

UNIVERSITÀ POLITECNICA DELLE MARCHE DIPARTIMENTO SCIENZE DELLA VITA E DELL'AMBIENTE

Corso di Laurea Triennale in Scienze Ambientali e Protezione Civile

Concentrazioni di metalli pesanti nei pesci e nei crostacei del Mar Mediterraneo orientale Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea

Tesi di Laurea di:

Marco De Stefani

marco de stefani

Docente Referente:

Prof.ssa Anna Annibaldi

Sessione Straordinaria Febbraio 2020

Anno Accademico 2018 – 2019

RIASSUNTO

- Il presente studio valuta la concentrazione di Arsenico(As), Cadmio(Cd), Cromo(Cr), Piombo(Pb), Manganese (Mn), Nichel (Ni), Vanadio (V) e Zinco(Zn) nei pesci e nei molluschi del golfo di Catania ed è stato condotto nei mesi di febbraiomarzo 2012 durante i quali le specie furono acquistate dai pescatori locali nel mercato del pesce.
- Tra i metalli studiati, solo Cd e Pb hanno un limite stabilito dalla comunità europea per il consumo umano e le soglie non sono state superate nelle specie analizzate.
- I valori del quoziente di rischio target (THQ) per il cancro dell'Arsenico suggeriscono che l'uomo dovrebbe ridurre al minimo i pasti alla settimana delle specie analizzate per evitare effetti deleteri durante la vita.
- I nostri risultati rivelano importanti scoperte riguardo i limiti di consumo di alcuni metalli, in particolare per l'Arsenico, in modo da minimizzare il potenziale rischio per la salute nella popolazione.

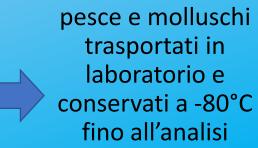
INTRODUZIONE

- I benefici nutrizionali derivanti principalmente dal consumo di pesce sono dovuti a diversi fattori, tra i quali, l'alta qualità del contenuto proteico, vitamine e sostanze nutritive essenziali.
- I metalli pesanti tossici sono stati riconosciuti come uno dei più importanti inquinanti negli ecosistemi, perché possono essere prontamente assimilati e bioaccumulati negli organismi, determinando un potenziale rischio per la salute dell'uomo a causa del cibo contaminato.
- Trai i metalli analizzati, la Comunità Europea ha stabilito un limite negli organismi marini solo per Pb e Cd

Pb: 0,3 mg/kg per tutti i pesci analizzati e 1,5 mg/kg per Donax trunculus; Cd 0,1 mg/kg per Engraulis encrasicolus e Trachurus trachurus, 0,3 mg/kg per Scomber scombrus, Mullus barbatus e Arnoglossus laterna, 1 mg/kg per D. trunculus

RISCHIO SALUTE

- Per stimare il potenziale rischio per la salute umana derivante dall'ingestione di cibo contaminato abbiamo valutato:
- L'assunzione quotidiana del pasto confrontandola con l'assunzione giornaliera tollerabile provvisoria (PTDI)
- 2. Il quoziente di rischio target (THQ)
- 3. Il rischio di cancro per l'Arsenico (ARL≤10^-5)
- 4. Il numero di pasti ammissibili alla settimana


Per valutare l'eventuale allerta riguardo gli effetti avversi

Per minimizzare gli effetti sistemici cronici

COLLEZIONE DI PESCI E FRUTTI DI MARE

Per condurre questo studio sono stati acquistati

- 150 campioni appartenenti a 5 diverse specie ittiche:
- Arnoglossus laterna (zanchetta) n.30
- Mullus barbatus (triglia di fango)
 n.30
- Engraulis encrasicolus (acciuga)
 n.30
- Trachurus trachurus (sugarello) n.30
- Scomber scombrus (scombro) n.30
- 250g di parte commestibile di Donax trunculus (arsella) n.30

PREPARAZIONE DEL CAMPIONE

Da ogni singolo pesce sono state prelevate <u>due aliquote di 0.5g</u> di tessuto muscolare

Campioni mineralizzati con ETHOS TC usando miscela di acidi forti (6ml HN03 al 65% e 2ml H202 al 30%)

> Contenuto travasato in tubi di falcon

Aggiunta acqua ultrapura ai campioni fino a 30 ml

Estratti e quantificati i metalli d'interesse

ANALISI DEI METALLI PESANTI

- Quantificazione dei metalli condotta con ICP-MS Elan-DRC-e.
- Concentrazioni determinate utilizzando soluzioni standard.
- Per la validazione della analisi utilizzato come materiale di riferimento standard il pesce del Lago Superiore 1946 NIST.
- Recuperi medi dei valori certificati:
- 1. As (97.4%)
- 2. Cd (94.6%)
- Cu (110%)
- 4. Zn (90.4%)
- I valori di riferimento del Cr,Pb,Ni,Mn e V non sono indicati nel certificato di analisi del materiale di riferimento standard (aggiunti 10 campioni reali in due volte con 5ug/l di ciascun analita per convalida analisi)

- Gli MDL stimati sono: As(0.013),Cd(0.0003),Cr(0.003),Pb(0.0001),Mn(0.055), Ni(0.007),V(0.002) e Zn(0.109)
- Gli LOQ stimati sono: As(0.13),Cd(0.003),Cr(0.03),Pb(0.001),Mn(0.55),Ni(0.07),V(0.02) e Zn(1.09)

• Percentuale di recupero

	Cr (%)	Pb (%)	Ni (%)	Mn (%)	V (%)
1	95	105	104	81	87
2	93	109	98	101	91
3	105	90	85	106	96
4	87	96	96	99	106
5	89	98	84	82	102
6	108	111	106	96	116
7	105	108	110	95	91
8	91	103	119	98	97
9	97	112	97	106	96
10	88	117	90	115	106
Mean	95,8	105	99	98	99

LIMITI DI CONSUMO BASATI SUL RISCHIO

 Scelta la metodologia dell'Agenzia di Protezione Ambientale (basata sulla stima del consumo basato sul rischio dei limiti espressi in termini di pasti reali)

- Tutti i limiti di consumo e i fattori di rischio sono stati calcolati ipotizzando:
- 1. Per gli adulti una dimensione del pasto di 227gr e peso corporeo 70 kg
- 2. Per i bambini di sei anni una dimensione del pasto di 114 gr e peso corporeo di 16kg
- 3. L'As inorganico tossico fosse il 3% del totale
- I fattori calcolati nello studio sono:
- 1. L'assunzione giornaliera stimata per dimensioni del pasto (Edlm) Edlm = (MS x C)/BW
- 2. Il quoziente di rischio target (THQ) THQ = (EF x ED x MS x C)/(RfDo x BW x AT)
- 3. Il rischio di cancro a vita (CR) = CR = (EF x ED x MS x C x CSF)/(BW x AT)

LEGENDA

- MS = dimensione del pasto
- C = concentrazione del metallo (mg/kg)
- BW = peso corporeo
- CSF = fattore di pendenza del cancro
- EF = frequenza di esposizione
- ED = durata dell'esposizione
- RfDo = dose orale di riferimento
- AT = tempo medio (EF x ED)

RISULTATI MEDIE, SD, EDLM

- As più alto nel tessuto dei muscoli dell'M. barbatus (p<0.001)
- Alte concentrazioni di Cd,Cr,Pb,Mn,Ni (p<0.001) e V (p<0.01) nel D. trunculus
- Alte concentrazioni di V (p<0.05) e Mn (p<0.01) in A. laterna
- Alte concentrazioni di Zn (P<0.05) in E. encrasicolus e in D. trunculus

 Valori EDIm per l'As inorganico superiori a quelli suggeriti dalla JECFA nel M. barbatus (bambini) e inferiori per Zn (sia per adulti che bambini)

Estimated daily intake per meal size (EDIm) in adult (A) and child (C) compared with tolerable intake (µg/kg-daily) suggested by Joint FAO/WHO Expert Committee on Food Additive (JECFA).

7	П	Species	E. encrasicolus		T. trachurus		S. scombrus		M. barbatus		A. laterna		D. trunculus	
		Metal	EDIm A	EDIm C	EDIm A	EDIm C	EDIm A	EDIm C	EDIm A	EDIm C	EDIm A	EDIm C	EDIm A	EDIm C
2	2.143	Asa	0.513	1.127	0.526	1.156	0.357	0.784	1.073	2.357	0.305	0.670	0.148	0.326
3	3.57	Pb	0.016	0.036	0.013	0.029	0.010	0.021	0.016	0.036	0.068	0.150	0.230	0.506
1	1	Cd	0.003	0.007	0.003	0.006	0.004	0.009	0.001	0.003	0.004	0.009	0.017	0.038
		Cr	0.029	0.064	0.039	0.086	0.023	0.050	0.029	0.064	0.049	0.107	0.795	1.746
		Mn	0.833	1.831	0.636	1.397	0.396	0.869	0.710	1.560	7.958	17.48	13.80	30.32
		Ni	0.149	0.328	0.279	0.613	0.036	0.078	0.052	0.114	0.120	0.264	1.060	2,330
		V	0.240	0.527	0.285	0.627	0.308	0.677	0.259	0.570	0.483	1.062	1.612	3.541
3	300-1000	Zn	21.34	46.88	18.41	40.45	15.81	34.73	11.08	24.35	16.06	35.28	24.73	54.33

^a As calculations were made by assuming the inorganic As the 3% of the total concentration.

Mean concentrations (mg/kg w.w.) and standard deviations (SD) of analyzed metals (N. 30 specimen per fish performed in twice; N. 30 aliquots for the shellfish).

		As	Cd	Cr	Pb	Mn	Ni	V	Zn		
E. encrasicolus	Mean	5.275	0.0010	0.009	0.005	0.257	0.046	0.074	6.580*		
	SD	±1.752	±0.0003	±0.008	±0.004	±0.202	±0.031	±0.038	±1.802		
T. trachurus	Mean	5.409	0.0009	0.012	0.004	0.196	0.086	0.088	5.677		
	SD	±2.112	±0.0002	±0.011	±0.002	±0.059	±0.079	±0.021	±1.688		
S. scombrus	Mean	3.669	0.0013	0.007	0.003	0.122	0.011	0.095	4.875		
	SD	±0.638	±0.0004	±0.003	±0.001	±0.026	±0.009	±0.018	±1.689		
M. barbatus	Mean	11.024***	0.0004	0.009	0.005	0.219	0.016	0.080	3.418		
	SD	±3.957	±0.0002	±0.008	±0.003	±0.093	±0.012	±0.039	±1.339		
A. laterna	Mean	3.135	0.0013*	0.015	0.021*	2.454**	0.037	0.149*	4.952		
	SD	±1.551	±0.001	±0.007	±0.017	±1.11	±0.034	±0.078	±1.775		
D. trunculus	Mean	1.528	0.0053***	0.245***	0.071***	4.255***	0.327***	0.497**	7.625*		
	SD	±0.08	±0.0011	±0.039	±0.006	±0.808	±0.043	±0.065	±0.899		

^{*} p < 0.05 vs fish species.

^{**} p < 0.01 vs fish species.

p < 0.001 vs other analyzed species.</p>

RISULTATI THQ,CR,CRmw

- Valori THQ per Cd,Cr,Mn,Ni,V,Zn tutti inferiori a 1
- Valori THQ dell'As > 1 (per tutte le specie) se assunto con un'esposizione > di 1pasto/settimana
- CR > ARL(10^-5) ad eccezione del livello di esposizione di 1pasto/settimana per D. trunculus (entrambe le classi) e A. laterna (adulti)
- CRmw > 14pasti/settimana sia negli adulti che nei bambini in tutti i metalli analizzati ad eccezione dell'As inorgaico
- CRmw nei bambini ha mostrato il livello più basso di pasti di pesce suggerito

Species	Level of exposure (days per week)	THQ	THQ	CR	CR
		Adult	Child	Adult	Child
E, encrasicolus	7	1.9	4.1	8.4 × 10 ⁻⁴	1.8×10^{-3}
	4	1.1	2,3	4.8×10^{-4}	1.0×10^{-3}
	1	0,3	0,6	1.0×10^{-4}	2.6×10^{-4}
T. trachurus	7	1.8	3.8	7.8×10^{-4}	1.7×10^{-3}
	4	1.0	2,2	4.5×10^{-4}	9.9×10^{-4}
	1	0.2	0,5	1.1×10^{-4}	2.5×10^{-4}
S, scombrus	7	1.2	2.6	5.3×10^{-4}	1.1×10^{-3}
	4	0.7	1,5	0.3×10^{-3}	6.7×10^{-4}
	1	0.2	0.4	7.6×10^{-5}	1.7×10^{-4}
M. barbatus	7	3.6	7.9	1.6×10^{-3}	3.5×10^{-3}
	4	2.0	4.5	9.2×10^{-4}	2.1×10^{-3}
	1	0.5	1.1	2.3×10^{-4}	5.1×10^{-4}
A, laterna	7	1.0	2,3	4.6×10^{-4}	1.1×10^{-3}
	4	0.6	1,3	2.6×10^{-4}	5.7×10^{-4}
	1	0.1	0,3	6.6×10^{-5}	1.4×10^{-4}
D. trunculus	7	0.5	1.1	2.2×10^{-4}	4.8×10^{-4}
	4	0.3	0.6	1.2×10^{-4}	2.7×10^{-4}
	1	0.1	0,2	3.1×10^{-5}	6.9×10^{-5}

Species		E, encrasicolus		T. trachurus		S, scombrus		M. barbatus		A laterna		D. trunculus	
	Metal	CR _{mw} A	CR _{mw} C										
	Asª	3,74	1,70	3,99	1,82	5,89	2,68	1,96	0,89	6,82	3,10	13,4	6,55
	Cd	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14
	Cr	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14
	Mn	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14
	Ni	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14
	V	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14
	Zn	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14	>14

DISCUSSIONE

Nel complesso i dati che abbiamo ottenuto destano grande preoccupazione in merito alle concentrazione di:

CONCLUSIONE

- Riteniamo che i nostri risultati diano importanti input sui limiti di consumo di alcuni metalli in quanto forniscono informazioni per ridurre al minimo i potenziali rischi per la salute nella popolazione.
- Ciò che il nostro studio vuole mettere in evidenza è la necessità di realizzare:

1. Un programma di monitoraggio (attraverso un questionario) -

reali possibilità di sviluppo di effetti sistemici cronici e cancro

2. La speciazione dell'As nel pesce ————

per calcolare i fattori di rischio (inorganica/organica)

SITOGRAFIA

• Immagini :

- Inquinamento mare:
- <a href="https://www.google.com/search?q=inquinamento+metalli+pesanti+mare&sxsrf=ACYBGNRogiNL8vcLm16|Q4SpJHutBJBBrg:1578926522354&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjc1fbT54DnAhUBoqQKHa15DWgQAUoAnoECAwQBA&biw=1366&bih=625#imgrc=uNUvUyTZWmoMM:
- Pesci:
- https://www.google.com/search?q=arnoglossus+laterna&rlz=1C1EJFA_enIT780IT780&sxsrf=ACYBGNSIBviioc-8iVHmj5T6SCRvK7QAEg:1578926664251&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiDv8uX6IDnAhWOMewKHSx-AAgQ_AUoAnoECBIQBA&biw=1366&bih=625#imgrc=Udyd4oeilkLc3M:
- https://www.google.com/search?q=engraulis&rlz=1C1EJFA_enIT780IT780&sxsrf=ACYBGNRGi7D1fmYZGxbjb1-GuOBjhYv8Yw:1578926719507&source=lnms&tbm=isch&sa=X&ved=2ahUKEwj2gfix6IDnAhWhsKQKHaT6AQ8Q_AUoAXoECA8QAw&biw=1366&bih=625
- https://www.google.com/search?q=donax&rlz=1C1EJFA_enIT780IT780&sxsrf=ACYBGNSi4dpAQeqLwxY3MUWQUDbm75n-OQ:1578926755771&source=Inms&tbm=isch&sa=X&ved=2ahUKEwjcqJ3D6IDnAhXCAewKHTbnAe8Q_AUoAXoECBMQAw&biw=1366&bih=625
- https://www.google.com/search?q=mullus+barbatus&rlz=1C1EJFA_enlT780IT780&sxsrf=ACYBGNSMFg9-7KLCQdipUC9Rnc-x5ilWzg:1578926825460&source=lnms&tbm=isch&sa=X&ved=2ahUKEwik_rrk6IDnAhUNvaYKHZPnAsIQ_AUoAXoECBMQAw&biw=1366&bih=625
- <a href="https://www.google.com/search?q=trachurus+trachurus&rlz=1C1EJFA_enIT780IT780&sxsrf=ACYBGNRuNq29DoblTM6ClHwpBPRb2K3nKg:1578926875366&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjQ9qD86IDnAhWQCuwKHToDDpAQ_AUoAXoECBIQAw&biw=1366&bih=625
- https://www.google.com/search?q=scomber&rlz=1C1EJFA_enIT780IT780&sxsrf=ACYBGNT_UYyN3RaJDimXmQH_uICvYpNNtA:1578926954258&source=lnms&tbm=isch&sa=X&ved=2ahU_KEwjAk_Ch6YDnAhV3xMQBHRPyBSwQ_AUoAXoECAwQAw&biw=1366&bih=625_
- Sistema a microonde:
- https://www.google.com/search?rlz=1C1EJFA_enlT780IT780&biw=1366&bih=625&tbm=isch&sxsrf=ACYBGNSorcg5DkCpjYZBCh2VPXpZFRRTTQ%3A1578926957023&sa=1&ei=bYMcXth3ivnBAt3DkfAN&q=microonde+ethos+&oq=microonde+ethos+&gs_l=img.3...81754.84319..85076...0.0..0.133.1801.6j11.....0....1..gws-wiz-img......35i39j0j0i30j0i67j0i131j0i8i30j0i8i10i30j0i24.4ynr20SrO4Y&ved=0ahUKEwiY4pij6YDnAhWKfFAKHd1hBN4Q4dUDCAc&uact=5

GRAZIE A TUTTI PER L'ATTENZIONE