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Summary

Continuous monitoring of preterm infant’s spontaneous motility is crucial for

early recognition of cognitive and behavioural disorders, allowing timely thera-

pies and treatments. Automatic infants’ limbs pose estimation is an important

step toward supporting clinicians in infant monitoring and improving patients’

care.

This work proposes an end-to-end framework for limb-pose estimation based

on the novel and high-performance region-based CNN) by Facebook AI Research

(FAIR), named Mask R-CNN. The proposed framework was validated on a cus-

tom dataset of 6000 depth images from 30 videos acquired in a neonatal inten-

sive care unit during the actual clinical practice. A leave-one-infant-out cross-

validation with 19 folds is performed to evaluate the framework performance on

each different video. Results for joint detection showed a mean average preci-

sion equal to 0.9 with a standard deviation of 0.2. For limb-pose estimation, a

median root mean square error [pixel] equal to 6.8 (right arm), 6.7 (left arm),

6.5 (right leg), 6.5 (left leg) was achieved. The interquartile ranges [pixels] were

1.1, 1.2, 0.6, 1.2 for each limb, respectively. This end-to-end framework does

not require any prior modeling of infants’ body structure, neither any manual

interventions, and it can represent a step toward embedded monitoring solutions

for on-the-edge computation.
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Chapter 1

Introduction

This chapter will introduce the preterm infants clinical background (Sec. 1.1),

focusing on the long-term cognitive and cerebral disorders associated with pre-

maturity. Then, it is explained the importance of the continuous monitor-

ing of infant spontaneous movement for the early recognition of infant neuro-

developmental disorders, pointing out the contribution of the present thesis to

this issue (Sec. 1.2). Finally, the SINC project will be introduced (Sec. 1.3).

1.1 Preterm birth

Preterm birth is defined by the World Health Organization (WHO) as a birth

before 37 completed weeks of gestation. An estimated 15 million babies born

preterm every year. That is more than 1 in 10 babies. In almost all high-income

countries, complications of preterm birth are the largest direct cause of neonatal

deaths, accounting for the 35% of the world deaths a year [1].

The babies who survive have to face a wide range of morbidities associated

with prematurity, with the frequency and severity of adverse outcomes rising

with decreasing gestational age and decreasing quality of care. In the short-

term, preterm infants may experience respiratory distress and intraventricular

hemorrhage, while, in the longer term, they may have worse neuro-developmental

performance outcomes.

There is a wide consensus that early interventions may have a key role to
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CHAPTER 1. INTRODUCTION

impact neuro-development and functional attainment based on optimizing neuro-

plasticity of the developing brain soon after birth [2]. Thus, earlier diagnosis is

urgently needed to take full advantage of critical windows of early brain devel-

opment. Despite that, in most clinical settings, the average age for cognitive and

motor disorders diagnosis is typically from 12 to 24 months [3], hampering early

onsets of interventions and therapies during optimal period [4].

The only clinical currently available method to assess the infant’s motor

impairment in the first months of life, is the General Movements Assessment

(GMA) tool [5].

1.2 General Movement Assessment

General movements (GMs) are part of the infant’s repertoire of spontaneous

movements, g.e. a wide range of movement patterns starting as early as 8 weeks

of gestational age and continuing after birth, expression of infant’s spontaneous

neural activity [6]. Consequently, the GMA presented by Prechtl et al. [5] is

based on the fact that the form of typical GMs changes as a result of develop-

mental transformations of the nervous system, representing a high predictor for

later motor and cognitive performance. Changes in the normal quality of GMs

are a reliable indicator of brain dysfunction [5].

The application of GMA clinically involves the evaluation of the GMs spe-

cific spatial-temporal organization, through Gestalt perception of the observer.

Nowadays, GMs follow-up is mainly limited to infants’ visual inspection by

trained clinicians directly in Neonatal Intensive Care Units (NICUs), with draw-

backs as being qualitative, discontinuous, inaccurate and prone to inter- and

intra-clinician variability [6].

As a result of the nominal use of GMA in neonatal follow-up programs, several

studies have tried to automate this method to obtain earlier, quantitative, and

more accurate clinically feasible GM assessments [6].

In particular, the estimation of preterm infants’ pose is a relevant research

problem in order to automatize GMs monitoring [7] and quantify the character-
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CHAPTER 1. INTRODUCTION

istics of the movement.

Thus, a possible solution to attenuate the problem of qualitative monitoring

is to use an automatic video-based system for infants’ limb-pose estimation [8].

Following this paradigm, the acquisition setup can be designed as described by

[9] as shown in Fig. 1 (Fig: 1.1). The setup consists of a depth camera placed

over the infants’ crib leaving healthcare operators and parents free to move and

interact with the infants. Moreover, the setup is designed to interfere with the

infant’s spontaneous motility and the choice of the depth camera rather than a

Red-Green-Blue (RGB) one, is concerning the infant privacy issues.

The automatic system implemented in [9] uses Artificial Intelligence (AI)

techniques for the spatio-temporal analysis of depth images. The use of neural

network architectures aims to use the information deriving from the analysis of

video sequences to classify the presence or absence of movement of the limbs of

the newborn.

The present thesis aims to develop an end-to-end deep learning framework for

preterm infant joint detection and limb-pose estimation from the depth images

acquired in NICUs through the previously described setup.

1.3 SINC

The development of the automatic vision system described in this thesis is part

of the System Improvement for Neonatal Care (SINC) project. The SINC is a

project of the Marche region carried out in collaboration with four companies,

two research departments of the Università Politecnica delle Marche and of the

”G. Salesi Hospital for Women and Children” in Ancona as coordinator of all

regional NICUs. The project concerns neonatal care and aims to study, develop

and test an innovative system on real cases that consists of new products to

support a new organizational model. The SINC project aims to transform baby

cribs into intelligent systems. An intelligent crib for preterm infants consists of

a system that controls, via camera and contactless sensors, with the help of AI,

heart and respiratory rate and temperature, movement and crying, as well as

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Sample of NICU acquisition setup. The Red-Green-Blue-Depth
(RGB-D) camera (red box) is at approximately 40 cm over the infant’s crib,
avoiding hindering the operators [9]. On the top-left corner, an example of ac-
quired depth image is showed.

bilirubin, fundamental parameters for determining state of health of premature

infants.The main objectives of the project are:

• Transform the cradle into a smart device by integrating new systems for

the detection of the main physiological parameters.

• Creation and management of a cloud service that makes e. Services avail-

able in the Marche region utilities able to collect and integrate the moni-

toring data detected by the devices in order to favor diagnosis.

• Realization and experimentation of a new hospital / territorial model for

the integrated management of neonatal care.

AI will be able to extract useful information on the activity of the newborn.

In particular, this thesis regards the development of an AI algorithm for preterm

infants’ pose estimation, extracting information from the infants’ video acquired

through the camera of the intelligent crib in the NICU of G. Salesi Hospital

10



CHAPTER 1. INTRODUCTION

in Ancona. In Sec. 1.4, a brief introduction of the work done in this thesis is

showed.

1.4 Thesis overview

This thesis presents an end-to-end framework based on deep learning, for esti-

mating preterm infants’ limb pose from depth video recordings acquired in the

actual clinical practice. The thesis will be structured as follows:

• Chapter 2 encloses the main and more recent techniques for infant’s motion

analysis at the state-of-the art

• Chapter 3 describes the fundamentals of deep learning

• Chapter 4 describes the data and the developed deep learning framework

• Chapter 5 describes the experimental protocol

• Chapter 6 shows the obtained results

• Chapter 7 discusses the results and future developments

• Chapter 8 presents conclusions

11



Chapter 2

State of the art

Over the last few years, thanks to the advances in sensor technologies and com-

putational resources, numerous computer-based solutions have been proposed to

continuously monitor and analyze infants’ movement.

In Sec. 2.1 different infant movement assessment approaches found in the lit-

erature are be briefly summarized, distinguishing the technique involving wear-

able sensors (Sec. 2.1.1) from the ones regarding contact-less approaches (Sec.

2.1.2).

In Sec. 2.2 the main limitations of the state-of-the-art are discussed, and the

contribution of the present thesis is introduced.

2.1 Methods of analysis of the movement of the preterm

infants

Movement recognition is the basis of the infant movement assessment and the

timely recognition of cognitive and behavioural disorders. In clinical applica-

tions it aims at the automated detection, classification, and assessment of the

quality of infants’ limb movements focusing on indications for abnormalities [10].

Although this problem is approached in different ways, the pipeline is similar for

most systems, and can be divided into motion capture and motion analysis [11].

Regarding the motion capture techniques, two groups can be identified: visual
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CHAPTER 2. STATE OF THE ART

sensor -based approaches and motion sensor -based approaches. The first group

of approaches either use markers on human body region or exploit marker-less

solutions by incorporating the image features such as color, edges, etc. to de-

tect and track the different body parts in video data. The second family of

approaches use motion wearable sensors to encode the motion information. Mo-

tion features extracted from captured movements, are then generally used for

training a classifier to predict the outcome [11].

2.1.1 Sensor-based approaches

Literature on movement analysis based on inertial measurement unit (IMU)

sensors has grown rapidly and a wide range of analytic tools have been developed

to analyse movement activity at different levels.

In [12] a Bluetooth-connected infant sensor suit is developed, pairing a one-

piece infant suit and rattle socks with six 6-axis IMUs powered by a coin cell

battery. The suit incorporates 3 sensors per leg, placed on the thigh, shin,

and foot to gather 3-axis acceleration and gyroscope data for each of the limb

segments (Fig. 2.1). An activity detection algorithm is then used to quantify

kicking activity derived from collected measurement data. The data are collected

from term and low-risk preterm infants wearing the suit.

Figure 2.1: Example of sensor placement for infant’s left leg, by Fry et al. [12].

13
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Figure 2.2: Photograph of the smart jumpsuit with four proximally placed move-
ment sensors, by Airaksinen et al. [13].

In [13], for tracking the posture and movement of infants, it is developed a

multi-sensor ”smart” jumpsuit that allows mobile accelerometer and gyroscope

data collection during movements (Fig. 2.2). A total of four wireless sensors

are mounted proximally in the upper arms and legs. Each sensor has a built-in

IMU, consisting of a triaxial accelerometer and a gyroscope. Using this suit,

movements in approximately 7-month old infants are recorded. These data were

manually annotated for infant posture and movement based on video recordings

of the sessions, and using a novel annotation scheme specifically designed to

assess the overall movement pattern of infants in the given age group. A ma-

chine learning algorithm, based on deep CNNs was then trained for automatic

detection of posture and movement classes using the data and annotations.

In [14] a custom movement measurement system is designed for use in infant

biomechanical studies. The authors designed a network of 6 wearable move-

ment sensors in the neck and head, the trunk, and in all extremities (Fig. 2.3).

This sensor network was designed for use with infants during the peak mani-

festation of fidgety general movements from 12 to 20 weeks post term age. It

is able both to quantify the presence or absence of fidgety movements, but also

provide insight into the relative distribution of spontaneous and gross motor

movements towards identification of left/right or upper/lower asymmetries that

may be useful towards predicting distribution or severity of cognitive and be-
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CHAPTER 2. STATE OF THE ART

Figure 2.3: Representation of the wearable sensor network during data collection
presented by Redd et al. [14].

havioural disorders. However, they presented the pilot data on a single infant,

and the single trial is not sufficient to demonstrate diagnostic efficacy or potential

impact within the population at large.

All the aforementioned articles share the same limitations related to the use

of contact measurement techniques: the application of wearable sensors on the

preterm infant’s skin can lead to baby’s discomfort and pain, also interfering

with infants’ mobility. It should be also noted that these studies are referring

only to at term or low-risk preterm infants, with small datasets or even with a

single trial.

2.1.2 Vision-based approaches

Other than sensor-based approaches, vision-based approaches do not measure

motions directly. These techniques use color images, depth information or both

for movement analysis. Some approaches involves markers attached to the in-

fant’s body parts to represent the joints’ locations, and use them to detect and

track the skeleton in a video to encode the motion information. The others

camera-based approaches exploit image features such as color, shape, and edges

to estimate the joints’ locations for movement analysis.

15



CHAPTER 2. STATE OF THE ART

Marker-based

In Miyagishima et al. [15], spontaneous movements of the infants are recorded

using a 3D motion capture system Vicon 512 (Oxford Metrics). Eight infrared

cameras mounted on tripods recorded synchronously the movement of the sin-

gle markers. 6.0 mm diameter markers are located at hands and foots. They

normalize the marker displacement data using the limb length in each infant.

The distance between both hands and between both feet and the height of both

hands and feet are used as indexes of antigravity movements [15].

Methods relying on attached markers present some of the same challenges

as wearable sensors. They require human intervention for marker attachment

and wearing a large number of sensors or markers may cause discomfort to the

young patients which may affect their natural body part movements. Still, they

use computer vision for tracking the pose of the infants. The high cost of the

system, the complex setup and calibration, and the occlusion problems stand

against the highly accurate tracking of joints in 3D. Due to practical limitations

these systems are most commonly seen in the research setting, being not easily

adaptable to the clinical environment [16].

Camera-based

Cameras, opposed to motion sensors, are cheap, easy to use, require no setup

or calibration, and can be easily integrated into standard examinations while

not influencing infants’ movements. This makes them more suitable for use

in clinical or even domestic environments. Camera-based methods, used in the

current state-of-the-art in infant motion analysis, involves pixel tracking methods

or infant pose estimation for movement detection and machine learning or deep

learning algorithms for classification of GM.

The proposed solutions can be divided according to the method of the extrac-

tion of features describing the child’s movement, distinguishing those based on

features extracted directly from the recording (optical flow, background subtrac-

tion) from pose-based features, in which the extraction of features is preceded

16
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by the process of locating individual body segments [17].

In Ilhen et al. [18], a five-step procedure is proposed for the processing of

the RGB video recording: video screening, pre-processing, pixel tracking us-

ing Large Displacement Optical Flow (LDOF), segmentation of six body parts,

and extraction of vertical and horizontal coordinates of body part’s movements.

LDOF is used to track pixel movements and a manual annotation is performed

on 500 frames to identify the pixel center of six parts of the infant’s body (i.e.,

arms, legs, head, and torso). The body parts’ mean movement frequency, am-

plitude, and covariation is computed and finally resulted in a set of 990 features

describing all the infant’s movement repertoire. Linear discriminative analy-

sis (LDA) is applied to classify movements typically found in children with or

without cerebral palsy [18].

Tsuji et al. [19], inspired by [20], use frame differencing of RGB videos

to estimate movements by tracking the centroid of motion, similarly to [21].

The video processing consist in two steps: first, the background frames are

averaged and the resulting background image is subtracted from each frame

of the video sequence in order to obtain a sequence of binary-frames using a

brightness threshold (where 0-black is the background and 1-white is the infant’s

body); then the difference-frame is obtained by performing the pixel by pixel

difference between time-adjacent frames, in order to generate additional binary

images using a brightness threshold (where 1-white represents a pixel in which

infant movement has been detected) (Fig. 2.4).

As highlited by the authors, binarization implies a radical loss of eidetic

information for each frame of a sequence. Features relate to changes in body

posture and movement, the velocity and fluctuation of the body centre are ex-

tracted and fed into a feedforward-type neural network called the log-linearized

Gaussian mixture network to classify the limbs movements.

Both these approaches proposed by these authors lack of robustness in dealing

with illumination changes and body part dimensions [22]. They are threshold-

based, not fully automatic or only used for the whole body movement analysis.

Also, limitations concerning the infants’ privacy issues are related with the use

17



CHAPTER 2. STATE OF THE ART

Figure 2.4: The experimental setup system of Tacchino et al. [21] at left, and
the relative pre-processing of the video sequences at right. The background and
one frame of a video sequence at the panel A and B respectively. One binary
image, also including as a red circle the instantaneous position of the centroid of
the body silhouette, at panel C. An example of “difference-frame” at panel D.

of RGB camera.

Pose estimation

Researchers have recently started to evaluate the effectiveness of pose-based

assessment. The automated estimation of human pose from 2D images is an

active research area, with several significant recent contributions. With the

continued progression in deep learning techniques, various robust frameworks

have been proposed which can accurately estimate human poses from 2D images

[22].

In 2017, Cao et al. [23] introduced the OpenPose framework. It is a deep

learning framework trained to detect human joint locations, namely keypoints,

on single images, detecting both 2D position and orientation of human limbs

using a non-parametric representation referred to as Part Affinity Fields (PAFs)

[24]. The availability of this ready-made human pose estimation libraries leads

to an improvement of the pose-based features extraction capability [17], proven

by the extensive use of the OpenPose framework customized for infants in the

most recent studies [25, 22, 17, 24].

Marchi et al. [25] produced skeleton videos and extracted motion features,

such as the position and speed information of upper limb movements of 8-17
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Figure 2.5: Pose estimation procedure from the video image to skeleton videos by
[25] In the original video image (A, left side), anatomical key points are identified
(A, middle and right side with dots in infant’s joints) and a skeleton is formed
by drawing lines between these key points. This is repeated for all consecutive
video frames (B).

week old infants from 21 conventional videos to identify atypical movements,

customizing the OpenPose framework (Fig. 2.5). However, they indicated that

pose tracking errors occurred in 14 out of 21 recorded videos, concluding that

their approach would improve significantly by the use of 3D instead of 2D camera

technology.

Also in [17] pose estimation is performed using the OpenPose library, then,

using the trajectories of the distal parts of the limbs, a set of features is deter-

mined based on the parameters of the ellipse circumscribed on each trajectory

(Fig. 2.6): the FMA (factor of movement’s area), FMS (factor of movement’s

shape), and CMA (center of movement’s area) were determined. Machine learn-

ing methods are used to detect writhing movements on RGB video recordings of

children on the second and third day after birth.

In 2019, Hesse et al. [11] created the Moving INfants In RGB-D (MINI-

RGBD) dataset containing 12 sequences of real infant movements with varying

realistic textures, shapes and backgrounds. Using this dataset, they evaluated

their Random Ferns based 3D pose estimation method. Later, the MINI-RGBD

dataset is used by McCay et al. [22] to establish histogram-based pose features,

such as Histogram of Joint Orientation 2D (HOJO2D) and Histogram of Joint

Displacement 2D (HOJD2D) to identify atypical movements with the use of the
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Figure 2.6: Visualization of the coordinate system associated with the right
shoulder used by Doroniewicz et al. [17] to normalize the parameters of the
ellipse circumscribed on the trajectory of the right wrist. The blue circle shows
the possible range of motion used to normalize the value of the area of the ellipse
circumscribed on the trajectory (orange). Minor and major axes are marked
inside the ellipse.

OpenPose framework. The hand-crafted features generated are then fed into a

deep learning framework for classification [24].

All the aforementioned articles are based on recording conventional 2D color

videos. The single camera setup resulted in a reduction of the three-dimensional

motion of the limbs to a bidimensional space implying a reduction of information,

and these RGB cameras also raised issues concerning the infants’ privacy protec-

tion. With the advent of low cost RGB-D sensors, motion analysis approaches

started taking advantage of depth information.

In 2017, Hesse et al. [26] proposed a method for estimating pose and shape

of infants, learning a statistical 3D Skinned Multi-Infant Linear body model

(SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants.

Quantitative experiments show that SMIL faithfully represents the RGB-D data

and properly factorizes the shape and pose of the infants.

In a recent work of Moccia et al. [8] a preterm infants’ limb pose estima-

tion technique is proposed, consisting of two consecutive CNNs extracting pose
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Figure 2.7: Infant model proposed by Moccia et al. [8].

directly from depth images acquired in the NICU during the actual clinical prac-

tice (Fig. 2.7), including spatio-temporal information. The approach uses the

babyPose dataset, consisted of 16 depth videos of 16 preterm infants.

2.2 The problem of infant dataset

There are multiple reasons why no public repository of infant 3D scans exists.

Protection of privacy of infants is more strict as compared to adults. The high

cost of 3D scanners prevents them from being widespread. Creating a scanning

environment that takes into consideration the special care required by infants,

like warmth and hygiene, requires additional effort. Finally, infants can not be

instructed to strike poses on demand, which is usually required in standard body

scanning protocols [26].

2.3 Main contributions

The methods present in the state of the art show a series of limitations:

(i) Wearable sensors could irritate the infant’s skin, cause incorrect measure-

ments following recalibration, but even worse, generate unwanted movements

(ii) The algorithms to analyze the images acquired by the cameras, are non-

invasive, but in most cases they rely on semi-automatic approaches, with high

computational costs and complex pipelines.
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To overcome the limitations of the state of the art, based on the study of

Moccia et al. [8], the work done in this thesis aims to develop an end-to-end deep

learning framework for preterm infant joint detection and limb-pose estimation

from depth images acquired in NICUs. The high performance novel framework

for human pose estimation proposed by Facebook AI Research (FAIR) is used

in this work to develop the end-to-end model easily deployable in a clinical or

domestic environment.
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Chapter 3

Deep Learning

This chapter will introduce the basic concepts behind Deep Neural Networks

(Sec. 3.1 - 3.4). In Sec. 3.5 region-based convolutional neural network architec-

tures, that precedes the one used in the present work, are described. Finally, the

deep residual network (Sec. 3.6) and the feature-pyramid network (Sec. 3.7) are

briefly introduced.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired computer programs

designed to simulate the way neurons in our brain work and propagate the in-

formation, thus the human brain learning process [27]. The result is a powerful

learning method: ANNs are able to inductively acquire concepts from examples

Figure 3.1: Biological neuron.
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Figure 3.2: Perceptron.

[28], i.e., to learn and generalize from data, mimicking the human capability

to learn from experience. ANNs are used to solve problems with many multi-

variate parameters, when the exact analytical model does not exist or it reveals

too complex.

An ANN structure is charachterized by hundreds of single units, i.e. artifi-

cial neurons, organized as networks whose interconnections are similar in some

respects to the way in which neurons are inter connected in the visual cortex of

mammals [29].

Let consider a biological neuron in order to understand the basic idea behind

neural networks. The neuron (Fig. 3.1) is able to receive inputs (i.e. electrical

signals in our brain), perform processing and produce an output (also an elec-

trical signal). It is important to note that the inputs and outputs are binary

(0 or 1). A single neuron receive inputs, usually from other neurons, through

its dendrites. Dendrites connect with other neurons through a space, named

synapse, which assigns weight to a particular input. All the received inputs

are summed and processed together in the cell body, or soma. Neurons exhibit

a all-or-nothing behavior: only if the combination of inputs exceeds a certain

threshold, an output signal is produced. In case the neuron activates, the out-

put travels along the axon to the axon terminals, which are connected to the

dendrites of other neurons through synapses.

The simplest form of ANN is the perceptron, proposed by Frank Rosenblatt

[30]. The perceptron model, represented as in Figure 3.2, consists of binary

inputs (xm), usually given as a vector, interacting with synapses (i.e.weights

wm) through the multiplication wm∗xm. Then, the weighted inputs are summed
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Figure 3.3: Multi Layer Perceptron.

together in the artificial neuron body, also adding another constant factor, called

bias (b). The weighted sum is modeled by, an activation function (g), that

limits the amplitude of the output of the neurons. The activation function for

perceptron is the step function: if the input is greater than or equal to 0, then

the output is 1, otherwise is 0. Finally, we can express the output (ŷ) like this:

output = ŷ = g(
M∑

m=1

wmxm + wbb) (3.1)

with M the number of inputs.

However, the perceptron is effective only when the features of the input data

are linearly separable (i.e. separable by a hyperplane). In 80s-90s there was the

introduction of the Multi-Layer Perceptron (MLP), a multi-layered network to

solve non linearly separable data. A layer in the network is the set of nodes

(neurons) in a column of the network [29]. All the nodes in the network are

perpeptron-like, except for the input layer, whose nodes are the components of

an input pattern vector x [29]. Each layer in the network can have a different

number of nodes, but each node has a single output. The key innovation is

that at least one layer is hidden, as it is neither an input layer nor an output

layer, allowing the network to build an internal representation of the data, in a

feature space, before producing an output. The Fig. 3.3 shows an MLP with

three layers. In the standard form, the MLP is fully-connected : all the neurons’
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Figure 3.4: Esample of Deep Neural Network architecture.

outputs of a layer are connected to all neurons’ inputs of the next layer. The

activation function of the neurons in the hidden layer are nonlinear. Generally,

neural networks with a single hidden layer are referred to as shallow neural

network [29], while networks with two or more hidden layers are named Deep

Neural Network (Fig. 3.4).

With the MLP, it was introduced also the idea of error back-propagation for

the adjustment of the weight in the hidden layer. Unlike the pattern recognition

approaches relying on feature engineering techniques to extract feature from raw

data, neural networks can use back-propagation to automatically learn represen-

tations suitable for recognition, starting with raw data [29]. Each layer in the

network “refines” the representation into more abstract levels [29]. This type

of multilayered learning is commonly referred to as Deep Learning. In the two

decades following the introduction of back-propagation, neural networks have

been used successfully in a broad range of applications, such as medical diagno-

sis, speech and pattern recognition, becoming also integral part of our everyday

life [29].

3.2 Training Neural Networks

According to the above, neural network is characterized by its weights, biases,

and activation function. Training a neural network refers to using one or more

sets of training patterns to estimate these parameters [29]. ANN are trained
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primarily to solve two problems:

• Regression: the algorithm outputs numerical values in response to input.

• Classification: the algorithm associates one or more classes to each of the

inputs, assigning them one or more label.

This thesis is dealing only with a training approach called Supervised Learning :

both the data and the expected output for each data (its label) are fed as input

to the network. The first step of the training process is the initialization of

the network weight with random values. The training samples are then fed

as input to the network and processed through the hidden layers, and finally

the related output is obtained, called prediction. The prediction is compared

with the desired output by calculating the prediction error, defined by a loss

function. Thus, the network training consists in the minimization of the loss,

that is representing the difference between the expected output (the label) and

the actual prediction of the network. The loss function, or Loss, can be defined

as:

L(W ) =
1

N

N∑
i=1

(Li(f(xi,W ), yi)) (3.2)

where:

• N: number of training samples

• W : weights matrix

• f(xi,W ): prediction for sample xi

• yi: expected output for sample xi

• Li(f(xi,W ), yi): prediction error

The Loss is dependent on the weights and biases values. Thus, in other

words, the training of a neural network is the process of finding the configuration

of weights and biases that maximize the performance of the model and minimize

the Loss value. The Loss minimization problem is defined as follow:
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min {L(W )} = min

{
1

N

N∑
i=1

(Li(f(xi,W ), yi))) + λR(W )

}
(3.3)

where R(W ) and λ are the regularization term and parameter.

Before going into the discussion, it is good to make the following clarifications.

The training set can be divided into batches, each one containing a number of

examples equal to the batch-size. With the term iteration we want to indicate

the passage in feed-forward of only one batch. When each batch of the training

set is seen by the network, we will have the end of an epoch.

Once the ANN has been trained with a set of examples, it can be used to

predict the outcome of another new set of similar input data.

3.2.1 Gradient descent and back-propagation

The training of ANNs is an optimization problem: we are searching the values

of W to minimize the Loss (formula 3.3). The optimization algorithm used to

solve this problem is the gradient descent. Considering the weight space, i.e.

the space in which each point represents the loss value resulting from specific

combination of weights, the problem consist in finding the direction towards the

global minimum of that space, thus a direction of descent. The gradient is the

vector of the partial derivatives of the Loss along each dimension wi:

OwL(W ) = [
∂L

∂w1
,
∂L

∂w2
, ....,

∂L

∂wn
] (3.4)

where each partial derivative gives the contribution of the relative weight wi

to the Loss. Mathematically the direction of descent is given by the negative

gradient: (−OwL(W )). The gradient descent is an iterative procedure, which

at each step updates the weight vector W moving towards the minimum of the

Loss, as follow:

Wnew = Wold − ηOwL(W ) (3.5)
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where η is a positive, configurable hyper-parameter, called learning rate, reg-

ulating the weight update. It gives the dimension of the step done in the weight

space toward the new position. A too high learning rate can lead to excessive

’jumps’, cause a lack of convergence. Conversely, the choice of an excessively

small learning rate could slow down a lot the convergence process, requiring a

higher number of epochs in order to achieve acceptable results. There are nu-

merous approaches that attempt to find optimal learning rates, but ultimately

this is a problem-dependent parameter that involves experimenting. A reason-

able approach is to start with a small value of (e.g., 0.01), then experiment with

vectors from the training set to determine a suitable value in a given application.

We have no way for computing the gradients of the weights in the hidden nodes.

The back-propagation algorithm solves this issues, by propagating the output

error back into the network. The process that starts from the weights coeffi-

cients to calculate the predictions is known as forward propagation. Conversely,

the process that allows to optimize the coefficients starting from the error previ-

ously calculated is called backward propagation or back-propagation. Training by

back-propagation involves four basic steps: (1) inputting the pattern vectors; (2)

a forward pass through the network to classify all the patterns of the training set

and determine the classification error; (3) a backward pass that feeds the output

error back through the network to compute the changes required to update the

parameters; and (4) updating the weights and biases in the network. These steps

are repeated until the error reaches an acceptable level [29].

The gradient can be computed at each iteration considering all the training

sample, but it is infeasible for large datasets. Alternatively, the gradient can

be computed on a single sample randomly chosen, reducing the executive time

but leading to gradient’s oscillations avoiding the convergence to the minimum

Loss value. Finally, the best compromise results in mini batch gradient descent,

computing gradients on a small number of data samples. The update of this

good but not perfect gradients moves the weights overall in the right direction.
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3.2.2 Loss functions

Cross-entropy

Cross-entropy loss, or log loss, measures the performance of a classification model

whose output is a probability value between 0 and 1. Cross-entropy loss increases

as the predicted probability diverges from the actual label. As the predicted

probability approaches 1, log loss slowly decreases. As the predicted probability

decreases, however, the log loss increases rapidly. Cross-entropy is defined as:

L =

M∑
c=1

yo,c log(po,c) (3.6)

where M is the number of classes, log is the natural log, y is binary indicator (0

or 1) if class label c is the correct classification for observation o, and p is the

predicted probability that observation o belongs to c.

Figure 3.5: Cross-entropy function.

Mean Absolute Error or L1

Mean Absolute Error (MAE) loss function, or L1, is the sum of absolute differ-

ences between the target (ytrue) and predicted (ypredicted) variables.

L1 =
n∑

i=0

|ytrue − ypredicted| (3.7)
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3.3 Activation functions

Activation functions are used to determine the output of neural network. The

Activation Functions can be basically divided into 2 types: linear and non-linear.

In this section are described the most used non-linear activation functions, shown

in Fig. 3.6

Figure 3.6: Three exapmles of activaction functions: at left panel the Sigmoid
function, at the center the hyperbolic tangent (tanh), at right the Rectified Linear
Unit (ReLU)

3.3.1 Sigmoid

The Sigmoid function curve looks like a S-shape (Fig. 3.6 left panel). The input

to the function is transformed into a value between 0.0 and 1.0. Inputs that are

much larger than 1 are transformed to the value 1, similarly, values much smaller

than 0 are snapped to 0. Therefore, it is especially used for models where we

have to predict the probability as an output. Since probability of anything exists

only between the range of 0 and 1, sigmoid is the right choice. Mathematically

we can represent the sigmoid in this way:

sigmoid(x) =
1

(1 + e−x)
(3.8)

3.3.2 Hyperbolic tangent

The hyperbolic tangent function (tanh), in middle panel of Fig. 3.6, is a similar

shaped nonlinear activation function that outputs values between -1.0 and 1.0.
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tanh(x) =
sinh(x)

cosh(x)
(3.9)

3.3.3 Rectifed Linear Unit

The function in right panel of Fig. 3.6 is called the rectifier function (ReLU). It

is a piecewise linear function that will output the input directly if it is positive,

otherwise, it will output zero. It is the activation function most used in ANNs

and has replaced over the years the hyperbolic and sigmoid tangent functions.

The main reason it is due to the fact that tanh and sigmoid have a very small first

derivative, which quickly tends to zero. Since the training of a neural network is

based on the gradient descent, the multiplication for a value close to zero lead

to slower learning.

ReLU(x) = max(0, x) (3.10)

3.3.4 Softmax

The softmax function allows to calculate the probability distribution of an event

on n different events. In general, this function is used for classification problems

and calculates the probability of an example to belong to a certain target class.

The main advantage of using softmax is that the probability range is in the range

[0,1], and the sum of all probabilities will be equal to one. For classification

problems with only two classes (binary classification), the sigmoid activation

function can be used. Instead, if the number of classes is greater, the softmax

activation function can defined as follows:

Softmax(x) =
exi∑C
i=1 e

xi
(3.11)

where C indicates the total number of classes of the problem in question.
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3.4 Convolutional Neural Network

As mentioned in the previous section, neural networks are capable to learn fea-

tures directly from training data, thus reducing the need for “engineered” fea-

tures. CNNs are a class of neural networks primarily used for pattern recognition

within images. CNNs learn 2-D features directly from raw image data. The im-

age is considered as a matrix of neurons in which the neuron in place (i, j) will

be associated with the intensity of pixel in position (i, j) of the input image. In

the fully connected network seen before, the output of every neuron in a layer is

directly fed into the input of every neuron in the next layer. Differently, in the

CNNs each neuron of one layer receives a single value, that is obtained by the

convolution between a region of the input image (i.e. the output of the previous

layer) called receptive fields, and a set of weight arranged in the shape of the

receptive field, called kernel.

The receptive field is sliding over the input image and, at each location, it is

computed the sum of products between the pixels contained in the receptive field

and the set of kernel’s weights, as shown in Fig. 3.7. A kernel is a smaller-sized

matrix in comparison to the input dimensions of the image, and the kernel’s

values are learned during the training phase. Each neuron of the hidden layer

uses the same weights and the same bias: the sharing of weights and bias for

all neurons of the convolutional layer means they learns the same characteristic,

albeit in different areas of the image. Thus, a certain feature can be detected

even when located at different positions. This highlights the invariance of CNNs

with respect to translations. With respect to fully connected network, the use

of kernel reduces the number of parameters to the filter dimensions, regardless

of the size of the input image. The output of the convolution between the input

image and the kernel is called feature map, referring to the role performed by

convolution operation, i.e. to extract features such as edges, points, and blobs

from the input. Within a convolutional layer, there is often not only a single

filter, but many are used: each of them will learn a characteristic of the image.

The convolution operation is defined by its stride and padding. The stride is the
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Figure 3.7: Example of convolution between the input matrix 7× 7× 7 and two
filters (W0 and W1) 3× 3× 3 with stride equal to 2.

number of spatial increments by which a receptive field is moved. Strides greater

than one is used for data reduction. For example, changing the stride from one to

two reduces the image resolution by one-half in each spatial dimension, resulting

in a three-fourths reduction in the amount of data per image. Otherwise, stride

can be used as substitute for subsampling to reduce system sensitivity to spatial

translation. Sometimes filter does not perfectly fit the input image. Padding is to

pad the picture with zeros (zero-padding) to allow this fit. Once the feature map

is obtained the ReLU activation function is applied, setting to zero all nodes with

negative values. Often a CNN has multiple convolutional layers: starting from

the input layers, the first convolutional layers extract low level characteristics,
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such as angles, horizontal and vertical lines, while the latest convolutional layers

allow to extract significant features of the image, such as faces or objects. Once

all the operations involving the convolutional and di layers have been completed

pooling, you will get a matrix of dimension W × H × D. By means of an

operation called flattening, it is possible to transform it into a vector of dimension

W ·H ·D. At this point, this vector is fed into fully-connected layers. The last

fully-connected layer will have a number of nodes equal to the total number of

classes defined for the classification problem. The output vector, generated by

softmax classification function, will match the probability associated with the

network that the object belongs to the i-th class.

3.5 Region-based CNN

Region-based CNNs (R-CNNs) are approaches applying deep learnning to ob-

ject detection [31]. A naive approach to solve detection problem would be to

take different regions of interest from the image, and use a CNN to classify the

presence of the object within that region. The drawback is that the objects of

interest might have different spatial locations within the image and different as-

pect ratios. Hence, a huge number of regions have to be selected and this could

computationally blow up.

To overcame this problem, Ross Girshick et al. [31] proposed the use of an

Figure 3.8: Comparison between R-CNN (left panel), Fast R-CNN (central
panel), and Faster R-CNN (right panel) architectures.
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external algorithm, named Selective search, aimed to extract from the image just

2000 regions. These regions are called region proposals and represent the first

bounding box candidates.

The selective search performs a bottom-up non-object segmentation, based

on filtering approach: pixels are grouped in small segmented areas according to

color similarities, texture similarities, region size and region filling, and then the

small segmented areas are merged together to form larger segmented areas. The

2000 region proposals are then warped into 224 x 224 squares, and fed into a

CNN generating a 4096-dimensional vector for each of them. All these vectors

should be saved to disk, in order to finally use them as input to a support vector

machine that classifies the presence of the object within each candidate proposal,

and to a linear regressor classifier helping in adjusting the bounding box of the

region proposals.

This approach presents lots of drawbacks. Firstly, there is no training phase

and learning from selective search, lacking of flexibility and leading to bad gen-

erated proposal. The warping of region proposals to squared size leads to the

loss of bounding box aspect ratio and of image information. Moreover, due to

number of windows it processed, it takes 47 seconds for each test image, which

is not good enough for a real-time object detection system.

3.5.1 Fast RCNN

Compared with the R-CNN, in the Fast R-CNN [32] the input of the CNN for

feature extraction is the entire image, rather than individual region proposals,

generating a convolutional feature map. From the convolutional feature map,

the region of proposals are identified applying the Selective search and then

are warped into squares by using a region of interest (RoI) pooling layer. The

reshape into a fixed size is needed to feed them into the following fully connected

layer, that is used for classification and bounding box regression From the RoI

feature vector, we use a softmax layer to predict the class of the proposed region

and also the offset values for the bounding box.

Fast R-CNN is faster than R-CNN because we don’t have to feed 2000 region
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Figure 3.9: RoI pooling applied on a single 8×8 matrix, one RoI 5x7 and an
output size of 2×2. Notice that the size of the region of interest doesn’t have to
be perfectly divisible by the number of pooling sections. The max values in each
of the sections are saved in the 2x2 output matrix.

proposals to the CNN every time. Instead, the convolution operation is done

only once per image and a feature map is generated from it.

RoI pooling

ROI pooling produces the fixed-size feature maps from non-uniform inputs by

doing max-pooling on the inputs. Differently from the pooling layer introduced

in Section 3.4., in the RoI pooling layer it is possible to directly specify the

output shape.

Let’s consider a small example to see how it works. It is considered a RoI with

height h and weight w and it is subdivided by a h2×w2 grid of subwindows, where

the shape of each subwindow is approximately (h/h2)× (w/w2). In practice, the

height and width of any subwindow shall be rounded up, and the largest element

shall be used as the output of the subwindow. Therefore, the region of interest

pooling layer can extract features of the same shape even when RoI have different

shapes. An illustrative example is shown in Fig. 3.10

3.5.2 Faster RCNN

Both of the algorithms of R-CNN and Fast R-CNN use selective search to find

out the region proposals.

Selective search is a slow and time-consuming process affecting the perfor-

mance of the network. Therefore, [33] came up with an object detection algo-
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rithm that eliminates the selective search algorithm and lets the network learn

the region proposals. It is called Faster R-CNN [33].

Similar to Fast R-CNN, in Faster R-CNN the image is provided as an input

to a CNN which provides a convolutional feature map. Instead of using selective

search algorithm on the feature map to identify the region proposals, a separate

network is used to predict the region proposals. The predicted region proposals

are then reshaped using a RoI pooling layer which is then used to classify the

image within the proposed region and predict the offset values for the bounding

boxes. Faster R-CNN is much faster than it’s predecessors. Therefore, it can

even be used for real-time object detection [33].

Region Proposal Network

Next to the last layer of the first CNN within Faster R-CNN, a sliding window

having dimension nxn (n = 3, [33]) will slide along the feature map generated by

the backbone network in order to determine the region proposal boxes, denoted

also as anchors. The RPN generates k anchor boxes with different scales and

aspect ratios, centered to each point in the feature map (anchor point). By

default there are 3 different scale values and 3 different aspect ratios, for a total

of 9 anchors for each sliding window. For a feature map having dimension W

x H, W · H · k will be extracted anchor boxes. Then, two tasks are achieved

through two convolution layers on the feature map: the classification of each

anchor box whether it is foreground or background; the shape offsets for anchor

boxes are learnt to fit them for objects, since the boxes need to be at image

dimensions, whereas the feature map is reduced depending on the backbone.

The final proposals are propagated forward through the ROI pooling layer and

fully connected layers. These layers are equivalent to those proposed by Fast

R-CNN, including the softmax classifier and the regressor of bounding box.

The region proposal network is jointly trained with the rest of the model. As

a result of the end-to-end training, the region proposal network learns how to

generate high-quality region proposals, so as to stay accurate in object detection

with a reduced number of region proposals that are learned from data.
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Loss functions

L = Lcls + Lbox (3.12)

L({p̂i}{t̂i}) =
1

Ncls

∑
i

Lcls(p̂i, pi) +
λ

Nbox

∑
i

pismoothL1(t̂i − ti) (3.13)

where Lcls is the binary log-loss; p̂ is the predicted probability of an anchor

to belong a class; t̂ is the predicted coordinates; p and t are the correspond-

ing ground true values; and Ncls and Nbox are two normalization terms. λ is

balancing the two losses. SmoothL1 is defined as:

smoothL1 =


0.5x2 if |x| < 1

|x| − 0.5 otherwise

3.6 Deep Residual Network

One of the problems of deep neural networks is the fact that, as it increases

depth of the network, the accuracy of the model decreases. An innovative idea

was proposed in 2015 through the introduction of the so-called Residual Neural

Networks (ResNet) [34].

In the CNN, given an input x, its output value will be denoted with the

notation F(x). The next layer receives as input the value returned by the previous

Figure 3.10: ResNet single residual block.
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output, that is F(x). In a ResNet, the output will no longer be equal to F(x),

but will assume the value of its residual, that is, H(x) = F(x) + x. A block of

operations of this type it is also called a building block.

3.7 Feature Pyramid Network

Feature Pyramid Network (FPN) extracts feature maps and feeds them into the

RPN, for object detection.

FPN provides a top-down pathway to construct higher resolution layers from

a semantic rich layer. While the reconstructed layers are semantic strong but the

locations of objects are not precise after all the downsampling and upsampling.

We add lateral connections between reconstructed layers and the corresponding

feature maps to help the detector to predict the location betters. It also acts as

skip connections to make training easier (similar to what ResNet does).

The bottom-up pathway uses ResNet to construct the bottom-up pathway.

It composes of many convolution modules each has many convolution layers. As

we move up, the spatial dimension is reduced by 1/2 (i.e. double the stride).

The output of each convolution module is labeled as Ci and later used in the

top-down pathway.

In top-down pathway, the higher resolution features is upsampled by a factor

of 2. The feature maps from bottom-up pathway undergoes 1×1 convolutions to

reduce the channel dimensions, and then each lateral connection merges feature

maps of the same spatial size from the bottom-up pathway and the top-down

pathway, by element-wise addition. Finally, a 3×3 convolution is appended on

each merged map to generate the final feature map, which is to reduce the

aliasing effect of upsampling.
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Methods

This chapter presents the BabyPose dataset (Sec. 4.1) and the R-CNN models

used for preterms’ limbs pose estimation: the Mask RCNN [35] (Sec. 4.2).

4.1 BabyPose dataset

Firstly, the data acquisition setup and video characteristics are described (Sec.

4.1.1) and then the data preparation and the limb-pose infant model are illus-

trated (Sec. 4.1.2)

4.1.1 Dataset

In this work, the dataset comprises 30 depth videos of 19 preterm infants. The

choice of acquiring depth frames over RGB frames was made to protect patient

privacy. The video capture setup, shown in Fig. 1.1, was designed to not hinder

healthcare professionals in clinical practice. The video recordings, each of 300

seconds, were acquired for each infant using an Astra Mini Series - Orbbec, with

a frame rate of 30 frames per second and an image size of 640x480 pixels. A

frame selection is performed: for each video, 200 frames are chosen ensuring a

certain variability in the child’s pose and excluding frame with operator limbs

hiding the infant. Dataset challenges (Fig. 4.1) includes: 1) different distance

between camera and infants 2) varying illumination level, 3) the presence of self

and external-occlusion and 4) different number of visible joints in the camera

41



CHAPTER 4. METHODS

field of view.

Figure 4.1: Example of dataset challenges: different number of visible joints
(top-left), self occlusion (top-right), external occlusion (bottom-left), varying
infant-camera distance (bottom-right).

4.1.2 Infant’s model

Following the previous work of Moccia et al. [9], considering the importance of

monitoring legs and arms for evaluating preterm infants’ cognitive and motor

development, the proposed limb-pose infant model considers each of the four

limbs as a set of three connected joints (i.e., wrist, elbow and shoulder for arms,

and ankle, knee and hip for legs). Joint annotation was performed on the overall

6000 frames (200 frames for each of 30 videos) using the COCO annotator tool,

publicly available online [36]. The ground truth was indicated by manually

annotating one keypoint for each of the twelve joints (left and right hand, left

and right shoulder, left and right elbow, left and right foot, left and right knee,

left and right hip). The annotator discriminates between visible and not-visible

keypoints. Then, the ground truth for the bounding box containing the infant

was also annotated. An example of annotation is reported in Fig. 4.2.

The COCO annotator tool allows to directly export a JSON file in the COCO

format, with information about images, categories and annotations and then

other dataset’s information and licenses are added:
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Figure 4.2: Sample of annotation on a depth frame. Twelve joints were an-
notated on left and right limbs: hands, shoulders, elbows, feet, knees and hips.
Colored circle for visible joints, white circle for externally occluded joints (by the
limb plaster). The yellow rectangle is the bounding box annotation.

Info — Description and versioning information about dataset.

Licenses — List of licenses with unique IDs to be specified by your images.

Categories — Classification categories each with a unique ID. In this work, only

the infant category is present.

Images — List of images in the dataset and relevant metadata including unique

image ID, file path, file name, file height and width.

Annotations — List of annotations each with a unique ID and the image ID it

relates to. Here, the bounding box information and the coordinates pair (x and

y) with a visibility flag (2 or 1 or 0) for each keypoint are stored. The number

of labeled keypoints are also indicated. This field also stores bounding box area

and iscrowd indicating a large bounding box surrounding multiple objects of the

same category which is used for evaluation.

4.2 Mask R-CNN

The high performance novel framework for human pose estimation proposed by

Facebook AI Research (FAIR), named Mask R-CNN [35], was used in this work

to develop the end-to-end framework for semantic joint detection and limb-pose

estimation from depth images of preterm infants.
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4.2.1 The architecture

The Mask R-CNN [35] (Fig. 4.3) extends Faster R-CNN [33] detection frame-

work, adding a mask prediction branch in parallel with the existing branch for

classification and bounding box recognition.

Figure 4.3: The Mask R-CNN architecture is shown. FPN: Feature Pyramid
Network; RPN: Region Proposal Network; FC: Fully Connected.

Firstly, the 640x480 depth image of the infant is fed into the network. Two

backbones are intended to extract accurate feature maps: the ResNet with 50

layers and the Feature Pyramid Network (FPN). Then this feature maps are

fed into a two-stage architecture. The first stage consists in a Region Pro-

posal Network (RPN), using a CNN to generate the multiple Region of Interest

(RoI). Then, each region proposal is sent to the RoI Align layer. RoI Align

is an operation for extracting a small feature map from each RoI. It is a sim-

ple, quantization-free layer, replacing the Faster R-CNN RoI Pooling, to avoid

misalignments. Warped features outputs from the RoI Align are then fed into

fully connected layers: they outputs the bounding box prediction for the infant

and the label for infant category is assigned with the relative prediction confi-

dence by the classification branch. In parallel, warped features are also fed into

the mask branch properly adapted for keypoint detection task. The keypoint’s

location is modeled as one-hot mask: for a single input image with all twelve

visible keypoints, the output is a set of twelve masks, one for each keypoint. The

joints are also connected as previously described. The final output consists in
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the depth frame with the superimposed bounding box, classification confidence,

joints location and connections, as shown in Fig.4.4.

Figure 4.4: Example of framework output. The blue lines connecting joints
represents the limbs; the orange rectangle is the bounding box, and the category
”infant” is assigned with a prediction confidence of 100 %. The red line is linking
the middle points between hips and shoulders.

4.2.2 The Loss function

The loss function relating to each RoI extracted will be equal to the sum of the

three losses, one for each branch:

L = Lcls + Lbox + Lmask (4.1)

where Lcls e Lbox are the losses already used by Faster R-CNN, by the classi-

fication and the regression branches, respectively. Lmask is the averaged cross-

entropy functions of keypoints detection head.
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Experimental Protocol

This chapter presents the experimental protocol: in Sec. 5.1 the dataset split

strategy and the cross-validation methods are described. In Sec. 5.2 and Sec.

5.3, the framework training settings and the performance metrics are presented,

respectively.

5.1 Leave-One-infant-Out Cross Validation

A Leave-One-infant-Out Cross-Validation (LOOCV) approach was used to train

the framework, evaluating the performance on the different infants’ videos. In the

LOOCV the data of one infant’s video are left out of training set and used for test

set, also another one for validation set, and all the remaining data are used for

training. A total of nineteen-fold cross-validation is performed. The occurrence

of wrong positioning of the camera led to the exclusion of two folds. Due to the

presence of multiple videos recording the same infant, particular attention was

paid to remove from the training set the videos of the same baby selected for

the test set. In view of that, the training dataset results in 5600 frames, 4800

frames, or 4600 frames, according to the number of videos removed. The Table

5.1 reports the number of frames considered for the training sets of each fold.
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Table 5.1: Dataset split: the number of frames used for training set, validation

set and test set are indicated, with the relative fold number.

Fold number Training Validation Test

1-10 5600 200 200

11,12,14,15,17 5400 200 200

13,16 5200 200 200

5.2 Training settings

Firstly, a data augmentation was performed applying random brightness, random

contrast and size alterations to the images. This types of data augmentation

allow to face the limited dimension of the available dataset, increasing robustness

of the prediction in presence of the challenging conditions previously mentioned

in Sec. 4.4.1 (Fig. 4.1). At the beginning, the weight of a pre-trained model were

loaded, with two frozen layers by default. The number of iterations for training

was set to 3000, with a batch size consisting of 2 images per GPUs (a single

GPU was used for this work). The SGD was selected as optimizer and the LR,

starting from a base value of 0.01, scheduler to decrease by a factor 0.2 every 200

iterations in case of a plateau of the validation loss. The confidence threshold

for bounding box is set to 0.75. The analysis was performed on a NVIDIA Tesla

K80 GPU.

5.3 Performance metrics

For infant detection, the Intersection Over Union (IoU) was used to quantify the

amount of overlapping area between the true and the predicted bounding box

areas. It is defined as the ratio between the area of intersection and the area of

union of the two bounding boxes (Fig. 5.1):

IoU =
A ∩B
A ∪B

(5.1)
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Figure 5.1: Example of computing IoU at different bounding box predictions.

IoU is ranging from 0 (completely wrong prediction) to 1 (perfect prediction).

An IoU threshold value α is chosen and used to determine if the detection is

valid or not. If IoU ≥ α, the detection is correct, and it is called true positive

(TP). Otherwise, for IoU < α, the detection is not valid and it is defined false

positive (FP). False negative (FN) is also defined a ground truth missed by the

model.

The IoU was used to compute the Average Precision (AP). The AP repre-

sents the area under the curve of the precision-recall curve, where the precision

and the recall are defined as follow:

Precision =
TP

all detections
(5.2)

Recall =
TP

all ground truths
(5.3)

The precision is the ability to identify relevant objects only. It is the propor-

tion of TP detections. The recall measures the ability to find all relevant cases,

that is the proportion of TP detected among all ground truths. In order to

calculate AP, the precision-recall curve is calculated at varying IoU thresholds,

and the average is taken for each class across all of the IoUs.

For keypoint detection task, COCO metric [37] was used to evaluate the

framework performance. The AP for keypoint detection was computed consid-

ering the Object Keypoint Similarity (OKS) [37], a similarity measure analogous
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of IoU for bounding box. The detection is defined positive or negative according

to OKS distance threshold.

OKS =

∑
i

exp(
−d2i

2s2k2i
)δ(vi > 0)∑

i

δ(vi > 0)
(5.4)

For each object, ground truth keypoints have the form [x1,y1,v1,...,xk,yk,vk],

where x,y are the keypoint locations and v is a visibility flag defined as v=0:

not labeled, v=1: labeled but not visible, and v=2: labeled and visible [37].

The di are the Euclidean distances between each corresponding ground truth

and detected keypoint and the vi are the visibility flags of the ground truth. To

compute OKS, di is passed through an unnormalized Guassian with standard

deviation ski, where s is the object scale (i.e., the square root of the object

segment area) and ki is a per-keypoint constant that controls falloff. For each

keypoint this yields a keypoint similarity that ranges between 0 and 1. These

similarities are averaged over all labeled keypoints (keypoints for which vi > 0).

Perfect predictions will have OKS = 1 and predictions for which all keypoints

are off by more than a few standard deviations si will have OKS ≈ 0.

The OKS is analogous to the IoU. Given the OKS, we can compute AP just

as the IoU allows to compute AP metrics for bounding box detection.

The the AP IoU=[.50:.95] was computed in the present work. It represents the

average AP computed by varying the OKS threshold from 0.50 to 0.95 increasing

it by 0.05 for each complete evaluation of the dataset.

To evaluate the limb-pose detection performance, the Root Mean Square

Error (RMSE) [pixels] for each infants’ limb was computed. It is defined as:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(5.5)

representing the distance between the ground truth a(yi) and the predicted (yi)

limb joint connections (Fig. 5.2).
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Figure 5.2: Example of limb-pose prediction (blue lines) and ground truth (green
lines). The RMSE [pixels] between the blue and green lines was measured for each
limb.

5.4 Comparison with other architectures

The present work was compared against [9], which is the closest work with

respect to this one. We use the same training settings in terms of dataset split

and computational resources for a fair comparison.
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Results

This chapter shows the results achieved for joint detection and limb-pose esti-

mation with the Mask R-CNN.

Joint detection task was evaluated by AP metrics. In Fig. 6.1, the graph

shows the AP IoU=[.50:.95], for each cross-validation fold. Two folds of the 19 were

excluded from the results since affected by the wrong positioning of the camera.

Mean AP achieved 86% ± 17%. Detection time was on average 0.7 s per image.

The joint detection allowed to show the infant joint spatial displacement over

time (Fig 6.2).

Figure 6.1: AP IoU=[.50:.95] (%) values resulted from each LOOCV fold.

51



CHAPTER 6. RESULTS

Figure 6.2: Temporal evolution of joint position for each infants’ limb. Each
color refers to a different limb.

The median RMSE for limb-pose estimation are showed in Table 6.1. Box-

plots for RMSE are showed in Figure 6.3.

Figure 6.3: Boxplots of the RMSE computed for the four limbs separately. Red
line indicates the median, red circles are the mean values and the red crosses are
the outliers.

Qualitative results are showed in Fig. 6.4 also on challenging frames with

more homogeneous pixel intensity.

The results of the [9] detection CNN training are showed in Fig. 6.5 for two

folds.
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Table 6.1: Limb-pose estimation performance in terms of median RMSE com-

puted with respect to ground-truth pose, reported separately for each limb. IQR

is reported in brackets.

Median RMSE

Right arm Left arm Right leg Left leg

6.8 (1.1) 6.7 (1.2) 6.5 (0.6) 6.5 (1.2)

Figure 6.4: Sample pose-estimation results. Sample of limb-pose (blu lines) and
bounding box prediction with classification confidence (%) and infant body axes
(red lines). Correct predictions are showed on first and second row of images,
lower performance on challenging cases are showed in the third raw of images.

Figure 6.5: Training and validation losses for [9] detection CNN on fold 1 (left
panel), and fold 2 (right panel).

53



Chapter 7

Discussion

Monitoring preterm infants’ limb movements proven to be crucial to assess in-

fant’s health and for an early recognition of cognitive or motor disorders. Nowa-

days, this monitoring relies on qualitative and sporadic observation by trained

clinicians at the crib side in NICUs.

In the literature, researchers have proposed different solutions to automate

GMA tool, such as exploiting contact sensors. Concerning this approach, it en-

tails infants’ stress, discomfort, and pain, as well as hindering the actual clinical

practice of operators dealing with infants.

More reliable and unobtrusive alternatives involve marker-less solutions based

on video analysis, growing, in recent years, the interest in pose estimation ap-

proaches, too. In the previous work, Moccia et al. [9, 8] proposed an innovative

approach for limb-pose estimation from spatio-temporal features extracted from

depth videos acquired in NICUs. However, the introduction of temporal in-

formation and the use of two different CNNs (one for joint detection and one

another for joint regression) results in a long and complex framework, increasing

computational costs.

Based on the Moccia et al. approach [9, 8], the present thesis aims to de-

velop an end-to-end deep learning framework for joint detection and limb-pose

estimation from depth images of preterm infants.

The Mask R-CNN was chosen and trained for this purpose. The dataset

54



CHAPTER 7. DISCUSSION

comprised 6000 frames from 30 videos recording the movements of 19 preterm

infants. It presented several challenges, such as varying illumination levels, self-

or external occlusions, and a different number of joints in the camera field of view.

The framework was validated through a LOOCV, for a total of 19 trainings.

The proposed framework achieved satisfactory performance for both joint

detection and limb pose estimation. Concerning joint detection, a mean AP =

86% ± 17% was achieved.

The occurrence of wrong positioning of the camera led to the exclusion of

two folds from the results, and has affected the performance of folds 9 and 13. In

folds 2, 7, 15 , the framework under-performed in detecting one joint with respect

to the others. This was indicated by a prediction confidence score almost ten

order of magnitude lower than correctly detected keypoints. Observing Fig. 6.3,

achieved similar results for the pose estimation of the four limbs. Barring the

outliers, the best performance is characterized by a RMSE equal to 5 pixels

achieved for right arm, while the worse performance corresponds to 9 pixels, for

left leg. The median RMSE among the four limbs is 6.6 pixels with IQR equal

or lower than 1.2 pixel. The overall methodology required s per image, hence

being compatible with real-time infants’ monitoring.

Fig. 6.5 reveals the overfitting of the detection CNN of [9], after few epochs.

The present framework uses pre-trained weights on COCO dataset [37], while

[9] does not rely on transfer learning. Moreover, differently from [9], where

the keypoints detection is performed over the entire input images, Mask-RCNN

[35] allows for joint detection within the more limited infant bounding box area.

These observations justify the higher performance of the present work, compared

to [9].

The present approach, despite the limited dataset dimensions, overcame some

of the literature drawbacks. Hence, it allowed to directly estimate limb-specific

pose with an end-to-end framework, being computationally efficient and easily

deployable in clinical environment, representing an important step toward an

on-the-edge computation for home monitoring.

In future works, the results of the home monitoring will be integrated into
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the SINC system to allow clinicians to assess the evolution of the infants’ health

status and timely intervene. Moreover, the network could be improved for de-

tection of both infant and operator and to distinguish the infants’ behaviour in

response to tactile stimulation from parents or clinicians in NICU.
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Conclusion

This thesis presents a deep learning framework for joint detection and limb-

pose estimation from depth images of preterm infants in NICUs. The work is

based on the approach of [9], improving results in terms of pipeline complexity

and computational costs. The training of Mask R-CNN is revealed as highly

performing for that purpose, obtaining encouraging results. Differently from

what proposed in the state-of-the-art, the approach presented in this thesis is: (i)

an end-to-end framework (ii) completely automatic (iii) non-invasive (iv) reliable

(v) limb specific. This may be a step toward new research scenarios aimed at

developing embedded monitoring solutions for on-the-edge computation.
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