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Abstract

This document introduces a mathematical model of a helicopter following

the principle of Lagrange-d’Alembert-Pontryagin, tailored to Lie group SO(3).

The resulting system of equations is explained and enhanced with applications

and numerical simulations in order to go into depth on the study of the model

and typical behaviours of a helicopter. The implementation is provided by

the software MATLAB, while the numerical resolution of the equations is per-

formed by the forward Euler method (fEul). The fEul is consistently written

taking into account that some equations belong to the rotational group SO(3).
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Sommario

Questo documento introduce il modello matematico di un elicottero seguendo il

principio di Lagrange-d’Alembert-Pontryagin, particolarizzato per il gruppo di

Lie SO(3). Il sistema di equazioni risultante viene illustrato e arricchito di ap-

plicazioni e simulazioni numeriche in modo da scendere in profondità nello stu-

dio del modello e dei tipici comportamenti di un elicottero. L’implementazione

si basa sul software MATLAB, mentre la risoluzione numerica delle equazioni

sfrutta il metodo di Eulero in avanti (fEul). Quest’ultimo è stato scritto ten-

endo in considerazione che alcune equazioni appartengono al gruppo delle mat-

rici ortogonali speciali SO(3).
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Chapter 1

Introduction

Conventional helicopters are built with two rotors. These can be arranged as two coplanar

rotors both providing upward thrust, but spinning in opposite directions in order to bal-

ance the torques exerted upon the body of the helicopter. The two rotors can also be

arranged with one main rotor providing thrust and a smaller side rotor oriented laterally

and counteracting the torque produced by the main rotor, as shown in the Figure 1.1.

Helicopters with no tail rotors (‘notar’) use a jet of compressed air to compensate for the

unwanted yawing of the fuselage.

Figure 1.1: Eurocopter EC 135, with a fantail assembly tail rotor (reproduced from
https://en.wikipedia.org/wiki/Tail_rotor).

Controls on a helicopter are numerous. Considering a rigid rotor system, the attitude and

the position of a helicopter are mainly controlled through two systems, called collective

control system and cyclic control system. The power exerted by the rotors is usually pretty

constant, in fact, the blades are designed to operate at a specific rotational speed. However,

it is possible to change the engine power slightly using the throttle control, whereas the

direction the aircraft nose points, the yaw angle, could be changed using the pedals control.

A summary of helicopter controls is given in the following.

Collective control: The collective control is used to increase or decrease the total thrust

generated by the rotors. This technique is adopted in the main rotor and in the tail rotor.

To grow (to reduce) the thrust it is necessary to increase (to decrease) the angle of attack
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1. Introduction

of the all blades αc. This angle is in each instant equal for all the blades. An example of

the usage of the collective control is illustrated in Figure 1.2.

Figure 1.2: Collective control changes the angle of attack of all blades at the same
time.

Cyclic control: The cyclic control is distinctive of the main rotor. To tilt the body

of a helicopter forward and backwards (pitch) or sideways (roll), the control must alter

the angle of attack of the main rotor blades cyclically during rotation. As illustrated in

Figure 1.3. In particular, controlling the angle of attack of the blades in such a way that

the forward-hand half of the rotor disk exerts more (less) thrust than the backward-hand

half makes the helicopter roll to the left (right). This effect is known as the conservation

of angular momentum: a change of the angular momentum will create a torque in the

direction described by the right-hand law. Generally, to change the attitude of a helicopter

it is necessary to modify the angle of the thrust exerted by the main rotor, but the thrust

is generated by the rotation of the blades, so it is necessary to create different amounts

of thrust at different points in the cycle. Where a greater (smaller) amount of thrust is

necessary the blade increases (decrease) its angle. The angles taken by the blades will be

a function of time, the two angles αp and αr are used to indicate the angle of the thrust

vector.

Pedals control: Because of momentum conservation, the rotation of the main rotor causes

a rotation of the body of the helicopter in the opposite direction: as the engine turns the

main rotor system in a counterclockwise direction, the helicopter fuselage turns clockwise.

The amount of torque is directly related to the amount of engine power being used to

turn the main rotor system. The unwanted yawing of the fuselage may be balanced by

controlling the thrust of the tail rotor, as illustrated in Figure 1.4. The anti-torque pedals

change the tail rotor collective angle of attack αT
c . The yaw angle variation depends upon

variations of the tail rotor thrust or variations on the main rotor thrust. The pedals control

is used for heading changes while hovering, but also to maintain the actual helicopter nose

direction.

Actuators:

• The cyclic control and the collective control of the main rotor work through a complex

mechanical system called ‘swash-plate’, whose functioning is illustrated in Figure 1.5.

The swash-plate is composed of two parts, one that is tight with the rotor mast and

one that can rotate with the main rotor. Each blade is strictly connected with the

swash-plate revolving part using a rod, this causes a variation of the angle of attack

2



1. Introduction

Figure 1.3: Cyclic control series of blade rotating frame.

Figure 1.4: Anti-torque effect of the tail rotor.

of the blade when the swash-plate changes position. The swash-plate manages the

cyclic and collective angles and sets up constrains in their ranges.

The collective control causes a movement upward or downward of the swash-plate

on the rotor mast, therefore all the blades increase or decrease their angle simultan-

eously. The cyclic control changes the attitude of the swash-plate. This causes a

changing of the angle of attack that is different in every part of the rotation cycle.

• The tail rotor collective angle αT
c actuator is called “pitch change spider" and, as like

as the swash-plate, is used to change all the blades angle of attack simultaneously.
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1. Introduction

equations of a simplified helicopter model. The model concerns a helicopter with a principal

rotor and a tail rotor. More accurate (and mathematically complicated) aircraft models

are available in the specialized literature [10, 11, 12]. The structure of the paper is the

following:

• Chapter 2 presents a summary of definitions and properties regarding the Lie group,

such as the tools used in this research to formalize the mathematical model of the

helicopter, i.e. tangent bundle, Lie algebra and exponential map. Moreover, this

chapter introduces a system of differential equations which will be used to describe

the motion of the helicopter.

• Chapter 3 introduces the structure of the helicopter, the reference systems and the

forces used to write the mathematical model, e.g. the thrust of the rotors and the

weight. In addition, in this chapter is performed the calculus to achieve the equations

of motion starting from the Lagrangian function.

• Chapter 4 presents the numerical approximation of the system of equations found in

the chapter 3 using the fEul method. Then the fourth chapter introduces a tailored

fEul method for SO(3).

• Chapter 5 introduces a helicopter type and shows all the values required to perform

the simulation analysis. These values are presented in tables and figures and have

been gathered from data-sheets.

• Chapter 6 illustrates eight simulations and the linked resulting graphs. Each simu-

lation is particularly focused on a input response, i.e. pitch response, roll response.

The graphs contain all the information needed to know the response of the input

given with respect to the simulation time.
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Chapter 2

The

Lagrange-d’Alembert-Pontryagin

principle and the forced

Euler-Poincaré equation

In this paper, we consider non-conservative non-linear dynamical systems whose state space

G possesses the mathematical structure of a Lie group.

2.1 Definition and properties

Let us recapitulate the following definitions and properties [13, 14] (see also [15, 16] for a

non-strictly mathematical viewpoint):

Matrix Lie group: A smooth matrix manifold G that is also an algebraic group is termed

a matrix Lie group. A matrix group is a matrix-set endowed with an associative binary

operation, termed group multiplication which, for any two elements g, h ∈ G, is denoted

by gh and endowed with the property of closure, an identity element with respect to the

multiplication, denoted by e, such that eg = ge = g for any g ∈ G, and an inversion

operation, denoted by g−1, with respect to multiplication, such that g−1g = gg−1 = e for

any g ∈ G. A left translation L : G × G → G is defined as Lg(h) := g−1h. An instance

of matrix Lie group is SO(3) := {R ∈ R
3×3 | R⊤R = RR⊤ = I3, det(R) = +1}, where

the symbol ⊤ denotes matrix transposition and the quantity I3 represents a 3 × 3 identity

matrix.

Tangent bundle and its metrization: Given a point g ∈ G, the tangent space to G

at g will be denoted as TgG. The tangent bundle associated with a manifold-group G is

denoted by TG and plays the role of phase-space for a dynamical system whose state-space

is G. The inner product of two tangent vectors ξ, η ∈ TgG is denoted by 〈ξ, η〉g. A smooth

6



2.2. The Euler-Poincaré equations

function F : G → G induces a linear map dFg : TgG → TF (g)G termed pushforward map.

For a matrix Lie group, the pushforward map d(Lg)h : ThG → Tg−1hG associated to a left

translation is d(Lg)h(η) := g−1η, with η ∈ ThG.

Lie algebra: The tangent space g := TeG to a Lie group at the identity is termed Lie

algebra. The Lie algebra is endowed with Lie brackets, denoted as [·, ·] : g × g → g, and

an adjoin endomorphism adξη := [ξ, η]. The Lie algebra associated to the group SO(3) is

so(3) := {ξ ∈ R
3×3 | ξ + ξ⊤ = 0}. On a matrix Lie algebra, the Lie brackets coincide with

matrix commutator, namely [ξ, η] := ξη − ηξ. The matrix commutator in so(3) is an anti-

symmetric bilinear form, namely [ξ, η] + [η, ξ] = 0. A pushforward map d(Lg)g : TgG → g

is denoted as dLg for brevity. Given a smooth function ℓ : g → R, for a matrix Lie group

one may define the fiber derivative of ℓ, ∂ℓ
∂ξ ∈ g, at ξ ∈ g as the unique algebra element

such that
〈

∂ℓ
∂ξ , η

〉

e
= tr

(

(Jξℓ)⊤η
)

for any η ∈ g, where Jξℓ denotes the Jacobian ∗ matrix

of the function ℓ with respect to the matrix ξ.

Exponential map: Given a point g ∈ G and a tangent vector v ∈ TgG, the exponential

maps g to a point expx(v), namely it flows the point g along a geodesic line departing from

g with initial direction v. On a matrix Lie group endowed with the Euclidean metric, it

holds that expg(v) = gExp(g−1v), where Exp denotes a matrix exponential.

2.2 The Euler-Poincaré equations

The Lagrange-d’Alembert-Pontryagin (LDAP) principle is one of the fundamental concepts

in mathematical physics to describe the time-evolution of the state of a physical system and

to handle non-conservative external forces. The state-variables of the system are subjected

to holonomic constraints, which are embodied in the structure of the state Lie group G.

These external forces often arise as control actions designed with the aim to driving the

physical system into a predefined state [2]. Let Λ : TG → R denote a Lagrangian function

and F : TG → TG a generalized force field†. The LDAP principle affirms that a dynamical

system follows a trajectory g : [a, b] → G such that:

δ

∫ b

a

Λ(g(t), ġ(t)) dt +

∫ b

a

〈F (g(t), ġ(t)), δg(t)〉g(t) dt = 0, (2.1)

The left-most integral is called action and the symbol δ denotes variation, namely the

change of the action value from a trajectory g to a trajectory that is infinitely close to g,

whose point-by-point change is denoted as δg. The variation vanishes at endpoints and

is elsewhere arbitrary. In the above expression, an over-dot (as in ġ) denotes derivation

with respect to the parameter t. The vanishing of the first term alone is called principle

of stationary action. The right-most integral represents the total work done by the force

field F due to the variation.

∗Notice that Jξℓ is a formal Jacobian, namely a matrix of partial derivatives with respect of

each entry of the matrix ξ without any regard of the internal summary of the matrix ξ itself.
†A generalized force field is generally taken as a smooth map from TG to its dual T ⋆

G or, for

left-invariant force fields, from an algebra g to its dual g⋆. We adopt a non-standard definition

because it eases the notation and is more easily translated into implementation.
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2.2. The Euler-Poincaré equations

A variational formulation is based on a continuous family of curves g : U ⊂ R
2 → G, where

each element is denoted as g(t, ε). The index ε selects a curve in the family, and the index

t individuates a point over this curve. All the curves in the family depart from the same

initial point and arrive at the same endpoint, namely, g(a, ε) and g(b, ε) are constant with

respect to ε. The variations in (2.1) are defined as

δ

∫ b

a

Λ(g, ġ)dt :=

∫ b

a

∂

∂ε
Λ(g(t, ε), ġ(t, ε)) dt

∣

∣

∣

∣

∣

ε=0

, δg(t) :=
∂g(t, ε)

∂ε

∣

∣

∣

∣

ε=0

. (2.2)

The following result, enunciated directly for matrix Lie groups, is of prime importance, as

it relates a variation of velocity to velocity of variation. Lemma1: [[17]] Given a smooth

function g : U ⊂ R
2 → G on a matrix Lie group, define:

ξ(t, ε) := g−1(t, ε)
∂g(t, ε)

∂t
, η(t, ε) := g−1(t, ε)

∂g(t, ε)

∂ε
. (2.3)

A variation of a trajectory induces a variation of its velocity field given by

∂ξ

∂ε
= η̇ + adξη. (2.4)

Assuming that the Lagrangian as well as the generalized force field F are left invariant,

we may write Λ(g, ġ) = ℓ(g−1ġ) and g−1F (g, ġ) = f(g−1ġ), where ℓ : g → R and f : g → g

denote a reduced Lagrangian and a reduced force field, respectively. In addition, if the inner

product is left-invariant, it holds that

〈F (g, ġ), δg〉g = 〈f(g−1ġ), g−1δg〉e. (2.5)

Therefore, the LDPA principle (2.1) reduces to

δ

∫ b

a

ℓ(g−1ġ) dt +

∫ b

a

〈f(g−1ġ), g−1δg〉e dt = 0, (2.6)

where it is legitimate to replace g−1ġ with ξ and g−1δg with η and then set ε to 0.

By means of the Lemma 2.2, the variational formulation of the reduced LDAP principle

may be converted into a differential-equations form. [[17]] Let ξ := g−1ġ and η := g−1δg.

The solution of the integral Lagrange-d’Alembert equation (2.6) under perturbations of

the form ∂ξ
∂ε = η̇ + adξη, which vanishes at endpoints, satisfies the Euler-Poincaré equation

d

dt

∂ℓ

∂ξ
= ad⋆

ξ

(

∂ℓ

∂ξ

)

+ f, (2.7)

where ad⋆ denotes the adjoin of the operator ad with respect to the inner product of g ‡.

The complete system of differential equations then read

{

ġ = gξ,
d
dt

∂ℓ
∂ξ = ad⋆

ξ

(

∂ℓ
∂ξ

)

+ f.
(2.8)

‡The adjoint ω⋆ of an operator ω : g → g with respect to an inner product 〈·, ·〉 satisfies by

〈ω(ξ), η〉 = 〈ξ, ω⋆(η)〉.
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2.3. Exemplary case: Euclidean space

The above equations will be used to describe the rotational component of motion of a flying

object like a helicopter or a drone. The forcing term takes into account several external

driving phenomena, such as

Energy dissipation: Energy dissipation is due, e.g., to friction with air particles. For

instance, a linear dissipation term represents aerodynamic drag.

Control actions: Other than dissipation (which is often neglected in simplistic models),

the forcing term depends on the problem under investigation. It might serve to incorporate

into the equations control terms aimed, for instance, at stabilizing the motion or to drive

a dynamical system [18].

2.3 Exemplary case: Euclidean space

In order to clarify the physical meaning of the Euler-Poincaré equations, let us recall

the classical version of these equations for the space R
n, which is also instrumental in

describing the translational component of motion of a flying device. The principle (2.1) on

R
n, endowed with the Euclidean inner product, reads:

δ

∫ b

a

Λ(p(t), ṗ(t)) dt +

∫ b

a

f(p(t), ṗ(t))⊤δp(t) dt = 0, (2.9)

where Λ : Rn × R
n → R denotes a Lagrangian function, p = p(t) a trajectory on R

n and

f : Rn × R
n → R

n a non-conservative force field. Upon computing the variation, we get

∫ b

a

(

(

∂Λ

∂p

)⊤

δp +

(

∂Λ

∂ṗ

)⊤

δṗ + f⊤δp

)

dt = 0. (2.10)

Integrating by parts the second term and recalling that the variations vanish at the end-

points, we get
∫ b

a

(

∂Λ

∂p
− d

dt

∂Λ

∂ṗ
+ f

)⊤

δp dt = 0. (2.11)

Since the variation δp is arbitrary, the dynamics of the variable p is governed by the

equation
d

dt

∂Λ

∂ṗ
=

∂Λ

∂p
+ f. (2.12)
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Chapter 3

Mathematical model of a

helicopter

This section introduces a helicopter model based on the Lie group G := SO(3) of 3-

dimensional rotations R.

Since, in the state space G := SO(3), it holds that (dLR)−1(ξ) = Rξ and ad⋆
ξη = −adξη

[17], the Euler-Poincaré equations read






Ṙ = Rξ,

d
dt

∂ℓ
∂ξ = −adξ

(

∂ℓ
∂ξ

)

+ τ,
(3.1)

where τ denotes the resultant of all external mechanical torques. In this context, the state

variable R ∈ SO(3) denotes the attitude of a rigid body (i.e., its orientation with respect

to a earth-fixed reference frame) and the state-variable ξ ∈ so(3) denotes its instantaneous

angular velocity. Moreover, the quantity µ := ∂ℓ
∂ξ represents an angular momentum and the

second Euler-Poincaré equation reads µ̇ = [µ, ξ] + τ , which is a generalization of the well-

known angular momentum theorem, where the term [µ, ξ] represents the inertial torque

due to the internal mass unbalance of a body.

It is convenient to define the operator J·K : R3 → g as:

x :=







x1

x2

x3






7→ JxK :=







0 −x3 x2

x3 0 −x1

−x2 x1 0






. (3.2)

Since any skew-symmetric matrix in so(3) may be written as in (3.2), it is convenient to

define a basis of so(3) = span(ξx, ξy, ξz) as follows:

ξx :=







0 0 0

0 0 −1

0 1 0






, ξy :=







0 0 1

0 0 0

−1 0 0






, ξz :=







0 −1 0

1 0 0

0 0 0






. (3.3)

In order to shorten some relations, it is also convenient to introduce the matrix anti-

commutator {A, B} := AB + BA. Moreover, some relations take advantage of the skew-

10



3.1. Model of a helicopter with a single principal rotor and a tail rotor

symmetric projection {{·}} : R3×3 → so(3), defined as {{A}} := 1
2 (A − A⊤). It also pays to

define the ‘diag’ operator as diag(a, b, c) :=







a 0 0

0 b 0

0 0 c






.

In the present setting, we equip the algebra so(3) with the canonical metric 〈ξ, η〉e :=

tr(ξ⊤η). With this choice, the fiber derivative of a scalar function ℓ : so(3) → R takes a

special form. [[19]] The fiber derivative of a scalar function ℓ : so(3) → R takes the form

∂ℓ

∂ξ
=

1

2
(Jξℓ − J

⊤
ξ ℓ) ∈ so(3). (3.4)

It is immediate to verify that the fiber derivative corresponds to the orthogonal projection

of the Jacobian into the algebra g, namely ∂ℓ
∂ξ = {{Jξℓ}}. Moreover, it is convenient to

recall a property of the matrix ‘trace’ operator, namely the cyclic permutation property

tr(ABC) = tr(BCA) = tr(CAB) for any square matrices A, B, C.

Modeling a complex object to get the differential equations that describe its rotational and

translational dynamics consists essentially in

• defining a Lagrangian function ℓ on the basis of the kinetic and potential energy of

its components, which accounts for the geometrical and mechanical features of each

component;

• computing the total mechanical torque τ exerted by the moving parts on the body

of the complex object.

These descriptors, for a helicopter, will be evaluated in the next sections.

3.1 Model of a helicopter with a single principal rotor

and a tail rotor

In order to formalize the behaviour of a helicopter into a mathematical model, let us assume

the existence of an inertial (earth) reference frame FE. Also, it is necessary to establish a

body-fixed reference frame FB, as shown in Figure 3.1: the origin of the reference frame

FB is located at the centre of gravity of the helicopter and the three axes coincide with

its principal inertia axes. The thrust ϕm exerted by the principal rotor appears at the

tip of the helicopter’s body, which is located along the z-axis at a distance Dm from the

centre of gravity, whereas the thrust ϕt exerted by the tail rotor appears at the tail of the

helicopter’s body, which is located along the −x axis at a distance Dt from the centre of

gravity.

The term 1
2 um represents the intensity of the thrust exerted by the main rotor, 1

2 ut is the

one exerted by the tail rotor, both are expressed in Newtons (N). Considering the total

thrust ϕ := ϕt + ϕm as a vector, a collective control management of the main rotor results

in a change of the thrust’s intensity exerted, therefore a change in um, whereas a cyclic
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3.1. Model of a helicopter with a single principal rotor and a tail rotor

causes the translation of the helicopter in the direction of ϕt: this is called drift effect (or

translation tendency).

The mechanical torque exerted by the two rotors on the helicopter’s fuselage, expressed in

N·m is termed active torque and is given by

τA := 1
2

(

ϕmb⊤
m − bmϕ⊤

m + ϕtb
⊤
t − btϕ

⊤
t

)

=
1

2







0 −Dtut Dmum sin αp cos αr

Dtut 0 −Dmum sin αr

−Dmum sin αp cos αr Dmum sin αr 0






. (3.7)

The mechanical torque due to the drag of the principal rotor, namely the resultant of the

torque that tends to make the helicopter spin as a counter-reaction to the spinning of the

rotor, expressed in N·m, may be quantify by

τD := − 1
2 γumξz, (3.8)

where γ > 0 is termed air drag coefficient (whose measurement unit is meters) and rep-

resents the efficacy with which the air surrounding the helicopter pushes the rotor as a

reaction of its spinning.

According to the canonical basis (3.3), the total mechanical torque τ := τA + τD may be

decomposed as τ = τxξx + τyξy + τzξz, with















τx = 1
2 Dmum sin αr,

τy = 1
2 Dmum sin αp cos αr,

τz = 1
2 Dtut − 1

2 γum.

(3.9)

The component τx is responsible for the rolling of the helicopter (plane y − z), the com-

ponent τy is responsible for the pitching of the helicopter (plane x − z). The component

τz is responsible for the control of the yawing of the helicopter (plane x − y): to prevent

the spinning of the aircraft, it is necessary to control the thrust ut of the tail rotor in such

a way that Dtut − γum ≈ 0. During hovering, the vertical component of the total thrust

needs to balance the weight force of the helicopter.

According to the specialized literature (see, e.g., [20]), the maximum value of the thrust u

of a rotor (in Newtons) may be computed by the expression

u := 1
2 CuρA(lRΩm)2, (3.10)

where Cu is a (dimensionless) thrust coefficient that represents the efficiency of the rotor, ρ

represents the density of the air at a given temperature and altitude in kg·m−3, A denotes

the area of the rotor disk, in m2, which contributes to generating the thrust, lR represents

the radius of the rotor disk (namely, the length of a blade) in meters and Ωm denotes the

angular velocity of the rotor in rad·s−1. In fact, the product lΩm denotes the tip velocity

of a blade. The thrust may be expressed as u = βuΩ2
m, with βu := π

2 Cuρl4
R.

Besides, the mechanical power (in Watts) that the engine transfers to the rotor is given by

w := 1
2 CwρA(lRΩm)2Ωm, (3.11)

14



3.1. Model of a helicopter with a single principal rotor and a tail rotor

where Cw denotes a (dimensionless) power coefficient. The power may be expressed as a

cubic function of the rotor speed, namely w = βwΩ3
m.

The main rotor disk area A changes its value thanks to collective control and consequently

to αc. In fact, A′s value is related to the portion of each blade that pushes the helicopter,

for instance, upward. In order to describe correctly the area of the disk that contributes

to generating thrust, it is assumed A = πl2
R sin αc. Therefore, if the blades are considered

with no thickness, no built-in twists and perfectly horizontal, namely in the earth inertial

reference’s x − y plane, then when αc = 0 the helicopter has no thrust. Instead, when

all blades have an angle αc > 0 the thrust is no longer null and the turning of the blades

produces a vertical thrust that tends to counteract the helicopter’s weight force. The

equation (3.10) becomes:

u := 1
2 Cuρπl4

RΩ2
m sin αc, (3.12)

with αc ∈ [αc,min, αc,max]. The minimum and the maximum value of the thrust depend on

the range of the angle of attack (Aof) of the principal rotors blades, whereas the range of

Aof is related to the shape and the built-in twist of the blades, besides the swash-plate rods

mobility. The power coefficient Cw is related to the thrust coefficient Cu by the relationship

Cw =
C

3/2
u√
2

. (3.13)

The mechanical power w absorbed by the helicopter’s engine at the reference speed of 100%

is usually provided by data-sheets. Considering w as known it is possible to calculate the

power and the thrust coefficients, that otherwise would have to be measured through

experiments on the real engine. The value of the first coefficient, following the equation

(3.11), is

Cw =
2 w

ρA(lRΩm)2Ωm
(3.14)

Consequently it is possible to find the value of Cu using the equation (3.13). Taking into

account the possible redundancy of indexes, the expression (3.12) is written explicitly for

the main rotor fixing u = um, while a similar expression may describe the thrust exerted

by the tail rotor. Thus, the equation below based on tail rotor characteristics:

ut := 1
2 CT

u ρπl4
T Ω2

t sin αT
c , (3.15)

Where CT
u is the thrust coefficient of the tail rotor and lT is the radius of the tail rotor’s

blade.

The drag coefficient is generally unknown, but it is possible to estimate its value by as-

suming (1) the helicopter hovering, and (2) that the mechanical torque of the tail rotor

balances the undesired drag torque which would tend to make the helicopter yawing. In-

deed, in hovering condition, with the tail rotor’s blades collective angle at a value half of

its interval range αT
c,mid :=

αT

c,min
+αT

c,max

2 (see Table 5.1) and at 100% of the tail rotor speed,

the helicopter should have no yawing. The drag coefficient could be found by the condition

e⊤
z τ = 0 as

γ = Dt
Cul4

RΩ2
m sin αc

CT
u l4

T
Ω2

t sin αT
c,mid

. (3.16)

Where ez := [0 0 1]⊤.
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3.2. Lagrangian function associated to the helicopter model

3.2 Lagrangian function associated to the helicopter

model

To complete the motion dynamics, it is necessary to write explicitly the Lagrangian function

of the helicopter, which coincides with its kinetic energy minus its potential energy, both

expressed in the inertial reference frame FE.

Kinetic energy of the fuselage: The position of the centre of gravity of the helicopter

in the inertial reference frame FE at time t is denoted as p(t). The position of each

infinitesimal volume of the body in the body-fixed frame FB is denoted by s. Since the

helicopter’s fuselage is rigid, the position of each volume element, at time t, is p(t)+R(t)s,

where R(t) ∈ SO(3) denotes a rotation matrix that takes the body-fixed frame FB to

coincide with FE. The kinetic energy of the helicopter’s body B with respect to the inertial

reference frame FE may be written as

ℓB :=
1

2

∫

B

∥

∥

∥

∥

d(p + Rs)

dt

∥

∥

∥

∥

2

dm =
1

2

∫

B

‖ṗ + Ṙs‖2dm, (3.17)

where dm denotes the mass content of the infinitesimal volume. Recalling that Ṙ = Rξ,

with ξ ∈ so(3), we get:

ℓB =
1

2

∫

B

tr((ṗ + Ṙs)(ṗ + Ṙs)⊤)dm =
1

2

∫

B

tr(ṗṗ⊤ + Rξss⊤ξ⊤R⊤ + 2ṗs⊤Ṙ)dm

= 1
2 MB‖ṗ‖2 + 1

2 tr(�RξĴBξ⊤
✚✚R⊤ ) + MBtr(ṗc⊤

B Ṙ), (3.18)

where tr(·) denotes matrix trace, the cancellation is due to the cyclic permutation property

of the trace operator and to the defining property of rotations (R⊤R = I3). The constant

quantities that appear in the expression (3.18) are defined as follows

MB :=

∫

B

dm > 0, cB :=
1

MB

∫

B

s dm ∈ R
3, ĴB :=

∫

B

ss⊤dm ∈ R
3×3. (3.19)

The quantity MB denotes the total mass of the helicopter’s fuselage. The matrix ĴB denotes

a non-standard inertia tensor [21]. The standard inertia tensor of the helicopter’s body is

defined as

JB :=

∫

B

JsKJsK⊤dm. (3.20)

These inertia tensors are related by the following result: Lemma2: [[21]] The non-standard

moment of inertia Ĵ of a body is related to its standard moment of inertia J by the

relationship Ĵ = 1
2 tr(J)I3 − J .

Assuming that the shape of the fuselage may be assimilated to an ellipsoid, its standard

inertial tensor takes the form:

JB =







MB (b2+c2)
5 0 0

0 MB (a2+c2)
5 0

0 0 MB (a2+b2)
5






, (3.21)
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3.2. Lagrangian function associated to the helicopter model

where a, b, c denote the semi-axes lengths (a refers to the x-axis, b refers to the y-axis and

c refers to the z-axis). The non-standard inertial tensor of the fuselage reads

ĴB =







MB a2

5 0 0

0 MB b2

5 0

0 0 MB c2

5






. (3.22)

Since the origin of the reference frame FB coincides with the centre of gravity of the aircraft,

not of the fuselage alone, in general it holds that the centre of mass of the fuselage cB 6= 0,

therefore

ℓB = 1
2 MB‖ṗ‖2 + 1

2 tr(ξĴBξ⊤) + MBtr(ṗc⊤
B ξ⊤R⊤). (3.23)

Kinetic energy of the principal rotor : The position of the centre of gravity of the

principal rotor with respect to the reference frame FB is individuated by the vector bm

defined in (3.5). A reference frame FR whose z-axis coincides with the z-axis of the reference

frame FB is associated to the rotor. Hence the position of each volume element in the

principal rotor R at time t in the inertial reference frame FE is p(t) + R(t)(bm + Rm(t)s),

where Rm ∈ SO(3) denotes the instantaneous orientation matrix of the principal rotor

(rotation that aligns the rotor-fixed reference frame FR to the body-fixed reference frame

FB) and s denotes the position of a point of the rotor in a rotor-fixed reference frame.

The matrix Rm represents a rotation about the z-axis of the reference frame FR, hence it

takes the form







cos θm − sin θm 0

sin θm cos θm 0

0 0 1






, therefore Ṙm = ξmRm, where ξm = Ωmξz and θm

indicates the rotation angle of the main rotor.

The time-derivative of the position of each volume element is

d
dt [p + R(bm + Rms)] = ṗ + Ṙ(bm + Rms) + RṘms = ṗ + Rξbm + R(ξ + ξm)Rms. (3.24)

The angular velocity matrix ξm ∈ so(3) of the principal rotor is controlled by the pilot and

is hence a known quantity (although, as already underlined, most helicopters are designed

to a fixed rotor speed). The kinetic energy per mass element dm of the principal rotor R
may be written as

1
2 tr([ṗ + Ṙbm + R(ξ + ξm)Rms][ṗ + Ṙbm + R(ξ + ξm)Rms]⊤) =

1
2 ‖ṗ‖2 + 1

2 tr(�Rξbmb⊤
mξ⊤

✚✚R⊤ ) + 1
2 tr(�R (ξ + ξm)Rmss⊤R⊤

m(ξ + ξm)⊤
✚✚R⊤ ) +

tr(ṗb⊤
mξ⊤R⊤) + tr(ṗs⊤R⊤

m(ξ + ξm)R⊤) + tr(�Rξbms⊤R⊤
m(ξ + ξm)⊤

✚✚R⊤ ). (3.25)

The kinetic energy of the principal rotor R in the earth frame FE may thus be written as

ℓR = 1
2 MR‖ṗ‖2 + 1

2 MRtr(ξbmb⊤
mξ⊤) + 1

2 tr((ξ + ξm)RmĴRR⊤
m(ξ + ξm)⊤) +

MRtr(ṗb⊤
mξ⊤R⊤) + MRtr(ṗc⊤

RR⊤
m(ξ + ξm)R⊤) + MRtr(ξbmc⊤

RR⊤
m(ξ + ξm)⊤),(3.26)

where

MR :=

∫

R

dm > 0, ĴR :=

∫

R

ss⊤dm ∈ R
3×3 and cR :=

1

MR

∫

R

s dm ∈ R
3. (3.27)
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3.2. Lagrangian function associated to the helicopter model

In order to simplify the expression (3.26), we may assume that the principal rotor is

perfectly symmetric about its centre of mass, which implies that cR = 0. Moreover, we

may assume that the principal rotor may be schematized as two rods of mass 1
2 MR each

and length 2 lR, one along the x axis and one along the y-axis, spinning around the z-axis,

therefore:

JR =







jR 0 0

0 jR 0

0 0 2jR






that is ĴR = jRdiag(1, 1, 0), (3.28)

by Lemma 3.2, with jR := 1
12

MR

2 (2lR)2 = 1
6 MRl2

R. A consequence is that the expression

RmĴRR⊤
m simplifies to ĴR. Therefore, the kinetic energy of the principal rotor is given by

ℓR = 1
2 MR‖ṗ‖2 + 1

2 MRtr(ξbmb⊤
mξ⊤) + 1

2 tr((ξ + ξm)ĴR(ξ + ξm)⊤) + MRtr(ṗb⊤
mξ⊤R⊤).(3.29)

Rearranging these terms shows that the kinetic energy of the principal rotor may be written

equivalently as the quadratic form

ℓR = 1
2 MR‖ṗ + Rξbm‖2 + 1

2 tr((ξ + ξm)ĴR(ξ + ξm)⊤), (3.30)

where the first term represents the translational kinetic energy of the centre of mass of

the principal rotor in the reference system FE, whereas the second term represents the

rotational kinetic energy of the principal rotor in the reference system FE.

Kinetic energy of the tail rotor : The position of the tail rotor with respect to the

reference frame FB is individuated by the vector bt defined in (3.6), hence the position of

each point in the tail rotor T at time t is p(t)+R(t)(bt +Rt(t)s), where Rt ∈ SO(3) denotes

the instantaneous orientation matrix of the rotor with respect to a body-fixed reference

frame FB and s denotes the position of a point of the tail rotor in a rotor-fixed reference

frame. In this case, it holds that

d
dt [p + R(bt + Rts)] = ṗ + Ṙ(bt + Rts) + RṘts = ṗ + Rξbt + R(ξ + ξt)Rts, (3.31)

where Ṙt = ξtRt. The angular velocity matrix ξt ∈ so(3) of the principal rotor is controlled

by the pilot and is hence to be held as a known quantity. Since the instantaneous axis of

rotation of the tail rotor is fixed and coincides to the −y axis, the angular matrix ξt takes

the explicit expression

ξt := −Ωtξy =







0 0 −Ωt

0 0 0

Ωt 0 0






, (3.32)

where Ωt denotes the instantaneous rotation speed of the tail rotor.

The kinetic energy of the tail rotor T in the earth frame FE has an expression which is

derived in a similar manner to (3.26) and may be written as

ℓT = 1
2 MT ‖ṗ‖2 + 1

2 MT tr(ξbtb
⊤
t ξ⊤) + 1

2 tr((ξ + ξt)RtĴT R⊤
t (ξ + ξt)

⊤) +

MT tr(ṗb⊤
t ξ⊤R⊤) + MT tr(ṗc⊤

T R⊤
t (ξ + ξt)R

⊤) + MT tr(ξbtc
⊤
T R⊤

t (ξ + ξt)
⊤),(3.33)

where

MT :=

∫

T

dm > 0, ĴT :=

∫

T

ss⊤dm ∈ R
3×3 and cT :=

1

MT

∫

T

s dm ∈ R
3. (3.34)
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3.2. Lagrangian function associated to the helicopter model

In order to simplify the expression (3.33), we may assume that the tail rotor is perfectly

symmetric about its own centre of mass cT , which implies that cT = 0. Moreover, we may

assume that the tail rotor may be schematized as a full disk of mass MT and radius lT

laying over the x − z plane spinning around the y-axis, namely that

JT =







jT 0 0

0 2jT 0

0 0 jT






, that is, ĴT = jT diag(1, 0, 1), (3.35)

by Lemma 3.2, with jT := 1
4 MT l2

T . Since

Rt =







cos θt 0 − sin θt

0 1 0

sin θt 0 cos θt






, (3.36)

direct calculations show that RtĴT R⊤
t = ĴT . Therefore, the kinetic energy of the tail rotor

is given by

ℓT = 1
2 MT ‖ṗ‖2 + 1

2 MT tr(ξbtb
⊤
t ξ⊤) + 1

2 tr((ξ + ξt)ĴT (ξ + ξt)
⊤) + MT tr(ṗb⊤

t ξ⊤R⊤).(3.37)

Rearranging terms shows that the kinetic energy of the tail rotor may be written equival-

ently as

ℓT = 1
2 MT ‖ṗ + Rξbt‖2 + 1

2 tr((ξ + ξt)ĴT (ξ + ξt)
⊤), (3.38)

where the first term represents the translational kinetic energy of the centre of mass of the

tail rotor and the second term represents the rotational kinetic energy of the tail rotor,

both expressed in the reference frame FE.

Potential energy of a helicopter : The potential energy associated to the helicopter is

(MB + MR + MT )ḡe⊤
z p, where the scalar ḡ denotes the gravitational acceleration.

Lagrangian of a helicopter : The Lagrangian function associated to a helicopter model

is hence obtained by gathering the kinetic energies (3.23), (3.29), (3.37) and the potential

energy as

ℓH := ℓB + ℓR + ℓT − (MB + MR + MT )ḡe⊤
z p

= 1
2 MB‖ṗ‖2 + 1

2 tr(ξĴBξ⊤) + MBtr(ṗc⊤
B ξ⊤R⊤) +

1
2 MR‖ṗ‖2 + 1

2 MRtr(ξbmb⊤
mξ⊤) + 1

2 tr((ξ + ξm)ĴR(ξ + ξm)⊤) + MRtr(ṗb⊤
mξ⊤R⊤) +

1
2 MT ‖ṗ‖2 + 1

2 MT tr(ξbtb
⊤
t ξ⊤) + 1

2 tr((ξ + ξt)ĴT (ξ + ξt)
⊤) + MT tr(ṗb⊤

t ξ⊤R⊤) −
(MB + MR + MT )ḡe⊤

z p.

The expression of the Lagrangian ℓH contains several similar terms and may be rewritten

compactly as

ℓH = 1
2 MH‖ṗ‖2 + 1

2 tr(ξĴHξ⊤) + MHtr(ṗc⊤
Hξ⊤R⊤) +

1
2 tr((ξ + ξm)ĴR(ξ + ξm)⊤) + 1

2 tr((ξ + ξt)ĴT (ξ + ξt)
⊤) − MHḡe⊤

z p. (3.39)

where

MH := MB+MR+MT , ĴH := ĴB+MRbmb⊤
m+MT btb

⊤
t , cH := 1

MH
(MBcB+MRbm+MT bt).

(3.40)
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3.3. Rotational component of motion

Since the origin of the body-fixed reference frame was taken at the centre of gravity of

the helicopter, it holds that cH = 0, therefore the helicopter’s Lagrangian takes the final

expression

ℓH(ṗ, ξ, p) = 1
2 MH‖ṗ‖2 − 1

2 tr(ĴHξ2) − 1
2 tr(ĴR(ξ + ξm)2) − 1

2 tr(ĴT (ξ + ξt)
2) − MHḡe⊤

z p,(3.41)

where we have used the Lie-algebra property that ξ⊤ = −ξ and the cyclic permutation

property of the trace operator. The Lagrangian (3.41) is a function of the variables ṗ, ξ

and p.

3.3 Rotational component of motion

The rotational component of motion, which governs the evolution of the Lie-algebra variable

ξ, is described by the Euler-Poincaré equations (3.1) applied to the Lagrangian function

(3.41) and to the rotors-generated mechanical torque (3.7).

As a first step, it is necessary to compute the fiber derivative of the Lagrangian ℓH. The

Jacobian of the Lagrangian at a point ξ may be computed easily by the property:

ℓH(ξ + ∆ξ) − ℓH(ξ) = tr(∆ξ⊤
JξℓH) + higher-order terms in ∆ξ, (3.42)

where ∆ξ denotes an arbitrary perturbation. It is essential to recall that, while evaluating

the jacobian, the matrix ξ is to be considered as unconstrained (namely, not an element of

g). Straightforward calculations give

JξℓH = −1

2

(

{ξ, ĴH}⊤ + {ξ + ξm, ĴR}⊤ + {ξ + ξt, ĴT }⊤

)

. (3.43)

Plugging the above expression into the relation (3.4) and recalling that the inertia tensors

are symmetric matrices, one gets the angular momentum

∂ℓH

∂ξ
= {{JξℓH}} =

1

2

(

{ξ, ĴH} + {ξ + ξm, ĴR} + {ξ + ξt, ĴT }
)

. (3.44)

It pays to recall that the anti-commutator is a bilinear form, hence, upon defining

Ĵ⋆
H := ĴH + ĴR + ĴT , (3.45)

the angular momentum (3.44) may be simplified to

µ :=
∂ℓH

∂ξ
=

1

2

(

{ξ, Ĵ⋆
H} + {ξm, ĴR} + {ξt, ĴT }

)

. (3.46)

The angular momentum µ represents the ‘quantity of rotational motion’ of the helicopter

as it is proportional to the inertia and to the rotational speed of its components. The

time-derivative of the angular momentum may be rewritten as

µ̇ =
d

dt

∂ℓH

∂ξ
=

1

2

(

{ξ̇, Ĵ⋆
H} + {ξ̇m, ĴR} + {ξ̇t, ĴT }

)

, (3.47)

and direct calculations lead to

−adξ

(

∂ℓH

∂ξ

)

=

[

∂ℓH

∂ξ
, ξ

]

=
1

2
[Ĵ⋆

H, ξ2] +
1

2

[

{ξm, ĴR} + {ξt, ĴT }, ξ
]

. (3.48)
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3.4. Translational component of motion

The term µ̇ represents the rate of change of the angular moment that, by the angular

moment theorem, is equal to the total torque acting on the helicopter.

To take into account energy dissipation due to friction between the helicopter and the

air molecules during rotation of the helicopter along the vertical direction, that tends to

brake the motion of the helicopter, the equation governing the rotational motion may be

completed by introducing a non-conservative force proportional to the helicopter rotation

speed along the z-axis. The resulting Euler-Poincaré equation for the helicopter model

reads

{ξ̇, Ĵ⋆
H} = [Ĵ⋆

H, ξ2]+
[

{ξm, ĴR} + {ξt, ĴT }, ξ
]

−{ξ̇m, ĴR}−{ξ̇t, ĴT }+2τ −βr〈ξ, ξz〉ξz. (3.49)

where βr ≥ 0 is a coefficient that quantifies the braking action of the air around the

helicopter during fast yawing.

3.4 Translational component of motion

The translation component of motion obeys the Euler-Poincaré equation (2.12) written in

the inertial (earth) reference frame FE. In this case, the non-conservative force field is

given by the total thrust ϕm + ϕt rotated of a quantity R to express it in the earth frame

FE, therefore, the Euler-Poincaré equation reads:

d

dt

∂ℓH

∂ṗ
=

∂ℓH

∂p
+ R(ϕm + ϕt). (3.50)

Notice that
d

dt

∂ℓH

∂ṗ
= MHp̈,

∂ℓH

∂p
= −MHḡez. (3.51)

To take into account energy dissipation due to friction between the helicopter and the air

molecules, that tends to brake the motion of the helicopter, the equation governing the

translation motion may be completed by introducing a non-conservative force proportional

to the helicopter speed. Ultimately, the equation which describes the translational motion

of a helicopter may be written as follows:

MHp̈ = R(ϕm + ϕt) − MHḡez − Bṗ, (3.52)

where B := diag(βh, 0, βv). The non-negative coefficients βh and βv quantify the brak-

ing action on the helicopter which is more pronounced along the vertical direction than

horizontally, due to the helicopter’s shape.

Focusing on the equation (3.52) it is possible to see that when the helicopter is horizontal,

namely R = I3, the tail rotor influences the horizontal component of the second derivative

of the position p. The tail rotor term when the helicopter is tilted (R 6= I3) causes an

additional difficulty in controlling the position of the helicopter.
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3.5. Explicit state-space form of the equations of motion

3.5 Explicit state-space form of the equations of

motion

In order to write the equations of motion in an explicit form, we start off with a few

important simplifications.

The terms related to the principal rotors may be rewritten explicitly as follows. The

term {Ωmξz, ĴR} = jRΩm{ξz, diag(1, 1, 0)} = 2jRΩmξz. Likewise, the term {Ω̇mξz, ĴR} =

2jRΩ̇mξz.

The terms related to the tail rotors may be rewritten explicitly by noticing that the term

{−Ωtξy, ĴT } = −jT Ωt{ξy, diag(1, 0, 1)} = −2jT Ωtξy. Likewise, the term {−Ω̇tξy, ĴT } =

−2jT Ω̇tξy.

The constant Ĵ⋆
H = ĴB+MRbmb⊤

m+MT btbt⊤+ĴR+ĴT . Notice that bmb⊤
m = D2

mdiag(0, 0, 1)

and btb
⊤
t = D2

t diag(1, 0, 0). In addition, recall that the reference frame FB has been chosen

with the orthogonal axes coincident with the principal axes of inertia of the fuselage itself,

hence the tensor ĴB is diagonal. As a consequence, the total helicopter’s non-standard

inertia tensor is diagonal, namely Ĵ⋆
H = diag(jx, jy, jz).

As a last observation, the quantity {ξ̇, Ĵ⋆
H} may be written equivalently as Sξ̇S, where

S := diag(sx, sy, sz), with

sx :=

√

(jx + jy)(jx + jz)

jy + jz
, sy :=

√

(jy + jx)(jy + jz)

jx + jz
, sz :=

√

(jz + jx)(jz + jy)

jx + jy
.

(3.53)

Explicit equations of motion: The equation of motion of the helicopter model taken

into consideration in the present paper may be written explicitly as






























































Ṙ = Rξ,

ξ̇ = S−1
(

[Ĵ⋆
H, ξ2] + 2[jRΩ̇mξz − jT Ω̇tξy, ξ] − 2jRΩ̇mξz + 2jT Ω̇tξy + 2τ − βr〈ξ, ξz〉ξz

)

S−1,

τ := 1
2 Dmum sin αrξx + 1

2 Dmum sin αp cos αrξy + 1
2 (Dtut − γum)ξz,

p̈ = 1
MH

Rϕ − ḡez − 1
MH

Bṗ,

ϕ :=









1
2 um sin αp cos αr

− 1
2 um sin αr − 1

2 ut

1
2 um cos αp cos αr









.

(3.54)

It is interesting to consider a few special cases of motion and how the model (3.54) would

simplify.

Free fall: Let us assume that both rotors are blocked (ξm = ξt = 0) and that they are

isolated from the pilot control (um = ut = 0). In this case, the external torque τ (3.7)

is null. The rotational component of motion is hence described by {ξ̇, ĴB + MRbmb⊤
m +

MT btb
⊤
t + ĴR + ĴT } = [ĴB + MRbmb⊤

m + MT btb
⊤
t + ĴR + ĴT , ξ2], which represents the

classical equation of a rigid body rotating freely in space under inertial forces (generally

known as Euler’s equation of a free rigid body).
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3.5. Explicit state-space form of the equations of motion

Constant rotor speed and negligible rotational inertia: Assuming constant rotation

speed for the principal and the tail rotors (namely, ξ̇m = ξ̇t = 0) and assuming that the

angular momentum of the tail rotor and of the principal rotor are negligible with respect

to the angular momentum of the helicopter, we obtain the simplified model 1
2 {ξ̇, ĴB +

MRbmb⊤
m + MT btb

⊤
t } = 1

2 [ĴB + MRbmb⊤
m + MT btb

⊤
t , ξ2] + τ , that is the helicopter model

studied in [2].

Hovering: Using as reference FE, hovering happens when the weight MHḡ balances the

z-component of the thrust. In this situation the helicopter may only translate sideways in

the x − y plane. Recalling that

ϕ = ϕm + ϕt =







1
2 um sin αp cos αr

− 1
2 um sin αr − 1

2 ut

1
2 um cos αp cos αr






,

defining:

ϕw := e⊤
z







0

0

−MHḡ






and ϕz := e⊤

z (Rϕ)ez, (3.55)

the hovering condition reads

ϕz + ϕw = 0. (3.56)

Supposing the helicopter in horizontal position with FB and FE’s z-axes overlapped, the

equation (3.56) becomes 2MHḡ = um. Detailing the main rotor thrust formula (3.12), it

could be read as 4MHḡ = Cuρπl4
RΩ2

m sin αc. Hence, the collective angle needed resulting

from the hovering condition takes the form

αc,hover = arcsin

(

4MHḡ

Cuρπl4
RΩ2

m

)

. (3.57)

Either changing of the angle αp or αr causes a decrease of the z-axis thrust value, so every

time that the cyclic control is used the helicopter tends to fall. Taking into account that

the falling condition could happen when the driver sets up the landing, we clearly need to

prevent it forcing the hover. The equation below gives us the value of the right collective

angle with respect to αr and αp in order to do not fall:

αc,hover = arcsin

(

2MHḡ

um sin(αp) sin(αr)

)

. (3.58)

The maximum linear velocity along the x-axis could be reached through two hypothesis:

the first is the hovering condition, in order to balance the weight force and not to decrease

the helicopter height, and the second is splitting the remainder part of the thrust in a

component purely directed along the x-axis, namely αr = 0. Clearly from (3.56) the

formula to find this particular pitch angle is:

αp,maxSpeed = arccos

(

2
MHḡ

ūm

)

, (3.59)

where ūm is a known value of the thrust greater than the weight force of the helicopter.

Remark: As the collective control changes the torque exerted by the main rotor, this

procedure implies a number of concurrent actions. In fact, consider the driver wants to
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3.5. Explicit state-space form of the equations of motion

change the attitude using the cyclic control and needs the hovering condition: the cyclic

control causes the need to boost the thrust by using the collective control, and the collective

control causes an increase of the torque and hence a yaw effect which requires the pedals

control to be managed.

No yawing: The condition of no yawing is achieved when 〈ξ, ξz〉 stays constant to 0.

Namely, the helicopter does not turn around the z-axis. In this case the friction due to

rotation, βr〈ξ, ξz〉, is 0. Considering ξ = 0 at some time, it is necessary to have the first

derivative of the angular velocity equal to zero, hence 〈ξ̇, ξz〉 = 0. From (3.54), it follows

that

S−1
(

−2jRΩ̇mξz + (Dtut − γum)ξz

)

S−1 = 0. (3.60)

As it was already underlined while discussing equations (3.9), in the case of constant main

rotor speed Ωm, the condition (3.60) will become S−1 ((Dtut − γum)ξz) S−1 = 0 that could

be reduced to Dtut = γum.

No drifting: The tail thrust causes the helicopter to drift along the y-axis. This side effect

may be compensated by choosing appropriately the angle of attack αr of the helicopter.

The equilibrium along the y-axis is reached when ϕ⊤ey = 0 (where ey := [0 1 0]⊤). Since

ϕ⊤ey = − 1
2 um sin αr − 1

2 ut in order not to have longitudinal forces the roll angle has to be

set as:

αr,nodrift = −arcsin

(

ut

um

)

. (3.61)

With this value of the angle of attack, the net drift force along the y-axis will drop to zero,

meaning that no acceleration along the y-axis will be detected, although any pre-existing

motions along the y-axis will not cease. Moreover, setting the angle of attack αr to this

value will cause the fuselage to roll.
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Chapter 4

Numerical aspects

The system of differential equations (3.54) has to be discretized in order to be implemented

in a calculator.

An ordinary differential equation, in which the initial value is known, could be resolved

numerically using the forward Euler method fEul. The first derivative of a function could

be approximated numerically as:

ḟk−1 =
fk − fk−1

h
(4.1)

whereas the second derivative of a function could be approximated numerically iterating

the fEul method as follows

f̈k−1 =
ḟk − ḟk−1

h
(4.2)

where k ≥ 1, and h represents the step of resolution of the numerical method. Devel-

oping the equations (4.1) and (4.2), the second derivative equation of a function may be

approximated by f̈k−2 = fk−2fk−1+fk−2

h2 .

Using the result in equation (3.54), it is possible to end up with the equation to find the

position numerically:

1

MH

Rk−2ϕk−2 − ḡez − 1

MH

B

(

pk−1 − pk−2

h

)

=
pk − 2 pk−1 + pk−2

h2
,

which becomes:

pk =
h2

MH

Rk−2ϕk−2 − h2ḡez − h

MH

B (pk−1 − pk−2) + 2pk−1 − pk−2. (4.3)

The equation Ṙ = Rξ describes the first-order derivative of the helicopter’s attitude. The

attitude R belongs to SO(3) and in manifolds it is not possible to perform subtraction

and, as a consequence, use directly the fEul method. In this case, it is necessary to use

exponential map, thus:

Rk = expRk−1(hRk−1ξk−1). (4.4)

Using the expression of exponential map tailored for SO(3) the final result is

Rk = Rk−1Exp(h ξk−1), (4.5)
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4. Numerical aspects

where ’Exp’ is the matrix exponential. Continuing to process numerically the equations

from (3.54), we managed to process the angular acceleration equation, which is

ξ̇ =S−1
(

[Ĵ⋆
H, ξ2] + 2[jRΩ̇mξz − jT Ω̇tξy, ξ]

−2jRΩ̇mξz + 2jT Ω̇tξy + 2τ − βr〈ξ, ξz〉ξz

)

S−1.
(4.6)

Since the equation describes two members which belong to the same tangent space g, we

could use the classical Euler’s method: ξk = ξk−1 + h ξ̇k−1. In particular, ξ̇k−1 represents

the angular acceleration at the step k − 1. At the end of the day, the final numerical

solution reads:

ξ̇k−1 =S−1
(

[Ĵ⋆
H, ξ2

k−1] + 2[jRΩ̇m,k−1ξz − jT Ω̇t,k−1ξy, ξk−1]

−2jRΩ̇m,k−1ξz + 2jT Ω̇t,k−1ξy + 2τk−1 − βr〈ξk−1, ξz〉ξz

)

S−1.
(4.7)
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Chapter 5

Helicopter type and value of the

parameters

To implement the mathematical model studied, it is necessary to choose a specific helicopter

model and gather values from certification sheets and data-sheets. The model chosen

for this study is the EC135 P2+, also known as H135 P2+ manufactured from Airbus

Helicopter, leader in the field of emergency medical services.

The data have been gathered from the manufacturer’s flight manual [3], and other manuals

[5, 1, 6, 22, 9, 8, 7, 4].

The EC135 P2+ helicopter is equipped with a 4-blades bearingless main rotor and a 10-

blades tail rotor.

5.1 Main rotor and tail rotor characteristics

The main characteristics of the tail and the main rotor are collected in Table 5.1.

Weight Speed 100% Collect. Angle Cyclic Angle

[kg] [RPM] min-max [deg] longitud. [deg] lateral [deg]
M.rotor 277.2 § 395 11 ÷ 31 ¶ -21.8 ÷ 21.8 -15 ÷ 15
T.rotor 8.2 3584 -16.8 ÷ 34.2

Table 5.1: Tail rotor collective angle range, tail rotor weight, speed main rotor ([1]
page 303, 254 and 157), tail rotor speed ([4] page 3), cycling angle page (11 in [5]).

§The main rotor weight is the result of the addition of various parts which compose the entire
main rotor. These values have been taken from [6], page 3, which is the technical data-sheet
of the helicopter AS350B3 also known as H125, that is the lower level helicopter by the same
manufacturer. The values taken have not been modified because the model is supposed to be similar.
The final weight is calculated by the sum of: anti-vibration device (28.4kg), main rotor mast
(55.7kg), rotor hub (57.5kg) and 4 blades (4 · 33.9 = 135, 6kg)

¶As stated in [22] page 57 the value of the collective angle could vary in the range [-5,15]
degrees and the negative angle could be necessary to achieve zero lift if blades have a built-in axial
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5.3. Engines and gear box

5.3 Engines and gear box

The EC135 P2+ helicopter type is equipped with two PW206B2 engines from Pratt and

Whitney Canada Corp. To start engines there are two possibilities: manual control or

automatic control. The manual control is not certificated and normally deactivated. The

automatic control is managed by the FADEC (Full Authority Digital Engine Control) that

controls the starting procedure, the fuel flow and the RPMs automatically. At the start of

the engines the FADEC turns on the engines one by one until the RPMs reach the value

of 98% ([1] page 437). When either the collective control or the flight switch are changed

the FADEC will increase the RPMs to 100% and the flight mode will start. When the

altitude is higher than 4000ft the speed is automatically increased to 104%, because of

the air density ρ decrease. Moreover, to avoid loss of thrust when the collective angle is

changed in the main rotor (pitch) or in the tail rotor (yaw) the FADEC fixes the engine

power to maintain the desired speed. The characteristics of the engines are summarized in

Table 5.3:

Engine mode
Power max. Torque
[ kW ] [ N · m ]

AEO TOP (max. 5 min.) 2 × 333 2 × 519
AEO MCP 2 × 321 2 × 500

OEI (max. 30s.) 547 851
OEI (max. 2min.) 534 831

OEI MCP 404 629

Table 5.3: Values are taken from [7], page 8 and 12. The helicopter state AEO
means all engine operatives, whereas the state OEI is the short for one engine
inoperative. Usually, the second state occurs when there is a problem in one engine.
Typically, two possible working mode could be selected TOP (take-off power),
which has a time limit constrain, and MCP (maximum continuous power).

The gear box is a complex part that transmits power, usually reducing angular velocity

and increasing torque. Both helicopter engines drive the gear box that, in turn, drives the

main rotor shaft and the tail rotor shaft.

5.4 Main rotor thrust and tail rotor thrust

The equation (3.14) could be used to calculate the power coefficient of the main rotor, that

is Cw
∼= 0.006968, and the thrust coefficient Cu

∼= 0.045965. It is also possible to find the

maximum thrust um,max that could be generated from the main rotor using the equation

(3.12), setting the throttle at 100% and the collective angle at its maximum. The obtained

result is

um,max
∼= 52729 kg·m·rad2

s2 , (5.3)
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5.5. Drag term and friction terms

where Ωm,max
∼= 41.364303 rad/sec, αc,max = 0.541052 rad, ρ = 1.225 kg/m3 are respect-

ively the maximum angular speed, the maximum collective angle and the air density at 15

Celsius degrees and 1 atm, from Table 5.1.

In the same way, it is possible to find out the power coefficient and the thrust coefficient for

the tail rotor which are respectively CT
w

∼= 0.100974 and CT
u

∼= 0.273201. The maximum

thrust which can be generated from the tail rotor is ut,max
∼= 2601 kg · m · rad2/s2, whose

value is calculated using the throttle at 100%, the angular velocity Ωt,max
∼= 375.315601

rad/sec and the maximum collective angle for the tail rotor αT
c,max = 0.596903 rad, from

Table 5.1.

5.5 Drag term and friction terms

According to equation (3.16), the value of the drag term is γ ∼= 0.154546 m. Where, the

middle value of the interval of the tail rotor collective angle is αT
c,mid

∼= 0.151844 rad, and

the collective angle of the main rotor consistent with hovering is αc,hover
∼= 0.268693 rad,

from equation (3.57).

The value of p̈ in the equation (3.52) stands for acceleration. A positive component along

the x-axis means an increase in velocity along that axis. Suppose to collect the tip velocity

in each axis in the vector ṗmax. Given the maximum velocity of the helicopter, we know

that, once reached that particular value, the acceleration of the helicopter along that axis

will drop to 0, since the existence of a friction force in the opposed direction. This behaviour

can be described as:

0 = R(ϕm + ϕt) − MHḡez − Bṗmax. (5.4)

Looking closely to R(ϕm + ϕt), namely the propelling force of the helicopter, it is easy to

figure out that its form has to be special when the tip speed is reached, in fact:

• To reach the tip speed in z-axis it is necessary that the z-axis of the inertial reference

frame FE and the body-fixed reference FB coincide.

• To reach the tip speed in x-axis we consider a motion at maximum speed due to a

total thrust directed along the x-axis while in a horizontal attitude (R = I3). In

this case, the thrust takes its maximum value (compatibly with the need to keep the

helicopter hovering).

The Figure 5.3 shows the force components present in some particular helicopter attitudes.

In the frame on the left the helicopter is horizontal, namely R = I3, and all the forces

belong to z-axis, disregarding forces exerted by the tail rotor. In the frame on the right the

helicopter is in hovering condition, therefore the friction force F 3
z = 0, while the friction

force F 2
x along the x-axis is maximum.

The friction terms are calculated finding the tip speed of the helicopter and, for the EC135

P2+, the values are summarized in Table 5.4. Since we only know the maximum linear

speed along the x-axis, we consider as null the friction force along the y-axis.
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The friction term βv can be found fixing αp = 0, αr = 0 and R = diag(1, 1, 1), which are

the conditions to reach the maximum velocity along the z-axis. From the equation (5.4),

we thus obtain

βve⊤
z ṗmax = 1

2 um,max − MHḡ. (5.6)

Instantiating equations (5.5) and (5.6) with known values, the friction coefficients can be

easily computed. It has been found that βh
∼= 281 kg·s−1 and βv

∼= 1398 kg·s−1.

Using the same method, it is possible to estimate the value of βr, the friction term

linked to the yaw velocity. Let us assume the helicopter in hovering condition, with

ξ̇m = ξ̇t = 0. At the maximum yaw speed (along z-axis) the angular acceleration will

be null. Since we consider a hovering condition with αr = αp = 0, the total torque

τ is equal to 1
2 (Dtut,max − γum,hover)ξz. Therefore, from equation (4.6) we get 0 =

S−1
(

[Ĵ⋆
H, ξ2

max] + (Dtut,max − 2γMHḡ − βr〈ξmax, ξz〉) ξz

)

S−1, where ξmax denotes the max-

imal yawing speed that, from the Table 5.4, is known to be ξmax = 1.047 · ξz (rad/sec).

Thus, isolating the friction term, this equation becomes:

βr〈ξmax, ξz〉ξz = [Ĵ⋆
H, ξ2

max] + (Dtut,max − 2γMHḡ) ξz. (5.7)

To find out the correct value of the friction term it is necessary to fill the equation (5.7),

namely the tip thrust of the tail rotor ut,max, the structural values, and the drag coefficient

found. The result for this parameter is βr
∼= 10797 N·m·s·rad−1.
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6. Numerical experiments and results

collect.TR are the interface to manage the value of the variables αp, αr, Ωm, αc, αT
c . The

no-yaw button sets the angle αT
c for no yawing condition, from equation (3.60), whereas

the button no-drift manages the value of αr to achieve no-drifting condition using the

equation (3.61). The two editable cells drag and rho interacts respectively with the values

of the variables γ and ρ. The three cells initial roll, initial pitch, initial yaw interface with

the matrix R forcing a value of attitude of the helicopter along the three axes x, y, z. The

button no-drift warning changes the initial roll value in order to achieve a stationary no

drifting condition, technique introduced in the third test.

First test - lift response: The first test made lasts 10 seconds and it does not involve

pitch and roll angles (αp = 0, αr = 0), moreover the throttle is set at 100% and the tail

rotor collective angle at αT
c,mid. About the main rotor collective angle, it has been chosen

in order to produce lift along z-axis. The value chosen is 20 degrees. Figure 6.2 shows the

result of the computation. By the analysis of the first test we can see that the position

along x-axis is pretty constant, which could seem reasonable because pitch angle is not

involved. In the other hand, there is a clear decrease of p along y-axis due to drift effect,

take into account that the direction of the tail rotor thrust is opposite to y-axis, as Figure

3.1 shows. The z component of τ is negative, and this is the cause of clockwise yawing.

Looking closely to the position p, along the x-axis it can be observed a little decrease

due to the combined action of the helicopter yawing and tail rotor drift. In fact, when

the helicopter nose turns, the drift effect causes a slight decrease along the x-axis. Note

that the drift force exerted by the tail rotor is the y component of ϕ, which is e⊤
y ϕ. The

last remarkable thing which could be seen from the first test is that the z component of

ϕ has the value of 16191 N, which is more than the helicopter-weight force, that could

be determined from Table 5.2 as 1420 · ḡ ∼= 13925 N. The result force along the z-axis is

positive and as described by the graph of the z component of p the helicopter lifts up.

Remark: The referring x, y and z variables in the τ graphic have been extract from the

equation (3.2) following the construction of τ . In the specific, these variables are e⊤
z τey,

e⊤
x τez, and e⊤

y τex.

Second test - no yaw: The next example lasts 5 seconds and illustrates how to select the

tail rotor collective angle using the equation (3.60) to achieve no yaw condition. From the

graph of τ it is clear that the torque exerted on the helicopter becomes null. Consequently,

the slight decrease of the position along the x-axis, which was a side effect of the yawing,

is no more present. The result is presented in Figure 6.4

Third test - neither yaw nor drift: The third test is introduced as a simplification

to delete the drift effect. In this case the y component of p is not decreasing anymore,

since the helicopter’s attitude has been changed using the no-drift warning button in the

control graphic panel. This does not cause a change in the angle of attack of the blades

as before, but in the initial roll angle and, as a consequence, in the matrix R. In fact, the

helicopter’s attitude is rotated at the angle determined by the equation (3.61) along the

x-axis, and the rotation causes an equilibrium among the drift effect and the thrust along

the y-axis. The equilibrium among the forces causes a constant value of p along the y-axis
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6. Numerical experiments and results

as wanted. Mθ is the matrix used to compute the rotation, whose form is

Mθ =







1 0 0

0 sin θ − sin θ

0 sin θ sin θ






.

The new initial value of the the Lie group matrix used is R̄ = R · Mθ. The result of the

experiment is shown in Figure 6.4. It is interesting to figure out that the ϕ components

does not change, since it is described in the body reference frame FB . Indeed, changing

the attitude of the helicopter does not concern FB , but the relation of the two reference

systems FB and FE .

Fourth test - pitch response: From now on new tests will be computed starting from the

result of the third test. Therefore, the first 3 seconds will be common to every execution.

The fourth test is about pitch response. The pitch angle of attack has been set at 5

degrees constant starting from the third second to the end. In the result, illustrated in

Figure 6.5, it can be seen an increase of the y component of τ . It is also possible to notice,

as Figure 5.3 shows, that the change in the angle of attack causes a variation in the ϕ

components. Indeed, the x component of ϕ, that is e⊤
x ϕ = 1

2 um sin αp cos αr, increases as

αp increases, whereas the z component of ϕ, that is e⊤
z ϕ = 1

2 um cos αp cos αr, decreases as

the αp increases.

Fifth test - positive roll response: In this test we set the angle αr from the third

second to the sixth second at 5 degrees. The result is presented in Figure 6.6 and shows an

increase of the x component of τ . This behaviour follows the equation (3.54), where αr is

linked to the x component of τ . In addition, using the same equation it is immediate to see

that the y component of τ is zero because αp = 0. Remark that instead the z component

of τ is zero because of the no-yaw condition. As the previous example, a change of the

angle of attack causes the z component of ϕ to decrease, moreover the magnitude of the y

component of ϕ increases because of the changing in the thrust caused by positive rolling

and the tail rotor drift effect have an according direction. It is important to point out,

in the graph of p, that the rolling of the helicopter causes a falling situation, because of

the thrust reduction. In the other hand, the helicopter position along the y-axis decreases

drastically.

Sixth test - Main rotor collective response: The collective control is amply used for

managing the acceleration of the helicopter. The test of this specific control system has

been made increasing up to 22 degrees the main rotor collective angle starting from the

third second to the tenth second. The increase of the main rotor collective angle causes a

thrust boost which increases the lifting of the helicopter. The result is shown in Figure 6.7.

As remarked, every time collective control is changed the helicopter driver has to adjust

also the tail rotor collective angle, since the no-yaw flight mode depends on um, which is a

function of αc. This could be seen in the z component of τ whose magnitude changes and

needs to be managed through the pedals control.

Seventh test - negative roll response: The Figure 6.8 shows results of a test in which

it has been tried to remove the drift effect using the cyclic control. It has already been
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remarked that a force control is not sufficient to remove the drift effect, since a combined

helicopter’s attitude control is needed. The no-drift flight mode could be achieved, for

example, using a PID control on the helicopter’s attitude. This test was carried out using

as initial setting the same setting as for the second test, whereas the last 7 seconds are

computed using the equation (3.61) to change αr. It is important to notice that the

equation used would ensure the no-drift situation, but because of the absence of PID

controller the helicopter rolling is not stopped at all. Therefore the helicopter ends up in

a non controllable rolling condition, which determines loss of control.

Eight test - free flight: The eighth test consist in a simulation of a free flight with

multiple inputs for the cyclic control and the collective control. The result is shown in

Figure 6.9, moreover Table 6.1 presents the time line of the controls used. The throttle

during the test is constant to 100%.

Eighth test

time interval (sec) [0 - 2[ [2 - 4[ [4 - 6[ [6 - 8[ [8 - 10]

αp (deg) 0 0.5 -0.5 -0.3 0

αr (deg) 0 0 0 0.8 -2

αc (deg) 20 22 22 22 20

αT
c (deg) 11.24 11.24 8.5 12.32 12.32

Table 6.1: Eighth test - free flight. The orange-colored numbers indicate that the
no-yaw flight mode has been activated for that time window.
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Chapter 7

Conclusions

In this paper we discuss a mathematical model of a helicopter, which has been analysed

and tested several times. The research continues with a comparison between the model

found and other studies with the same focus in order to validate the model itself. The

comparison has led to accept the resulting system of equations. Furthermore, we discuss

about actuators, control systems and mechanical structures in order to define an interface

to interact properly with the helicopter. During the implementation, we selected a com-

mercial model of a helicopter to provide all the values required. This allowed the numerical

implementation in MATLAB enhanced with graphical windows for graphs and flight sim-

ulations. Among all these pages we use mathematical formulations and test results to

describe behaviours typical of a helicopter. In my opinion, this research will bring a new

perspective on how to work with helicopters, and that perspective could help to easily im-

plement control algorithms, such as Proportional Integral Derivative control and Virtual

Attractive Repulsive Potentials control.

42



Acknowledgements

This research has been performed during an internship at Tokyo University of Agriculture

and Technology (TUAT) in Japan during the period between January and March 2020.

The internship experience has taken place thanks to professor Toshihisa Tanaka who kindly

allowed me to work and use the laboratory of signal and image processing in TUAT Koganei

Campus. Finally, I would like to thank my supervisor, professor Simone Fiori, for the

passion he shared and the support he provided me during the research and also during my

entire experience abroad.

43



Bibliography

[1] EUROCOPTER DEUTSCHLAND GmbH, Helicopter Training Center, P.O. Box

1353, D–86603, Donauwörth (Germany), EC 135 – Training Manual, 7 2002.

[2] M. Kobilarov, M. Desbrun, J. Marsden, and G. Sukhatme, “A discrete geometric

optimal control framework for systems with symmetries,” in Robotics: Science and

Systems, (Atlanta, GA, USA), pp. 161 – 168, June 2007.

[3] EUROCOPTER DEUTSCHLAND GmbH, Helicopter Training Center, P.O. Box

1353, D–86603, Donauwörth (Germany), Flight Manual EC135 P2+, 2002.

[4] The EC135 Drive Train Analysis and Improvement of the Fatigue Strength, September

2007.

[5] K. Kampa, B. Enenkl, G. Polz, and G. Roth, “Aeromechanical aspects in the design of

the EC135,” in 23rd European Rotorcraft Forum in Dresden, Germany, pp. 38.1–38.14,

1997.

[6] Eurocopter, Eurocopter training service, main rotor, May 2006.

[7] EASA European Aviation Safety Agency, Type Certificate Data Sheet NO. IM.E.017

for PW206 & PW207 series engines.

[8] EASA European Aviation Safety Agency, Type Certificate Data Sheet No.

EASA.R.009 for EC135.

[9] EUROCOPTER DEUTSCHLAND GmbH, Helicopter Training Center, P.O. Box

1353, D–86603, Donauwörth (Germany), Eurocopter EC135 technical data, 2006.

[10] S. Kim and D. Tilbury, “Mathematical modeling and experimental identification of

an unmanned helicopter robot with flybar dynamics,” Journal of Robotic Systems,

vol. 21, no. 3, pp. 95 – 116, 2004.

[11] T. Salazar, “Mathematical model and simulation for a helicopter with tail rotor,”

in Advances in Computational Intelligence, Man-Machine Systems and Cybernetics,

pp. 27 – 33, World Scientific and Engineering Academy and Society, 2010.

44



Bibliography

[12] P. Talbot, B. Tinling, W. Decker, and R. Chen, “A mathematical model of a single

main rotor helicopter for piloted simulation,” tech. rep., NASA, September 1982.

[13] R. Abraham, J. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications.

Springer, 1988.

[14] F. Bullo and A. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis,

and Design for Mechanical Control Systems. Springer, 2005.

[15] S. Fiori, “Nonlinear damped oscillators on Riemannian manifolds: Fundamentals,”

Journal of Systems Science and Complexity, vol. 29, no. 1, pp. 22 – 40, 2016.

[16] S. Fiori, “Nonlinear damped oscillators on Riemannian manifolds: Numerical sim-

ulation,” Communications in Nonlinear Science and Numerical Simulation, vol. 47,

pp. 207 – 222, 2017.

[17] A. Bloch, P. Krishnaprasad, J. Marsden, and T. Ratiu, “The Euler-Poincaré equations

and double bracket dissipation,” Communications in Mathematical Physics, vol. 175,

pp. 1 – 42, 1996.

[18] Z.-M. Ge and T.-N. Lin, “Chaos, chaos control and synchronization of a gyrostat

system,” Journal of Sound and Vibration, vol. 251, no. 3, pp. 519 – 542, 2002.

[19] S. Fiori, “Model formulation over Lie groups and numerical methods to simulate the

motion of gyrostats and quadrotors,” Mathematics, vol. 7, no. 10, 2019.

[20] C. Rotaru and M. Todorov, “Helicopter flight physics,” in Flight Physics – Models,

Techniques and Technologies (K. Volkov, ed.), IntechOpen, 2018.

[21] W. Yu and Z. Pan, “Dynamical equations of multibody systems on Lie groups,” Ad-

vances in Mechanical Engineering, vol. 7, no. 3, pp. 1 – 9, 2015.

[22] B. E. Axelsson, J. C. Fulmer, and J. P. Labrie, Design of a Helicopter Hover Test

Stand. Bachelor Science Thesis in Aerospace Engineering, Worcester Polytechnic In-

stitute (Worcester, MA, USA), March 2015.

45


