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Abstract

This thesis provides a better understanding of the security of CROSS (Codes and

Restricted Objects Signature Scheme), a digital signature scheme derived from an

interactive Zero Knowledge Identification Protocol (ZKID) by applying the Fiat-

Shamir Transformation.

CROSS is currently in the NIST competition for the standardization of a quantum-

resistant digital signature scheme. In particular, in this thesis we focus on the security

of the problem underlying CROSS, namely the Restricted Syndrome Decoding

Problem (R-SDP). This is a problem based on the decoding of linear codes proven

to be NP-hard.

However, R-SDP is a relatively new problem and, therefore, its security needs to

be carefully studied.

The contribution of the following work is to study a possible application of the

Locality Sensitive Framework, an approach for solving the Nearest Neighbour search

problem in the case of binary vectors, to the best solvers for R-SDP which are, to

date, the algorithms based on Information Set Decoding (ISD).

The result of this analysis is the realization of a new attack for R-SDP. By

formulating a theoretical cost for this new approach, it was possible to evaluate its

performance on different instances of the restricted problem.

The results obtained in this thesis allow for two important interpretations: on

the one hand, the cryptanalysis of some schemes in the literature based on R-SDP

is improved by reducing their security level, and on the other hand, although the

performance of existing attacks is improved, it can be established that CROSS, as

designed, achieves the NIST security level I even for this new attack.
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Sommario

In questa tesi viene fornita una migliore compresione della sicurezza di CROSS

(Codes and Restricted Objects Signature Scheme), uno schema di firma digitale

derivato da un protocollo interattivo di identificazione Zero Knowledge (ZKID)

applicando la Trasformazione di Fiat-Shamir.

CROSS è attualmente in gara nella competizione indetta dal NIST per la standiz-

zazione di uno schema di firma digitale che sia sicuro in un’ottica post-quantum.

In particolare in questa tesi ci si focalizza sulla sicurezza del problema alla base

di CROSS, ovvero il Restricted Syndrome Decoding Problem (R-SDP). Si tratta

di un problema basato sulla decodifica di codici lineari dimostrato essere NP-hard.

Tuttavia R-SDP è un problema relativamente nuovo e, pertanto, la sua sicurezza ha

bisogno di essere studiata attentamente.

Il contributo del seguente lavoro è quello di studiare una possibile applicazione del

Locality Sensitive Framework, un approccio per la risoluzione del Nearest Neighbor

search problem nel caso di vettori binari, ai migliori risolutori per R-SDP che sono,

ad oggi, gli algoritmi della famiglia Information Set Decoding (ISD).

Il risultato di questa analisi è stato la realizzazione di un nuovo attacco per R-SDP.

Tramite la formulazione di un costo teorico per questo nuovo approccio è stato

possibile valutarne le prestazioni su diverse istanze del problema ristretto.

I risultati ottenuti in questa tesi sono soggetti ad una duplice interpretazione: se

da una parte la crittoanalisi di alcuni schemi presenti in letteratura basati su R-SDP

viene migliorata riducendo il loro security level, dall’altra, pur avendo ottenuto un

miglioramento in termini di performance degli attacchi esistenti, è possibile stabilire

che CROSS, anche di fronte a questo nuovo approccio, risulta raggiungere i criteri di

sicurezza stabiliti dal NIST.
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Introduction

Cryptographic algorithms are widely employed in a variety of protocols and applica-

tions and are a fundamental asset to protect digital communications from attackers.

A very common family of cryptographic algorithms is the one normally called public

key cryptography, which comprehends all algorithms which require an asymmetric

key pair: a public key and a secret key, mathematically linked but different and with

different purposes. One of the most important primitives is that of digital signatures,

which allows to verify the authenticity of digital messages or documents.

Digital signatures provide relevant security properties such as integrity and non

repudiability and are widely employed in all the protocols in which authentication is

required (e.g., signatures are used to build public key certificates).

This state of affairs is currently threatened by the upcoming advent of quantum

computers. These devices, first theorized by Feynman e Manin in the early ’80 [1],

[2], exploiting the phenomena of quantum mechanics, open up for the possibility

of devising algorithms that follow rules which are fundamentally different from the

principles of classical computation.

In particular, quantum information theory is based on the representation of data

through quantum states of matter.

While a classical bit can assume two states, 0 and 1, which are mutually exclusive,

a qubit, exploiting a quantum principle known as quantum superposition, can

simultaneously assume the values 0 and 1, however, the value that is returned to

only one of the two classical states by the effect of any measurement.

As long as the superposition state is maintained, a sequence of n qubit therefore

has the capacity to represent all 2n combinations, that would instead require 2n bit.

This property makes it possible to speed up the execution of certain algorithms

significantly, bringing their complexity from being exponential in input length when
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performed on a classical computer to becoming polynomial in input length on a

quantum computer.

Arguably, the most famous quantum algorithm is Shor’s algorithm [3]. It can be

used to factor large integers and, with some variations, can also find a solution to

the discrete logarithm problems.

Such problems are at the base of the most employed digital signature schemes,

RSA and ECDSA. This implies that, as soon as sufficiently large quantum computers

become available, RSA and ECDSA will become obsolete, as using Shor’s algorithm

an attacker can retrieve the secret key.

The upcoming quantum threat is pushing the cryptographic community to the

development of the so-called post-quantum cryptography, that is, the new generation

of cryptographic algorithms, capable of resisting against quantum attacks.

The choice to use post-quantum cryptography is still preferable to quantum

cryptographic solutions because they are subject to significant limitations, making

them practically usable only in very limited scenarios.

Notably, these algorithms are required to run on classical devices and must be

based on mathematical problems which cannot be solved efficiently by a quantum

computer.

The emblema of this effort is represented by the NIST process for post-quantum

cryptography standardization. Up to now, NIST has issued two calls.

The first one, announced in 2016 and started in 2017, is almost concluded and has

already produced four standard algorithms, one for key encapsulation and three for

digital signatures. However, the situation with digital signatures is not extremely

satisfying as two of the selected algorithms (Dilithium and Falcon) are based on

basically the same problem, while the third scheme (SPHINCS+) is extremely

conservative and has poor performances.

For these reasons, NIST has issued a second call, specifically tailored to the proposal

of digital signatures.

The new competition has started in June 2023 and more than 40 algorithms have

been deemed as complete and, thus, accepted for being evaluated in the competition.
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CROSS: signatures from the Restricted Syndrome Decoding Problem

CROSS is a signature scheme derived from a interactive Zero Knowledge Identification

protocol by applying the Fiat-Shamir Trasformation.

The underlying principle is that a user, called prover, who wants to prove his

identity to a second user, called verifier, must prove that he knows the secret key

associated with his public key, but without revealing it.

Specifically, the verification of the identity of the prover is based on the ability to

know how to correctly answer random challenges made by the verifier, which can

only be answered correctly if the value of the secret key is known.

In particular, a ID Scheme must guarantee the following properties:

• Completeness: an honest prover has to be always accepted.

• Soundness: an user who does not know the value of the secret key should not

be able to answer the challenges correctly.

• Zero Knowledge: the prover must not reveal information about the secret key.

The perfect soundness is difficult to achieve; in fact, there is certainly a probability

that an attacker will be able to execute the protocol correctly without knowing the

secret key. This probability is called the soundness error.

Cross is based on the so-called Restricted Syndrome Decoding Problem (R-SDP),

an NP-complete problem that can be seen as a variant of the classical Syndrome

Decoding Problem (SDP).

The difference from the original SDP defined over a finite filed Fq is that we

consider an additional restriction: the entries of the solution error vectors are

restricted to those living in a multiplicative subgroup E ∈ Fq∗ of order z ≤ q − 1.

When using R−SDP instead SDP the cost of ISD algorithms, the state-of-the-art

ot the solvers for decoding problems, increases.

This allows to select smaller parameters to attain the desired security levels,

positively impacting both signature sizes and computational complexity.

This allows to select smaller parameters to achieve the desired security levels,

positively impacting both signature sizes and computational complexity, placing

CROSS among the fastest schemes in the new NIST competition.
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However, the R − SDP is a rather new problem, many concerns arise about

is actual security, then understanding the security of the recommended instances

appears to be a major need.

Our contribution

In this thesis we improve our understanding about the security of R − SDP and

CROSS.

The security of any asymmetric cryptographic scheme relies both on an underlying

problem, which is supposedly difficult to solve, and on the structure of the protocol

used.

Generally, two main attack approaches are considered in security analysis:

• Structural Attacks: when exploiting the algebraic structure of the cryptosystem.

• Non-Structural Attacks: combinatorially recover the secret key without exploit-

ing any algebraic structure.

In the next, we will focus on non-structural attack in order determine the security

lever for a given choice of parameters choice of parameters for a given security level.

We will start from solvers for the decoding problem in the Hamming metric realized

via ISD framework and design a new algorithm to solve R− SDP .

In particular, we will use the approach of solving the Nearest Neighbour Search

problem through locality sensitive functions. The NN Search asks to find two binary

vectors of weight w1 and w2 respectively, such that their sum returns a restricted

binary vector of weight w3 < w1 + w2.

Trivially, a pair of solution vectors should be such that their supports must overlap

in exactly o = w1 + w2 −w3 inputs. By using locality sensitive function we are going

to search for solutions among all pairs of vectors that in certain fractions of their

coordinates overlap in exactly o′ ≤ o inputs.

Seeking a solution for SDP by solving the NN search problem was proposed in

the binary case in [4], but through the use of different approaches. We will show how

LSF can be adapted to ISD solvers for SDP in the restricted case.

We test the performances of our algorithms and compare with the previously

known best solver for R− SDP , namely, BJMM . We show that our algorithm can,
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in many cases, outperform significantly the BJMM algorithm. We show this by

considering some of the instances that have already been attacked in [5].

Our algorithm is significantly faster than previously existing approaches (up to

220 times) and, de facto, reduces further the security level of the considered schemes.

Then, we test our algorithm on the proposed CROSS instances. We show that

these instances are not threatened by the new algorithm, as the running time is

always larger than the claimed security level. We see as a positive result, as CROSS

instances has been designed by taking into account conservative criteria (e.g., values

of z that are not too small). The obtained results confirm that this choices has been

wise and, de facto, give another solid confirmation about the security of CROSS.
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Chapter 1

Notations

1.1 Algebraic Notation

We denote as [a; b] the range of real numbers x ∈ R such that a ≤ x ≤ b. When

considering a generic set as A we denote its cardinality as |A| and the complete set

including the value 0 as A0 = A ∪ {0}. A random uniform extraction of an element

from a set A is denoted by a
$←− A. Let p a prime number: we will represent by Fp

the finite field of order p and by F∗
p its multiplicative group. We denote as ord(g)

the multiplicative order of an element g ∈ F∗
p.The use of uppercase letters will be

used to define matrices, and lowercase letters for vectors. For a generic vector v of

length n and a matrix with m rows and n columns, for a given set j ⊆ { , . . . , n}.

The identity matrix of dimension m is denoted as Idm

1.2 Cryptographic Notation

As for conventional cryptographic notations, first of all we denote as λ the security

parameter expressed in bit, then we will introduce all the cryptographic structures:

• Hash:{0, 1}∗ → {0, 1}2λ, which is a secure cryptographic hash function that

takes an input of arbitrary size and produces a fixed-length digest of 2λ bits.

• MerkleTree, constructed from t elements (a(1), . . . , a(t)) that form the leaves

of the tree, denoted as T=MerkleTree(a(1), . . . , a(t)). The root of the tree is

extracted using the T.Root() method. The function for composing the Merkle

Proof, starting from the leaves indicated by the set J , is T.MerkleProof(J).
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The reconstruction of the root, starting from the leaves a(i)i ∈ J and the

MerkleProof, is achieved through VerifyMerkleRoot(c(i)
1 i ̸∈ J, MerkleProof).

The hash function used for constructing the tree produces digests of length 2λ

since, within the structure, each leaf is a binary string of precisely 2λ bits.

• SeedTree, created from the root Root. The function that composes the t

leaves (Seed(1), . . . , Seed(t)) is SeedTree(Root). All generated seeds have

a length of λ. To construct the data structure SeedPath, which is used to

regenerate the seeds indexed by the set J with GetSeeds(SeedPath, J), the

function SeedPath(Root, J) is used. Additionally, it is possible to include a Salt

string of length 2λ to enhance complexity and security in the data structure.

Finally, the notation a
Seed←−−− A indicates that a is sampled using a cryptographically

secure deterministic random generator, which outputs elements uniformly chosen

from A, and is initialized with the input Seed.
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Chapter 2

Preliminaries

In this chapter we recall useful background notions about coding theory, linear codes

and their use in cryptography.

2.1 Algebraic Coding Theory

For p ∈ N a prime power (i.e., p = pm for p a prime and m an integer), we denote by

Fp the finite field with p elements. In this thesis we focus only on the case in which

p is a prime, i.e., m = 1.

Definition 2.1.1. Linear Code Let 1 ≤ k ≤ n be integers, an [n, k] linear code C

over Fp is a k-dimensional linear subspace of Fn
p .

The elements in the code are referred to as codewords and R = k
n is the rate of

the code. One can represent a linear code either through a generator matrix G,

i.e. C = {uG |u ∈ Fk
p}, or as the kernel of (n − k) × n parity check matrix H, i.e.

C = {c ∈ Fn
p : Hc = 0}.

In order to measure how far apart two vectors are, we endow Fp with a metric.

The most famous and employed metric is the so-called Hamming metric.

Definition 2.1.2. Hamming Weight: For x ∈ Fn
p , with n positive integer, the

weight of x is given by the size of its support, i.e.,

wtH = |{i ∈ 1, ..., n |xi ̸= 0}|

Through for x, y ∈ Fn
p , the Hamming distance between x and y is given by the

number of positions in which they differ, i.e.,

9
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dH(x, y) = |{i ∈ {1, ..., n} |xi ̸= yi}|

One can derive the Hamming distance also from the Hamming weight, that is

dH(x, y) = wtH(x− y).

Once this metric has been defined, it is possible to consider the minimum distance

of a code, which is the smallest distance achieved by any pair of distinct codewords.

Definition 2.1.3. Minimum Distance. Let C be a code over Fp, the minimum

Hamming distance of a code C is defined as follow:

d(C) = min{d(x, y) |x, y ∈ C, x ̸= y}

Or, alternatively, as:

d(C) = min{wtH(x) |x ∈ C, x ̸= 0}

Through the minimum distance of a code one can define the error correction

capacity of the code. We say that a code can correct up to t error, if for all x ∈ Fn
p

with dH(x, C) ≤ t, there exists exactly one y ∈ C such that dH(x, y) ≤ t.

A code C can correct up to t := ⌊d−1
1 ⌋ errors.

We denote as Hamming Sphere the set of all vectors of length n with entries living

in Fp which have exactly Hamming weight r, i.e.,

Wp
n,r := {x ∈ Fn

p : wtH(x) = r}

Futhermore, we define the Hamming Ball of radius r as the set of all vectors with

entries living in Fp which have at most Hamming weight r, i.e.,

Bp(n, r) := {x ∈ Fn
p : wtH(x) ≤ r}

The Volume of Bp(n, r) is defined as follows:

V olp(n, r) := ∑︁r
i=1

(︁n
i

)︁
(p− 1)i.

Given a p -ary code of block length n and minimum distance d, it is important

to estimate which is the largest possible size A(n, d), i.e. the maximum number of

codewords, that a code can have.

10
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Given a p-ary code C (not necessarily linear) of length n and minimum distance d,

it is important to estimate which is its largest possible size A(n, d), i.e. the maximum

number of codewords, that a code can have.

First, we construct a code C with minimum distance d and maximum size through

a greedy procedure: starting from a codeword, we keep on adding codewords that

have a distance at least d from the previously chosen ones, until we cannot add more

of them. When this happens, the Hamming balls of radius d− 1 centered at every

codeword must cover the whole space. Indeed, otherwise, we could pick one more

codeword whose distance from the others is at least d, thus the procedure would not

have stopped.

When the greedy procedure stops it holds that

Ap(n, d) · V olp(n, d− 1) ≥ pn.

This inequality represents the so-called Gilbert-Varshamov bound, expressed as:.

Lemma 1. Gilbert-Varshamov bound Let C be a code over Fp with minimum distance

d. It must hold

Ap(n, d) ≥ pn

V olp(n, d− 1) = pn∑︁d−1
j=0

(︁n
j

)︁
(p− 1)j

. (2.1)

When C is linear, then Ap(n, d) = pk for a positive integer k ≤ n and it holds

k ≥
⌊︂
n− logp(V olp(n, d− 1))

⌋︂
=

⎢⎢⎢⎣n− logp

⎛⎝d−1∑︂
j=0

(︄
n

j

)︄
(p− 1)j

⎞⎠⎥⎥⎥⎦ .

The GV bound represents a lower bound as a function of the field size p, the

block length n and the minimum distance d. These results can be obtained in the

asymptotic version, i.e., considering exponential approximations with regard to n of

the used quantities.

We denote by hp : [0, 1]→ [0, 1] the p-ary entropy function:

hp(x) = x logp(p− 1)− x logp(x)− (1− x) logp(1− x)

And when p = 2 we have the binary entropy

11
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hp(x) = −x log2(x)− (1− x) log2(1− x)

Then, the following lemma can be proven:

Lemma 2. Let n and p ≥ 2 be positive integers and δ ∈ [0, 1− 1/p] be a real number.

It holds

p(hp(δ)−o(1))n ≤ V ol(n, δn) ≤ php(δ)n

In other words, for n big enough, the asymptotic Volume of the Hamming ball of

radius δn can be approximated to

1
n

logp(V ol(n, δn)) = hp(δ). (2.2)

The rate of a generic code C of size |C| is defined as

R = 1
n

logp(|C|), (2.3)

which becomes the well-known

R = k

n

if the code is linear. We want to take the asymptotic values of 2.1. To do so, we

use the result of 2.1 and the definition given in 2.3, then we obtain the asymptotic

formulation of GV bound, expressed as follows:

Lemma 3. Asymptotic Gilbert-Varshamov bound

Let p be a positive integer and δ ∈ [0, 1− 1/p] be a real number. For every p and δ

there exists an infinite family C of p-ary codes with rate

R ≥ 1− hp(δ) (2.4)

The asymptotic GV bound states the existence of such codes, but doesn’t give

information about which ones they are. Consider a random linear code [n, k] over Fp,

i.e., a code where each entry of its parity-check matrix (or, equivalently, generator

12



2.2 Digital Signature Schemes

matrix) is picked uniformly at random. The number of vectors of weight t in Fn
p is

(︄
n

t

)︄
(p− 1)t.

A vector c is a codeword if it satisfies the parity-check equations, i.e., c⊤H = 0.

Given that H is a random matrix, that happens with a pk−n probability. Therefore,

the average number of codewords of weight t is

(︄
n

t

)︄
(p− 1)tpk−n (2.5)

If this amount is greater than 1, then a codeword with weight t exists on average.

Then, by definition, the minimum distance d is the minimum value for which the 2.5

is greater than 1:

d = min
{︄

t

⃓⃓⃓⃓ (︄
n

t

)︄
(p− 1)tpk−n ≥ 1

}︄
(2.6)

By taking the asymptotic results in 2.6 we obtain the relative distance

δ = min
{︃

T

⃓⃓⃓⃓
hp(T )− (1−R) ≥ 0

}︃
(2.7)

where T = t/n is the relative weight.

Considering that hp(T ) grows monotonically from 0 to 1 for T ∈ [0, 1− 1/p], we

can consider only this interval of weights. Then, the minimum relative distance is

the one for which

hp(δ) = 1−R (2.8)

Therefore, random linear codes attain the asymptotic GV bound with high proba-

bility. Then, when using a random linear code we can assume its relative distance as

the solution of 2.8.

2.2 Digital Signature Schemes

A digital signature scheme is a protocol for binding certain specific properties to a

digital piece of information. Specifically, the source of a message applies a digital

signature to the data sent, such that it ensures:

13
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• Authenticity : the origin must be legit.

• Integrity : the message cannot be altered after it has been signed.

• Non-repudiation : the origin cannot deny the signing of the message.

Generally, the digital signature scheme is structured in steps in which the data

source proves that such information has these properties, while the destination verifies

them. For this reason we will call the two protocol actors Prover and V erifier.

Specifically, these phases are:

1. Key generation: the Signer creates a pair of keys, public and private.

2. Signing: through a public-key cryptographic primitives a signature of the

message is obtained.

3. Verification: the V erifier receives the signed message and checks its validity

through the same primitive.

The performance of a digital signature scheme is measured by:

• Signature size

• Public key size

• Signing and verification times

The goal is to find the right trade-off in reducing the size and time required while

maintaining a certain level of security.

Zero Knowledge Identification Schemes

A Zero Knowledge identification scheme, also called Proof of Knowledge, is an

interactive protocol in which a Prover P aims to prove to a Verifier V knowledge of a

secret that verifies some public statement, without revealing it or giving information

about it. In this case, only protocols that involve sending five messages will be

examined, with the Prover always sending the first and last.

This type of protocols consists of 5 steps: P sends to V a commitment based on

the values of the secret key sk, next, through the exchange of 4 challenge-response

messages based on two sets of random values, the identification process is realized.

14



2.2 Digital Signature Schemes

PROVER VERIFIER

Holds the secret key sk Knows the public key pk
Com−−→

Ch1
$←− C1

Ch1←−−
Rsp1−−−→

Ch2
$←− C2

Ch2←−−
Rsp2−−−→

Return Out ∈ {0; 1}

A single execution of the identification process, keeping the order of interactions

unchanged, can be summarized as:

T = (Com, Ch1, Rsp1, Ch2, Rsp2).

We will call T as the transcript of the protocol, that is, a single correct and complete

execution of the procedure.

Properties

A Zero Knowledge Identification Protocol must guarantee :

• Completeness: an honest Prover must always be accepted, this means that an

execution started by a P who knows the secret always ends with a Verifier

result of 1.

• Zero Knowledge: Interactions between P and V must not reveal information

about the secret. This implies that knowing the challenge values a priori allows

a malicious Prover to produce valid transcripts that are indistinguishable from

those of an honest Prover.

• Soundness: when the Verifier is honest, and thus the challenges are sampled

through uniform distributions on C1 and C2, a malevolent Prover (who does

not know the secret) can convince the Verifier with a probability ε < 1. The

quantity ε is called the soundness error and corresponds to the probability

that a malevolent Prover can correctly guess which subset of challenges will

15
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be chosen by the Verifier (in addition to a negligible quantity, related to the

probability that the Prover succeeds in solving difficult problems).

We will consider t parallel executions of a 5-step protocol, characterized by a soundness

error ε, thus obtaining a new scheme with soundness error εt. In order to distinguish

data from different rounds, we use the notation (i) to denote the element of the i-th

round.

Fiat-Shamir Trasformation

The Fiat-Shamir transformation [6] is a standard technique to turn an interactive

ZK protocol into a signature scheme. The process aims to remove the interactions,

with the Prover simulating the Verifier by generating the challenges as the output

of some one-way function (e.g., a hash), using all the former messages as input. The

message to be signed msg is provided as another input to the hash function; this way,

the transcript becomes associated with msg. To sum up, the Fiat-Shamir transform

operates as follows:

1. Commitment Generation:

Com = (Com(1),· · · , Com(t))

2. First Challenge Generation:

Ch1 = (Ch(1)
1 ,· · · , Ch(t)

1 ) = Hash(msg, Com);

3. First Response Computation:

Rsp1 = (Rsp(1)
1 ,· · · , Rsp(t)

1 )

4. Second Challenge Generation:

Ch2 = (Ch(1)
2 ,· · · , Ch(t)

2 ) = Hash(msg, Com, Ch1, Rsp1);

5. Second Response Computation:

Rsp2 = (Rsp(1)
2 ,· · · , Rsp(t)

2 ).
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2.2 Digital Signature Schemes

This transformations results in a signing algorithm which produces a digital

signature by simulating the interaction of both P and V on t parallel executions of

the protocol. The verification algorithm, on the other hand, simulates the checks

performed by the V erifier on the data received from the Prover. Depending on the

transcript, the output may be 1 (if the signature is accepted) or 0 otherwise.

Intuitively, the resulting signature is secure since each challenge is generated

through a pseudo-random one-way function, which receives as input the previous

messages exchanged. Moreover, it is not possible to change the commitment Com

after the generation of the first challenge Ch1, unless the attacker detects collisions

in the hash function.

In order to reduce the signature size, challenges are usually omitted, as they can

be regenerated during verification. In conclusion, the signature will be characterized

by the following form:

Sign = (Salt, Com, Rsp1, Rsp2).

Commitment, Seed and Salt

Commitments are the means by which the identification and integrity of sent messages

is ensured. They are typically implemented through hash functions: if the reference

value is x, the Prover will compose and send Com = Hash(x). However, the functions

in question will have to ensure the following characteristics to be considered valid:

• Hiding: given the output Com no information can be derived about the input x;

• Binding: it must be computationally impossible to find two distinct messages

x ̸= x′ that correspond to the same output Com. In other words, the Prover

cannot modify x after it has chosen it as its reference.

Moreover, the Prover reference value is typically a seed of length λ. If certain

precautions are not taken, it is possible to find collisions in the commitments in

time O(2 λ
2 ). In this case an attacker can find consistent values, without the Prover

propagating them. To avoid this, it suffices to sample, for each new signature

generated, a new Salt of size 2λ, which will be used as an additional input to the
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hash function with the following criterion:

Com = Hash(x, Salt).

Security Assumptions

Using Fiat-Shamir transformations to a ZK identification protocol, with soundness

error equal to ε, leads to obtaining a signature scheme that admits forgery attacks

in time O(ε−1). Typically, a malicious Prover can repeatedly simulate the protocol

by trying to guess the challenge values and preparing commitments with consistent

responses to them. The challenge values will be related to the malicious Prover ’s

attempts with probability equal to ε; this means that on average the attempts to

compromise the execution must be ε−1.

If we consider a signature scheme with soundness error ε, characterized by t

parallel executions, the resulting cost for a forgery attack is O(ε−t). If we follow the

well-known heuristic-ε−t, it is sufficient to choose t such that ε−t > 2λ. The only

issue is related to the fact that, in the case of 5-step schemes, some instances of the

protocol may fail; therefore, a complexity level of 2λ cannot always be guaranteed.

In [7] the formulas for characterizing the cost of forgery attacks are further discussed.

Since C1 and C2 are essentially fixed, based on the ZK protocol on which the scheme

relies, the value of t should be chosen so that the cost is above 2λ. In practice, if

we rely on the bindings defined in the documentation, the actual value of t is larger

than that given by the heuristic-ε−t.

Additional attacks are instead based on the idea of acquiring information and

exploiting the non-interactivity of the scheme to produce valid transcripts, with a

higher probability of success than εt.

Below, it can be demonstrated how the signature scheme obtained from the Fiat-

Shamir paradigm achieves EUF-CMA (Existential Unforgeability Under Chosen

Message Attack) security, through a Zero Knowledge identification protocol with

specific properties.

CROSS is based on a ZK protocol which follows the structure of q 2- Identification

schemes

Lemma 4. A ZK protocol is classified as a q 2-Identification scheme when it possesses
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the following properties:

• |C1| = q;

• |C2| = 2;

• The probability of the Com assuming a given detectable value is a negligible

quantity considered in the safety parameter λ.

It can be shown how the execution of t instances in parallel of a ZK q2 protocol,

transformed using the Fiat-Shamir technique, leads to a signature scheme with

EUF-CMA security, which is necessary to validate the digital signature scheme

against the Quantum Random Oracle Model. The proof of the claim is based on the

existence of a q2 solver, i.e., a probabilistic polynomial algorithm ξ that computes,

with non-negligible probability of success equal to 1− ε, the secret key sk, given four

valid transcripts of the type:

T = (Com, Ch1, Rsp1, Ch2, Rsp2),

T ′ = (Com, Ch′
1, Rsp′

1, Ch′
2, Rsp′

2),

T ′′ = (Com, Ch′′
1, Rsp′′

1, Ch′′
2, Rsp′′

2),

T ′′′ = (Com, Ch′′′
1 , Rsp′′′

1 , Ch′′′
2 , Rsp′′′

2 ),

con

Ch1 = Ch′′
1 ̸= Ch′

1 = Ch′′′
1 ,

Ch2 = Ch′′
2 ̸= Ch′

2 = Ch′′′
2 .

So, as far as q2 identification patterns are concerned, proving the existence of

a q2 solver turns out to be identical to showing that the protocol is in the form

(2,2)-out-of-(q,2) special sound, which implies soundness error equal to:

ε = 1−
(︂
1− 1

q

)︂(︂
1− 1

2
)︂

= q + 1
2q

.
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Let it be, finally, known how the choice of a suitable value for t parallel repetitions is

of paramount importance and requires to consider thoroughly the cost of the forgery

attacks described in [7].

2.3 Code-Based Problems

A decoding problem asks, on input some x ∈ Fn
p and a code C, to find a codeword

c ∈ C which is sufficiently similar to x. Here, sufficiently similar is a rather vague

term, but we used it purposely as the possible requirements are so heterogeneous

that there is not quantitative word to classify all of them. For instance, when the

Hamming metric is employed, the problem asks to find the codeword minimizing the

hamming distance from the input x. In other words, the problem asks to find the

codeword having the largest number of common entries with the input x.

This problem goes by the name of Syndrome Decoding Problem (SDP ), as it can

be easily seen that it corresponds to finding the vector e ∈ Fn
p with lowest weight,

such that Hx⊤ = He⊤. The vector Hx⊤ is normally called syndrome, so that the

problem is normally stated as follows.

Definition 2.3.1. Syndrome Decoding Problem: Given H ∈ F
(n−k)×n
p , s ∈ Fn−k

p

and an integer t > 0, find a vector e ∈ F n
p such that wtH(e) ≤ t and eHT = s

The number of solutions to the SDP problem depends on the weight t. Since the

code is random, assuming the syndrome is obtained from a vector e of weight t, i.e.,

e⊤H = s, the average number of solutions is

1 +
(︄

n

t

)︄
(p− 1)tpk−n ≈ 1 +

(︄
n

t

)︄
(p− 1)tpk−n.

If there is more than one solution, it is intuitive that the SDP problem gets easier

to solve. Thus, it is always required to have (on average) a unique solution. That

happens when (︄
n

t

)︄
(p− 1)tpk−n ≤ 1,

or, asymptotically,

hp(T )− (1−R) ≤ 0. (2.9)
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Therefore, if the target relative weight t is less than the minimum relative distance

δ of the random code, i.e., the one that satisfies 2.8, we expect to have on average a

unique solution.

Code-based cryptography is traditionally based on the hardness of decoding a

random linear code, the NP-completeness of the Syndrome Decoding Problem was

proved in [8] for the case of binary linear codes equipped with the Hamming metric

and then generalized in [9] to an arbitrary finite field.

2.4 Information Set Decoding

Now we will present the Information Set Decoding, a class of generic decoding

algorithms for code-based problems, in particular when the problem has only a small

number of solutions.

For this brief introduction we will take up the concepts presented in [10].

Let’s introduce the following notation: for x ∈ Fp and S ⊆ {1, . . . , n} we denote

by xS the vector consisting of the entries of x indexed by S. Similarly for a generic

matrix A ∈ Fm×n
p we denote by AS the matrix consisting of the columns of A indexed

by S.

Consequently we can define CS , the code consisting of the codewords cS , in

particular a [n, k] linear code can be completely defined by certain sets of k positions.

Definition 2.4.1. Information Set Let k ≤ n be positive integers and let C be an

[n, k] linear code over Fp . Then, a set I ⊆ {1, . . . , n} of size k is called an information

set of C if |C| = |CI |.

Furthermore, one can introduce the following definition:

Definition 2.4.2. Systematic Form Let k ≤ n be positive integers and let C

be an [n, k] linear code over Fp, for some convertible matrix U ∈ F(n−k)×(n−k)
p and

some permutation matrix P ∈ Fn×n
p , the systematic form of the parity check matrix

H ∈ F(n−k)×n
p is:

UHP = [Idn−k|H̃]

Where H̃ ∈ F
(n−k)×k
p
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The main idea is to exploit the knowledge of the hamming weight of the error

vector and reduce the search space by linear algebra, the first ISD algorithm was

proposed in 1962 by Prange [11] and interestingly, all improvements display the same

structure. In particular we will analyze ISD-based algorithms using Partial Gauss

Elimination (PGE) framework, generally this class of algorithm follows a common

pattern, that can be schematized as follows:

1: PGE + ISD Framework
Data: The parity-check matrix H ∈ F(n−k)×(n)

p describing a [n, k]− C linear
code and the syndrome vector s ∈ F(n−k)

p .

Result: e ∈Wp
n,t such that eHT = s.

1. Choose an information set I ⊆ {1, . . . , n} of size k for C.

2. Brings H into the systematic form corrisponding to I, i.e. find an invertible
matrix U ∈ F(n−k)×(n−k)

p and permutation matrix P ∈ F(n−k)×(n−k)
p :

UHP = [Idn−k|H̃]

3. Go through all error vector e ∈ having the assumed weight distribution.

4. Check if the parity-check equations

eHT UT = sUT

are satisfied.

5. If they are satisfied, output e, if not start over with a new choice of I.

Note that the searching phase on step 3 it should be optimized in order to reduce

the number of operation necessary for finding candidate solution, futhermore the

average number of overall iterations required depends by the success probability of

one iteration and this probability is completely determined by the assumed weight

distribution.

All the improvements that have been suggested to Prange’s simplest form of ISD

assume a more likely weight distribution of the error vector, which results in a higher

cost of one iteration but give overall a smaller cost, since less iterations have to be

performed.
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The improvements split into two directions: the first direction is following the

idea of Lee and Brickell [12] where they ask for v errors in the information set and

t− v outside. The second direction is Dumer’s approach [13], which is asking for v

errors in k + ℓ positions, which are containing an information set, and t− v in the

remaining n − k − ℓ. Clearly, the first direction is a particular case of the second

direction when ℓ = 0.

In the chapter 4 we will focus on two specific approach: the one proposed by Stern

[14] and then generalised by Peters to Fp, which proposes to partition the information

set into two sets and ask for v errors in each part and t − 2v errors outside the

information set, and BJMM [15] which improves MMT [16], an algorithm based

on representation technique, by introducing overlapping supports.

Operations cost over Fp

We will assume that one addition over Fp costs ⌈log2(p)⌉ binary operations and one

multiplication costs ⌈log2(p)⌉2 binary operations.

Lemma 5. Given A ∈ F(k×n)
p and B ∈ F(n×h)

p compute AB will cost:

knr
(︁
⌈log2(p)⌉+ ⌈log2(p)⌉2

)︁
binary operations

Number of Iterations

Since in one iteration of a generic algorithm, a fixed information set is considered,

the success probability of an iteration is given by the fraction of how many vectors

there are with the assumed weight distribution, divided by how many vectors there

are in general with the target weight t.

For example if we assume that the error vector e ∈ Fp with weight t has ti non

zero entries within the information set I of size k the other tc non zero entries on

the remaining n− k coordinates, the success probability of one iteration is given by:

Prsucc =
(︁k

ti

)︁
pti
(︁n−k

tc

)︁
ptc(︁n

t

)︁
pt

(2.10)

Consequently the number of iterations needed on average by an algorithm using

PGE + ISD framework is given by: Pr−1
succ
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Average number of Collisions

The algorithms that will be analyzed in the next sections are based on a collision

search between two lists of vectors defined as:

• L1 := {x ∈ Flx
p |wtH(x) = ωx}

• L2 := {y ∈ Fly
p |wtH(y) = ωy}

The algorithm would go through all the vectors pairs (x, y) ∈ (L1 ×L2) and check

if (x, y) satisfy a specific condition. We can compute the number of collision we can

expect on average.

Lemma 6. Let L1, L2 two lists uniformly distributed, OP : Fp × Fp −→ Fp a generic

vector operation, for a given H ∈ Fx×w
p , a target vector s ∈ Fℓ

p the average number

of pairs (x, y) ∈ L1 ×L2 such that OP (x, y) = z, with zHT = s and wtH(z) = ωz, is

equals to:

|L1||L2|
pℓ

Having defined the two lists we can explicit the amount as:

|L1||L2|
pℓ =

( lx
ωx

)(p−1)ωx( ly
ωy

)(p−1)ωy

pℓ

Representations Technique over set Fp

We now analyze a more flexible decomposition of vector.

Let x̃ ∈ Fn
p with wtH(x) = ω one can decompose x̃ into vectors x̃A, x̃B, whose values

can overlap at a given fraction of their entries. Having fixed α ∈ [0, 1
2 ], one can

define:

• supp(x̃A) ⊆ {1 ... , ⌊(1
2 + α)(n)⌋}

• supp(x̃B) ⊆ {⌊(1
2 − α)(n)⌋+ 1, ... , n}

Every non-zero within the 2α(n) overlapping coordinates of x̃ can be represented

as either x̃A,i + 0 or 0 + x̃B,i, depending on whether the error is assigned to x̃A or x̃B,

the consequence of using this technique is to obtain an exponential number of repre-

sentations. (α = 0 no representation, α = 1
2 max n rep). Furthermore, to increase

the number of possible representations, one can introduce ε ∈ {0, ... , 2α(n− ω)},
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a parameter that defines how many non-zero entries to be added to both vectors.

If those additional values occur within the overlapping coordinates we obtain more

ways to represent a value in the resulting vector as a sum of two values.

Consequently, we require that x̃A ∈WA and x̃B ∈WB, The two sets are defined

as follows:

• WA := Wp

( 1
2 +α)(n), ω

2 +ε
× {0}(

1
2 −α)(n)

• WB := {0}(
1
2 −α)(n) ×Wp

( 1
2 +α)(n), ω

2 +ε

The number of representation for an error vector depends on its weight-distribution. It

is known that x̃ ∈ Fn
p with wtH(e) = ω is balanced when is

(︂(︂
1
2 − α

)︂
(ω),

(︂
1
2 − α

)︂
(ω)
)︂
-

distributed, which means it has Hamming weight exactly i and j on its first and

last
(︂

1
2 − α

)︂
(n) coordinates respectively. This implies that x̃ has weight ω − (i + j)

within the remaining 2α(n) coordinates.

Futhermore, one can observe that for a given a ∈ Fp it is possible to define:

αp(a) = |{b ∈ Fp | ∃ c ∈ Fp s.t. b + c = a}|

It should be noted that αp(a) is the same for all a ∈ Fp, so we can denote it as αp.

Lemma 7. Let us now consider a balanced vector x̃, one can estimate the number

of pairs (x̃A, x̃B) ∈WA ×WB such that x̃ = x̃A + x̃B.

rn,α,ε =
(︁2αω

αω

)︁(︁2α(n−ω)
2ε

)︁
α2ε

p

Proof. The two vectors x̃A and x̃B must have 2ε common non-zero coordinates.

Furthermore, x̃ is balanced, then they have weight
(︂

1
2 − α

)︂
(ω) on the first and last(︂

1
2 − α

)︂
(n) coordinates, respectively. It is therefore possible to arbitrarily assign αω

of the 2αω many non zero values within the overlapping coordinates of x̃ to vector

x̃A (with the remaining being assigned to vector x̃B). Subsequently, it is possible to

choose 2ε number of intersecting positions among the remaining 0-positions within

the overlapping coordinates, for each we can choose αp possible entries.

The computational effort lies in computing the list of candidate solutions for parity

check equation in 1, in the next sections we will show how the representations

technique adapted to ISD algorithms allows to implement a more efficient approach

for generating candidate solutions list.
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Merge Lists Functions

An important part of ISD algorithms is to merge two lists based on a certain

condition, in the following for a vector x, we will denote by x|ℓ̃ the vector consisting

of the first ℓ̃ entries of x.

The following algorithm takes as input two lists L1, L2 ⊂ Fn
p , containing vectors of

weight u1 and u2, respectively, a positive integer ℓ̃, which denotes the number of

symbols on which one merges and a target vector t ∈ Fℓ̃
p. The output is a list of the

sums of all pairs of vectors that satisfy a specific condition on the vector t and whose

sum has a specific Hamming weight.

Algorithm 2: MergeLists
Input: L1, L2, the parity check matrix H ∈ Fn×k

p , the integers 0 < ℓ̃ < k,

0 ≤ ω ≤ n and the target vector t ∈ Fℓ̃
p

Output: L

Lexicographically sort L1 and L2 according to (xiH
T )|ℓ̃ and (yjHT )|ℓ̃ + t

respectively, for xi ∈ L1 and yj ∈ L2

L := ∅

for (xi, yj) ∈ L1 × Ł2 with (xiH
T )|ℓ̃ = (yjHT )|ℓ̃ + t do

if wtH(xi + yi) = ω then
L = L ∪ {xi + yj}

end

end

return L

Lemma 8. The cost of the the Algortihm 2 is given by:

CRM (L1, L2, H, ℓ̃, ω, t) = (|L1|u1 + |L2|u2) ℓ̃
(︁
⌈log2(p)⌉+ ⌈log2(p)⌉2

)︁
+ L1 log2(L1) +

L2 log(L2) + (L1L2
pℓ̃

) ⌈(n) log2(p)⌉

Proof. The algorithm must compute the partial value of the syndrome on ℓ̃ symbols,

thus it is sufficient to consider only ℓ̃ columns of the matrix H. This operation

must be performed for each vector in both lists, while the cost of the vector-matrix

multiplication over Fp is given by lemma 5. Subsequently, both lists must be sorted

according to the label. Sorting a list L costs |L| log2(|L|), which explains the second

and third terms. Finally, for each collision found, it is necessary to check if their sum
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has the desired weight, that requires adding two vectors of length n and weight u1

and u2, respectively, remembering how the average number of collisions is defined by

lemma 6, this justifies the last term.

We are also interested in evaluating the size of the output list, considering that the

algorithm for each collision pair on the syndrome conditions stores the sum vector

only if it has a certain weight, one can state that:

Lemma 9. The algorithm 2 returns a list L of size |L| = min

{︃
(n

ω)(p−1)ω

pℓ̃
, L1L2

pℓ̃

}︃

2.5 Locality Sensitive Functions

The main idea of LSF is to apply a certain relation to two vectors that when collide

under this relation, they are likely to be a solution. In particular, one can define

choose a set of vectors:

Cf ⊆ Sn
f with size |Cf | =

(︁n
f

)︁
(p− 1)f

And its definition allows, by choosing an integer value γ, to divide the Hamming

space into several regions, which can be overlapped, such regions can be defined as

follows:

Region(c,γ) = {x ∈ Fn
2 : (x ∧ c) = Sn,γ} ∀c ∈ Cf

In other words, each vector c ∈ Cf define a subset of Fn
2 , which contains all the

binary vectors which have exactly γ overlaps with c.

One may be interested in finding all the vectors of a specific set S that live in the

region defined by a certain c ∈ Cf , then defining:

Bucket(c,γ) = S ∩Region(c,γ)

In the next we will analyze how this concepts can be used to speed up the collision

search. In particular we will use LSF to reduce the number of comparisons by

checking only those vectors with particular weight distributions. In fact, a necessary

criterion for the sum of two vectors to have a particular weight is that the two vectors

have an exact number of overlaps.
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We will exploit the fact that if two uniform random vectors x, y ∈ F n
2 happen to

be assigned to the same bucket, they have a certain overlap in support with c, so

they are more likely to have overlap in support with each other.

In particular we will adapt the approach proposed in [17] that use locality sensitive

functions for solving the following problem:

Definition 2.5.1. ω-Nearest Neighbor Search Given two lists of vectors L1 ⊆

W2
n,w1 , L2 ⊆ W2

n,w1 and a target weight ωtn, find all pairs (x, y) ∈ (L1 × L2), find

all pairs s.t. wtH(x + y) = ωt
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Chapter 3

CROSS: Codes and Restricted Objects

Signature Scheme

In this chapter we will analyze the main features and properies of CROSS, the

signature scheme derived, via Fiat-Shamir transformation from the Zero Knowledge

CROSS-ID identification protocol. This protocol, which is a q2-identification protocol

with a q2 extractor, is based on the CVE identification logic discussed in [18] originally

proposed for SPD. Similarly, the use of the Fiat-Shamir transformation guarantees,

for t parallel executions of CROSS-ID (q2), the achievement of a signature scheme

with Existential Unforgeability under Chosen Message Attack (EUF-CMA).

3.1 Restricted Syndrome Decoding Problem (R-SDP)

Let’s analyze the underlying problem. The R− SDP was first introduced for z = 2

in [19] and then for any z [20] , the difference from the original SDP is that we

consider an additional restriction: the entries of the error vector solution are defined

in a particular subset of the finite field.

By choosing a generator g ∈ F∗
p of multiplicative order z it is possible to define the

Restricted Set as

E = {gi (mod p) | i ∈ 0, ..., z − 1} ⊆ F ∗
p .

When considering a parity check matrix H ∈ F(n−k)×n
p and a syndrome s ∈ Fn−k

p

the Restricted Syndrome Decoding Problem is defined as follows:

Definition 3.1.1. R − SDP : Given t ∈ N, H ∈ F(n−k)×n
p , s ∈ Fn−k

p find a vector

e ∈ En such that eH⊺ = s and wtH(e) = t
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NP-Completeness of the underlying problem

The R− SDP is strongly related to other well-known hard problems. For example,

when z = p− 1, the R− SDP is close to the classical SDP , if z = 1, the R− SDP

is similar to the Subset Sum Problem (SSP ) over finite fields. Consequently, the

R− SDP is NP-complete for any choice of E.

Lemma 10. The Restricted Syndrome Decoding Problem in NP-Complete

The NP-completeness of the Restricted Syndrome Decoding Problem is proven in

[21].

Uniqueness of the solution R− SDP

Both the parity-check matrix H and the error vector e have been generated by

sampling from F(n−k)×n
p and En uniformly at random, this means that the R− SDP

instance is chosen uniformly at random. Consequently we expect to have on average

a unique solution if the weight t is such that:

(︄
n

t

)︄
ztpk−n ≤ 1 (3.1)

Considering this asymptotically, we have for T = t
n the following condition:

2n(H2(T )+T log(z)−(1−R) log2(p)) ≤ 1,

It happens when for z and R such that:

T log(z) + H(T )− (1−R) log(p) ≤ 0.

Let T ∗ be the maximum value of T for which a random instance of R− SDP is

expected to have a unique solution, that is

T = max{T ∈ [0; 1] / T log2(z) + H(T )− (1−R) log2(p) ≤ 0} (3.2)

Comparing this to the condition in 2.9, we can see that with the R − SDP , we

are allowed to choose a much larger weight t and still guarantee the uniqueness of
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the solution. Notice that if log2(z) ≤ (1−R) log2(p), we even have uniqueness for

full-weight vectors.

We will see in the next section how considering the full-weight version of the

R− SDP leads to reduced signature size.

3.2 Zero Knowledge Protocol Structure

What differentiates this scheme from classical CVE is that the Prover first samples

a transformed error vector e′ ∈ En and a random vector u′ ∈ Fn
p . Only then a

transformation σ : E ↦→ E is found such that e = σ(e′). Let it be known that σ

is a bjection and is uniformly random on E, this guarantees that e′ is randomly

and uniformly sampled from E. Moreover, since u′ is uniformly random on Fn
p , the

response vector y = u′ + βe′, where β ∈ F∗
p represents the vector of the first challenge,

follows the uniform distribution on Fn
p .

Another difference with the CVE scheme is the first answer, which in CROSS-ID is

h = Hash(y). The vector of the second challenge is denoted by b, with binary values.

When b = 1, the Prover must report the seed it used to sample both u′ and e′: this

shows how y is generated as the sum of a masked vector and a restricted vector,

multiplied by β. This strategy provides savings in communication cost, since sending

h requires fewer bits than y. When b = 0, the Prover reveals y, along with σ (which,

not being a random transformation, hence it cannot be compressed using the seeds).
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Private Key e ∈ En

Public Data En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

PROVER VERIFIER
Sample Seed $←− {0; 1}λ

Sample (Seed(u’), Seed(e’)) Seed←−−− {0; 1}2λ

Sample u′ Seed(u’)
←−−−−− Fn

p

Sample e′ Seed(e’)
←−−−−− En

Sample σ ∈ En such that σ(e’) = e
Set u = σ(u’)
Compute s̃ = uH⊤

Set c0 = Hash(s̃, σ)
Set c1 = Hash(u’, e’)

(c0,c1)−−−−→
Sample β

$←− F∗
p

β←−
Compute y = u’ + βe’
Set h = Hash(y)

h−→
Sample b

$←− {0; 1}
b←−

If b = 0, set f := (y, σ)
If b = 1, set f := Seed

f−→
If b = 0:

Compute ỹ = σ(y) e s̃ = ỹH⊤ − βs
Accept if:

1) Hash(y) = h
2) Hash(s̃, σ) = c0
3) σ ∈ En

If b = 1:
Sample Seed(u’), Seed(e’) Seed←−−−
{0; 1}2λ

Set y = u’ + βe’
Accept if:

1) Hash(y) = h
2) Hash(u’, e’) = c1

Figure 3.1: ZK identification protocol CROSS-ID

3.3 CROSS-ID Properties

One can demonstrate how the CROSS-ID protocol guarantees the characteristics of:

zero knowledge, completeness and (2,2)-out-of-(p− 1,2) special soundness. In this

way it will be possible to state the achievement of the q2 form, with q = p− 1 and

soundness error equal to p
2(p−1) .
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Completeness

The protocol Fig.3.1 is complete .

Proof. It must be shown how an honest Prover is always accepted. When b = 0, one

will have:

ỹ = σ(y) = σ(u′) + βσ(e′) = u + βe.

From this, it is observed that:

ỹH⊤ − βs = uH⊤ + βeH⊤ − βs = s̃ + βs− βs = uH⊤.

This result correspond to the syndrome used to generate the commitment c0,

considering σ ∈ En. When b = 1, the Prover sends only the seeds and, since PRNGs

are deterministic, the V erifier obtains the very same quantities that have been used

to generate the commitments.

Zero Knowledge

The protocol 3.1 achieves Zero-Knowledge.

Proof. It must be proven that a simulator S with knowledge of the challenges,

can simulate the interaction between the Prover and the V erifier. Formally, we

show how S produces a transcript T ∗ that is indistinguishable from a transcript T ,

resulting from the interaction ⟨P, V ⟩.

One can define two strategies for S, depending on the values of b (vector of the

second challenge):

− Strategy when b = 0. The simulator S searches, by linear algebra, for a vector

e⋆ ∈ Fn
p such that e⋆H⊤ = s. Then, S chooses σ⋆ ∈ E and a vector u⋆ ∈ Fn

p and

compute u⋆′ = σ⋆−1(e⋆). Finally, S computes s⋆̃ = u⋆H⊤ and commitment

c0 = Hash(s⋆̃, σ⋆). When S will receive the answer vector y⋆ = u⋆′ + βe⋆′ . It

is easy to verify how the transcript produced by S follows the same statistical

distribution as a transcript produced by an honest Prover considering how y⋆

and σ⋆ are computed. Indeed, in an honest execution, y is uniformly random
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over F∗
p, since u′ is uniformly random over Fn

p . This guarantees that u′ + βe′

is uniformly random over Fn
p and the same holds for the σ transformation.

So, in an honest execution of the protocol, σ is uniformly distributed over En.

That is, it is observed that, for every e′ ∈ En, there exists a unique σ ∈ En

such that σ(e′) = e. If e′ is uniformly random on En, then σ follows the same

distribution. The commitment, which is not verified, can be chosen as a binary

string of length 2λ. Under the Random Oracle Model assumption, it will have

the same statistical distribution as an honestly computed c1 commitment.

− Strategy when b = 1. In this case, the simulator simply needs to execute the

protocol by sampling the seeds and computing c0, analogous to what an honest

Prover would do.As for the other commitment, simply use a random binary

string as in the previous case.

Soundness

The protocol in Fig.3.1 ensure the soundness, with error ε = p
2(p−1) .

Proof. Let’s consider an adversary A who tries to imitate the Prover. His goal is

to correctly replicate the answers, relative to the V erifier’s challenges. Two attack

strategies will be shown that achieve a probability of success equal to ε = p
2(p−1) .

Next, it will be observed why these strategies are optimal, namely, that the

probability of success is maximal and corresponds to the soundness error. In order

to prove these claims, it will be necessary to observe that the protocol guarantees

the (2,2)-out-of-(p− 1,2) special sound characteristic, and then compute the error

through the formulas defined in [22, 23].

Strategy 0 : The adversary A aims to answer correctly always, for the case b = 0, but

still tries to guess the values of β⋆ when b = 1. A first decides the value for β⋆ ∈ F∗
p

and a seed Seed, which will be used to sample u′ ∈ Fn
p and e′ ∈ En. The adversary,

chooses a random σ ∈ En and computes y⋆ = u′ + β⋆e′. Subsequently, the adversary

computes s̃ = σ(y⋆)H⊤ and sets c0 = Hash(s̃−β⋆s, σ). Finally, the adversary choose

ẽ ∈ Fn
p such that ẽH⊤ = s and ũ ∈ Fn

p such that ũH⊤ = σ(y⋆)H⊤ − β⋆s. The

adversary sends c0 e c1 to the V erifiers and sends β. If β = β⋆, the adversary
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answer with h = Hash(y⋆) = h with σ ∈ E e

c0 = Hash(σ(y*H⊤ − βs), σ) = Hash(s̃− β⋆s, σ).

If b = 1, the adversary answer with a seed to compute e’ and u’. Furthermore

the adversary is accepted as h = Hash(u′ + β⋆e′) e c1 = Hash(u’, e’). If β ̸= β⋆, the

adversary sends a different h. Formally, the adversary compute y = σ−1(ũ)+βσ−1(ẽ)

and sends h = Hash(y). If the V erifier asks for b = 0, the adversary sends the (y, σ)

and is accepted because h = Hash(y), σ ∈ En, e

c0 = Hash(σ(y)H⊤ − βs, σ) = Hash(ũH⊤, σ) = Hash(σ(y⋆)H⊤ − β⋆s, σ).

If the V erifier sends b = 1, the adversary cannot be accepted. Consequently, this

strategy has a success probability equal to:

Pr[b = 0] + Pr[(b = 1) ∧ (β = β⋆)] = 1
2 + 1

2(p− 1) = p

2(p− 1) .

Strategy 1 : The adversary hopes to receive the the challenge b = 1 but, again,

prepare to answer also if obtain b = 0, by guessing the value of β. The adversary

initially chooses a value β⋆ ∈ F∗
p, then it selects a seed from which u′ ∈ Fn

p and

e′ ∈ En are generated. The adversary also chooses σ ∈ En and computes u = σ(u′),

ẽ = σ(e′) ∈ En. The adversary computes s̃ = uH⊤ + β⋆ẽH⊤ − β⋆s. The adversary

will send the commitments c0 = Hash(s̃, σ) and c1 = Hash(u′ + e′). When the

adversary receives β ∈ F∗
p, it computes y = u′ + e′β and sends the Hash h.

If the adversary receives b = 1, he sends the seeds to compute u’ and e’, and he will

definitely be accepted. This is because the V erifier uses the seeds to reconstruct u’

and e’, which are used to compute and check the values of h = Hash(u′ + e′) and

c1 = Hash(u′, e′).

However, if the opponent receives the challenge b = 0, then it will send the pair

(y, σ) and will only be accepted if β = β⋆, since

σ(y)H⊤ − βs = uH⊤ + βẽH⊤ − βs = s̃.

Thus, in the case where c0 = Hash(y)H⊤)− s, σ) and h = Hash(y), with sigmainEn.
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Thus, this strategy has a probability of success

Pr[b = 1] + Pr[(b = 0) ∧ (β = β⋆)] = 1
2 + 1

2(p− 1) = p

2(p− 1) .

(2,2)-out-of-(p-1,2) special soundness

Consider four transcripts T1, T2, T3, T4, all associated with the same pairs of

commitments c0, c1. The commitment c0 allowsto fix (s̃, σ), while c1 fixes the pair

(u′, e′). In the following we will identify the transcripts based on the values of

the challenge: (β, 0), (β, 1), (β⋆, 0) e (β⋆, 1). Taking the Prover’s responses as a

reference, the transcript structures are as follows:

T1 : (c0, c1, β, h, y, σ);

T2 : (c0, c1, β, h, Seed);

T3 : (c0, c1, β⋆, h⋆, y⋆, σ⋆);

T4 : (c0, c1, β⋆, h⋆, Seed⋆).

Next we show, based on knowledge of the four transcripts, a solution for an instance

of R-SDP with {s, H} that can be easily computed in polynomial time. We focus

initially on T2 and T4. Let u′, e′ the vector generated from Seed and let u⋆′ , e⋆′

generated from Seed⋆. Since c1 is verified in both cases, care must be taken toward

the collisions of the functions Hash(u′, e′) = Hash(u⋆′
, e⋆′) with u′ ≠ u⋆′ and e′ ̸= e⋆′ ,

or u′ = u⋆′ and e′ = e⋆′ . Since h and h⋆ are checked and no collisions are detected

in the hash functions, we get h = Hash(y), with y = u′ + βe′ ed h⋆ = Hash(y⋆),

with y⋆ = u⋆′ + β⋆e⋆′ = u′ + β⋆e′. It implies y− y⋆ = e′(β − β⋆).

Finally, we focus on the transcript pair T1 and T3. If no collisions are detected,

when considering σ = σ⋆, we obtain:

σ(y)H⊤ − βs = s̃, σ(y⋆)H⊤ − β⋆s = s̃,

from which it follows that

σ(y− y⋆)H⊤ = (β − β⋆)s.
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By analyzing the relationships derived from the pair (T2, T4), one can compute

y− y⋆ = (β − β⋆)e′, where e′ is a restricted vector such that

(β − β⋆)σ(e′)H⊤ = (β − β⋆)s⇒ σ(e′)H⊤ = s.

Since σ and e′ have been verified, since σ, e′ ∈ En, then σ(e′) ∈ En. This result

allows us to state that σ(e′) solves the R-SDP problem for the instance s, H.

3.4 Fiat-Shamir Trasformation

Since the protocol in 3.1 is classified q2, as specified in the documentation [24],

if t parallel executions of the algorithm are taken into account by applying the

Fiat-Shamir transformation, what is derived is a signature scheme that guarantees

EUF-CMA security.

Lemma 11. CROSS, the signature scheme resulting from the application of the

Fiat-Shamir transform on t parallel executions of the Zero Knowledge q2 CROSS-ID

protocol, guarantees EUF-CMA security.

This follows from the fact that CROSS applies the Fiat-Shamir transform on t

parallel executions of a q2-Identification protocol and by the arguments from [24].

Protocol Optimizations

All messages exchanged in the i-th round will be denoted by superscripts (i). To

obtain a clear and compact notation, we group the exchanged messages in the

following representation:

Round 1 · · · Round i · · · Round t

Commitment = c
(1)
0 c

(1)
1 · · · c

(i)
0 c

(i)
1 · · · c

(t)
0 c

(t)
1

First Challenge = β(1) · · · β(i) · · · β(t)

First Response = h(1) · · · h(i) · · · h(t)

Second Challenge = b(1) · · · b(i) · · · b(t)
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Second Response = f (1) · · · f (i) · · · f (t)

On the other hand, as far as a security perspective is concerned, in order to

prevent attacks based on hash function collisions, 2λ bits of Salt are introduced, as

suggested in the documentation [25]. Next, we focus on deepening the configurations

employed in order to ensure improvements to the scheme, both in terms of efficiency

and security.

Fixing Second Challenge Weight

Considering the second challenge, consisting of (b(1),· · · , b(t)), it will always have

fixed weight equal to ω. This value represents the number of rounds in which the

V erifier requires the values associated with b = 1, while t − ω are the rounds in

which b = 0.

In the first case, the Prover is required to send only a seed of length λ and without

revealing y (since the V erifier can recompute it independently). A valid choice it so

choose a value of ω close t. Thus, the goal is to reduce communication costs as much

as possible, for as many rounds as possible. Such an intervention, however, changes

the cost of forgery attacks, as an adversary may take advantage of the dominance of

b = 1-valued rounds.

Using Seed Tree

For each execution of the signature algorithm, t seeds are generated Seed(1),· · · , Seed(t),

which will be used to sample, at each round, u’(i) and e’(i). These seeds are ob-

tained through a tree-data structure, composed from the root MSeed||Salt, with

MSeed $←− {0; 1}λ. This list of seeds Seed(1),· · · , Seed(t) represents the leaves of the

tree, as it characterizes its lowest level.

Let it be known that the Prover is required to send the seed in ω rounds, while

in the remaining t − ω rounds it is obliged to reveal all data. In conclusion, the

maximum number of nodes to be revealed is equal to (t− ω) log2( t
t−ω ). So, sending
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all seeds has a communication cost equal to

|SeedPath| = λ(t− ω) log2( t

t− ω
).

Postponing first response verification

The verification of the first challenge can be postponed until the end of the control

algorithm.

Indeed, at each round, the V erifier can get y(i) (whether he received it from the

Prover or recomputed it locally from Seed(i)).

Rather than replying with (h(1),· · · , h(t)), the Prover conveniently can send

h = Hash(y(1), y(2),· · · , y(t)).

To generate the second challenge, the Prover uses h (since this value is included in

the signature). After the execution of all rounds, the V erifier can locally recompute

h. If the V erifier’s recomputation coincides with the given value of h, then either a

collision has been found in the hash function or the t vectors y(1), y(2),· · · , y(t) are

with certainty valid.

Reducing commitment size

In each round, the V erifier can always recompute one of the two commitments

locally. Since the second challenge vector has fixed weight ω close to t, the V erifier

will recompute most of the commitments c
(i)
1 and only a few commitments c

(i)
0 . As for

commitments c
(i)
1 , the Prover can conveniently associate with a single hash digest

c1 = Hash(c(i)
1 ,· · · , c

(t)
1 ).

Let J ⊆ {1,· · · , t} be the support of (b(1),· · · , b(t)) (i.e., the set of indices i such

that b(j) = 1): the V erifier will know all c
(i)
1 with i ∈ J and will not know those

for which i ̸∈ J . For each of the latter indices, the Prover will have to include c
(i)
1

in the second answer. In this way, the total cost associated with the commitments
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c
(i)
1 ,· · · , c

(t)
1 will be

|Com(1)| = 2λ⏞⏟⏟⏞
c1

+ 2(t− ω)λ⏞ ⏟⏟ ⏞
c

(i)
1 , i ̸∈J

= 2λ(t− ω − 1).

For the commitments c
(i)
0 , the Prover can construct a Merkle tree T , using c

(1)
0 ,· · · , c

(t)
0

as leaves, with d0 as the root. The V erifier will be able to recompute all c
(i)
0 with

i ̸∈ J ; furthermore, to certify that the Prover has bound to correct values, the

V erifier will require a Merkle Proof for all remaining c
(i)
0 .

Let it be known that t − ω rounds are characterized by a second zero-valued

challenge. Normally, sending all the proofs would require (t− ω) log2(t) hash digests

(there being log2(t) digests for each of the t−ω leaves for which the proof is required).

More conveniently, it is possible to consider how these proofs have paths in common:

the number of different hashes that are required is no greater than (t− ω) log2( t
t−ω ).

In doing so, the total cost associated with the commitments c
(1)
0 ,· · · , c

(t)
0 will be

limited superiorly by

|Com(0)| = 2λ⏞⏟⏟⏞
c0

+ 2λ log2( t

t− ω
)⏞ ⏟⏟ ⏞

P roof di c
(i)
0 , i ̸∈J

= 2λ(1 + (t− ω) log2( t

t− ω
)).

3.5 CROSS Signature Scheme

After carefully evaluating all previously optimizations, the actual signing scheme

consists of the following steps (Fig. 3.2, 3.3)

Signing

1. sample Salt $←− {0; 1}2λ;

2. sample MSeed $←− 0; 1λ and build a seed tree, which has as its leaves the t

elements Seed(1),· · · , Seed(t). The single Seed(i) is needed to sample u′(i) and

e′(i), which are actually employed in round i;

3. for rounds i = 1,· · · , t computes the restricted transformation σ(i) and the

commitments c
(i)
0 and c

(i)
1 , as defined in CROSS-ID. It also uses the Salt and

round index i within the hash functions to add security;
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4. builds the Merkle T tree with the commitments c
(1)
0 ,· · · , c

(t)
0 ;

5. generates the vector of the first challenge (β(1),· · · , β(t)) using: the message,

the Salt and the commitments;

6. compute (y(1),· · · , y(t)) as described in CROSS-ID, and then generate h by

hashing;

7. generates the vector of the second challenge b = (b(1),· · · , b(t)) ∈ {0; 1}t from

the hash of: message, Salt, commitment, response and h. Such a vector has

fixed Hamming weight equal to ω. In addition, the set J is defined as the

support of b, characterizing the indices i such that b(i) = 1;

8. computes SeedPath as the set of intermediate nodes of the seed tree, which

are needed to recompose the Seed(i), for i ∈ J ;

9. configures MerkleProof as a structure containing the proofs for the leaves

c
(i)
0 i ̸∈J , in order to recompute the root of the Merkle tree;

10. the signature obtained will be

Signature =
{︁
Salt, c0, c1, h, SeedPath, MerkleProof(T0), {y(i), σ(i), c

(i)
1 }i ̸∈J

}︁
.
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Private Key e ∈ En

Public Key En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

Input Message Msg
Output Signature Signature
SIGNER VERIFIER
Sample MSeed $←− {0; 1}λ, Salt $←− {0; 1}2λ

Generate (Seed(1),· · · , Seed(t)) = SeedTree(MSeed,Salt)

For i = 1,· · · , t :
Sample (Seed(u′), Seed(e′)) Seed(i)

←−−−− {0; 1}2λ

Sample u′(i) Seed(u)’
←−−−−− Fn

p , e′(i) Seed(e’)
←−−−−− En

Compute σ(i) ∈ En such that σ(i)(e′(i)) = e
Set u(i) = σ(i)(u′(i))
Compute s̃(i) = u(i)H⊤

Set c
(i)
0 = Hash(s̃(i), σ(i), Salt, i)

Set c
(i)
1 = Hash(u′(i), e′(i), Salt, i)

Set T = MerkleTreee(c(1)
o ,· · · , c

(t)
o )

Compute co = T.Root()
Compute c1 = Hash(c(1)

1 ,· · · , c
(t)
1 )c

Generate (β(1),· · · , β(t)) = GenCh1(co, c1, Msg, Salt)

For i = 1,· · · , t :
Compute y(i) = u′(i) + β(i)e′(i)

Compute h(i) = Hash(y(i))

Compute h = Hash(h(1),· · · , h(t))
Generate (b(1),· · · , b(t)) = GenCh2(co, c1, β(1),· · · , β(t), h, Msg, Salt)
Set J = {i|b(i) = 1}
Set SeedPath = SeedPath(MSeed, Salt, J)

For i ̸∈ J :
Set f (i) := (y(i), σ(i), c

(i)
1 )

Compute MerkleProofs = T.Proofs({1,· · · , t} \J)
Set Signature = {Salt, c0, c1, h, SeedPath, MerkleProofs, {f (i)}i ̸∈J}

Signature−−−−−−→

Figure 3.2: Signature Generation

Verification:

1. generates the vector of the first challenge (β(1),· · · , β(t)) from Msg, Salt, c0

and c1;

2. generates the vector of the second challenge (b(1),· · · , b(t)) from Msg, Salt, c0,

c1, β(1),· · · , β(t) and h;

3. using SeedPath, generates i seeds Seed(i)
i∈J ;

4. for i ∈ J , recomputes c
(i)
1 , y(1), and h(1);
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5. For i ̸∈ J , compute h(i) = Hash(y(i)) and c
(i)
1 ;

6. uses the MerkleProof, along with the c
(i)
0 i ̸∈J , to recompute and verify the c0

root;

7. verifies c1 = Hash(c(1)
1 ,· · · , c

(t)
1 );

8. verifies h = Hash(h(1),· · · , h(t)).

Futhermore, the specific functions for the realization of complex data structures,

which are implicit for now, will be made explicit in the next section.

Private Key e ∈ En

Public Key En, H ∈ F(n−k)×n
p , s = eH⊤ ∈ Fn−k

p

Input Message Msg
Output Signature Signature
PROVER VERIFIER

Signature−−−−−−→
Generate (β(1),· · · , β(t)) = GenCh1(c0, c1, Msg, Salt)
Generate (b(1),· · · , b(t)) = GenCh2(c0, c1, β(1), β(t), h, Msg, Salt)
Set J = {i|b(i) = 1}
Generate {Seed(i)

i∈J = GetSeeds(SeedPath, Salt)}

For i ∈ J :
Compute (Seed(u′), Seed(e′)) Seed(i)

←−−−−− {0; 1}2λ

Sample u′(i) Seed(u’)
←−−−−− Fn

p , e′(i) Seed(e)’
←−−−−− En

Set c
(i)
1 = Hash(u′(i), e′(i), Salt, i)

Compute y(i) = u′(i) + β(i)e′(i)

Compute h(i) = Hash(y(i))

For i ̸∈ J :
Set h(i) = Hash(y(i))
Compute s̃(i) = σ(i)(y(i))H⊤ − β(i)s
Set c

(i)
1 = Hash(h(1),· · · , h(t))

Verify h = Hash(h(1),· · · , h(t))
Verify c0 = VerifyMerkleRoot({c(i)

0 }i ̸∈J , MerkleProof)
Verify c1 = Hash(c(1)

1 ,· · · , c
(t)
1 )

Figure 3.3: Signature Verification

Size Analysis

The scheme just described is characterised by a public key pk with dimension

|pk| = (n− k)⌈log2(p)⌉⏞ ⏟⏟ ⏞
s

+ λ⏞⏟⏟⏞
Seedpk

.
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Similarly, the signature size is

|Signature| = 8λ⏞⏟⏟⏞
h,c0,c1,Salt

+ λ(t− ω) log2

(︂ t

t− ω

)︂
⏞ ⏟⏟ ⏞

SeedPath

+ 2λ
(︂
1 + (t− ω) log2

(︂ t

t− ω

)︂)︂
⏞ ⏟⏟ ⏞

MerkleProof

+

+ (t− ω)
(︂

2λ⏞⏟⏟⏞
c

(i)
1

+ n⌈log2(p)⌉⏞ ⏟⏟ ⏞
y(i)

+ m⌈log2(z)⌉⏞ ⏟⏟ ⏞
σ(i)

)︂
⏞ ⏟⏟ ⏞

f (i), i ̸∈J

.
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Security Analysis

Recall that we provided both the EUF-CMA security statement in lemma 11, ensuring

that the scheme is designed to resist forgery attacks, and the hardness of the

underlying problem in lemma 10; in the next, we will focus on non-structural attack

realized via ISD framework in order determine the choice of parameters for a given

security level.

Specifically, we will first provide a general description of the the best-known

algorithms for the subset sum problem adopted to R− SDP in [5] for the particular

case of z ∈ 2, 4, 6 and in [20] for arbitrary values of z , and then we will show how

to optimize the collision search subroutine using the approach proposed in [17] for

solving the Nearest Neighbor Search problem using the Locality Sensitive Framework.

Finally, an estimate of the security level of R− SDP will be given when z = 2 and

q = 127, i.e., the one chosen in [26].

4.1 Partial Gauss Elimination Step

As already explained, the algorithms covered in the following analysis will follow the

PGE + ISD framework presented in Algorithm 1.

Quasi-Systematic Form

Given the parity-check matrix H ∈ F(n−k)×(n)
p , an information set I ⊆ {1, . . . , n} of

size k is chosen and H is brought into quasi-systematic form. For this, let I ′ be a set

of size k + ℓ which contains the information set I and transform H as

45



Chapter 4 Security Analysis

UHP = H̃ =

⎡⎢⎣Idn−k−ℓ H1

0 H2

⎤⎥⎦
where U ∈ F(n−k)×(n−k) is an invertible matrix and P ∈ F(n−k)×(n−k) is a permutation

matrix.

Definition 4.1.1. Given the parity check matrix H ∈ F(n−k)×(n)
p , an information

set I ′ ⊆ {1, . . . , n} of size k + ℓ such that I ⊆ I ′, the cost of computing the quasi-

systematic form of H, following the PGE framework is given by:

CQSF (p, n, k, ℓ) = (n− k − ℓ)2)(n + 1) (⌈log2(p)⌉+ ⌈log2(p)⌉2)

This splits the unknown error vector e into the positions indexed by I ′, i.e.,

eP T = (e1, e2). Thus, we get the system of two equations.

e1 + e2H⊺
1 = s1

e2H⊺
2 = s2

Recalling that we assume that e has t non zero entries within I ′ and ω − t on the

other n− (k + ℓ) coordinates , thus e1 ∈ En−(k+ℓ),ω−t and e2 ∈ Ek+ℓ,ω. To solve the

system, one enumerates solutions e2 of the second equation e2H⊺
2 = s2 and checks

for each one if the remaining e1 = s1 − e2H⊺
1 completes it to a valid, i.e., restricted,

solution.

In the next we will analyze some approach that can be used to efficiently compute

the list of vectors e2 that are solution of

s2 = e2HT
2 (4.1)

In particolar one can state that:

Lemma 12. An algorithm using the PGE setup and ISD framework finds a valid

solution for 3.1.1 with time complexity

CP GE+ISD(p, z, n, k, ω) = CQSF (p, n, k) + CSolver(p, z, n, k, t)
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and probability:

Psucc =

⎛⎝(︁k+ℓ
t

)︁(︁n−(k+ℓ)
ω−t

)︁(︁n
ω

)︁
⎞⎠

Proof. Each execution of the algorithm first computes the Gaussian partial elimi-

nation setting and then uses a particular approach to find the solution of 4.1, this

explain the cost of a single iteration. The average number of iteration, recalling 2.10,

is the inverse of the success probability Prsucc for the assumed distribution of weight

t.

4.2 Stern Algorithm

Let us begin by analyzing an algorithm based on meet-in-the-middle, this approach

was adopted for the syndrome decoding problem by Stern and Dumer in [13] and

[14].

This approach considers a partition of [k + ℓ] by choosing uniformly at randomly

two subsets P1 and P2, with size ⌊k+ℓ⌋
2 and ⌈k+ℓ⌉

2 respectively, such that [k + ℓ] =

P1 ∪ P2, then enumerates the solutions for 4.1 by a collision search of the two lists

defined as follows.

• L1 = {(xA, (xA, 0)HT
2 ) |xA ∈ E⌊ k+ℓ

2 ⌋} with size |L1| = z⌊ k+ℓ
2 ⌋

• L2 = {(xB, s2 − (0, xB)HT
2 ) |xA ∈ E⌈ k+ℓ

2 ⌉} with size |L2| = z⌈ k+ℓ
2 ⌉

We find a solution (xA, xB) for each pair xA and xB such that

(xA, 0)HT
2 = s2 − (0, xB)HT

2

Algorithm 3: Restricted Stern
Input: n, k, p, z, s ∈ F n−k

p , H ∈ F
n×(n−k)
p

Internal Parameters: ℓ
Output: Partial error solution e2
s2, H2 ← ComputeQuasiStandardForm(s, H, ℓ)
L ← MergeList(L1, L2, ℓ, s2, k + ℓ)

Lemma 13. The cost of a single iteration of Stern’s algorithm on restricted set

requires on average:
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CStern(p, z, n, k, t) = CMergeLists(L1,L2,ℓ,s)
znpk−n

where

CMergeLists(L1,L2, ℓ, s) = |L1|
(︃⌊︃

k + ℓ

2

⌋︃
(⌈log2(p)⌉+ ⌈log2(p)⌉2) + log2(|L1|)

)︃
+

|L2|
(︃⌈︃

k + ℓ

2

⌉︃
(⌈log2(p)⌉+ ⌈log2(p)⌉2) + log2(|L2|)

)︃
+ |L1||L2|

pℓ

Proof. This cost derives directly from 8, the only difference is that a concatenation

merge is performed here and not a sum merge, this is because it is not necessary to

check the weight condition because the collisions depend only on the syndrome value.

The overall cost is divided for the number of solutions.

Lemma 14. The Stern algorithm requires an amount of memory equal to:

MStern(p, z, n, k, t) = min{M1, M2}

Where |Mi| = |Li|(ui log2(z)) for i = 1, 2

4.3 Properties of the Restricted Set Structure

Let us first discuss some possible approaches for exploiting the properties of values

living in the restricted set; in particular, following the analysis carried out in [5], we

will focus on how different choices of z affect the number of representations for a

vector with a generic weight and values living in the restricted set.

Exploiting Additive Structure of Restricted Set

To increase the number of representations was proposed a slight modification to the

additive structure of the restricted set: the search is not carried out within lists

containing vectors with values in E0 but in E0∪D, where D contains elements defined

from original set E.

In the following we will use E ∪ Dn,u to denote the set of vectors of length n with

u and entries in E and di in D, as (E ∪ D)n,u,d. If the entries live only within the

original restricted set we will simply refer to this set as En,u.
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The new algebraic set has a different additive structure from that of E, more

specifically for a given x ∈ E, one can define:

αE(x) := |{b ∈ E | ∃ c ∈ E s.t. b + c = x}| (4.2)

αD(x) := |{b ∈ E | ∃ c ∈ D s.t. b + c = x}| (4.3)

These two amounts denote the number of possibilities to write an element x ∈ E as

b+ c, with both b, c ∈ E or b ∈ E and c ∈ D. Since for our choice of E these quantities

do not depend from the particular x ∈ E, we simply denote them as αE and αD.

Furthermore, given an x ∈ D we will use the following notation:

βx := |{b ∈ E | ∃ c ∈ E s.t. b + c = x}| for x ∈ D (4.4)

This refers to the number of possible pairs in E that when summed return x; since

this amount does not depend on x, so we will simply refer to it as β.

Shifting Restricted Set Values

In the case of error vectors with large weight, as proposed in [26], given x ∈ E it is

possible to define the new set

Ex = {a− x | a ∈ E} \ {0}

Chosen x̃ = (−x, ... ,−x), with x̃HT = sx, one can consider a new instance of the

problem by changing the target vector, we ask to find the vector ẽ = e+x̃ ∈ (Ex∪{0})n

such that ẽHT = s+sx. Since the entries of e are picked independently, the Hamming

weight of the new instance follows a binomial distribution:

Pr(wtH(ẽ) = ω) = (k+ℓ
ω )(z−1)w

zk+ℓ

Having assumed that the target error weight e for 4.1 has weight u, this is the

probability that ux entries of e are equals to the shiftingx while the other u−ux = ω

don’t, it follows that the total cost of the generic solver is then the cost of a single

iteration divided by the success probability.

It should be noted, however, that the sets obtained by shifting may not preserve

their own additive structure: one can build from the D corresponding to E a Dx

49



Chapter 4 Security Analysis

which fits Ex. This is done by shifting the elements of D and neglecting those that

would represent zero.

Estimate the number of representations

We now go on to analyze our reference instance of the restricted set, where for g = 2

non primitive element of Fp with multiplicative order z = 7 we have:

E = {gi ( mod p) | i ∈ {0, . . . , 6}}.

The supporting additive set is defined as:

D = {a− b | a, b ∈ E} \ E0

Lemma 15. Given e ∈ (E0 ∪ D)(k+ℓ,ui,di) , the overall numbers of pairs eA, eB ∈

(E0∪D)(k+ℓ,ui+1,di+1), with ui+1 = ui
2 +εi+1 and di+1 = di

2 +δi+1, such that e = eA, eB

is given by:

ρi =
(︁ ui

ui+1

)︁ (︁ ui+1
2εi+1

)︁
α

2εi+1
E

(︁(ui/2)−εi+1
δi+1

)︁2
α

2δi+1
D

(︁ di
(di/2)

)︁

Figure 4.1: Representations of a generic vector when z = 7

Proof. This formula, shown in Figure 4.1, can be explained as follows: the first three

terms describe all the possible ways in which we can distribute the entries with values

living to the set E of the two addend vectors, such that, when summed, they overlap

in 2εi+1 coordinates, resulting in ui values in set E while αE , the additivity of E,
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specify the number of possible ways we can choose the 2εi+1. The following two

terms describe all the possible way to choose the overlaps of the δi+1 extra values in

D of one vectors in the remaining (ui/2)− 2εi+1 coordinates of the other one, such

that when summed they result in values in E, for each we can choose αD different

values (and then do the same for the other vector). The last term represents all

possible ways to obtain the di coordinates in D by splitting.

Smaller Restricted Sets

Let us analyze the case of the restricted sets for small and even values of z, in

particular focusing on how it changes the additive structure, and consequently the

number of representations.

We first see that the following lemma holds:

Lemma 16. Let E = {gj |j = 0, . . . , z − 1} ⊆ Fp be a restricted set, g ∈ F∗
q a non

primitive element of multiplicative order z. When z is even, the restricted set can be

expressed as

E = {±gi|i ∈ {0, . . . , z
2 − 1}

Proof. Since the product of every pair of elements of the restricted set is still an

element of E, it is enough to prove that −1 is in E.

By definition gz = 1 when i = z and gi ̸= 1 if i < z, then when we consider x = g
z
2

we have:

x2 = gz = 1 =⇒ x2 − 1 = 0 =⇒ (x + 1)(x − 1) = 0, since z/2 < z, then

x = g
z
2 = −1

Next we will consider in the case of restricted sets constructed with small and even

values of z, where their will depend on the factorization of (xz − 1) and supporting

set D ⊆ {a + b | a, b ∈ E}. Moreover, according to lemma 16, the definition of these

particular sets allows to build sum to 0 pairs of values in some of the overlapping

entries.
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z = 2

In this first case we have the sets

E = {±1} D = {±2}

To introduce the representations for this particular case we must first note that

the way the sets are defined implies that E does not possess an additive structure,

consequently αE = 0, while αD = 1 and β = 1.

Lemma 17. For e ∈ (E ∪ D)k+ℓ,u,d the number of e1, e2 ∈ (E ∪ D)k+ℓ,ui,di
such that

e1 + e2 = e is given by:

ρi =
∑︁n

δE∈Uδ

(︁ u
u/2
)︁ (︁ u

δE

)︁2 (︁ di
εD+δD,εD

)︁ (︁k+ℓ−(u+d)
oE

)︁
Where: Uδ =

[︂
max{0, di− d

2}, min{d− ε−di
2 , di,

u
2}
]︂
, di+1 = δD + δE and ui =

u
2 + oE + εD.

Figure 4.2: Representations of a generic vector when z = 2

Proof. This formula, shown in Figure 4.1, can be explained as follows: the first term

represents all possible ways of obtaining the elements into E, without overlaps. From

both of the ui/2 entries we can choose δE position for the overlaps, which explain the

second binomial coefficient. Then the di entries are obtained via the non-overlapping

distribution of the remaining δD values in D while the other δE entries from the

overlap of εD entries in D. The last term represents all possible distributions of the

zero-sum oE pairs in D on the remaining coordinates.
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z = 4

In this case we have

E = {±1,±g} D = {±(g ± 1)} ⊆ {a + b | a, b ∈ E}

While α = 0 remains, unlike the previous case there are two possible ways of

representing an x ∈ E as a sum of a ∈ E and b ∈ D, so αD = 2, as well as for each

x ∈ D there are two possible pairs of a ∈ E and b ∈ D such that x = a + b, then

β = 2.

Consequently, the number of representations is the same as 17 but increased by

α2δE
D βεD .

z = 6

In this case, we have E = {±1,±g,±(g− 1)}. Note that E already possesses additive

structure: any element e ∈ E can be obtained as e = e1 + e2 = e2 + e1 with e2, e1 ∈ E,

e2 ̸= e1, then αE = 2

E = {±1,±g ± (g − 1)} D = ∅ (4.5)

Lemma 18. For e ∈ (E ∪ D)k+ℓ,u,d the number of e1, e2 ∈ (E ∪ D)k+ℓ,ui,di
such that

e1 + e2 = e, when z = 6 is given by:

ρi =
(︁ u

u/2+εi,2εi

)︁
α2εi

E

4.4 BJMM Algorithm

BJMM is a the multi-level algorithm which uses representations from a sum partition

instead of a set partition and decompose the search for the error vector by constructing

partial solutions. In each level, the algorithm identifies vectors with a certain weight

whose syndrome is consistent with the equation for a specific number of input. Using

the representations technique allows to improve the collision search process: for each

level it is possible to choose the number of syndrome symbols on which to merge so

as to reduce the number of intermediate results but expecting that a representation

of the final solution will be found on average.
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The purpose of this analysis is to provide a generalized description of the BJMM

algorithm with a generic number of levels M , valid for the different instances of the

restricted set previously analyzed.

Parameters Description

For the vectors on the i-th level we will denote ui and di as the number of entries in

E and D, respectively.

Then, recalling that we are searching for e ∈ Ek+ℓ,u0 , the weights for the M levels

are:

u0 = u0 . . . ui = ui−1
2 + εi . . . uM = um−1

2

d0 = 0 . . . di = di−1
2 + δi . . . dM = dm−1

2

So, the internal parameters which can be optimized are: ε1, . . . , εm−1, δ1, . . . , δm−1,

corresponding, respectively, to the overlapping entries in E and D on each level and

ℓ, the redundancy of the small instance due to the partial Gaussian elimination.

When the set is shifted, the algorithm must also identify the optimal weight

distribution, which entails optimizing u0 ∈ {0, . . . , k + ℓ}. Otherwise, it always starts

from full weight vectors.

It is also important to note that when the elements from D are not involved in the

construction of intermediate lists, thus δi = 0 for i ∈ 1, . . . , M − 1.

Find error vector via partial solutions

On the i-th level, the algorithm will merge the input lists on a specific number of

entries of the syndrome, taking into account a specific target vector. Specifically, on

level i BJMM perform a merging subroutine on ℓi symbols of the syndrome:

ℓi = ⌊logp(ρi)⌋ - ∑︁M−1
j=i ℓj

From 6 we know that algorithm 2 when merge two lists L1, L2 on ℓi with a target

vector t ∈ F ℓi
p obtain an average number of collision equal to (|L1||L2|)/pℓi , the choice

of ℓi guarantees that at least one representation of the final solution will survive each

merge on average.
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Figure 4.3: Tree decomposition of the target vectors

The syndrome vector can be decomposed at each level through a top-down proce-

dure as shown in Figure 4.3. We start from the first level by choosing two vectors

t1
1, t2

2 whose sum satisfies the syndrome over a specific number of values. Iterating

this process, we obtain a binary tree structure of depth M , in which each node is

a vector. The sum of each pair of child nodes satisfies the syndrome value of the

parent node over a certain number of values.

In particular on the i-th level, the algorithm merges 2i pairs of input lists on

ℓi symbols using the target vectors ti
1, . . . , ti

2i , each can be decomposed choosing

ti+1
2j−1, ti+1

2j ∈ Fℓ̃i
p such that ti

j |ℓ̃i
= ti+1

2j−1 + ti+1
2j for j ∈ {1, . . . , 2i} with ℓ̃i = ∑︁M

j=i(ℓj)

Next we will show how by choosing this approach, all vectors in the output lists of

the i-th level partially satisfy the equation on ∑︁M−1
j=i ℓj symbols.

Algorithm Description

The algorithm starts by computing 2M base lists to be merged in the upper level.

The process for defining base list pair begins with the selection of a partition of

[k + ℓ]. This is done, by randomly choosing two subset P1 and P2, with size ⌊k+ℓ⌋
2

and ⌈k+ℓ⌉
2 respectively, such that [k + ℓ] = P1 ∪ P2, and then one can define:

LBi = {e ∈ (E ∪ D)k+ℓ |wtH(e) = uM + dM supp(e) ⊂ Pi} for i ∈ (1, 2)

with size |LBi | =
(︁ |Pi|

uM ,dM

)︁
zuM zdM

D

Lemma 19. The cost of single iteration on BJMM algorithm with M level on

restricted set 4 requires on average:
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Algorithm 4: Restricted BJMM with depth-M
Input: n, k, p, z, zD, αE, αD, s ∈ F n−k

p , H ∈ F
n×(n−k)
p

Internal Parameters: u0, ℓ, ε1, . . . , εM−1, δ1, . . . , δM−1
Output: Partial error solution vector
s2, H2 ← ComputeQuasiStandardForm(s, H, ℓ)
u1, . . . , uM ← ComputeWeightsE(u0, ε1, . . . , εm−1)
d1, . . . , dM ← ComputeWeightsD(d0, δ1, . . . , δm−1)
ℓ0, . . . , ℓm−2 ← ComputeSymbols(u0, u1, . . . , uM , ε1, . . . , εm−1, d1, . . . , dM ,
δ1, . . . , δm−1)

for i = 0 to M − 1 do
for j = 1 to 2i do

ti+1
2j−1, ti+1

2j ← ComputeTargetV ectors(ti
j)

end
end
i = M
for i = M − 1 to 1 do

for j = 1 to 2i do
L(i,j) ← MergeList(L(i+1,2j−1), L(i+1,2j), ℓi, t(i,j), ui, di)

end
end

CBJMM (p, z, n, k, t) =
∑︁M−1

i=0

∑︁2i

j=1 CMergeLists(Li+1
2j−1,Li+1

2j ,ℓi,ti,j)
z(k+ℓ)pk−n

Where, from Lemma 2, we have:

CMergeLists(Li+1
2j−1, Li+1

2j , ℓi, ti,j) =

(|Li+1
2j−1|+ |Li+1

2j |)
(︂
(ui+1 + di+1)ℓi(⌈log2(p)⌉+ ⌈log2(p)⌉2)

)︂
+

(|Li+1
2j−1|) log2(|Li+1

2j−1|)+

(|Li+1
2j |) log2(|Li+1

2j |)+

|Li+1
2j−1||L

i+1
2j |

pℓi
(k + ℓ)⌈log2(p)⌉

Proof. On the level i one need to merge on ℓi symbols of the syndrome 2i pairs of

lists from the lower level, as shown in figure 4.4, containing vector with ui+1 values

in E and di+1 in D. Then, for each level from M − 1 to 0 the algorithm performs the

procedure 2 for each input lists pair. The overall cost is divided for the number of

solutions.

It is important to note that the vectors of weight ui+1 + di+1 within the input
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Figure 4.4: BJMM with M levels

lists at the i-th level partially satisfy the equation for ∑︁M−1
j=i+1 ℓj symbols, while the

vectors within the output list at the i-th level are those of weights ui + di that

partially satisfy it on additional ℓi symbols, resulting in a total of ∑︁M−1
j=i ℓj symbols

of the syndrome satisfied. iterating this procedure and remembering how the symbols

where to merge are defined, this ensures that the solution found in the last level is of

weight u0 and satisfies the equation on ℓ symbols.

Assuming from the lemma 9, we can state that the size of the j-th list on level i ,

for j ∈ {1, . . . , 2i}, is equal to:

|Li,j | = min

{︄
|Li+1

2j−1||L
i+1
2j |

pℓi
,

(︄
k + ℓ

ui + di

)︄(︄
ui + di

di

)︄
zuizdi

D p
−
∑︁M−1

j=i
ℓj

}︄

Having defined the lists size for each level, one can estimate the amount of memory

required:

Lemma 20. The BJMM algorithm with depth M requires an amount of memory
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equal to:

MBJMM (p, z, n, k, t) = maxi∈{1,...,M}{min{Mi,j , Mi,j+1} for odds j ∈ {1, . . . , 2i}}

Where |Mi,j | = |Li,j | (ui log2(z) + di log2(zD))

Proof. Each merging subroutine requires to store at least one of the two input lists,

for each pair we can store the smaller one. The cost is given my the size of the larger

memorized list.

4.5 Improve Collision Search via LSF

In this section, we will demonstrate how the definition of problem 2.5.1 can be

adapted to the search for the error vector that satisfies equation 4.1. Subsequently,

we will analyze how a solver LSF -based for the the NN -search problem can be

adapted to the R− SDP .

The search aims to find a solution vector e ∈ Ek+ℓ,u from the collision search

between two lists, each containing vectors with values only in E or constructed using

also the set D. Since a pair (eA, eB) ∈ (E ∪D)k+ℓ,uA,d × (E ∪D)k+ℓ,uB ,d is a solution

eA + eB ∈ Ek+ℓ,u, they must have exactly o = uA + uB − u overlaps, then the search

for a pair whose sum satisfies the condition on weight can be carried out among

those that have exactly o overlaps.

We want to analyze how this approach introduces an improvement for the BJMM

algorithm for the different versions of the restricted set previously discussed. In

fact different choices of z and g imply restricted sets with different properties in

the additive structures resulting for each in different types of values that must be

summed to obtain the desired solution.

Therefore, given the mapping function B : (E ∪ D)k+ℓ −→ Fk+ℓ
2 , such that b = B(e)

is the binary support of the restricted vector e, we will search for the pairs eA, eB ∈

L1 ×L2 such that eA + eB ∈ Ek+ℓ,u among those for which B(eA)∧B(eB) ∈W2
k+ℓ,o.

Definition 4.5.1. γ-Nearest Neighbor Search Given two lists L1,⊆W2
k+ℓ,u1,d

and L2 ⊆W2
k+ℓ,u2,d find all pairs (x, y) ∈ (L1 × L2) s.t. x ∧ y ∈W2

,k+ℓ,o.
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4.5 Improve Collision Search via LSF

So we will show how to solve this problem on input lists B(L1), B(L2), and then

check if the original vector of one of the solutions is a valid restricted error.

Note that it holds for several choices of z, since it refers only to the number of

non-zero entries that must overlap in a pair of fixed solutions for their sum to return

a vector with desired weight and values in restricted set.

For example, when z = 2 the set E does not have an additive structure, but

each value has an inverse, so in the overlapping region the entries of E add up to 0,

deleting extra entries, while in order to get a value in E in the resulting vector it is

necessary that one entry with value in E and one with value in D be added together.

On the other hand, when z = 7 values in E don’t have an inverse but there are more

possibilities to obtain a value in E by the sum of two entries.

Geometric Interpretation of the Algorithm

Let us first recall the definition of a region for a generic v ∈W2
k+ℓ,u+d:

Regionv,γ = {x ∈ F n
2 : (x ∧ v) ∈W2

k+ℓ,γ}

Given 0 ≤ f ≤ k + ℓ we are interested in those vectors in the region the region whose

weight is equal f .

Definition 4.5.2. Spherical Cap For integers 0 ≤ γ ≤ f ≤ k + ℓ and v ∈W2
k+ℓ,f ,

a Spherical Cap is defined as:

Cv,f,γ := W2
k+ℓ,u+d ∩ Regionv,γ

Cv,f,γ includes all elements on the f -Sphere with exactly γ overlaps with v.

The spherical cap definition allows the identification of the set of valid filters for v.

This is achieved by considering the subset Cf ⊆W2
k+ℓ,f :

Bv,f,γ = Cf ∩ Cv,ω,γ = Cf ∩ Regionv,γ

Lemma 21. For integers 0 ≤ γ ≤ f ≤ n and a fixed vector v ∈ (E ∪ D)k+ℓ,ui,d the

number of c ∈ Cf such that c ∧B(v) ∈W2
k+ℓ,γ is given by:

Pui+d,γ= V ol(Bv,f,γ) =
(︁ui+d

γ

)︁ (︁(k+ℓ)−(u+d)
f−γ

)︁
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Figure 4.5: Valid Filters for a generic vector

Proof. As previously mentioned, the valid centers must have exactly γ overlaps in

the binary support support of the restricted vector e. Thus, the first term represent

all the possible ways to choose γ overlap out the non zero entries of v and the second

term the remaining many 1’s in the 0-coordinates.

Next, we will analyze the application of a search algorithm that is designed to

identify collisions between two lists of vectors, where the vectors within each list

have the same Hamming weight, but the Hamming weights could differ slightly, by a

maximum of one unit, between the two lists.

Furthermore, since we are interested in finding pairs with a certain number of

overlaps, an efficient strategy seems to be to choose those pairs that have fewer or

the same number of overlaps as required in one fraction of the coordinates and none

in another fraction.

This search is realized through filters, in particular we can use two different

bucketing parameters for the two lists to be optimized, i.e. γA, γB and look for those

pairs that have a certain number of common overlaps with the same filter and a

certain number of exclusive overlaps (i.e. where the other vector does not have them).

The following definition introduces the set of bucket centers that detect a fixed

solution pair (eA,eB), i.e., all the centers c ∈ Cf such that B(eA)∧c∧B(eB) ∈W2
k+ℓ,γu

where γu ≤ γ.
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4.5 Improve Collision Search via LSF

Definition 4.5.3. Solution-detecting filters Given eA ∈ (E∪D)k+ℓ,uA,d and eB ∈

(E ∪ D)k+ℓ,uB ,d such that (eA + eB) ∈ Ek+ℓ,u, for integers 0 ≤ γ1, γ2 ≤ uA, uB, f ≤ n

with x = B(eA) and y = B(eB) the set of filters which detect a fixed solution (eA, eB)

is defined as:

Wx,y,f,γ1,γ2 := {c ∈ CF : (c ∧ x) ∈W2
k+ℓ,γA

∧ (c ∧ y) ∈W2
k+ℓ,γB

} :=

Bx,f,γ1 ∩By,f,γ1 := Cf ∩ Regionx,γ1 ∩ Regiony,γ2

Figure 4.6: Valid Filters for fixed solution pair

Lemma 22. For a fixed solution (eA, eB) with eA ∈ (E ∪ D)k+ℓ,uA,d and eB ∈

(E ∪ D)k+ℓ,uB ,d the set defined in 4.5.3 has size:

Dx,y =
∑︁

γu∈Γu

(︁ o
γu

)︁(︁(uA+d)−o
γA−γu

)︁(︁(uB+d)−o
γB−γu

)︁(︁k+ℓ−((uA+d)+(uB+d)−o)
f−(γA+γB−γU )

)︁
Where :

o = uA + d + uB + d− u

Γu =
[︁
max{0, (γA + o)− (uA + d− o

2), (γB + o)− (uB + d− o
2)}, min{γA, γB, o}

]︁
Proof. The first term represents all the possible ways in which i can choose gammau

entries of a filter such that it overlaps with both only in the common region, while

the range specifies for a given choice of γA and γB how many common overlaps we

can identify still detecting both vector. The second and third terms represent the
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exclusive overlaps with the two vectors, respectively, while the last term represents

those in which the filter doesn’t overlap with either.

In order to determine what the bucketing parameter values are such that the

algorithm actually returns a solution, we recall that a given solution must have

exactly o overlaps, consequently for it to be able to detect it must hold that:

γ1 + γ2 ≥ max{0, (f + u)− (k + ℓ)}

This relationship, given the hamming weight of the filters, establishes a lower

bound on the minimum number of overlaps it must necessarily have with both

vectors.

Reducing Filter Set Size

In [17] is proposed a the construction of the set of filters by Random Product Codes

(RPC) which, taking into account the number of filters that detect a given solution,

allows to minimize the size of Cf such that each solution is still detect with a certain

probability P.

For a fixed size of the filters set the probability that exist at least one filter ci ∈ Cf

such that ci ∈Wx,y,f,γA,γB
is given by:

Psucc = 1−
(︄

1− Dx,y

W2
k+ℓ,f

)︄|Cf |

(4.6)

Then one can reduce the size of filters set taking into account this probability and

the size of the set W as defined in 22, in particular by choosing:

|Cf | =
W2

k+ℓ,f

Dx,y
(4.7)

We can expect that a solution is found with good probability.

LSF Solver for R-SDP

Now we will show how to improve the collision search by using the Locality Sensitive

Functions. The solver performs two steps: first assigns each x ∈ L1 to Bucket(c,γ) for

all c ∈ Bγ1,x, we will refer to this phase as bucketing, and the repeat the procedure
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4.5 Improve Collision Search via LSF

for each x ∈ L2 searching for a matching element in each Bucket(c,γ2) for all c ∈ Bγ,y,

this phase is called Checking phase.

Recall that this solver enumerates all the valid solution pairs in L1 × L2 for the

problem 2.5.1 and search among them a solution for 4.1.

Algorithm 5: NN search solver via LSF

Input : Two lists L1 ∈ (E ∪ Dn,ua,d), L2 ∈ (E ∪ Dn,ua,d), a target weight u,
the filters set Cf of size |Cf |, and two bucketing parameters γ1, γ2

Output : list Lpairs containing pairs (x, y) ∈ (L1 × L2) with wtH(x + y) = ωt

Lpairs = ∅
for e1 ∈ L1 do

for c ∈ BB(e1),f,γ do
store e1 in Bucketc,γ

end
end
for e2 ∈ L2 do

for c ∈ BB(e1),f,γ do
for e1 ∈ Bucketc,γ do

if e1 + e2 ∈ En,u then
store (e1, e2) in Lpairs

end
end

end
end
return Lpairs

The next lemma gives the cost of the algorithm:

Lemma 23. Given two lists L1 ⊆ (E ∪ Dk+ℓ,uA,d) and L1 ⊆ (E ∪ Dk+ℓ,uB ,d), and

a filters set CF ⊆ W2
n,f of size |CF | = W2

k+ℓ,f

Dx,y
, one iteration the algorithm 5, on

average, returns a list of candidate solution pairs for 4.1, with probability Psucc as

defined in 4.6 and time complexity:

CLSF (L1, L2, u) = |L1|
PuA+d,γA

Dγ
min(uA+d, f) + |L2|

PuB+d,γB
Dγ

PuB+d,γB

W2
k+ℓ,f

(uA + uB − u)

Where γA and γB are the internal parameters to be optimized.

Proof. Assume that we start bucketing L1, the probability of a vector being stored

in a generic filter is given by PuA+d,γA
, and since we consider only a Dx,y-fraction

of all possible filters and that we have to repeat this operation for each vector we

can justify the cost of first phase as |L1| (PuA+d,γA
)/(Dγ)) min(uA+d, f). The second

step require to perform the same operation for each vector in L2, with a cost equal
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to (|L2|)(Pu2+d,γB
)/(Dγ), and for each vector check whether there is a solution in

the center where it is stored, i.e. for each vector if their sum in the overlapping

region returns a full weight vector, where the average size of a filter is given by

(Pu2+d,γB
)/(W2

k+ℓ,f ) this explains the cost of the second phase.

In terms of memory cost, the algorithm will have to store only the buckets

containing the elements of the first list, consequently we can state that:

Lemma 24. One iteration the algorithm 5 require, on average

MLSF (L1, L2, u) = |L1|Pu1+d1

Representation Technique and Locality Sensitive Functions

One can improve the 4 using 5, replacing the merging search on last level for a

vectors pair (eA, eB) ∈ (L1 × Ł2) ⊆ (E ∪D)k+ℓ,uA,d × (E ∪D)k+ℓ,uB ,d whose sum is a

restricted vector of weight t with the NN -search for the pairs with o = uA + uB − u

overlaps. as shown in Figure.

Figure 4.7: BJMM with depth 2 using LSF

Lemma 25. The cost of a single iteration on BJMM algorithm with M level on

restricted set with LSF solver on last level requires on average:

CBjmm+LSF (p, z, n, k, t) =

(︂∑︁M−1
i=1

∑︁2i

j=1 CMergeLists(Li+1
2j−1,Li+1

2j ,ℓi,ti,j)
)︂

+CLSF (L1,L2,u)

zk+ℓpk−n
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Performances

In this chapter we evaluate the time complexity of the algorithms discussed in the

previous chapter. In particular, we will show two main applications:

• cryptanalysis: we will consider some R − SDP instances that have already

appeared in the literature and that have already been attacked in [5]. We show

that, using the new algorithm we have devised, the security level gets lowered

as the new algorithm significantly outperforms all previously known solvers;

• security of CROSS: we consider the cost of the new algorithm on CROSS

instances. We show that the recommended CROSS instance preserve the

claimed security level, even when considering the new R− SDP solver.

5.1 Cryptanalysis of R-SDP instances

We will now evaluate the time complexity of the discussed algorithms, focusing on

the performance of the algorithm 4 when using the solver 5 at the last level.

We show that this new approach outperforms the classical BJMM for several

choices of z, p, n, k.

To support this claim, we consider some of the instances which have already been

attacked [5]. For these instances, BJMM with two levels resulted in the best attack.

We show that, using the new algorithm with LSF , we are able to further reduce the

security level by a significant amount. The considered instances, together with the

old security levels and the new ones (recomputed according to our new algorithm),

are shown in Table 5.1.
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z p n R W claim (bit) Bjmm2 Bjmm2+LSF

2 16381 500 0.75 0.13 128 76 51
4 197 384 0.5 0.34 177 103 94

Table 5.1: Comparison of attack performance on some instances of R− SDP

It can be seen that this new approach significantly improves attacks on R− SDP

instances with different parameters. Indeed, while we will later analyze the case with

a full-weight error vector, here we search for larger but sparse vectors defined over

smaller restricted sets.

5.2 Confirmation of the security level for CROSS instances

We now consider CROSS instances and evaluate the performances of our algorithm.

We focus on the instance recommended for category 1, whose parameters are as

follows: p = 127, z = 7,n = 127, R = 0.66, W = 1.

Stern

For completeness we show the computational cost using Stern. In Figure 5.1 we

show, for fixed p, z, n, k, w, the overall complexity of algorithm 3 for different values

of ℓ, i.e. the cost of solving the reduced instance 4.1 for 0 ≤ ℓ ≤ n− k.

We can see that the optimum value is above the threshold of 143 bit. It should

be noted that attempting to optimize the search using the LSF framework won’t

produce any improvement, because the vectors of the two lists are obtained by set

partition, all possible pairs when summed return a full weight vector.

BJMM with depth 2 on set E ∪ D

We now discuss how using the LSF framework improves BJMM performance. In

Figure 5.2 we can see that using our proposed new version results in a gain of 12 bit,

reducing the time complexity of the attack but remaining above the claimed security

level.

It is also noted that after a certain value of ℓ the two algorithms have the same

cost, which is not surprising since collision search can be said to be a special case of

NN -search via LSF when full-weight filters are considered, that is, there is only one
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Figure 5.1: Stern performances as redundancy of the smaller instance changes

Figure 5.2: Comparison of the two approaches for BJMM on the set E ∪ D.

filter.

However, by focusing on the ℓ interval for which our approach obtains significantly

better results, we can show how collision search is improved:

In Figure 5.3 we have shown the number of checks we have to make for each

element in the lists. In particular we show this result for the second list, for the first
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Figure 5.3: Comparison of the number of controls per element with LSF vs naive
approach.

one it will be similar.

Recall that before searching for collisions in the algorithm MergeLists the two

lists are sorted according to the syndrome value over a certain number of symbols,

which in our case is ell0, thus comparisons are made between elements that satisfy

the requirement on the syndrome value, this means that each element of the second

list on average is compared with |L1|/pℓ0 elements of the first list.

When using LSF solver 5, before performing the collision search, the vectors are

first sorted on ℓ0 syndrome symbols then filtered according to the distribution of

their binary support, then comparisons are made only among vectors with satisfies

the requirement on the syndrome value and on weight distribution.

Then recalling the proof of lemma 23, the size of valid filters given in and the

size of the filters set chosen via 4.7 , each element of second list is compared with a

68



5.2 Confirmation of the security level for CROSS instances

number of elements of the first list, on average, equal to:

Pub+d

D

(︄
Pua+d

|Cf |
L1
pℓ0

)︄

This through the optimization of the internal parameters of the LSF solver is less

than that obtained by using the naive approach.

We can also show that using our approaches also results in a memory gain,

remembering how this costs are defined in 20 and 24, in Figure 5.4 we show the

memory used by the two approaches.

Figure 5.4: Comparison of required memory for the two approaches.

In particular, we indicate the amount of memory used in correspondence with the

value of optimal ℓ values of the two approaches.
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BJMM with depth 2 on shifted set E ∪ D

We now show how using the LSF framework improves BJMM performance when

we shift the restricted set, i.e. when considering the case described in section 4.3:

Figure 5.5: Comparison of the two approaches for BJMM when restricted set is
shifted.

As we can see in Figure 5.5 this case while achieving an improvement in performance,

the gain in bit is not as significant as in the previous case.

Indeed, as we can in figure 5.6 in the case of the shifted set, the graphs representing

the cost of collision search as ℓ varies results in a very similar trend in both cases. In

particular, the optimal values differ by a few bit.
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Figure 5.6: Collision search performances on shifted set E ∪ D when using the LSF
vs Naive approach.

CROSS Security

Attack Overall Cost (bit)
Stern 153

Bjmm2 168
Bjmm2+LSH 156

Shifted Bjmm2 148
Shifted Bjmm2+LSF 146

Table 5.2: Cost of Attacks for p = 127, z = 7, n = 127, R = 0.66, W = 1

In conclusion, as shown in the Table 5.2, our approach significantly improves

BJMM when used on the set E ∪ D, gaining 12 bits of memory while providing

improvements in memory utilization as well. However, it still remains slightly worse

than Stern while Bjmm2+LSF on the shifted set E ∪ D results in the best time

complexity among the attacks proposed for RSDP , requiring 2146 operation on

average, which means that CROSS achieves NIST security level I even after the

analysis of this new attack.
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Conclusions and Future Works

In this thesis, we first provided some general notions about algebraic coding theory

and cryptographic concepts related to zero-knowledge identification protocols. Then

we described the main features and properties of CROSS, the digital signature

scheme derived via Fiat-Shamir transformation of t parallel executions zero-knowledge

identification protocol CROSS ID.

In parallel, we presented the syndrome decoding problem (SDP ) defined over

a finite prime field and its variant defined over a the restricted set, namely the

R− SDP , which is the NP-hard underlying problem of CROSS.

Finally, we presented the Information set decoding and the best ISD-based solvers

for R− SDP and in particular, we analyzed how to improve BJMM , an algorithm

based on the representations technique, through the use of a solver for the Nearest

Neighbour Search Problem based on Locality Sensitive Functions.

Indeed, we have seen that the application of this particular approach makes it

possible to optimize the collision search proposed in BJMM : solutions for R−SDP

are found among those whose binary support is a solution for the NN search problem.

The results obtained allow for two important interpretations : on the one hand,

the cryptanalysis of some schemes in the literature based on R−SDP is improved by

reducing their security level, on the other hand, it is shown that CROSS, as designed,

achieves the NIST security level I even for this new attack.

Combining the LSF approach with the representations technique, on which

BJMM is based, has made it possible to improve the search for collisions of two

lists of vectors: establishing a positional prerequisite of the support of vectors so

that their sum returns a vector of the desired weight, as has been shown, to decrease
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the number of comparisons.

Starting from these considerations, an interesting development could be to analyze

the asymptotic behaviour of this new approach in order to analyze how performance

changes as code size increases.

Furthermore, as we have already discussed, optimization was achieved through the

use of a positional relation between the supports of the vector, of particular interest

would be to explore the possibility of using the relations between the values of the

restricted set as search criteria, trying to see if they could provide approaches to

improve collision search.

As for the relationship between the performance of our approach and the parameters

of CROSS, let us remember that the particularity of this scheme lies in the reduced

size of the signature and in fast performances, it would be necessary to understand

whether for another choice of parameters that improve the performance of the scheme,

the required security level would still be achieved.

Similarly, some versions of CROSS use a particular version of R − SDP , i.e.

R− SDP (G), whereby solutions take value from a particular subset of the restricted

set, it would be worth analyzing how our approach performs in the case of this

particular instance.

Finally, it should be emphasised the importance to understand the performance

of these algorithms when they are implemented. Let us recall that in this thesis

a theoretical evaluation has been provided. For these attacks to provide good

performance in real contexts, they must be subject to optimization both in terms

of the execution of the individual operations and sub-routines that realize the

analyzed algorithms, and in terms of the memory used. The cost in terms of memory,

in particular, would require a more detailed analysis that takes into account the

implementation strategies and the used devices.
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