnosis of not having diabetes although they have and 79
with the diagnosis of diabetes although they have not.
As said in the theory, sometimes is better having the positive diagnosis even if it
is not correct then let people go home with a wrong diagnosis which can be fatal
for their health.
It is possible to change the threshold of the confusion matrix in order to improve
its accuracy. At first, we have to calculate the predictions probabilities using the
predict proba function. Its output will be a matrix where in the first column there
will be the probability for each prediction of being 0, 1 in the second.

63



It can be used in the confusion matrix function after binarized it. The accuracy is
improving but the False Negatives should turn to 0.
def npv_func(th): #NPV function for accuracy of threshold

y_pred_low = binarize(y_pred_proba, threshold=th)
second_column =

confusion_matrix(y_test,y_pred_low[:,1],labels=[1,0])[:,1]
npv = second_column[1]/second_column.sum()
return npv

npv_func(0.2)
npv_func(0.22)
npv_func(0.18)
Out: 0.9807692307692307
Out: 0.9682539682539683
Out: 1.0

The NPV function can help to find the correct threshold for the data studied. Here,
the best threshold is 0.18.
y_pred_low = binarize(y_pred_proba, threshold=0.18) #best threshold
confusion_matrix(y_test, y_pred_low[:,1],labels=[1,0])
Out: array([[62, 0],

[92, 38]], dtype=int64)

ths = np.arange(0,1,0.01)
npvs = []
for th in np.arange(0,1.00,0.01):

npvs.append(npv_func(th))
plt.plot(ths,npvs)

The plot of the NPV function can give a more accurate detail of the thresholds.

Figure 4.13: NPV plot
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fpr, tpr, ths = roc_curve(y_test, y_pred_proba[:,1])
plt.plot(fpr,tpr)
auc(fpr,tpr)

Out: 0.851985111662531

The roc curve function returns the values useful for the plotting of the ROC
curve, including an array of thresholds. Plotting the ROC curve and calculating
the accuracy through the AUC (area under curve) is easy thanks to the Sklearn
library.

Figure 4.14: ROC plot

def model(x):
return 1 / (1 + np.e**(-x))

for i in range (8):
cv = StratifiedShuffleSplit(n_splits=7, test_size=0.2,

random_state=7) # Cross validation
logregpipe = Pipeline([(’scale’, StandardScaler()),

(’logreg’,LogisticRegression(multi_class="multinomial",solver="lbfgs"))])
Cs = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100] # 5 parameters for

cross validation tries
param_grid = dict(logreg__C=Cs)
logreg_cv = GridSearchCV(logregpipe,param_grid =

param_grid,cv=cv)
logreg_cv.fit(X_train,y_train)

bestlogreg = logreg_cv.best_estimator_ # Getting the best
estimator (best parameter)

bestlogreg.fit(X_train,y_train)
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bestlogreg.coef_ = bestlogreg.named_steps[’logreg’].coef_
bestlogreg.intercept_ =

bestlogreg.named_steps[’logreg’].intercept_

loss = model(X_train * bestlogreg.coef_ +
bestlogreg.intercept_) # Manually calculating the
probability

tmp = X_train * bestlogreg.coef_ + bestlogreg.intercept_
plt.scatter(tmp[:,i], y_train, s = 1, color = ’black’)
plt.scatter(tmp[:,i], loss[:,i], color = ’red’)
plt.xlabel(w.columns.values[i])
plt.ylabel(’Probability’)
plt.show()

A fundamental plot of the Logistic Regression algorithm is the one of the sig-
moid function [8]. It explains the relationship that exists between a feature and its
probability associated with the Classification output.
For each iteration of the code, a Grid Search is used, in order to find the best reg-
ularization parameter for the plot. The regularization parameter applies a penalty
to increase the magnitude of parameter values in order to reduce overfitting.
Here, I am defining a function to manually calculate the probability, then using the
coef and intercept attributes of the model. Another simple way is just using the
predict proba function already shown above.
In a simple dataset with no more than 2 features, the sigmoid is pretty easy to visu-
alize. This is a multivariate model, so the plots hide the fact that the probability is
influenced by the other variables not being shown, creating the horizontal spread.

Figure 4.15: Sigmoid plot for each feature

Regarding the SVC model, again the decision boundary is one of the most
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important plot. As known, it is possible to decide the kernel of the model.
The linear and the polynomial ones are almost the same: the only difference is the
possibility of choosing the polynomial degree. I am using the default one (that
is the third degree), this is because the program execution using the polynomial
kernel is very slow.
k = [’linear’, ’poly’]
for pair in list([[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6],

[0, 7], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3],
[2, 4],[2, 5],[2, 6],[2, 7],[3, 4],[3, 5],[3, 6],[3, 7],[4,
5],[4, 6],[4, 7],[5, 6],[5, 7]]):
X_2 = w.iloc[:, pair].values
Xy1 = X_2[y==0]
Xy2 = X_2[y==1]
X_train, X_test, y_train, y_test = train_test_split(X_2, y,

test_size=0.2,stratify=y)
xmin, xmax = np.percentile(X_2[:, 0], [0, 100])
ymin, ymax = np.percentile(X_2[:, 1], [0, 100])
test_points = np.array([[xx, yy] for xx, yy in

product(np.linspace(xmin, xmax), np.linspace(ymin, ymax))])

i=0
for i in range(2):

svm_inst = SVC(kernel=k[i])
svm_inst.fit(X_train,y_train)
test_preds = svm_inst.predict(test_points)
plt.figure(figsize=(10,7))
plt.scatter(Xy1[:,0],Xy1[:,1], color = ’red’) # Scatter of

the background area
plt.scatter(Xy2[:,0],Xy2[:,1], color = ’blue’)
colors = np.array([’r’, ’b’])
plt.scatter(test_points[:, 0], test_points[:, 1],

color=colors[test_preds], alpha=0.25) # Scatter of the
points

plt.xlabel(w.columns.values[pair[0]])
plt.ylabel(w.columns.values[pair[1]])
plt.scatter(X_2[:, 0], X_2[:, 1], color=colors[y])
plt.title(’%s-separated classes’ %(k[i]))
plt.show()

For each pair of features I am plotting the Linear and Polynomial kernel deci-
sion boundary. Therefore, only few charts of them are shown below.
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Figure 4.16: Linear and Polynomial kernel

The second part of the code has the same purpose, but applying the RBF kernel.
In addition, the Grid Search is used in order to find the best parameters for the plot.
for pair in list([[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6],

[0, 7], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3],
[2, 4],[2, 5],[2, 6],[2, 7],[3, 4],[3, 5],[3, 6],[3, 7],[4,
5],[4, 6],[4, 7],[5, 6],[5, 7]]):
X_2 = X[:,pair]
Xy1 = X_2[y==0]
Xy2 = X_2[y==1]
X_train, X_test, y_train, y_test = train_test_split(X_2, y,

test_size=0.2,stratify=y)
xmin, xmax = np.percentile(X_2[:, 0], [0, 100])
ymin, ymax = np.percentile(X_2[:, 1], [0, 100])

svm_est =
Pipeline([(’scaler’,StandardScaler()),(’svc’,SVC(kernel="rbf"))])

cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2,
random_state=7) # Cross validation

Cs = [0.001, 0.01, 0.1, 1, 10] # 5 parameters for cross
validation tries

gammas = [0.001, 0.01, 0.1, 1, 10]
param_grid = dict(svc__gamma=gammas, svc__C=Cs) # Parameters

given to grid
grid_cv = GridSearchCV(svm_est, param_grid=param_grid, cv=cv)
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grid_cv.fit(X_train, y_train)
test_points = np.array([[xx, yy] for xx, yy in

product(np.linspace(xmin, xmax), np.linspace(ymin, ymax))])
test_preds = grid_cv.predict(test_points)
plt.figure(figsize=(10,7))
plt.scatter(Xy1[:,0],Xy1[:,1], color = ’red’) # Scatter of

background area
plt.scatter(Xy2[:,0],Xy2[:,1], color = ’blue’)
colors = np.array([’r’, ’b’])
plt.scatter(test_points[:, 0], test_points[:, 1],

color=colors[test_preds-1], alpha=0.25) # Scatter of the
points

plt.xlabel(w.columns.values[pair[0]])
plt.ylabel(w.columns.values[pair[1]])
plt.scatter(X_2[:, 0], X_2[:, 1], color=colors[y-1])
plt.title("RBF-separated classes")
plt.show()

Figure 4.17: RBF kernel

69



4.5 Deep Learning
Using the GPU machine, I tried to create some simple MLP, CNN and RNN pro-
grams using the most common dataset: the MNIST handwritten digit database. It
is a huge dataset containing handwritten digits that is commonly used for training
various image processing systems. It is well-suited for models such as CNN, but
it is not very suitable for others, like the RNN.
For each of the three types of algorithm explained previously, I used two differ-
ent libraries: Tensorflow, which is essentially a sort of low-level language to build
Deep Learning’s models, and Keras, which is implemented inside Tensorflow and
it is a very simple high-level language for the same purpose.

4.5.1 Multilayer Perceptron

#Read the data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

#Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
n_hidden_1 = 256
n_hidden_2 = 256
n_input = 784 # 28x28
n_classes = 10

#Graph
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])

#Store weights and biases
weights = {

’h1’: tf.Variable(tf.random_normal([n_input, n_hidden_1])),
#784x256

’h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
#256x256

’out’: tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
#256x10

}
biases = {
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’b1’: tf.Variable(tf.random_normal([n_hidden_1])), #256x1
’b2’: tf.Variable(tf.random_normal([n_hidden_2])), #256x1
’out’: tf.Variable(tf.random_normal([n_classes])) #10x1

}

#Model
def mpl(x, weights, biases):

print(’x:’, x.get_shape(), ’W1:’, weights[’h1’].get_shape(),
’b1:’, biases[’b1’].get_shape())

#Hidden layer with ReLU
layer_1 = tf.add(tf.matmul(x, weights[’h1’]), biases[’b1’])
layer_1 = tf.nn.relu(layer_1)
#Hidden layer with ReLU
print(’layer_1:’, layer_1.get_shape(), ’W2:’,

weights[’h2’].get_shape(), ’b2:’, biases[’b2’].get_shape())
layer_2 = tf.add(tf.matmul(layer_1,weights[’h2’]), biases[’b2’])
layer_2 = tf.nn.relu(layer_2)
#Output layer with linear activation
print(’layer_2:’, layer_2.get_shape(), ’W3:’,

weights[’out’].get_shape(), ’b3:’, biases[’out’].get_shape())
out_layer = tf.matmul(layer_2, weights[’out’]) + biases[’out’]
print(’out_layer:’, out_layer.get_shape())
return out_layer

#Construct model
pred = mpl(x, weights, biases)

#Loss function and Optimizer
cost =

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits
= pred,labels = y))

optimizer =
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

#Initializing the variables
init = tf.initialize_all_variables()

#Launch
with tf.Session() as sess:

sess.run(init)
#Training cycle
for epoch in range(training_epochs):

avg_cost = 0.
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total_batch = int(mnist.train.num_examples/batch_size)
#Loop all batches
for i in range(total_batch):

batch_x, batch_y = mnist.train.next_batch(batch_size)
#Run optimization and cost op (loss)
_, c = sess.run([optimizer, cost], feed_dict={x:

batch_x,y: batch_y})
#Compute average loss
avg_cost += c / total_batch

#Display epoch step
if epoch % display_step == 0:

print ("Epoch:", ’%04d’ % (epoch+1), "cost=",
\"{:.9f}".format(avg_cost))

print("Optimization Finished!")
#Test
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y,

1))
#Accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Accuracy:", accuracy.eval({x: mnist.test.images, y:

mnist.test.labels}))

This is the example using the Tensorflow library.
It is easy to understand how it works: the neural network parameters can be chosen,
including the input and the output, the weights and the biases with their shapes.
Then the model can be defined like a chained function, so each layer is strictly
correlated with the previous one.
The next step is initializing the variables and the model, and defining a cost func-
tion and an optimizer. The most used one is theAdam: it is an optimizer extension
of the already known Stochastic Gradient Descent.
The cost function depends on the problem type. If it is a binary classification,
the most correct cost function is the binary cross-entropy; for categorical classifi-
cation, the best one is the categorical cross-entropy; for regression, it is the mean
squared error. The purpose is common: it is about calculating the difference be-
tween the the predicted value and the real one.
The final part is just about training and then testing the model using a Session.
Everything written in Tensorflow can be further simplified with the Keras frame-
work, follows the code:
#Parameters
batch_size = 128
num_classes = 10
epochs = 15
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#Preprocessing the data
(x_train, y_train), (x_test, y_test) =

tf.keras.datasets.mnist.load_data() #Splitting
x_train = x_train.reshape(60000, 784) #Correcting the shape
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype(’float32’)#Correcting the format
x_test = x_test.astype(’float32’)
x_train /= 255 #Normalize
x_test /= 255
print(x_train.shape[0], ’train samples’)
print(x_test.shape[0], ’test samples’)

#Convert to binary class matrices (one hot)
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

#Model
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(512, activation=’relu’,

input_shape=(784,)))
model.add(tf.keras.layers.Dense(512, activation=’relu’))
model.add(tf.keras.layers.Dense(num_classes, activation=’softmax’))
model.summary()
model.compile(loss=’categorical_crossentropy’,

optimizer=tf.keras.optimizers.Adam(), metrics=[’accuracy’])

#Train and test
history = model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print(’Test loss:’, score[0])
print(’Test accuracy:’, score[1])

With Keras, creating the model and evaluating is easier than using the Tensor-
flow framework. In fact, the model is built per block, without the need of defining
the biases and weights. Many function and attributes help to improve and evaluate
the model, and the code is better readable than the first one.

73



Figure 4.18: Keras Multilayer Perceptron Output

4.5.2 Convolutional Neural Network
The differences between the Deep Learning algorithms written in Python are really
a few, therefore I will limit myself to explain what changes. In CNN example,
only the model changed and now it needs as input the real picture format: it is not
anymore an array but a matrix (28x28).
#Conv2D
def conv2d(x, W, b, strides=1):

x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1],
padding=’SAME’)

x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)

#MaxPool2D
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def maxpool2d(x, k=2):
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k,

1],padding=’SAME’)

#Model
def conv_net(x, weights, biases):

#Reshape to match picture format [Height x Width x Channel]
x = tf.reshape(x, shape=[-1, 28, 28, 1])
#Convolution Layer
conv1 = conv2d(x, weights[’wc1’], biases[’bc1’])
#Max Pooling
conv1 = maxpool2d(conv1, k=2)
#Convolution Layer
conv2 = conv2d(conv1, weights[’wc2’], biases[’bc2’])
#Max Pooling
conv2 = maxpool2d(conv2, k=2)
#Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1,

weights[’wd1’].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights[’wd1’]), biases[’bd1’])
fc1 = tf.nn.relu(fc1)
#Output
out = tf.add(tf.matmul(fc1, weights[’out’]), biases[’out’])
return out

The CNN model differs to the MLP one because it includes at least one con-
volutional layer. A convolutional function is defined to simplify the code and the
MaxPooling is used to down-sample the input representation.

x_train = x_train.reshape((x_train.shape[0], 28, 28, 1)) #Real
image shape and not an array of 784 elements

x_test = x_test.reshape((x_test.shape[0], 28, 28, 1))

model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3), activation=’relu’,

input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(100, activation=’relu’))
model.add(tf.keras.layers.Dense(10, activation=’softmax’))

The Conv2D layer takes an input shape of 28x28x1 (in this case, we are not
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working in RGB images) and it will output a shape of 26x26x32. This is because
a 32 filter and 3x3 kernel are applied. MaxPooling2D layer basically divides the
matrices taking the maximum value for each "2x2 sub-matrix", so the output will
be 13x13x32. At the end, Flatten will create a unique array and will be furthermore
simplified with the use of the Dense.

Figure 4.19: Keras CNN Output
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4.5.3 Recurrent Neural Network

The RNN are used to process sequences of data. To classify images using a recur-
rent neural network, we consider every image row as a sequence of pixels. Because
MNIST image shape is 28x28, we will then handle 28 sequences of 28 steps for
every sample.
Tensorflow based program is again similar to the others, only the model’s function
is changed:
def RNN(x, weights, biases):

#Required shape: ’timesteps’ tensors list of shape (batch_size,
n_input) using unstack

x = tf.unstack(x, timesteps, 1)
#LSTM cell
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden,

forget_bias=1.0)
#LSTM cell output
outputs, states = tf.nn.static_rnn(lstm_cell, x,

dtype=tf.float32)
#Output
return tf.matmul(outputs[-1], weights[’out’]) + biases[’out’]

And this is the Keras program, where the LSTM hidden layers are added to the
model:
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(128,

input_shape=(x_train.shape[1:]),
activation=’relu’,return_sequences=True))

model.add(tf.keras.layers.LSTM(128, activation=’relu’))
model.add(tf.keras.layers.Dense(32, activation=’relu’))
model.add(tf.keras.layers.Dense(10, activation=’softmax’))

The first LSTM layer has 128 output units and the input shape is a 28x28 ma-
trix. Using the return sequences argument, we are telling to the layer to return the
output at each time step instead of the final time step. So it will study a sequence
of 28 arrays.
The output of each unit will be fed into the second layer which has again 128 output
units, but in this case they will elaborate just the input of a single sequence.
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Figure 4.20: Keras RNN Output

4.5.4 Transfer Learning with pre-trained model
Transfer Learning is a popular method which allows to build accurate models in a
timesaving way: instead of creating a brand newmodel to resolve the problem, you
will start frommodel patterns already created by other people that solve a different
problem than yours. [21]
Transfer Learning is expressed using some pre-trained models. They are weighted
models that were trained on a large dataset in order to solve a problem similar to
the one we want to solve. Most of the pre-trained models belong to the CNN sec-
tion of Deep Learning and some typical pre-trained models are VGG, Inception,
ResNet.
I tried to implement the VGG16 pre-trained model in a different image classifica-
tion problem. The VGG16 is a CNNmodel trained on a datasets of million images
belonging to thousand classes, called ImageNet.
The dataset I am using is a big one, it includes 10.000 images belonging to 149
different classes, but this means that the pre-trained model will probably over-fit
during the training.
Keras includes many pre-trained model like the VGG16. Instantiated the model,
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we can take a look to its complexity using the summary function:

Figure 4.21: VGG16 model’s layers

vgg_model = tf.keras.applications.VGG16(weights=’imagenet’,
include_top=False, input_shape = (224,224,3))

for layer in vgg_model.layers[:-5]:
layer.trainable=False

es = tf.keras.callbacks.EarlyStopping(monitor=’val_loss’,
patience=50, mode=’auto’, min_delta=0.01)

model = tf.keras.models.Sequential()
model.add(vgg_model)
model.add(tf.keras.layers.Flatten(input_shape=vgg_model.output_shape[1:]))
model.add(tf.keras.layers.Dropout(0.8))
model.add(tf.keras.layers.Dense(256, activation=’relu’,

kernel_regularizer=tf.keras.regularizers.l2(l=0.01)))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(149, activation=’softmax’))
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model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.0001,
decay=0.0001/200), loss=’categorical_crossentropy’,
metrics=[’accuracy’])

But the model’s output will not be the same of the problem. It is appropriate
to add some layers in order to get the output needed: for example, the last Dense
layer will oblige the model to classify the input into 149 different classes.
The 256 Dense layer is used to add some Dropout between the layers. The best
Dropout chosen is 0.8 in the first one and 0.5 in the second one. Dropout is the
probability p of a neuron being dropped out during each training stage and it can
be seen as a regularization technique. Dropout is important in this case because,
at the first try, without any regularization technique, the model was significantly
over-fitting: the training accuracy arrived almost at 100% but the validation accu-
racy got less than 50%. The meaning is that the program achieve a good fit on the
training data, while it does not generalize well on unseen data.
But Dropout is not enough to relieve the over-fitting problem. Another ploy can
be freezing some weights of the pre-trained model because it could be too deep for
the studied case. Here, after many tests, freezing the last 5 VGG’s layers seems to
be the best choice to improve the validation accuracy.
Another simple regularization technique is the L2 regularization, shown in the
SVM section. It adds a cost, resulting in smaller weights, in the the Dense layer
right after the pre-trained model.[22]
The Early Stopping callback is used to stop the training after a certain number of
epochs where the accuracy is not improving. It can be helpful to find the correct
place where the best performance is happening before entering in over-fitting.
Defined the model, what remains to be done is compiling it. Adam is the chosen
optimizer, but the learning rate and decay are modified so as the over-fitting will
relieve.

train=
tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,
shear_range=0.2, zoom_range=0.2, horizontal_flip=True)

test=
tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)

training_set =
train.flow_from_directory(’datasets/generation/train’,
target_size=(224,224), class_mode = ’categorical’)

val_set = test.flow_from_directory(’datasets/generation/test’,
target_size=(224,224), class_mode = ’categorical’)

The GPU libraries does not include Sklearn, so it is impossible to use the split-
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ting function. Keras offers a class for images manipulation thought: the Image-
DataGenerator which it has the flow from directory method which directly rec-
ognizes different classes inside a directory. I had to use my own Python script to
split the dataset inside the train and test directories.
The training set is built using a sort of Data Augmentation. Usually, Data Aug-
mentation means augmenting the training data using modified images, such as
zoomed ones, flipped, negative colors, etc. The ImageDataGenerator does not in-
crease the number of images but replaces them with the modified one. Here, it
randomly zooms, shears and horizontal flips some of them.
Another problem of the Sklearn library lack is that the dataset is very imbalanced
and it is impossible to solve it automatically. The different 149 classes contains
an huge difference in the number of images, where some classes have just a few
pictures. This creates two problems:

• We don’t get optimized results for the class which is unbalanced as the model
never gets sufficient look at the class.

• It creates a problem of making a validation as its difficult to have represen-
tation of the classes in case the number of observation for some classes is
extremely poor (over-fitting).

The approaches that Sklearn could offer easily were 2: [23]
• Undersampling: randomly deletes images from the class which has too

many observations. This approach is really simple but there is a possibility
that the data that we are deleting may contain important information about
the class.

• Oversampling: for the poor class, randomly increases the number of ob-
servations which are just modified copies of existing samples. This gives a
sufficient number of samples to play with, but it may lead to over-fitting.

history = model.fit_generator(training_set, steps_per_epoch = 64,
epochs = 500, validation_data = val_set, validation_steps = 64,
callbacks=[es])

test_image =
tf.keras.preprocessing.image.load_img(’datasets/starter/val/attempt.png’,
target_size=(224, 224))

test_image = tf.keras.preprocessing.image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = model.predict(test_image)
print(training_set.class_indices)
print(result)
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The fit generator method will start the training of the model, then testing it
with the validation set composed by the 30% of the dataset. At the real end, I tried
to load another photo to see if the program would predict the correct class for a
new observation.

Figure 4.22: The new observation

Figure 4.23: Model’s output
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The model is getting a very good 95% on training accuracy and 75% in valida-
tion accuracy. This means that the model is still over-fitting, but it has improved
by 25%! The real challenge of Machine Learning is to improve the validation ac-
curacy, so the performance of the model in predicting new observations. And this
is very huge improvement.
The predict method outputs an array where each index belongs to a class of the
dataset, associated with the probability that the new observation belongs to that
class. Here, the indices with their label are shown randomly using the class indices
attribute of the ImageDataGenerator object. The new image’s label is "Charman-
der" and, looking to the indices, it would be the number 14. Knowing that the 0
index is also included, the program is sure that the image belongs to the correct
class, so the probability is 1.

N = es.stopped_epoch+1 if es.stopped_epoch != 0 else 500
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0,N), history.history["loss"],

label="train_loss")
plt.plot(np.arange(0,N), history.history["val_loss"],

label="val_loss")
plt.plot(np.arange(0,N), history.history["acc"], label="train_acc")
plt.plot(np.arange(0,N), history.history["val_acc"],

label="val_acc")
plt.title("Training loss and accuracy on dataset")
plt.xlabel("Epoch")
plt.ylabel("Loss/Acc")
plt.legend(loc="lower left")
plt.savefig("plot.png")
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Figure 4.24: Accuracy and losses

This plot shows the trend accuracy and losses of the mode. It has to be saved in
an external file and then imported in another computer, because the GPU machine
can be accessed just using the command line.
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Conclusion
English Version
In the previous chapters, I have explained what really is Machine Learning and
Deep Learning, following methodologies which can be implemented in an high
level programming language as Python. The models are many, but only some can
fit the actual problem. At the end, the purpose is to get the best accuracy on pre-
dicting datas, resulting in a perfectly trained machine.
Using Python, learning the basis of Machine Learning is easy: the severe prop-
erty of encapsulation allows the programmer to work with several functions that
do not need to be changed. Anyway, Machine Learning can be implemented with
many other languages, where the practiotioner is much more free to create his own
model, getting a better result overall. The best way to pratice is trying with differ-
ent languages.

My final example shows something: a machine can really recognize where our
input belongs to, also with several classes, just as a person can do.
This branch of computer science has been ignored formany years because it needed
too much computational time using the very old machines. Today, in contrast, a
machine can be easily trained to perform this kind of recognition: a fact that has
entered history is the one where a machine, trained using a combination of Su-
pervised Machine Learning and Reinforcement Learning, could beat the world
champion of Go, a traditional chinese board game [24]; similar thing is happening
with Chess.

Basically, Machine Learning gets more powerful day by day, because of the
continuous improvements in GPUs and CPUs, resulting effective in every matter.
We have to wait to see what it still has in store for us.
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Conclusioni
Versione Italiana
Nel capitoli precedenti, ho spiegato, quindi, cos’è davvero il Machine Learning
e il Deep Learning, proseguendo poi con metodologie che possono essere imple-
mentate in un linguaggio di alto livello come Python. I modelli da utilizzare sono
tanti, ma solo alcuni sono precisi per il problema attualmente da risolvere. Alla
fine, lo scopo diventa quello di ottenere la migliore precisione nella predizione di
dati, ottenendo così una macchina perfettamente allenata.
Utilizzando Python, imparare le basi dell’ApprendimentoAutomatico èmolto facile:
la proprietà di incapsulamento permette al programmatore di lavorare con molte
funzioni che non hanno bisogno di essere cambiate o riscritte. In ogni caso, gli
algoritmi di Machine Learning possono essere implementati con molti altri lin-
guaggi, dove il programmatore ha molta più libertà nella creazione di un suo mod-
ello, ottenendo un risultato migliore. Il miglior modo per fare pratica è provare
con differenti linguaggi.

L’esempio finale prima delle conclusioni mostra qualcosa di molto importante:
una macchina può veramente riconoscere a cosa appartengono determinati input,
anche con differenti classi, proprio come un essere umano può fare.
Questa branca dell’informazione è stata ignorata per parecchi anni perchè neces-
sitava di troppo tempo computazionale nelle vecchie macchine. Oggi invece una
macchina può essere facilmente allenata per praticare queste tipologie di riconosci-
menti: un fatto che è entrato nella storia è quello in cui una macchina, allenata
utilizzando una combinazione di Supervised Machine Learning e Reinforcement
Learning, è riuscita a battere il campione mondiale di Go, un gioco da tavolo
tradizionale cinese; stessa cosa sta succedendo con gli scacchi.

In poche parole, il Machine Learning diventa via via sempre più potente, anche
grazie alle continue migliorie fatte a componenti hardware come CPU e GPU,
risultando efficace in qualsiasi materia di studio. Dobbiamo però aspettare per
vedere cosa ha ancora in serbo in futuro.
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