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Abstract

This thesis highlights the critical role of submarine vehicles, with a particular
emphasis on the deployment of a Remotely Operated Vehicle (ROV), in enhancing
the exploration and understanding of the underwater domain. The primary purpose
is to devise a guidance, navigation and control system for a BlueROV2, a product of
BlueRobotics, integrated with the SeaTrac Lightweight USBL navigation system by
Blueprint Subsea. The guidance system is designed to compute instructions for the
ROV’s thrusters, facilitating autonomous control over its trajectory and orientation.
At the core of the navigation system is a complex set of sensors, including compasses,
USBL positioning systems, mono and stereo optical systems, Inertial Measurement
Units (IMUs), altimeters, depth meters, and other relevant technologies. A Line
of Sight control strategy was developed to mantain a linear trajectory, while a
digital twin of the ROV, in Unity, mirrors its behavior in real time. This dual
approach synergistically harnesses the physical attributes of the ROV along with
the advanced simulation and analytical capabilities of its digital analogue, providing
a comprehensive methodology for detailed seabed mapping and image processing.
The study concludes with the exhibition of experimental outcomes acquired during
a maritime expedition in the Port of Marseille, demonstrating the efficacy and
efficiency of the implemented control system. The entire work was realized during the
internship for the ERASMUS program at the CNRS (Centre national de la recherche
scientifique) at the University of Aix-Marseille.
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Sommario

Questa tesi esamina l’importanza fondamentale dei veicoli sottomarini, in particolare
di un Remotely Operated Vehicle (ROV), nel promuovere l’esplorazione e la compren-
sione degli ambienti marini. L’obiettivo primario è lo sviluppo di un sistema di guida,
navigazione e controllo per un BlueROV2, un prodotto di BlueRobotics, integrato con
il sistema di navigazione SeaTrac Lightweight USBL di Blueprint Subsea. Il sistema
di guida è progettato per generare istruzioni per i propulsori del ROV, facilitando
il controllo autonomo sulla sua traiettoria e il suo orientamento. Al centro del
sistema di navigazione vi è un complesso insieme di sensori, inclusi bussole, sistemi
di posizionamento USBL, sistemi ottici mono e stereo, Unità di Misura Inerziali
(IMU), altimetri, misuratori di profondità e altre tecnologie pertinenti. È stata
sviluppata una strategia di controllo Line of Sight per mantenere una traiettoria
lineare, mentre un gemello digitale del ROV, in Unity, ne replica il comportamento
in tempo reale. Questo approccio duale sfrutta sinergicamente gli attributi fisici
del ROV insieme alle avanzate capacità di simulazione e analisi del suo analogo
digitale, fornendo una metodologia completa per la mappatura dettagliata dei fondali
marini e l’elaborazione delle immagini. Lo studio si conclude con la presentazione dei
risultati sperimentali acquisiti durante una missione marittima nel Porto di Marsiglia,
dimostrando l’efficacia e l’efficienza del sistema di controllo implementato. L’intero
lavoro è stato realizzato durante il programma ERASMUS presso il CNRS (Centre
national de la recherche scientifique), all’Università di Aix-Marseille.
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Introduction

Covering over 70% of the Earth’s surface, oceans constitute the planet’s largest
ecosystem, holding 99% of all habitable space. Despite that, the depths of the
underwater realm remains predominantly uncharted, as only 5% of the seabed has
been explored, containing secrets crucial to understand the planet’s history, climate,
and biodiversity.[3]
Thus, oceanic exploration emerges as one of the most captivating frontiers in the
quest for scientific knowledge and technological advancement.
However, the high pressure, low temperatures, and the darkness characteristic of
the deep sea present significant obstacles to scientists, especially for the acquisition
of high-quality underwater images for photogrammetry. Moreover, conducting re-
searches in these conditions necessitates specialized certification, stringent safety
protocols, and robust physical endurance. The combination of these factors makes
underwater surveys not only technically demanding but also a real hazard.[4]
It is evident that submarine vehicles play a crucial role by offering versatility, preci-
sion, and safety features to explore environments that would otherwise be inaccessible.
Underwater vehicles can be categorized into two distinct types: "manned" and "un-
manned" vehicles. Manned vehicles are essential for missions that require direct
human involvement, offering the advantage of immediate data interpretation. In
contrast, an Unmanned Underwater Vehicle (UUV) represents a safer solution to the
challenges posed by the hostile environment.[5] These vehicles include an Autonomous
Underwater Vehicle (AUV), which is programmed to navigate autonomously without
direct human guidance, and a Remotely Operated underwater Vehicle (ROV), which
is controlled remotely by human operators. ROVs can also acquire the benefits of
an AUV by implementing special guidance and control strategies. Therefore, ROVs
prove to be ideal for acquiring underwater images as they can adjust their velocity
and distance from a target according to requirements and protecting the environment.
However, using a ROV presents some challenges, like the vehicle’s autonomy. ROVs
could certainly go to great depths during their surveys, requiring to be operational
for an extended period. It is, also, required a good bouyancy and balance, while
scanning the seabed. That is not always guaranteed, due to strong sea currents.

Especially, the objective of this master thesis is to present a possible application for
underwater photogrammetry using a ROV, giving possible solutions to the challenges
shown above and illustrating algorithms to make the robot autonomous in following
a predetermined path up to specific coordinates.
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Acronyms

The research conducted as part of this study was advanced within the scope of
underwater robotics at LabMACS - DII - UNIVPM. It builds upon and expands the
work presented in Martina Rossi’s thesis[6], testing it in a real-world environment.
A high-fidelity digital-twin of the vehicle was designed, offering a virtual environment
for testing and training. A digital-twin can be used to simulate challenging scenarios,
refine control algorithms, and predict equipment failures, all while the actual ROV
operates in the deep sea.

This thesis is organized as follow:
Chapter 1 presents a brief overview on Remotely Operated Vehicles, their features
and applications and related researches in the area of navigation systems. It also
provides an examination of photogrammetry techniques for the purpose of replicating
the marine environment with the digital model.
Chapter 2 analyses the mathematical model behind the ROV’s locomotion, especially
reference systems, the rotational matrix, kinematic and dynamic models, parameters
of the BlueROV2 and the space-state model.
Chapter 3 describes the materials and software methods used, as well as the
communication between them. Furthermore, it analyzes the logic underpinning the
control system, illustrating solutions implemented for two applications: a localization
and control challenge in reaching a specific latitude and longitude point, and an
experimental fusion of the real ROV with its digital twin for scanning purposes.
The collected results of the first application are shown in Chapter 4. The second
application was not tested in a marine environment due to a malfunction in the
ROV.
Finally, Conclusions summarizes the key findings of the study and their implications,
interpreting the results, underlining the issues in this navigational system and
introducing some considerations about future developments.
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Chapter 1

Background

This chapter is about the state of the art of Remotely Operated Vehicles (ROVs) and
their navigation and control systems. ROVs have evolved significantly over the years,
being used in a variety of underwater applications. The chapter begins by providing
an overview of the historical development of ROVs, focusing on their features and
characteristics.
An overview about sensors used in submarine vehicles and the latest navigation
systems is also presented, highlighting how these systems facilitate precise maneu-
vering and stability in unpredictable marine conditions. The chapter also provides
an examination of the concept of digital twins and photogrammetry techniques and
why they are particularly powerful tools in this context.

1.1 Remotely Operated Vehicles

A Remotely Operated underwater Vehicle (ROV), often referred to as an underwater
drone, is controlled by an operator placed on the surface, who can navigate it staying
safe.
The utility of ROVs becomes particularly evident when considering the limitations of
human divers and manned submersibles. While SCUBA divers are generally restricted
to depths of no more than one hundred meters due to safety and physiological
constraints, ROVs can operate at much greater depths. [1] In addition to this, ROVs
are a low-cost solution to explore seabeds, not requiring time-consuming diving
training.
The table 1.1 shows a comparison between the two different ocean exploration
methods, diving or using a ROV. ROVs are equipped with tethered cables, enabling
real-time data transmission from the ocean while divers can be equipped with cameras
which are later processed. Regarding the supply, ROVs can operate continuously
in marine environments as long as their batteries are regularly replaced, while the
divers’ equipment impact their mobility and endurance. Divers, also, are exposed
to risks such as decompression sickness, nitrogen narcosis, and equipment issues,
requiring training to handle emergency situations.[7]
Therefore, due to these advantages over human divers, ROVs have become an essential
component in the field of marine exploration and research.
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Chapter 1 Background

Characteristics Divers ROV

Data Transmission Usually not supported A theter cable that connects
the ROV to its support ship

Dimensions Bulky due to diving equipment Small-sized and flexibility to
reach hostile places

Movements Depends on swimming abili-
ties

Limitations due to the cable
and thrusters

Power supply Limited by the air tanks and
physical endurance

Batteries or with cables

Safety Unsafe Only risk of malfunctions

Table 1.1: A comparison between ROVs and human divers for underwater explo-
rations.

The history of ROVs dates back to 1953 when the French pioneer Dimitri Rebikoff
created the "Poodle", an underwater scooter equipped with a tether to allow it to be
controlled from the surface by a pilot.
In the 1960s, the United States Navy began using ROVs for recovery missions and
simple tasks. An example is the able-Controlled Undersea Recovery Vehicle (CURV),
developed to recover a hydrogen bomb in the Palomares incident in 1966.
During the 1970s the oil industry recognize the potential of these vehicles for offshore
operations. This period saw the evolution of ROVs from basic tethered devices to
more sophisticated systems with greater maneuverability and video transmission.
ROVs continued to expand, reaching over 500 units in the 1980s, used also for
commercial purpose.
Nowadays ROVs are equipped with high-definition cameras, advanced sensors, and
robotic arms, and are used in a wide range of applications, from scientific researches
and environmental monitoring to underwater construction and military operations.[1]

Despite ROVs are designed in different shapes and sizes based on specific requirements,
they typically share several core components, shown in figure 1.1:

• Thrusters: ROVs are equipped with multiple thrusters, that are electrically or
hydraulically powered propellers, placed on different parts to provide movements
in all directions.

• Tether: A cable that connects the ROV to its controlling station for the
power supply and data transmission, including live video feeds, sensor data,
and operational instructions. In advanced ROVs, the tether might contain
fiber-optic cables, which allow for high-speed data transmission. This cable
is used for communication because radio waves attenuate rapidly in water,
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1.1 Remotely Operated Vehicles

Figure 1.1: Components of a ROV. (Image credit: Saab Seaeye)[1]

making long-distance wireless communication impractical.

• Lights: The lighting systems is indispensable for visibility since the darkness
of the underwater environment.

• Camera: The onboard camera serves as the only visual for the operator to
navigate and guide the vehicle, providing images with low-latency.

• Frame: The frame provides the structural integrity necessary to withstand
underwater pressure and protect internal components. It consists of a rigid,
open frame, generally rectangular in shape, on which essential components
such as thrusters, cameras, lights, the tether, and other sensors are mounted.
This frame can be custom-designed to minimize water resistance and improve
the hydrodynamic efficiency, impacting the ROV’s performances.

• Pilot Controls: The surface control station can vary in complexity, from
a sophisticated control room to a simple smartphone or joystick connected
to a monitor. Regardless of its form, the primary function is to facilitate
communication and to display data and feedback, including the vehicle’s
location, allowing operators to remotely guide the ROV, monitor its environment
through cameras and sensors, and make real-time decisions based on the
information received.

In addition to these compenents, sensors, robotic arms, sonars, and other specialized
equipment can be installed on the vehicle, making the ROV incredibly versatile for a
lot of tasks.
For this reason, ROVs can be classified into 5 groups, based on size and purpose, as
in [8]:

• Class I - Observation ROVs: These ROVs are characterized by their small
size, maneuverability, and the specific functionalities for inspection tasks in
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Chapter 1 Background

marine environments. They are equipped with essential components such
as high-quality cameras, lighting, and basic navigational systems. They are
tipically powered by on-board batteries or a tether, weigh up to 40 Kg and
they can reach depths in the order of hundreds of meters.

• Class II — Observation ROVs with Payload Option: Unlike the first
class, this type of ROVs can be equipped with more sensors and manipulators.
They can have two simultaneously viewable cameras and a weight up to 300
Kg.

• Class III — Work-class ROVs: Class III ROVs have a higher payload
capacity, allowing them to carry more equipment, including multiple manipula-
tor arms, advanced sensors, and heavier tools, with a weight more than 300
Kg. They are powered by cables from the surface due to their high energy
consumption, allowing them to reach several thousand meters of depth.

• Class IV — Towed and bottom-crawling ROVs or Excavators: These
ROVs are designed to move along the seabed, equipped with tracks or wheels.
They are essential for tasks like drilling, sediment sampling, or archaeological
studies, that require stability, large area coverage or direct interaction with the
seabed. They have reduced maneuverability and agility due to the size, with
some models weighing as much as 5000 kg.

• Class V — Prototype: They are developmental and flexible vehicles used
for testing new technologies or for research purposes.

Furthermore, ROVs can be categorized based on their weight, as in [9]:

• Micro ROVs: These are the smallest and lightest, often weighing less than 5
kg. They are typically used for simple inspection tasks in confined spaces.

• Mini ROVs: Weighing between 5 to 32 kg, mini ROVs offer greater capabilities,
including more advanced sensors and cameras, while still being relatively easy
to deploy and operate.

• Large ROVs: These ROVs weigh between 32 to 90 kg and are more ro-
bust, capable of carrying out a wider range of tasks including more complex
inspections.

• Shallow ROVs: They are low-power vehicles with either copper or fiber-optic
telemetry systems with a depth capability of up to 1000 meters.

• Deepwater ROVs: Similar to the shallow ROVs, they are designed for
operations in deep marine environments, equipped with single or dual light
manipulator systems and an high-voltage power.
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1.2 Navigation systems and sensors

• Heavy ROVs: They are designed for more demanding underwater tasks,
equipped with electric thrusters, dual medium-duty hydraulic manipulators
and a hydraulic power unit.

• Standard work class ROVs: These ROVs are typically in the 100 to 200
horsepower range, used for drill support in the offshore oil and gas industry or
light construction work.

• Heavy work class ROVs: Characterized by their large size and power, typi-
cally exceeding 200 horsepower, these ROVs are designed for heavy construction
work.

1.2 Navigation systems and sensors

An underwater vehicle must overcome three challenges to move autonomously, ad-
dressing the so-called problem of navigation.
The first one is the problem of localization; the robot must accurately estimate its
position, either from a known starting point or within a pre-existing or dynamically
constructed map, which can evolve based on the robot’s movements. This process
may involve complex algorithms and sensors, such as Simultaneous Localization and
Mapping (SLAM) technologies.
The second challenge is target identification; the robot must determine its desti-
nation from a starting point and identify any intermediate waypoints. This involves
not only spatial awareness but also the capability to make decisions based on its
objectives and environmental data, which may include AI and machine learning
algorithms for adaptive navigation.
The third problem is the trajectory planning, which requires the robot to establish
an optimal path between its starting point and destination, adhering to specific
parameters such as obstacle avoidance and efficiency. This necessitates advanced com-
putational techniques, like path planning algorithms and real-time data processing.[10]

To overcome these challenges, a combination of different navigation systems can
be utilized to achieve both the robustness and reliability of the overall navigation
solution. Generally, these systems can be divided into three main categories (a
schema is shown in figure 1.2) [2]:

• Inertial Navigation System: These systems use gyroscopes and accelerome-
ters to calculate the vehicle’s position, direction, and speed, independent of
external references. INS is necessary in environments where external signals
are unavailable, providing continuous and accurate navigation data. However,
over time, the errors in position and velocity estimates can accumulate.

• Acoustic Navigation System: Utilizing sonar technology, acoustic systems
can determine the vehicle’s position relative to reference points by emitting
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sound waves and measuring their Time Of Flight (TOF). This method is crucial
for obstacle avoidance and for tasks that require precise positioning. Even
so, they are influenced by factors like water temperature, salinity, and sound
speed.

• Geophysical Navigation System: These systems use the Earth’s magnetic
field, gravitational field, or the topography of the ocean floor as reference points
for navigation. They include also optical sensors and sonars. Geophysical
navigation is particularly useful in long-range, deep-sea missions where other
forms of navigation may be less effective. On the other hand, the environmental
variables can distort the signals used for navigation, leading to inaccuracies.

Figure 1.2: Classification of navigation systems and their respective sensors. (Image
credit: AUV Navigation and Localization: A Review[2])

The following subsections offer an examination of the sensors used by each navigation
system, highlighting their operational mechanisms and features.

1.2.1 Inertial sensors

The basic ideas behind inertial navigation are based on the Newton’s laws of motion.
A Inertial Navigation System consists of a combination of accelerometers, gyroscopes,
and sometimes magnetometers. Accelerometers measure linear acceleration, while
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gyroscopes measure angular velocity in order to calculate changes in velocity and
orientation over time, a process known as "dead reckoning".
The most commonly installed inertial sensors in UUV include:

• Inertial Measurment Unit (IMU): It is an electronic sensor, composed by
accelerometers (mechanical, capacitive, piezoelectric, piezoresistive or heated
gas) and gyroscopes (Mechanical, Laser, Fiber optic). Typically, these sensors
are arranged in a "strapdown" configuration, where the sensitive axes of the
inertial sensors are aligned orthogonally within a Cartesian coordinate sys-
tem. An alternative configuration is the "skewed" where the gyroscopes and
accelerometers are positioned on a cone that is angled relative to the vehicle,
covering against faults, due to the redundancy of components. Compared to the
strapdown configuration, the skewed one introduces more errors. As a result,
it demands higher-quality gyroscopes and precise knowledge of the tilt angle to
avoid significant misalignment errors. In modern IMU sensors, a magnetometer
has been introduced to measure the three dimensions Earth’s magnetic field,
improving from a 6 DOF to a 9 DOF configuration.[2]

• Doppler Velocity Log (DVL): The DVL is an acoustic sensors tipically used
in Inertial Navigation Systems, since it provides essential velocity measurements
for dead reckoning. Operating on the Doppler effect principle, the DVL emits
acoustic pulses towards the seabed and measures the frequency shift in the
reflected sound waves to estimate the relative vehicle’s velocity. This sensor
estimates the three-dimensional velocity measurements, providing data for
forward/backward, lateral, and vertical movements. They require precise
calibration and can be affected by varying of water conditions.

• Pressure Sensor: These sensors measure the pressure exerted by the sur-
rounding water, to calculate depth. They can be sensitive to temperature
changes, affecting their readings.

• Compass: A compass provides a globally referenced directional bearing. The
most common type is the magnetic compass, which determines the vehicle’s
orientation relative to the Earth’s magnetic field. Its accuracy can be com-
promised in the presence of objects with a strong magnetic signature, as it
aligns with the Earth’s magnetic north pole, which is different from the true
geographic north. Another type is the gyrocompass, which uses a fast-spinning
rotor and the principles of gyroscopic inertia and precession to align with
true North, independent of the Earth’s magnetic field. It finds true North by
aligning with the Earth’s rotational axis. So they are not affected by magnetic
anomalies but require power to operate.

• Attitude and Heading Reference System (AHRS): It is an advanced
sensor system to provide accurate orientation information about the vehicle.
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It combines sensors like accelerometers, gyroscopes, and magnetometers, to
calculate the attitude (pitch, roll, and yaw). It is distinct from a IMU because
it includes a microprocessor for the resolution of the alignment equations.

In many advanced Inertial Navigation Systems, GPS and IMUs are often used to-
gether.
GPS can provide absolute vehicle positioning but its effectiveness is affected under-
water due to radio signal attenuation. So in integrated navigation systems GPS,
from the surface, provides position information, while the IMU offers continuous
data on orientation and movement, compensating for any short interruptions in GPS
signal. However, the vehicle must periodically come to the surface to calibrate the
position. In combination with these devices, an Extended Kalman Filter is usaually
used to improve position estimation while the GPS signal is unavailable.[11]
The concept of emulating GPS technology in underwater environments can be
categorized into three distinct groups[12]:

• “False” underwater GPS: An underwater vehicle drag a surface buoy
equipped with a GPS. The GPS device communicate with the vehicle through
a cable or fiber. This method, however, doesn’t provide the exact location of
the target but rather a proximate position, often within a few tens of meters
from the surface buoy; that’s why it is called "False" GPS.

• "Direct" underwater GPS: In this system, surface buoys equipped with
GPS transmit acoustic waves directly to underwater receivers, mounted on the
underwater vehicles. Unlike traditional GPS, which transmits radio-electric
signals, this method uses acoustic signals. The underwater vehicle receives
these acoustic signals and then computesw its own position.

• "Reverse" underwater GPS: This type is similar to the direct one but oper-
ates on a reverse principle. The underwater vehicle is equipped with an acoustic
emitter and the surface buoys are equipped with submerged hydrophones and
GPS receivers. These buoys measure the time of arrival of acoustic signals
emitted from the underwater target, estimating its position.

These methods can be applied not only for inertial approaches but also for acoustic
ones.

1.2.2 Acoustic sensors

Classic electromagnetic based communication techniques for flying robots, become
ineffective for underwater applications, particularly at greater depths, due to the
absorption of electromagnetic waves by water. In contrast, as a denser medium than
air, water facilitates better transmission of sound waves.
As a result, acoustic navigation systems have gained popularity for facilitating com-
munication in underwater environments. They operate by emitting sound pulses and
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measuring their reflections from the seafloor or other structures. The time it takes
for the sound waves to return (TOF) is used to calculate distances.[12]
However, Acoustic Navigation Systems involves certain challenges and issues, as a
limited bandwidth, necessitating the use of time-division multiple-access (TDMA)
techniques for information sharing among nodes. Other problems are a low data
transmission rates, high latency, as sound travels through water at a speed of 1500
m/s, much slower than light; this speed can be influenced by changes in water
temperature and salinity, affecting signal consistency. Therefore, these systems are
used in calm weather conditions and in the absence of boat movement, in opposition
to real conditions.

It is possible to differentiate between various configurations for acoustic communica-
tion, shown in figure 1.3:

• Short Baseline (SBL): A set of three hydrophones, are installed on a ship,
that follows the underwater vehicle at short range. The AUV can determine
its absolute position through bidirectional communication with the mother
ship. The accuracy of this system improves with the expansion of the baseline1,
which is dependent on the size of the boat.

• Ultra-Short Baseline (USBL): USBL is one of the most common method,
similar to SBL. Transducers are integrated into a single transceiver assembly
or an array of transducer elements, called head transceiver and placed on the
boat. The transducers are positioned, maintaining an approximate distance of
10 centimeters from each other. Distances are calculated with the TOF as in
SBL, while the bearing is calculated based on the difference in the phase of the
signal arriving at the transceivers. This method allows for the localization of
vehicles up to a maximum distance of 200 meters from the head, resulting very
accurate in reduced spaces.

• Long Baseline (LBL): At least three transceivers are placed on the seafloor.
The vehicle’s position is obtained by triangulating the acoustic signals detected
by the transponders with the required precision.

• Long & Ultra Short Baseline (LUSBL): It is a variant of the USBL system,
merging aspects of both USBL and LBL methodologies. It uses USBL hardware
configured in a manner similar to the LBL system, while measurements of
range and bearing adhere to the methodologies used in USBL.

• Single Fixed Beacon: This method uses a single stationary acoustic beacon
as a reference point for navigation. It is known also as Virtual LBL, because it
simulates a baseline by projecting the ranges from a single beacon over time
until the next update is received.[2]

1A baseline refers to the distance between two or more reference points, typically transducers or
acoustic beacons.
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• Acoustic Modem: Transducers are not fixed but placed on autonomous
non stationary vehicles. The receiver obtains the position of the transmitter
along with the communicated data, so it can measures the distance to the
transmitter. It can then confine its own position to the surface of a sphere,
with the transmitter’s location as the center of that sphere. This method is
useful for inter-AUV communication for cooperation.

(a) (b) (c)

Figure 1.3: Acoustic position systems: (a) SBL, (b) USBL, (c) LBL

1.2.3 Geophysical sensors

Geophysical navigation systems utilize Earth’s natural physical properties to guide
and position underwater vehicles, particularly in environments where traditional
satellite-based systems are ineffective.
This type og navigation includes sensors from the following categories:

• Magnetic: Magnetic sensors operate by detecting changes in magnetic fields
for localization. The most common types used in navigation are magnetometers,
which can sense the strength and direction of magnetic fields.

• Acoustic: Acoustic sensors acoustically detect features in the environment,
used as reference points for the navigation. An example of these sensors is
given by SONAR.

• Optical: This technique involves cameras to capture images and create a
real-time map to navigate.

SONAR

Sonar is a sensor that utilizes underwater sound propagation properties to detect and
locate objects or even send data, calculating the distance traveled by sound waves
based on the speed of sound in water. This method is very effective for mapping
large areas of the seabed.
The technique of using sound to navigate and locate objects derives from the natural
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world, since some animals like bats and whales utilize echolocation.
There are two types of Sonar:

• Passive Sonar: This type does not emit sound waves but listens for sounds
made by other objects. It’s often used in military applications for detection of
submarines or ships.

• Active Sonar: This type involves transmitting sound waves and receiving
their echoes reflected from objects, through the backscattering phenomenon.
When a wave hits a surface or an object, a part of the wave’s energy is absorbed,
while the rest may be reflected in various directions. The portion of the wave
that bounces back towards the source is known as backscatter. By analyzing
how waves are backscattered, depending on the properties of the object, like
size, shape or composition, it’s possible not only localizate objects but also
their characteristics. These method requires sophisticated signal processing
techniques and a deep understanding of wave physics. Moreover, reflected
waves can be low intensity, especially echoes from object with irregular surfaces,
which absorb more energy.
This sensor is widely used for navigation, obstacle avoidance, and object
detection. It’s possible differentiate between Imaging Sonars and Ranging
Sonars. The first type produces an image of the underwater environment
based on the echoes that bounce back from objects. Instead, Ranging Sonars
are used for determining water depth (bathymetry), navigation, and avoiding
underwater obstacles.

Cameras

Optical navigation systems capture images of the environment and use these visual
data to determine the position and orientation of the vehicle. They employ tech-
niques like image processing, pattern recognition, and computer vision algorithms to
analyze and interpret the visual data. In particular, the technique used for estimating
pose of a robot by analyzing sequences of images captured by a camera, is called
Visual odometry. This can be achieved through optical flow, which calculates the
motion of pixels between consecutive video frames, or structure from motion, which
reconstructes a 3D structure based on the observed motion.[2]

It is appropriate to make a distinction based on the type of cameras used for capturing
images:[8]

• Monocular Camera: This type of camera uses an only lens to capture images.
It is the most common and easy to use. It can’t directly perceive the depth of
a scene with just a single 2D image. It requires two time successive frames for
3D information extraction and three frames for motion estimation.
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• Stereo Camera: A stereo camera consists of two or more lenses, mimicking
human binocular vision and allowing the camera to capture two slightly different
images of the same scene. So by comparing the differences between the images
captured by each lens, it can calculate the distance to objects in the scene,
creating a 3D perception. It requires two time successive frames for motion
estimation.

Although, optical systems have some limitations, like the reduced operational range
of cameras, high susceptibility to scattering phenomena and the lighting conditions
of the underwater environment. In addition to this, these methods depend on the
presence of distinguishable features in the environment. In homogenous underwater
areas, they struggle to provide accurate navigational data.

1.3 Virtual simulation of marine environments

Digital Twins and photogrammetry represent essential technologies in marine robotics,
providing advanced tools for simulation, mapping, monitoring, and analysis, increas-
ing safety of underwater operations. Photogrammetry provides high-resolution spatial
data, which is essential for creating accurate and detailed digital twins of underwater
environments. This data is used to build 3D models that reflect the current condition
of the physical world. Digital twins enable the simulation of scenarios in a controlled
virtual environment, assessing risks and optimizing strategies before deployment in
the real world.
Underwater vehicles equipped with high-quality cameras and sensors can collect data
about underwater assets. After the data collection, photogrammetry softwares can
process it to generate 2D orthophoto visualizations or 3D point cloud models to
create digital twins.

However, there are significant challenges in the process of underwater image acqui-
sition. Water affects the intensity of sunlight, reducing visibility and image clarity.
This effect is more pronounced with increasing depth and in turbid waters.[13]
Oceans can be dived into three main zones, based on the intenisty of sunlight: the
euphotic zone, the disphotic zone and the aphotic zone. The first one is the upper
layer of oceans characterized by sufficient sunlight to support photosynthesis. The
depth of the euphotic zone can vary, depending on water clarity and geographical
location. In the tropics it can reach depths of up to 80 meters, while in polar regions,
where sunlight penetration is less, this zone may be limited to a depth of less than
10 meters. In turbid or muddy waters, the euphotic zone can be restricted to just a
few centimeters deep.
The disphotic zone is located below the euphotic zone and above the aphotic zone.
In this region the sunlight is reduced and there is a gradual transition from light to
darkness. In conditions of clear water, this zone can extend to depths of up to 800
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meters.
The aphotic zone is characterized by the complete absence of visible sunlight.
Moreover, colors penetrate in different depths based on wavelengths, as shown in
figure 1.4. Longer wavelengths with lower energy, like red ones, are absorbed faster
than shorter wavelengths and higher energy, like blue. At a depth of 40 meters
in saltwater, almost all red light has been absorbed, while blue light continues to
penetrate in depth. [14]

Figure 1.4: How colors penetrate in different ways in oceans. (Image credit: Univer-
sity of Minnesota Sea Grant Program)

Thus, at this depth, without artificial lighting, the environment is perceived in shades
of blue. For this reason, it is essential to include a lighting subsystem that emits
white light to the underwater environment.
Images captured with artificial lights are not composed only of direct light but
there is a backscatter component of light that has not interacted with the object
and a blur component that has been reflected from the target. The backscattered
light component affect the camera even without interacting with the object, due to
suspended particles in the water, creating unwanted contrast differences and mask
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details in the scene. So, if the lighting is not appropriate, it can become a disturbing
factor itself for image acquisition in water.[15]
In addition to this, color and reflectivity of objects vary when captured from varying
camera perspectives and distances, causing problems for algorithms in matching and
aligning image data. This is because Brightness Constancy Constraint (BCC) is
violated by a moving camera.[16]
In [17] literature review on light projection and light-sensing technologies is presented.

1.3.1 Photogrammetry

Photogrammetry is a technology used for measuring information about physical
objects and their environments by reconstructing a 3D model, often a point cloud,
from 2D digital images. The first usage of this technology dates back to 1867
when the architect Albrecht Meydenbauer used it to document a church building in
Germany.[18] Since then, its application has expanded across numerous fields, from
archaeology, as shown in [19], to subsea applications, in [20].
A standard photogrammetry system consists of cameras and retro-reflective targets
and a preparation, like software configuration, strategic camera placement and the
final step of 3D reconstruction. The careful positioning of cameras and the extensive
coverage of the object surfaces are essential to ensure the accuracy and precision of
measurements.[21]

Calibration

Calibration in photogrammetry involves adjusting and fine-tuning the parameters
of cameras to ensure accuracy in the captured images. This process is essential
because accurate 3D models and measurements depend on the precision of the initial
images. Calibration ensures that the camera’s lens distortions, focal length, and
other intrinsic and extrinsic parameters are correctly configured.
The calibration process involves two critical steps. Firstly, the camera’s intrinsic
parameters are computed, which include aspects of the lens such as focal length,
optical center, and lens distortion. The second step determines the position and
orientation of the camera, known as the extrinsic parameters. This is crucial for
aligning the camera in relation to a laser projector in laser triangulation systems, or
in relation to another camera in stereo vision setups.[17]
Camera calibration is a significant issue associated with underwater imaging, due to
the refraction caused by the air-water interface. This refraction occurs due to the
difference in density between the two media. This phenomenon must be accurately
accounted for to ensure precise calibration and to mitigate the effects of distortion in
underwater imaging. [22]
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Photo-mosaic

Photo mosaics in photogrammetry involve the process of stitching together multiple
overlapping photographs to create a single image or map. The creation of a photo
mosaic begins with capturing a series of overlapping images of the target area. Then,
there is image stitching process, which includes the following steps:

1. Feature extraction and matching: The first step in the panoramic recogni-
tion algorithm is to extract and match SIFT features between all the images.
Once features have been extracted from all n images, they must be matched to
its k nearest neighbors in feature space.

2. Image matching: The second step is finding all matching images, so connected
sets of image matches create a panorama. From the feature matching step,
images that have a large number of matches between them, has been identified.
Now, a constant number m of images, that have the greatest number of feature
matches to the current image, is considered as potential image match.

3. Image fusion: The last step combines the information of matched images and
bends them into a single image to create a panorama. This part of the process
often involves color correction and balancing to ensure uniformity across the
mosaic, especially in cases where lighting conditions may vary across different
photographs.

So, it is required that images have a partial overlap. If this overlap is not present due
to low-quality images or not rich environments, it is possible to refer to navigation
data from acoustic positioning sensors installed on underwater vehicles to estimate
the vehicle’s trajectory.
Another problem consists in identifying a planar transformation to align two or more
2D images taken from different perspectives. There are two methods to solve this
problem:

• Direct methods: Direct methods, also known as featureless methods, depend
on optimizing the photometric consistency across overlapping areas of the
images. These methods are effective for minor translations and rotations.
However, in underwater imaging, images are often captured using stroboscopic
lighting due to power constraints that affect the vehicle’s autonomy. This
leads to low-frequency image acquisition and results in insufficient overlap for
registration through direct methods.

• Feature-based methods: These methods utilize a sparse set of points and
correlations between image pairs to determine the transformation between
them. Feature-based methods consist of two phases. Initially, in the feature
detection stage, it’s crucial to identify points of interest in images. Then, the
feature matching stage associates these identified points based on a specific
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descriptor.
This can be obtained through two different strategies. The first one involves
using a feature detector algorithm to identify salient points in one image, then
recognizing these features in another image. Identification in this approach
is performed using cross-correlation or a sum of squared differences measure,
focusing on the pixel values around the interest point.
A second method detects interest points on both images using invariant im-
age descriptors. The correspondence problem is solved by comparing their
descriptor vectors. These descriptors are invariant to geometrical and photo-
metric transformations between the image pairs. This robustness is valuable in
underwater imaging.

After solving the correspondence problem of two images, the correspondence set
found can be utilized to calculate a planar transformation that describes the cam-
era’s movement between the two images. This transformation is represented by a
homography matrix H, which can describe motion across up to eight Degrees Of
Freedom (DOF). The accuracy of the homography depends on the quality of the
correspondences found for its calculation. Non-uniform illumination, shadows and
digital noise, can produce matching failures. Additionally, moving objects might
induce correspondences that don’t align with the dominant motion between the two
images. These are known as outliers. Therefore, an algorithm have to discern correct
and incorrect correspondences.
Blending algorithms are divided into two primary groups based on their working
principle: transition smoothing method, that reduces the visibility of the junction
areas between images by combining the overlapping information, and optimal seam
finding methods, that seeks to place the seam in the least noticeable area, identifying
the best path for cutting the images where the photometric differences between
them are minimal. The second method is adapt for moving objects because it avoids
overlapping areas with noticeable movement. The combination of these two methods
leads to the development of hybrid techniques.

In addition to optical information, bathymetric information from acoustic sensor can
be integrated, obtaining the 2.5D mosaic. [23]

3D Mapping

3D mapping is a technique which captures a series of overlapping photographs in
underwater settings, then used to create detailed 3D models of the landscapes and
structures. In 2D and 2.5D mapping, it is assumed that there is a base plane into
which images can be projected. Once the motion is extracted, the mapping process
primarily involves warping and deforming the images into this plane. However, in
3D mapping, this planar base is absent, making the task more complex.
In both acoustic and optical sensors, reconstructing the shape of an object requires
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the vehicle’s trajectory. For acoustic data, the 2D swath from a multibeam sensor,
combined with the vehicle’s motion, can generate a 3D point cloud. For optical data,
once the camera’s trajectory is known, 3D positions of points can be triangulated
using the line-of-sight rays from each camera–2D feature pair.
So, the mapping problem is related to trajectory estimation. Structure from Motion
(SfM) methods are used to solve this problem when dealing with purely optical data,
and more generic Simultaneous Localization and Mapping (SLAM) methods when
additional information is available.

Structure from Motion involves three main steps:

• Rectification: This initial step involves transforming each image so that pairs
of conjugate epipolar lines become collinear and parallel to the horizontal image
axis. This adjustment simplifies the correspondence problem from a 2D search
to a more manageable 1D search.

• Correspondence search: In this phase, the correspondence between pixels
in the left and right images is established. For a given pixel in the left image,
the corresponding pixel is searched in the same row of the right image.

• Reconstruction: The final step uses a triangulation algorithm. By inputting
each pixel and its corresponding match, the 3D position of that pixel can be
computed.

Structure from Motion solves two problems: surveying an unknown structure from
known camera positions and determining camera motion based on known fixed points.
So, SfM is a versatile technique that combines photogrammetry and computer vision,
applied in various field, as shown in [24].

1.3.2 Digital Twin

A digital twin is a virtual replica of a physical entity, process, or system that can be
used for various purposes, including simulation, monitoring, and predictive analysis.
By simulating different scenarios, operators can plan and test responses to potential
emergencies or system failures without the risks associated with physical trials.
Moreover, digital twins play a crucial role in environmental conservation. They can
be used to model marine ecosystems, allowing researchers to study the impact of
climate change, pollution, and human activities on these environments.[25]

The concept of "digital twin" first apperared during NASA’s Apollo 13 program in
the 1960s. A digital twin model of the Apollo 13 spacecraft was created on Earth,
enabling engineers on the ground to simulate and test potential solutions for the
rescue mission in space.
Michael Grieves provided the definition of the digital twin concept in his presentation
about a product life cycle management in 2003.
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A digital twin consists of five dimensions, that interact to create a comprehensive
digital representation of a physical entity.

• A physical part: The physical part represents the real-world entity, such as
a building, infrastructures or environments.

• A virtual part: The virtual part is a mirror of the physical part, created in a
virtual environment.

• Connections: The connection aspect facilitates data transfer between the
physical and virtual entities. The connection typically requires data transfer
from the physical to the virtual entity, feedback in the reverse direction is not
mandatory.

• Data: Data dimension involves the storage and management of information
gathered from the physical entity.

• Services: The digital twin must provide services like health monitoring and
decision-making support. These services are based on the analysis of data
collected from the physical entity.

Digital twins have to face up to two challenges: creating a high-fidelity virtual
representation of the physical object, and rapidly updating the collected data for the
digital twin’s diagnosis and decision-making.
Regarding the first one, researchers have developed photogrammetry-based recon-
struction workflows. However, the use of digital twins as a continuous monitoring
framework is still relatively unexplored and represents a significant opportunity for
advancement in this field.[18]
In [26] technologies for digital twin are shown, which include data-driven, statistical
or machine learning strategies.

Digital twins have found applications in large sectors, from manufacturing industry,
supply chain management and preventive maintenance, to agriculture, healthcare or
weather modeling and many more, as demonstrated in [27].
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Mathematical model for design and
control

This chapter offers a detailed analysis of the kinematic and dynamic model for a
ROV. Through the application of principles in mechanics and fluid dynamics, the
model aims to capture the essential aspects of ROV motion and behavior. A marine
craft subjected to the forces of wind, waves, and ocean currents experiences motion
in six DOF. To model these movements accurately, the equations of motion are
typically derived through the Newton–Euler or Lagrange laws.
For the composition of this chapter, the methodology outlined in [28] and in [29] has
been adhered to.

In order to simplify the analysis of the mathematical model, some assumptions have
been introduced as follows:

1. It is assumed that the water is an ideal fluid, characterized by being incom-
pressible, non-viscous and non-rotational.

2. The fixed ground reference system is considered inertial.

3. The ROV is considered as a rigid body that is completely submerged in water.

4. The ROV’s speed is very low (less than 2 m/s) so lift forces can be excluded.

5. Wave-induced disturbance is neglected, as the ROV is fully submerged.

6. The dynamics of the tether connected to the ROV are not modeled.

7. The ROV is considered to have symmetry in both the xz and xy planes, with
the center of gravity located within these planes of symmetry.

8. Assuming that the ROV operates below the wave-affected zone, the impact of
wave disturbances on the vehicle can be excluded.

9. The ROV has 4 DOF. The thrusters position of the ROV used in this thesis
does not allow for active control of the pitch and roll orientation. However, the
motion around these angles is considered self-regulated due to the restoring
moments of the vehicle’s buoyancy.
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It’s necessary to define how the reference frames are oriented for this modeling. Two
fixed frames are considered: the Earth-fixed frame, with X,Y, Z axes and the origin
in the center of the Earth, and the Body-fixed frame, with Xb, Yb, ZB axes and the
origin in the geometrical centre of the vehicle, oriented as in figure 2.1.

Figure 2.1: Earth-fixed and Body-fixed frames

In addition to these frames, it is appropriate to define the North-East-Down coordinate
system (NED), used in everyday life. This system has the origin on the Earth’s
reference ellipsoid and this system’s x-axis points towards true North, the y-axis
towards the East, and the z-axis downwards, perpendicular to the Earth’s surface.
The position of this frame relative to the Earth-fixed frame is defined using longitude
and latitude coordinates. However, the flat Earth navigation is considered, assuming
that the area of operation is relatively flat and that longitude and latitude remain
approximately constant. In this context, a tangent plane to the Earth’s surface is
used as the reference system for navigation and it is considered inertial to simplify
navigation calculations.

2.1 Kinematic model

A vehicle that can freely move in the space has up to six DOF, three translational and
three rotational. Therefore, a marine vehicle with full actuation in all 6 DOFs requires
actuators capable of generating independent forces and moments in every direction.
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To simulate the motion of such a craft accurately, it is essential to utilize a set of 12
ordinary differential equations. Horizontal motion consists of surge (longitudinal)
and sway (sideways), while yaw describes rotation about the vertical axis (heading).
The other three DOFs are roll (longitudinal axis rotation), pitch (transverse axis
rotation), and heave (vertical motion). In marine applications, yaw is often the
primary focus for feedback control, with stationkeeping involving stabilization of
surge, sway, and yaw.
In 2.1 the used Society of Naval Architects and Marine Engineers (SNAME) nomen-
clature for position, velocity, and forces is presented. A vectorial representation is

Movement Name Position Velocity Force/Moment

X translation Surge x u X

Y translation Sway y v Y

Z translation Heave z w Z

X rotation Roll ϕ p K

Y rotation Pitch θ q M

Z rotation Yaw ψ r N

Table 2.1: Notation used in underwater vehicle dynamics, detailing movements, posi-
tions, velocities, and forces.

used for positions, velocities and forces, defined as follow:

η = (x, y, z, ϕ, θ, ψ)T (2.1)

ν = (u, v, w, p, q, r)T (2.2)

τ = (X,Y, Z,K,M,N)T (2.3)

where η is the vector of the vehicle’s positions respect the Earth-fixed frame, ν is
the vector of vehicle’s velocities respect the Body-fixed frame and τ is the vector of
vehicle’s forces and moments respect the Body-fixed frame.
ϕ and ψ are defined into the interval [−π, π), while θ into the interval (−π

2 ,
π
2 ) due

to the singularity of the rotational matrix, shown later in the chapter.

It is possible to decompose the previous vectors into two vectors, represented the
linear variables and the angular ones:

η =
[︄
P

Θ

]︄
, ν =

[︄
v

ω

]︄
, τ =

[︄
f

m

]︄
(2.4)
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P =

⎡⎢⎢⎣
x

y

z

⎤⎥⎥⎦ ∈ R3, Θ =

⎡⎢⎢⎣
ϕ

θ

ψ

⎤⎥⎥⎦ ∈ R3, v =

⎡⎢⎢⎣
u

v

w

⎤⎥⎥⎦ ∈ R3, ω =

⎡⎢⎢⎣
p

q

r

⎤⎥⎥⎦ ∈ R3, f =

⎡⎢⎢⎣
X

Y

X

⎤⎥⎥⎦ ∈ R3, m =

⎡⎢⎢⎣
K

M

N

⎤⎥⎥⎦
(2.5)

where:

• P is the linear positions vector

• Θ is the angular positions vector

• v is the linear velocities vector

• ω is the angular velocities vector

• f is the vector of forces exerted on the vehicle

• m is the vector of moments exerted on the vehicle

To convert variables from the Body-fixed frame n to the Earth-fixed frame b, the
rotational matrix Rn

b (Θ) must be used as follow:

vn = Rn
b (Θ)vb (2.6)

where vn is the linear velocities vector in the Earth-fixed frame and vb in the Body-
fixed frame.
The rotational matrix Rn

b (Θ) is calculated as follow:

Rn
b (Θ) = Rz(ψ)Ry(θ)Rx(ϕ) (2.7)

with:

Rz(ψ) =

⎡⎢⎢⎣
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤⎥⎥⎦ (2.8)

Ry(θ) =

⎡⎢⎢⎣
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤⎥⎥⎦ (2.9)

Rx(ϕ) =

⎡⎢⎢⎣
1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎤⎥⎥⎦ (2.10)
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Therefore, the extended rotation matrix Rn
b (Θ) is:

Rn
b (Θ) =

⎡⎢⎢⎣
cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ cosϕ sin θ
sinψ cos θ cosψ cosϕ+ sinϕ sin θ sinψ − cosψ sinϕ+ sin θ sinψ cosϕ

− sin θ cos θ sinϕ cos θ cosϕ

⎤⎥⎥⎦
(2.11)

This matrix satisfies the properties: RRT = RTR = I and det(R) = 1 ⇒ R is
orthonormal. Consequently, the inverse rotation matrix is given by: R−1 = RT .

Similarly, the transformation of angular velocities is given by:

Θ̇ = TΘ(Θ)ωb (2.12)

where ωb and Θ̇ are the angular velocities in the Body frame and in the Earth frame,
respectively.
The transformation matrix TΘ(Θ) is derived as follows:

TΘ(Θ) =

⎡⎢⎢⎣
1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sin ϕ

cos θ
cos ϕ
cos θ

⎤⎥⎥⎦ (2.13)

This matrix has a singularity when the pitch angle is θ = ±π
2 . However, the ROV

rarely approaches these pitch angles because it has a weight distribution such that the
center of gravity is lower than the center of buoyancy, thus the vehicle is self-balanced
around the neutral pitch angle θ = 0. Otherwise, the singularity can be avoided by
using quaternions1.

The 6 DOF kinematic equation can be written in vector form as:

η̇ = J(η)ν ⇐⇒
[︄
ṗ

Θ̇

]︄
=

[︄
Rn

b (Θ) 03x3

03x3 TΘ(Θ)

]︄ [︄
vb

ωb

]︄
(2.14)

2.2 Hydrodynamic model

The Hydrodynamic model of an underwater vehicle can be described through New-
ton–Euler equations, as follow:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + τd (2.15)

τ = Btut (2.16)

where:
1It is a four-parameter method based on unit quaternions. A quaternion q is defined as a complex

number with one real part and three imaginary parts.
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• M ∈ R6x6 is the matrix of inertia and added mass.

• C ∈ R6x6 is the centripetal and Coriolis matrix.

• D ∈ R6x6 is the hydrodynamic damping matrix.

• g ∈ R6x1 is the vector of gravitational and buoyancy forces.

• Bt ∈ R6x6 is the thrusters allocation matrix.

• ut ∈ R6x1 is the vector containing the force generated by the thrusters.

• τ ∈ R6x1 is the vector of forces and moments applied to the vehicle.

• τd ∈ R6x1 represents environmental disturbances.

2.2.1 Inertial matrix and added mass

The M matrix represents the force and moment due to the acceleration of the ROV
(rigid body mass) and water (added mass) around the vehicle, calculated as:

M = MRB + MA (2.17)

The rigid body mass matrix MRB is defined as follows:

MRB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.18)

where:

• m is the mass of the vehicle.

• Ii is the inertial moment of the i axis.

• Iij is the inertial product on the ij plane, measuring the imbalance of mass
distribution (with Ixy = Iyx, Ixz = Izx, Iyz = Izy).

• rg := [xg, yg, zg]T is the Center of Gravity.

• rb := [xb, yb, zb]T is the Center of Buoyancy.

Particularly, in a ROV, the origin of the vehicle-fixed reference system ob is placed at
the geometric center of the ROV. Assuming that the Center of Buoyancy coincides
with the origin ob implies: xb = 0, yb = 0, zb = 0. The vehicle has symmetry in the xz
and xy planes but the Center of Gravity in zg may be placed lower than the origin
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ob so that: xg = 0, yg = 0, zg ̸= 0 and Ixy = Ixz = Iyz = 0. MRB can be simplified as
follow:

MRB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg 0
0 m 0 −mzg 0 0
0 0 m 0 0 0
0 −mzg 0 Ix 0 0
mzg 0 0 0 Iy 0

0 0 0 0 0 Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.19)

The added mass matrix MA can be derived using an energy-based approach according
to Kirchhoff’s equation. It is defined as follows:

MA = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.20)

This matrix is symmetric, so MA = MT
A. The hydrodynamic derivatives are rep-

resented using the SNAME notation. For example, the hydrodynamic derivative
Zu̇ is the added hydrodynamic mass force Z in the z-direction (heave) due to an
acceleration u̇ along the x-axis (surge), expressed as:

Zu̇ = ∂Z

∂u
(2.21)

Also MA can be simplified, as the movements between the degrees of freedom of the
ROV in hydrodynamics are assumed to be decoupled:

MA = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 Kṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.22)

This matrix includes the force and moment due to the acceleration of the fluid around
the ROV.

2.2.2 Centripetal and Coriolis matrix

The Coriolis force matrix can also be decomposed into a term concerning the rigid
body and a term concerning the added mass, similarly to before:

C(ν) = CRB(ν) + CA(ν) (2.23)
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In particular:

CRB(ν) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 mzgr mw −mv
0 0 0 −mw mzgr mu

0 0 0 −mzgp+mv −mzgq −mu 0
−mzgr mw mzgp−mv 0 Izr −Iyq

−mw −mzgr mzgq +mu −Izr 0 Ixp

mv −mu 0 Iyq −Ixp 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.24)

CA(ν) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 Zẇw 0
0 0 0 −Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.25)

Where Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ are the added mass coefficients of the Coriolis forces.

2.2.3 Hydrodynamic damping matrix

There are four main sources that cause hydrodynamic damping for a marine vehicle,
including: potential damping, wave drift damping, skin friction, and damping due to
vortex shedding. However, the effects of potential damping and wave drift damping
are omitted for underwater vehicles, because these vehicles operate mostly below the
surface.
To simplify the model of the system, a rough estimate is that the higher order terms
beyond the second can be ignored, since the ROV has three planes of symmetry and
performs uncoupled movements.
So, the hydrodynamic damping matrix can be decomposed into a term representing
the skin friction (linear) and another one representing the damping due to vortex
shedding (non linear), as:

D = Dl +Dnl (2.26)

In particular:

Dl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 0 0 0
0 Yv 0 Yp 0 Yr

0 0 Zw 0 Zq 0
0 Kv 0 Kp 0 Nr

0 0 Mw 0 Mq 0
0 Nv 0 Np 0 Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.27)

where Xu, Yv, Zw, Kp, Mq, Nr are the linear hydrodynamic damping coefficients.
It can be simplified as:

Dl = diag(Xu, Yv, Zw,Kp,Mq, Nr) (2.28)
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2.2 Hydrodynamic model

Dnl = diag(X|u|u|u|, Y|v|v|v|, Z|w|w|w|,K|p|p|p|,M|q|q|q|, N|r|r|r|) (2.29)

where X|u|u, Y|v|v, Z|w|w, K|p|p, M|q|q, N|r|r are the nonlinear hydrodynamic damping
coefficients.
Thus, the total matrix is defined as:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu +X|u|u|u| 0 0 0 0 0
0 Yv + Y|v|v|v| 0 0 0 0
0 0 Zw + Z|w|w|w| 0 0 0
0 0 0 Kp +K|p|p|p| 0 0
0 0 0 0 Mq +M|q|q|q| 0
0 0 0 0 0 Nr +N|r|r|r|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.30)

2.2.4 Vector of gravitational and buoyancy force

The restoring force g(η) is the net buoyancy, where W = mg is the weight of the
ROV, B = ρgV is the buoyancy. Where:

• ρ is the density of water.

• g is the gravitational acceleration.

• V is the volume of fluid displaced by the ROV.

In most cases, the robot is positively buoyant (W < B) so that the vehicle can rise
to the surface if propulsion is lost.
The vector is defined as follow:

g(η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W −B) sin θ
−(W −B) cos θ sinϕ
−(W −B) cos θ cosϕ

−(ygW − ybB) cos θ cosϕ+ (zgW − zbB) cos θ sinϕ
−(zgW − zbB) sin θ + (zgW − zbB) cos θ cosϕ
−(xgW − xbB) cos θ sinϕ− (ygW − ybB) sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.31)

2.2.5 Thrusters allocation matrix and forces

It is considered a vehicle with eight propellers and controllable in six DOF.
The control force due to thrusters can be defined by the following equation:

F = Ku (2.32)

where u = [u1, u2, u3, u4, u5, u6, u7, u8]T whose elements ui are the control inputs of
each thruster and K = diag[K1,K2,K3,K4,K5,K6,K7,K8]T whose elements Ki are
the thrust coefficients, which are scalar factors. The force vector can be represented
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Chapter 2 Mathematical model for design and control

by F = [F1, F2, F3, F4, F5, F6, F7, F8]T .

The forces and moments in 6 DOF can be determined by:

τ =
[︄

f
r × f

]︄
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

Fzly − Fylz

Fxlz − Fzlx

Fylx − Fxly

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.33)

where f = [Fx, Fy, Fz]T is the force vector and r = [lx, ly, lz]T is the moment arms
vector.
2.33 can be defined as follow:

τ = T (α)F = T (α)Ku (2.34)

where T = [t1, t2, t3, t4, t5, t6, t7, t8]T ∈ R6x8 is the thrust configuration matrix and
α ∈ R8 is the vector of azimuth angles.

The control allocation method defines the control input signal u to be applied to the
thrusters in order to reach the desired forces τ .
By inverting Equation 2.34, it is possible to find u, as follows:

u = K−1T−1(α)τ (2.35)

However, the thrust configuration matrix T (α) is not a square matrix for this
application, so it is necessary to calculate its pseudo-inverse T+(α) through the
Moore-Penrose inverse method:

T+(α) = T (α)T (T (α)T (α)T )−1 (2.36)

Therefore, the control input is defined as:

u = K−1T (α)+τ (2.37)

Finally, the 2.15 equation of nonlinear dynamics of the ROV with a generalized
disturbance τd can be rewritten as:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = Kp(Au) + τd (2.38)
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2.3 Parameters of a BlueROV2

In particular, a BlueROV2, detailed in the next chapter, was used for this project.
Thus, in table 2.2, the moment arms of the 8 thrusters relative to the Center of Grav-
ity of the BlueROV2 are calculated. The rotation angles of the horizontal thrusters

Thrust lxi (m) lyi (m) lzi (m)
T1 0.156 0.111 0.085
T2 0.156 -0.111 0.085
T3 -0.156 0.111 0.085
T4 -0.156 -0.111 0.085
T5 0.120 0.218 0
T6 0.120 -0.218 0
T7 -0.120 0.218 0
T8 -0.120 -0.218 0

Table 2.2: Moment arms of the 8 thrusters of the BlueROV2.

from T1 to T4 are respectively: π/4, −π/4, −3π/4, and 3π/4. The thrusters from
T5 to T8 are vertical thrusters without horizontal rotations.

The physical and hydrodynamic parameters of the BlueROV2 are summarized in
Table 2.3.

2.4 State-space model

The state of the system x ∈ R12 is selected as the position and velocity of the vehicle,
defined as follow:

x =
[︄
η

ν

]︄
(2.39)

Due to the non linearity in both the dynamics and the kinematics of the ROV, a
nonlinear state-space model is used to represent the dynamic positioning controller
model:

ẋ =
[︄
η̇

ν̇

]︄
= f(x,u, τd, t) =

[︄
J(η)ν

M−1[Kp(Au) + τd − C(ν)ν − D(ν)ν − g(η)]

]︄
(2.40)
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Parameter Symbol Value Unit
Mass m 11.5 kg
Buoyancy B 114.80 N
Weight W 112.82 N
Center of Gravity rg (0,0,0) m
Center of Buoyancy rb (0,0,0.02) m
Inertia Moment I diag(0,0,0.2) kg·m2

Added Mass
Parameters

Xu̇ -5.5 kg
Yv̇ -12.7 kg
Zẇ -14.57 kg
Kṗ -0.12 kg·m2/rad
Mq̇ -0.12 kg·m2/rad
Nṙ -0.12 kg·m2/rad

Linear Damping
Parameters

Xu -4.03 N·s/m
Yv -6.22 N·s/m
Zw -5.18 N·s/m
Kp -0.07 N·s/rad
Mq -0.07 N·s/rad
Nr -0.07 N·s/rad

Non Linear Damping
Parameters

Xu|u -18.18 N·s2/m2

Yv|v| -21.66 N·s2/m2

Zw|w| -36.99 N·s2/m2

Kp|p| -1.55 N·s2/rad2

Mq|q| -1.55 N·s2/rad2

Nr|r| -1.55 N·s2/rad2

Table 2.3: BlueROV2 Parameters
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Approach

This chapter provides an analysis of the approach used to reach the project’s final
purpose, applying the theory and solving some challenges showed in previous chapters.
Especially, the chapter will proceed with details of the hardware and software
components used, emphasizing the key technical features essential for the project.
The components are divided in Underwater Setup, Surface Setup and Software
Application. In the subsection Final Architecture it is explained how the hardware
and software communicate with each other in the system.
Following this, an examination of the algorithms and programming paradigms of the
control systems implemented is presented, pointing out the logic used behind the
architecture.
In the final section of this chapter, attention is directed towards an experimental
environment developed to simulate a digital twin of the ROV. This innovative
approach is centered around the synergistic fusion of the ROV’s real-time operational
behavior with the advancements in simulation technology, with the final aim of
scanning the seabed.

3.1 Materials and Methods

This section is dedicated to present the underwater setup, the surface setup and
software applications used for the current project, highlighting its various compo-
nents and their functionalities. Central to this setup is the ROV and its sensors
and instruments for data acquisition and environmental monitoring. The section
details the specifications, capabilities, and integration of these devices, including the
communication systems, power management, and navigation tools, to explain how
they collectively contribute to the system.

3.1.1 Underwater Setup

BlueROV2

For this project a BlueROV2, manufactured by BlueRobotics, was used. This
underwater vehicle, in figure 3.1, belongs to ROV category and it is distinguished by
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its high maneuverability and stability, facilitated by a vectored thruster configuration
that can provides six DOF in movement.

(a) (b)

Figure 3.1: BlueROV2 with Heavy Configuration Retrofit Kit: (a) top view, (b) front
view.

The standard model is equipped with six brushless T200 thrusters made of 316 marine
grade stainless steel and polycarbonate, four of which vectored and two vertical,
allowing the vehicle to have 4 DOF.
The four vectored thrustesrs give the ROV the freedom to move in the directions
of sway, surge, and yaw. The other two thrusters facilitate movements in the heave
direction. While the arrangement of these thrusters theoretically allows for roll
movement, current software constraints prevent this functionality. Presently, the
ROV lacks the ability to maneuver in the pitch direction, a limitation that could be
overcome only through the integration of two additional thrusters.

Thrusters include encapsulated windings, stator, coated magnets, and rotor. The
fully-flooded design is a distinctive feature. This design facilitates water cooling of
the motor and water lubrication of plastic bushings, eliminating the need for shaft
seals, magnetic couplings, and air or oil filled compartments. Consequently, the
thruster exhibits natural pressure tolerance. Operating optimally at a voltage of 16V,
the thruster demonstrates versatility by also being able to operate at a vast range of
voltages. The thrusters are designed with clockwise and counterclockwise propeller
orientations to minimize torque reactions. All the thrusters are controlled by PWM
signals and the system’s gain levels are adjustable, allowing to have precision control
at minimal velocities, as well as the requisite force to overcome aquatic currents.
The configuration can be upgraded to include eight thrusters by using the Heavy
Configuration Retrofit Kit for a complete control across all six DOF and active pitch
and roll feedback stabilization. The kit introduces two additional vertical thrusters
and moves all vertical thrusters to the exterior of the ROV’s frame, including also

34



3.1 Materials and Methods

additional buoyancy for more stability and lifting capacity. The Heavy Configuration
does not improve the horizontal speed of the BlueROV2 but the vertical thrust,
making it advisable when additional accessories, such as sonars or manipulators, are
being integrated into the system.

The BlueROV2 is equipped with a set of electronics and sensors, including an HD
camera for clear underwater imaging, and advanced lighting systems to enhance
visibility in the depths of underwater environments.
The high-definition camera wirh 1080p resolution, 30 frames per second, 200 ms
latency, is positioned at the forefront of the ROV, featuring a wide-angle lens and
specialized for low-light conditions. This camera’s angle can be adjusted upward or
downward, maintaining visual clarity even when the ROV is in a horizontally level.
This camera is used as an additional sensor in this project.
The artificial lights system can emitt a combined illumination of up to 6,000 lumens.

The BlueROV2 offers configuration options with either acrylic plastic or anodized
aluminum enclosures. The first one is designed to reach depths of up to 100 meters,
while the anodized aluminum can reach depths of up 300 meters. It is also included
a vacuum test pump, used to ensure the proper seal before each dive.

The distinctive feature of the BlueROV2 compared to traditional ROV models, is
its modular design, making it adaptable to various mission requirements through a
range of attachable sensors and tools, like scanning sonar or navigation systems.

The BlueROV2 is initially set up for operation via Lithium-ion battery power. How-
ever, it can be also powered by a high-voltage topside power supply, illustrated in
the next section, which eliminates the need for batteries. The latter was adopted in
this project.

The BlueROV2 also provides a Navigator Flight Controller (Figure 3.3) and BlueOS.
The Navigator is a controller specifically engineered for ROVs, equipped with onboard
sensors such as an IMU and a magnetometer. This electronic board is equipped
with an advanced processor, STMicroelectronics sensors, and runs on the real-time
operating system NuttX. Featuring 16 outputs, the Navigator can connect to a
variety of devices including thrusters (controlled through MAVLink), lights, grippers,
and other accessories. Additionally, it boasts several serial and I2C communication
ports for interfacing with sensors and sonars. The controller includes features like
integrated multithreading, a Unix/Linux-like programming environment, autopilot
functions for missions and flight behaviors, and a customized PX4 driver level.[30]

Paired with the Navigator is the Raspberry Pi 4 computer (Figure 3.2), responsible
for all processing and computing tasks within the ROV. This system runs the open-
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source BlueOS software, that operates the ArduSub vehicle control software, oversees
the camera and tether connection, and simplifies software updates to integrate new
functionalities.

Figure 3.2: Raspberry Pi 4

Figure 3.3: Navigator Flight Controller. (Image credit: BlueRobotics)

The Raspberry Pi 4 is connected to the tether and uses Ethernet technology to
transmit telemetric data to the surface. It has a 64-bit quad-core processor and
supports dual displays with resolutions of up to 4K through a pair of micro-HDMI
ports. It has a capacity of up to 4 GB of RAM and a dual-band 2.4/5.0 GHz
wireless LAN, Bluetooth 5.0, Gigabit Ethernet, and USB 3.0 options. Addition-
ally, the Raspberry Pi 4 is equipped with Power over Ethernet (PoE) capabilities,
made possible through a separate PoE HAT (Hardware Attached on Top) component.

Thus, the user can maneuver the ROV using a laptop computer and a gamepad
controller. The interface is powered by the open-source QGroundControl application,
which delivers a live video feed, sensor feedback, and critical information, alongside
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the flexibility to modify settings and configurations.[31]
The connection between the ROV and the laptop is achieved by the Fathom ROV
Tether, a 300 meters flexible polyurethane cable and suitable for marine applications,
in Figure 3.4.

Figure 3.4: Fanthom ROV Tether. (Image credit: BlueRobotics)

The Fathom Tether offers a range of lengths, from 25 meters up to a maximum
of 300 meters. For lengths beyond 50 meters, the utilization of the Fathom Spool
is recommended to simplify management. The Fathom Spool is a water-resistant
sturdy reel that streamlines the storage and handling of the tether connected to
the BlueROV2. The tether boasts neutral buoyancy, a robust breaking strength
between 300 to 350 pounds, and is infused with water-blocking fibers to prevent
leakage. Embedded within the tether are one to four unshielded twisted pairs (UTP)
of 26AWG wire. Connectivity is made with a pre-fitted Binder 770 plug, compatible
with the FXTI and Fathom Spool. At the other end, a cable penetrator facilitates
integration with the BlueROV2 or other watertight enclosures.[32]

SeaTrac Lightweight

The SeaTrac Lightweight is the underwater acoustic positioning system used in this
project.
This system contains two beacons: the X150 USBL beacon and the X010 transpon-
der beacon. This system is build upon the idea that one single USBL beacon can be
used to track the positions of 1-14 underwater devices, each with its own transponder
beacon, and install a bidirectional communication with them in real-time, up to a
depth of 300 meters. This acoustic solution involves installation and operational
constraints, but also the calibration of the USBL beacon. The system’s set up
requires that the X150 beacon must be powered up by the alimentation from a device
on the surface, connected to a computer and drown into the sea, meanwhile the
X010 beacon must be mounted on the underwater device. The X010 beacon returns
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the distance between itself and the X150 beacon and this latter allows to know the
remote beacon’s relative position during the data exchange.

The X150 is the micro-USBL beacon, in Figure 3.5. It has a 9 DOF, AHRS and a
Doppler sensor, which takes data from the onboard MEMS gyroscope, accelerometer
and magnetometer to produce pitch, roll and yaw information.

The accelerometer’s function is to calculate the pitch and roll orientations by
discerning the direction of gravitational force in relation to the Beacons’ local reference
frame. It must record the raw sensor data when a force of +1G and -1G is exerted on
each of its axes. These recordings are known as the limits. This calibration enables the
device to interpolate measurements for forces between these limits and to disregard
the acceleration that results from motion. These parameters are preset at the factory
before shipment. Under normal circumstances, recalibration is unnecessary unless
the beacons are subjected to extreme environmental temperatures.
The magnetometer measures the Earth’s magnetic field lines and the direction
of magnetic north in relation to the local frame of reference of the Beacons. It is
crucial to note that the presence of ferrous materials, including Iron, Nickel, Cobalt,
can influence the magnetometer readings when in close vicinity to the Beacon.
Therefore, proper calibration of the magnetometer is essential before its deployment
to guarantee that the yaw readings align accurately with magnetic north and are
updated appropriately as the beacon undergoes rotation.
The rotational rate-gyroscope determines the rate at which the beacon rotates
around each of its axes, relative to its local frame of reference. This gyroscope’s
readings are crucial for minimizing the response time of the Attitude and Heading
Reference System and for facilitating swift updates to the yaw, pitch, and roll
measurements.[33]

SeaTrac Beacons necessitate a DC power supply that is regulated and free from
electrical noise. This power source must be capable of providing a steady voltage
ranging from 9V to 28V, accommodating peak loads of up to 10W during acoustic
transmissions.
The X150 uses a ASCII based command protocol. Data can be unpacked to get
position and orientation information of the supervised underwater device relative to
the Magnetic North and the gravity direction. [34]
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Figure 3.5: X150 Beacon

The X010 beacon is the mini-transponder contained in the SeaTrac Lightweight sys-
tem which returns the underwater device’s data to the X150 beacon requests thanks
to its internal DSP motor.[35] Each beacon is equipped with sensors that measure
environmental pressure and temperature, enabling the calculation and continuous
monitoring of the beacon’s depth. Within a tracking system, this depth data from
the remote beacons can be integrated into the position-solving process, enhancing
the precision of vertical positioning. Furthermore, the pressure and temperature
data contribute to the automatic refinement of the local velocity-of-sound value for
each beacon, minimizing errors in ranging calculations. This integration ensures that
the system maintains the highest level of accuracy in real-time operational conditions.

A navigation application, SeaTrac NavPoint, designed for Microsoft Windows is
capable of displaying various parameters such as position, depth, attitude, and course
history for each beacon within a user-friendly graphical interface. This application is
engineered to handle a network of up to 14 remote beacons, all coordinated from a
central USBL X150 beacon.

3.1.2 Surface Setup

GPS Receiver

The GPS receiver used in this project is a BU-353S4 model, Figure 3.6. It has a
SiRF Star IV chip with a -163 dBm tracking sensibility, a fast TTFF to a low level
signal and supports NMEA0183 protocol. It can be used indoor or outdoor, since it’s
water resistant, and it can be connected to a computer through its USB interface. It
can be used to transform a certain device into a navigation device or in combination
with software that require GPS input data.
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Figure 3.6: GPS receiver BU-353S4

Laptop

The computer used is a Dell Latitude 7480 with a memory capacity of 15,5 GB and
a disk capacity of 512,1 GB with an Intel® Core™ i5-7200U CPU @ 2.50GHz ×
4 processor. In the computer is installed the Ubuntu 20.04.6 LTS Operating Sys-
tem of 64-bit. On the graphic side, it has a Mesa Intel® HD Graphics 620 (KBL GT2).

A Switcher (Figure 3.7) was used to create the communication between the Tether
and the laptop, without using the FXTI box.

Figure 3.7: Switcher for ROV’s communication
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Outland Technology Power Supply

The OTPS system (Figure 3.8) is used to power up the BlueRov2 via tether instead
of using a battery. The main priviledge in this is that there is no limited time of
usage of the ROV.
The tether used for this purpose, receives a 100-240 VAC power, transforms it to
a 400 V power, then transfers it through small wires and converts it again to 15 V
until it reaches the ROV.

Figure 3.8: Outland Technology Power Supply

The OTPS contents involves a Topside Power Supply Unit, a ROV Power Supply
Enclosure for OTPS and a High-Power Tether Cable with Connectors for OTPS of
125m or 250m.
The Topside Power Supply Unit is a compact suitcase which contains a built-in FXTI
board and a security GFI which shuts down the system if any unsafe event or current
leakage is detected. When it is opened, it shows a lot of features such as: a ground
wire connection, a tether connection in which will be connected ROV’s tether and a
power cable input to power it up. It also has an outlet for the computer charger, a
power switch to let the current flow into the topside suitcase. On the lower part of
the topside there is a display which shows the status of the ROV in real-time and a
GFI test switch. The middle part is designed to be the laptop tray. On the right
side there is a user access panel, a USB-B and 124 an external FXTI connection.
The ROV Power Supply Enclosure is mounted on the lower part of the ROV and
connected to the tether in the ending part, where it converts the 400 V power into
the 15 V.
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The High-Power Tether Cable with Connectors is a particular tether designed with
five twisted pairs where two of them are used for an isolated power transmission,
another couple is used for an earth ground connection and the last one is used for
the Fathom-X communication.[36]

3.1.3 Software Applications

ArduSub

ArduSub (logo in Figure 3.9) is a fully-featured open-source software for ROV. It
is a part of ArduPilot project and acquire features from the ArduCopter code,
such as simulators, log analysis tools, and advanced APIs for comprehensive vehicle
management and control. It provides features like feedback stability control, depth
and heading maintenance, and the facility for autonomous navigation. ArduSub
integrates with Ground Control Station software, enabling users to monitor vehicle
telemetry and engage in sophisticated mission planning activities. ArduSub firmware
is compatible with Pixhawk, Pixhawk 2 and Pixhawk Mini platforms.[37]

Figure 3.9: ArduSub logo. (Image credit: BlueRobotics)

MAVLink

MAVLink (logo in Figure 3.10) is a lightweight messaging protocol for sending
and receiving messages between aerial drones or underwater vehicles and other
components, usually ground stations. MAVLink uses a pattern that combines
elements of both publish-subscribe and point-to-point approaches: information
streams are transmitted as topics, while configuration sub-protocols employ a point-
to-point model with retransmission. XML files are used to define supported MAVLink
messages, which constitute the dialect. Especially the low level and general purpose
Pymavlink library was used in this project to read data from sensors and send
commands through a Python script. [38]

Figure 3.10: MAVLink logo. (Image credit: mavlink.io)
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QGroundControl

QGroundControl (logo in Figure 3.11) is an open-source, cross-platform ground
control station software, created for autonomous or remotely controlled vehicles.
It serves as a comprehensive tool for planning, monitoring, and controlling UAV
missions of any vehicle which supports MAVLink communication. It offers features
such as mission planning, waypoint navigation, live video streaming from onboard
cameras, manual control of the vehicle and real-time telemetry data display, including
vehicle position, altitude, battery status, and sensor readings. QGC runs on Windows,
OS X, Linux platforms, iOS and Android devices.
The QGC 4.2.6 version was used in this project. [39]

Figure 3.11: QGC logo. (Image credit: qgroundcontrol.com)

ROS Noetic

ROS stands for Robot Operating System and it is an open-source collection of
libraries and tools for robotic applications’ developers and users. This can be used
in multiple domains, such as indoor robots or automotive and in multiple platforms,
such as: Linux, Windows and macOS. Its main usages are for robots’ autonomy
implementation, backend management and user interfaces, but there are more topics
that can be explored with ROS. Basically, it can operate on robots’ actuators, sensors
and control systems and connect them together. Each ROS process can be represented
with a node in a graph. The nodes can send, receive and split messages from or
to other nodes, actuators or sensors. Moreover, ROS’ features are indipendent to
the programming languages that can be used (C++, Python and LISP). In this
project the ROV Noetic version (logo in Figure 3.12 is used since it is compatible
and designed work with the Ubuntu 20.04 OS. [40]
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Figure 3.12: Ros Noetic logo. (Image credit: ROS.org)

Unity3D

Unity is a real-time 3D cross-platform game engine and development framework
used to create interactive 3D, 2D, virtual reality (VR), and augmented reality (AR)
applications. It provides a comprehensive set of tools and functionalities that enable
developers to design, develop, and deploy games, simulations, and other interactive
experiences across various platforms, including desktop computers, mobile devices,
gaming consoles, and even web browsers.
It is available for Windows, macOS and Linux. It supports scripting in C (C Sharp)
and provides a powerful scripting API.
The version used for this project is Unity 2021.3.18f1.[41]

Figure 3.13: Unity logo. (Image credit: unity.com)

3.1.4 Final Architecture

The final composition consists of a Dell Latitude 7480 laptop positioned on the
Topside Power Supply Unit powered up and connected to the BlueROV’s tether.
The X010 beacon of the Seatrac Lightweight must be mounted on the BlueROV2,
meanwhile the X150 beacon must be attached to one of the laptop’s USB port, then
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both can be inserted in the water.
Meanwhile, the software bridge was created towards a ROS file and launching both the
python script and the QGroundControl app at the same time. The QGroundControl
app was previously set up to allow bidirectional communication between the script
and the ROV.
The default communication port of QGroundControl is the 14550 port, but it was
changed to 14440 to allow ROS data to be sent to the 14550 port.
The communication between the ROV and the script is created through the PyMavlink
library which allows to receive and send data in a bidirectional way.
ROS libraries are used in the script to create topics in which messages can be both
written or read. These topics open the communication with the Unity project even
though the C# programming language is used instead of Python.
The local NED coordinates calculated in the Python script thanks to the Seatrac
Lightweight measurements and the ROV’s data are transferred to the C# script in
Unity to update the ROV digital-twin position in the enviroment. To create the
connection between the C# script and the ROV digital-twin the properties of the
latter are modified and the script is linked to the 3D ROV.

3.2 Development of a LOS control system

This section explains the developed target tracking controller which allows the
autonomous navigation of the BlueROV2 between a predefined starting point and a
destination in terms of latitude and longitude. This is achieved by guiding the ROV
along a straight trajectory based on a Line of Sight (LOS) control strategy, which
involves a sequence of movements: initially vertical, followed by rotation around the
yaw axis, and finally, forward motion.
Thus, the section introduces the Line of Sight control strategy and its practical
software implementation.
Especially, it provides a solution of the positioning challenge, using the SeaTrac
acoustic sensor, through the implementation of a message exchange between the
device and the ROV, and the a real-time control strategy based on the information
received.

3.2.1 Line of Sight Guidance

Line of Sight (LOS) guidance is a strategic approach in navigation categorized as a
three-point guidance scheme for underactuated vehicles. The term "line of sight" is
derived from the tactical requirement that the interceptor’s movement is directed
along the LOS vector, which connects the reference point and the target, as shown
in figure 3.14.[28]
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Figure 3.14: Heading LOS guidance strategy

This approach transforms the path following control problem into a heading control
problem, by aligning the vehicle’s movement with a dynamically calculated reference
point along the intended path. This alignment is achieved through constant adjust-
ments to the vehicle’s heading, ensuring that it remains on course towards the next
waypoint, in order to simplify the navigation process.[42]
Thus, the strategy is particularly valuable in applications where precise and straight
line movement is essential, like surveying, mapping, and targeted exploration. An
application example of this strategy is given by [43].

3.2.2 Implementation of the NGC system

The aim of the developed algorithms is to render the BlueROV2 autonomous in
navigating from a known starting point to a designated destination, defined in terms
of latitude and longitude, using a Line of Sight guidance approach. The ArduSub
firmware offers intrinsic control strategies for vertical movement and rotation around
the yaw axis.
In the following sections, the configuration of the system and the underlying logic of
the algorithms are explained.

Configuration

The configuration process of the navigation system involves several steps.
Initially, the X150 beacon must be calibrated using the SeaTrac Tools application
on a Windows platform. The X010 beacon has to be mounted on the structure
of the BlueROV2 and the ROV’s tether has to be attached to the Topside Power
Supply Unit, which is equipped with a tether plug-in. The system setup includes
also placing a computer on the Topside Power Supply Unit, powering it up with a
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cable connected to the Topside’s board.

For the purpose of data acquisition and positioning, the GPS Receiver has to be
connected to a USB port on the computer, and similarly, the X150 beacon to another
USB port. The GPS Receiver has to be placed on a flat surface, and the X150
beacon should be inserted into the water directly below it, ensuring they share the
same latitude and longitude coordinates and paying attention to be at least 1 meter
away from all surfaces. This placement prevents the creation of multi-path signals
caused by sound waves reflecting off surfaces, which could lead to implausible beacon
readings. Moreover, it is important to maintain a distance of more than one meter
between the BlueROV2 and the X150 beacon to avoid any signal interference and
ensure accurate positioning and navigation. Additionally, the Ethernet cable from
the IVM power box is connected to an Ethernet port on the computer, and the IVM
power box is powered up using its power cable.

Thus, the system is ready for deployment with the insertion of the ROV into the
water and the activation of the Topside Power Supply Unit via its switch. Upon
successful powering up, audible and visual indications confirm the operational status,
such as a sound emanates from the ROV, lights inside the ROV’s cylinder illuminate,
and the LED on the X150 beacon begins flashing green.

The schematic of the system configuration is shown in Figure 3.15.

Figure 3.15: Complete configuration
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Regarding the software configuration Ubuntu 20.04 was installed as operating sys-
tem, Visual Studio Code version 1.80.1, Python version 3.8.10 and QGroundControl
version 4.2.6.

This last software has to be configured in order to ensure seamless communication
and interaction with the ROV. By default, QGroundControl uses port 14550 to
communicate with the ROV when the application is not open. To facilitate communi-
cation through a Python script when the application is active, a new communication
port, 14440, was set up. This necessitated configuring QGroundControl to forward
information received from the ROV to this new port by enabling all boxes in the
“Ground Station” section of the MAVLink settings and changing the “Host Name”
to localhost:14440, as shown in Figure 3.16.

Figure 3.16: QGC local port configuration

Another adjustment in QGroundControl involved addressing a potential conflict with
the default auto-connection feature. QGroundControl automatically connects to all
devices attached via USB, which could interfere with the Python script’s access to
these devices. To resolve this, the auto-connect feature was disabled, allowing the
Python script to communicate with the USB connected devices without conflicts by
disabling all boxes under “AutoConnect to the following devices” in the “General”
section of the application settings, as shown in Figure 3.17.

Figure 3.17: QGC auto-connection configuration

Algorithms

The software wad developed in Python and it allows message transmission between
QGC and the ArduSub firmware on the Raspberry Pi4 of the ROV, through Py-
MAVLink protocol, acting as an intermediary.
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Two codes have been developed: the first dedicated to the real-time localization of
the ROV, and the second utilizes this positional data to execute a control strategy
targeting a specific point.

Especially, the software is responsible for a variety of tasks:

• Opening of serial communications: The code manages the serial commu-
nication between the laptop and the X150 and the GPS. It also provides a
communication between the software and QGC, through mavlink_connection(),
allowing for listening to or sending messages to port 14440 and waiting for a
"heartbeat" before executing any command.

• Message Reading and Decoding: It requests status messages from the
X010 beacon, which are then received by the X150 beacon, establishing a
reliable communication link between the beacons. It reads and decodes all
status messages sent to the X150 beacon from the X010 to extract ROV’s NED
coordinates relative to the X150 beacon.

• GPS Integration: It reads the position of the GPS receiver in latitude and
longitude (so the position of X150 beacon) and utilizes these coordinates to
calculate the ROV’s latitude and longitude, through Haversine formula.1

• Real-time updating QGC: The script sends the ROV coordinates to QGround-
Control, enabling the display of its position on a real-time map.

• Managing the control system: The script sends a variety of commands
to the ROV’s motors. These commands are designed to achieve the desired
depth, maintain the correct orientation, and enable the ROV to reach the
predetermined endpoint.

The decision was made to implement a threaded logic framework to facilitate concur-
rent processing, requiring the simultaneous execution of different tasks.
A total of six threads are utilized in the system, in the sequence of execution:

1. QGround Loop: This function manages the interaction with QGround-
Control, continuously reading MAVLink messages, through master.recv()
and sending the coordinates of the ROV, to QGroundControl via the mas-
ter.mav.gps_input_send() function, through ArduSub.

2. Reading Loop: The reading function reads and interprets messages from the
Seatrac system, decoded from bytes into ASCII. When a CID_NAV_QUERY_RESP
message is received, which is a response to the Writing Loop’s message, the
Decoding function is triggered. It decodes the NED coordinates and orientation
of the ROV.

1The haversine formula provides an extremely precise method, especially for smaller angles and
distances, for calculating the distance between two points on a sphere’s surface, based on their
latitude and longitude. Further information about this formula can be found in [44]
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3. Writing Loop: It sends periodic requests to X150 beacon for updated data,
every 4 seconds, through CID_NAV_QUERY_SEND.

4. Locating Loop: The locating function processes GPS data to pinpoint the
ROV’s latitude and longitude, when a GPGGA-type messages is received.
Then it calculates the latitude-longitude coordinates of the ROV by converting
the NED data with the inverse of Haversine formula and by adding the GPS
information.

5. Log Loop: This function sets up the logging files and writes the ROV’s current
state (position and orientation).

6. Control Loop: It is the central part of the control system. The function starts
by arming thrusters and setting the ROV to ALT_HOLD mode to maintain a
specific depth.
Then the loop continuously monitors the ROV’s current latitude, longitude, and
depth. It compares these values against desired coordinates, which represent
the target location and depth for the ROV.
It calculates the difference between the ROV’s current and desired states. If
there’s a difference in depth, unless within a certain error, it sends commands
to adjust the ROV’s motors to achieve the desired depth, ensuring vertical
positioning accuracy.
If the desired depth is reached, it determines the bearing needed to reach the
target point from the actual position and it adjusts the ROV’s orientation to
align with this calculated yaw angle.
Once the depth and yaw are aligned with the desired values, the loop checks
the distance to the target location. If the ROV is not within a specified range
of the target, it commands the ROV to move forward, guiding it towards the
target point.When the ROV is within the target range, the loop commands to
stop the forward movement, indicating that the ROV has reached its intended
destination.

In Figure 3.18, a flowchart diagram of the software is shown.
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Figure 3.18: Flowchart diagram of the software

3.3 Development of an experimental Digital Twin
environment

The second part of this study consisted of the integration of a project developed
by Eliott Deleplanque for his thesis work, with the algorithms formulated in the
preceding section.
Deleplanque’s project used a simulation conducted in ArduSub to gather data from
the simulated ROV, and then transmitting this data to a digital twin in Unity to
mimic the behavior observed in the simulation.
Modifications were made to Deleplanque’s code to enable its functioning in real-time
rather than solely in a simulated environment. This revised code processes incoming
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messages from the ROV, Seatrac, and GPS. The collected data are then processed
and synthesized to calculate the ROV’s current position in the water, which is
subsequently displayed on QGC in real-time. The ROV’s position is converted into
NED coordinates, which are then relayed to the digital twin in Unity to replicate
the behavior of the actual ROV.
To achieve this, a connection was initially established between the script and the
ROV for data acquisition, followed by establishing a link between the script and the
ROS for sending commands to the digital twin in Unity.
Unfortunately, this system has not been tested due to the malfunction of the ROV.

3.3.1 Unity Digital Twin

For this project, an accurate digital model created by Deleplanque in Unity was
employed, depicting the system comprising the ROV, in Figure 3.21, and the dock of
the Port Point Rouge of Marseille, in Figure 3.19. To this model, a reconstruction
of the seabed, crafted by Pierre Drap, was added, with the points of interest (red
squares), shown in Figure 3.20. This integration provided a comprehensive and
realistic representation of the underwater environment, where tests were conducted.

Figure 3.19: Digital representation of the dock in Unity

The simulation in Unity focuses on replicating the behavior of the BlueROV2. This
is achieved through dedicated scripts that establish a connection to the ROS topic.
The primary purpose of these scripts is to wait for and receive messages containing
information about the movements and orientation of the ROV. Once received, these
messages are converted into a format (Vector3) compatible with Unity, and orientation
is extracted as a Quaternion. With the data received, the simulation updates the
matrices that manage the position and orientation within the Unity environment.
This allows for an accurate reflection of the real-world movements and orientation
changes of the ROV in the virtual context. Essentially, every movement or change in
direction of the ROV in the real world is translated and replicated in the simulation,
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Figure 3.20: Digital representation of the seabed in Unity

Figure 3.21: Digital Twin of the ROV

providing a realistic and consistent experience with the operations of the ROV.

3.3.2 Implementation of the NGC system

The main aim of the control system is to solve a path following problem, reaching
desired waypoints, to scan the seabed and find some objects. The logic behind this
control system is the same of the first part, using the Line of Sight approach.
In the following sections, the configuration of the system and the underlying logic of
the algorithms are explained.

Configuration

The hardware configuration employed in this part of the study mirrors the setup
delineated in the preceding section, therefore, for the sake of simplicity, it is not
reiterated here.
However, the configuration scheme is shown in Figure 3.22. Regarding the software
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Figure 3.22: Complete Configuration

setup Ubuntu, Visual Studio Code, Python and QGroundControl was installed with
the same versions and configuration done in the first part.
It was also installed ROS Noetic, compatible with Ubuntu 20.04, and Unity 2021.3.18f1.
For further details about the installation and the configuration of the simulated
environments, readers are directed to consult Deleplanque’s repository https://
github.com/ELTGR/Mission_Planning.

The software communication system between the ROV, ROS and Unity, shown in
Figure 3.23, can be analyzed into three parts: ROV-Python communication, Pyhon-
ROS communication and ROS-Unity Communication. To communicate with the

Figure 3.23: ROV-Python-ROS-Unity communication
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ROV, PyMavlink library is used, providing functions to send and receive data.

ROS facilitates communication between programs that may be written in different
programming languages. In the context of this study, it is utilized to transfer data
from a Python script to a C# script, thereby updating the position of the ROV in
Unity. A topic named "/local_position" is defined. This topic is set up for publishing,
meaning that it is designed to write data. Thus, It receives the position data of the
ROV from PyMavlink and publishes this data to the previously defined topic.

To update the position of the ROV within the Unity environment, a C# script is
utilized. This script is located in the Asset directory of the Unity project, linking the
script with the ROV model and allowing for real-time updates of the ROV’s position
in the Unity simulation by reading data from the topic.

Algorithms

The software is responsible of:

• Communication and Connection Setup: It establishes a connection be-
tween the Python script and ROS, facilitating communication with the Unity
Project through the 14550 UDP port. It also creates a link between the Python
script and QGroundControl to communicate with the ROV via the 14440 UDP
port.

• Message Reading and Decoding: The code requests and receives status
messages from the X010 beacon via the X150 beacon and decodes them to
determine its NED coordinates.

• GPS Integration: It reads the GPS receiver’s position in latitude and
longitude, using these coordinates to calculate the ROV’s underwater position,
through Haversine formula.

• Real-time updating QGC: It sends the ROV’s coordinates to QGroundCon-
trol for real-time mapping.

• Trajectory Planning: It plans and creates the entire trajectory of the ROV.
Initiates scanning operations, storing data in .txt files, and sends the NED
coordinates to the Unity Project to mimic the real-time movements of the
ROV.

• Managing the control system: The software adjusts the ROV to a specified
depth and calculates its current NED coordinates relative to the desired lat-
lon position. It transforms lat-lon points into NED coordinates for precise
navigation and sends commands to thrusters to follow the desired path.

The software is composed of various scripts, each dedicated to manage different tasks:
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• bluerov_node.py: It establishes communication with ROS and handles the
creation, sending, and publishing of ROS messages. This script processes
information from the ROV, Seatrac, and GPS, allowing it to calculate the
current position of the ROV. This data is then sent to QGC for real-time
display of the vehicle’s location on a map. Moreover, these details are converted
into NED coordinates, crucial for initiating the scanning process. Essentially,
bluerov_node.py enables the BlueROV2 to autonomously navigate between a
known starting point and multiple predetermined points of interest.

• bridge.py: It enables the transmission of commands to its motors and the
retrieval of data from connected devices such as Seatrac and GPS. This script
also incorporates functionality for scanning and maneuvering the ROV towards
specified NED coordinates.

• Config_scan.yaml: The file stores details for scanning operations.

• Gridy_based.py: The script is responsible for outlining the trajectory that
the ROV follows, ensuring a structured approach to navigation.

• return_on_target.py: If the ROV detects objects, this script contains
functions that enable to return to the points where these detections occurred.

• visualisation_rov_way.py: It designs the ROV’s trajectory using data
logged in log_position.txt file. This file records the ROV’s state (time, x, y, z,
yaw) at each update. Other files are stored such as the sonar_time.txt, that logs
data when objects are detected by the sonar, or the start_stop_recording.txt,
that marks the start and stop points at each waypoint reached.

The software described is partially derived from Deleplanque’s work, yet it has been
significantly adapted to the NGC developed in the previous section.
The main contributions are: including global variables for thread management,
message reading from QGC, Seatrac, and GPS, managing of the ROV’s lat-lon and
NED coordinates, roll, pitch, and yaw and decoding of Seatrac’s stream data through
functions for sign value extraction from bit data or hex to decimal conversion. It also
implements a function for calculating the ROV’s current NED coordinates relative
to its initial lat-lon coordinates and facilitates ROV communication via the 14440
UDP port, including functions for interacting with QGC. Moreover it sets up the
14550 UDP port for ROS communication, calculates lat_ref, lon_ref from GPS and
Seatrac NED data and handles East, North, Down variables. It manages various
operational loops like Reading Loop, Writing Loop, Decoding Loop, NED Loop, and
QGC Loop.
In Figure 3.24, a flowchart diagram of the software is shown.

56



3.3 Development of an experimental Digital Twin environment

Figure 3.24: Flowchart diagram of the second software
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Chapter 4

Experimental results

This chapter presents the performance of the NGC software, evaluating the efficacy
under sea conditions, including navigation precision, response to control inputs,
stability under varying sea states, and data communication efficiency.
These trials were conducted in two distinct aquatic environments: a controlled setting
within the "Lycée Marseilleveyre" swimming pool and the natural environment of
the Marseille Pointe Rouge port.
This chapter particularly focuses on presenting results collected during field tests
conducted at the port, where both the control system and localization capabilities of
the software were rigorously evaluated. Notably, the comprehensive version of the
software, which includes the integration of a digital twin, was not tested in these
field trials. Therefore, the second section of this chapter offers insights into the
performance of this integrated system through simulation-based results.

4.1 Tests of the NGC system

After the hardware and software was correctly configured, the BlueROV2, with the
X010 acoustic beacon, was submerged alongside the X150 beacon, checking if no
other acoustic devices were present and if the vehicle was properly balanced, shown
in Figure 4.1.

59



Chapter 4 Experimental results

Figure 4.1: ROV’s Buoyancy

Thus, the Python script for only localization was run via Visual Studio Code, followed
by opening the QGroundControl App, to check if the ROV was correctly positioned
on the map and if the devices were communicating properly. Then, thrusters were
tested by using a joystick. Once their functionality was confirmed, the NGC software
was tested, collecting data about time, Latitude, Longitude, Depth, Roll, Pitch and
Yaw.
In this way, the ROV, from its initial point, reached the desired target by adjusting
its depth, its yaw angle and moving forward. The desired longitude and latitude of
the target and the GPS position, used for this results, are shown in Figure 4.2. Then,

Figure 4.2: Desired latitude and longitude and GPS position

a series of graphs were created to evaluate the control system. The graphs were
generated through MATLAB scripts, specifically designed to import and process
data collected during the experiments.
Initially, data was cleaned, removing rows where the reading of messages from the
Seatrac had not yet occurred. It is also important to note that the data collection
occurred at four-second intervals. The graphs are explained as follow:

• 3D Trajectory Graph: Using latitude, longitude, and depth, a trajectory
graph of the ROV was created, as in Figure 4.3. The vertical axis represents
depth, which appears to fluctuate throughout the course of the trajectory. This
suggests that the ROV is responding to control commands aimed at reaching
its depth, conditioned by the disturbances in the water. Additionally, it can
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Figure 4.3: 3D trajectory graph (lat-lon-depth)

be observed that the ROV first adjusts its depth and then initiates movement
towards the target.
The trajectory in the plane formed by latitude and longitude shows the path
taken by the ROV. It should be a linear path, as a LOS strategy was used, but
external deviations, like current, may affect the trajectory. Anyway the control
strategy can overcome these disturbances. The ending point of the trajectory,
compared to the desired final location, will indicate the NGC system’s accuracy
in reaching target coordinates.

• Time-Depth Graph: The graph in Figure 4.4 shows how the depth of the
ROV varies over time, useful for analyzing the dynamics of the system. This
graph underline a short transient response, indicating how quickly the control
system is able to react to the command and start the descent process. After
the initial descent, the depth line becomes relatively horizontal, with minor
fluctuations around the desired depth value1. This indicates that the ROV has
reached the desired depth and is maintaining it, which could be reflective of the
’hold depth’ capability of the control system. Once again, the slight variations
along the horizontal part of the line suggest some oscillation around the target
depth, which might be caused by the ROV’s buoyancy control adjustments or

1The desired depth value is -2.5 meters but there is a tolerance of ± 0.5 meters
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Figure 4.4: Time - Depth graph

environmental factors.

• Orientation Graphs (Roll, Pitch, Yaw): Separate graphs for roll, pitch,
and yaw over time, in Figure 4.5 analyze the Rov’s balance and orientation
control. The roll graph fluctuates around a relatively stable mean, indicating the
ROV’s side-to-side tilting is minimal. Except for a significant initial fluctuation,
attributed to a slight imbalance in the motor armature, the graph suggest a
system actively maintaining equilibrium.
The pitch graph shows more significant deviations than the roll, suggesting an
imbalance for the front-to-back orientation.
The yaw graph demonstrates adjustments made to align with the target heading.

• Latitude and Longitude Graph: To observe how the ROV moves geograph-
ically, latitude and longitude over time was plotted, shown in Figure 4.6. The
stepped pattern is due to the fact that the latitude and longitude data are
updated every 4 seconds. Moreover, the pattern of movement suggests that
the ROV is stopping or slowing at intervals, which may align with the heading
or depth adjustments in the navigation path.

• Speed Analysis: The speed was calculated, based on changes in latitude,
longitude, and time, in Figure 4.7. In this graph is more evident how the 4
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Figure 4.5: Roll, Pitch, Yaw graphs

Figure 4.6: Time - Lat,Lon Graph

seconds data updating causes snapshots at these intervals. Hence, the graph is
not a smooth speed curve but rather a series of discrete readings that capture
the speed at specific moments. Furthermore, comparing this graph with those of
the trajectory and yaw, it is observed that a yaw adjustment occurs around 50
seconds, possibly due to increased interference from the external environment,
leading to a slight deviation from the reference trajectory and, consequently, an
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Figure 4.7: Time - Speed Graph

increase speed. This deviation offers a plausible explanation for the observed
non-linearity in the trajectory towards the conclusion of the period under
review.

4.2 Simulation-Based Performance Analysis

Due to a malfunction in the ROV’s tether, the possibility of verifying the sys-
tem’s functionality in an actual aquatic environment was precluded. As a result,
the assessment of the system’s operational capabilities was limited to simulations
conducted through ArduSub. These simulations, while not able to replicate the
unpredictabilities of a real-world aquatic environment, provided insights into the
system’s theoretical performance.
However, it was possible to conduct tests in water to confirm the successful connection
of the ROV with QGroundControl and ROS. This aspect of the system performed as
expected, demonstrating reliable communication links. Furthermore, the localization
process and data transmission were effectively tested in the water, affirming the
system’s ability to accurately determine its position and send this information.

To start the simulation, it is necessary to launch ROS TCP Endpoint, enabling
communication between ROS and other software components, with the command:

Listing 4.1: Launch ROS TCP Endpoint
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ros launch ros_tcp_endpoint endpoint . launch

Then, a second terminal must be opened into the ardusub repository directory to
launch the ArduSub Simulation, with the command:

Listing 4.2: Launch ArduSub simulation
s im_vehic le . py −L M a r s e i l l e −S 1 −−out=udp : 0 . 0 . 0 . 0 : 1 4 5 5 0
−−map −−conso l e

This command starts the ArduSub simulation with the vehicle located at the port of
Marseille. The -S 1 parameter sets the speed of the simulation. The –out parameter
specifies the UDP output to which the simulation data is sent (port 14550), and
–map –console opens additional interfaces for the map and console.
Finally, it is required to launch QGroundControl, the Unity Project and run
bluerov_node.py code.

Figure 4.8 indicates the correct initialization of the ArduSub simulation. The system
settings display the SIM_SPEEDUP parameter and Home location, confirming
the simulation’s starting position. The simulation is correctly connected with the
MAVProxy module and it is notable the presence of a heartbeat from the simulated
vehicle. In Figure 4.9, the console details the MAVProxy command line interface,
which allows manual control and monitoring of the simulated vehicle’s parameters
such as battery level, heading, and altitude. The successful arming of the motors
and setting of the vehicle mode indicates readiness for mission execution.
Figure 4.10 shows the ROS launch server output, confirming the successful launch

of the Unity endpoint, which bridges the ROS and Unity environments. Meanwhile,
in Figure 4.11, the Unity simulation environment set correctly up the local ROS IP.
Figure 4.12 demonstrates the integration of the simulated vehicle within the QGC

map interface with the correct localization in the port of Marseille.
The trajectory of the ROV is represented in Figure 4.13 (blue line). It shows a clear

path with waypoints (green points) and points of interest, with target objects (red
points).

Finally, Figure 4.14 provides a view of the mission logs, showing settings for a
scanning mission, including depth, range sensor parameters and initial ROV position.
The logs also indicate successful target detection and scanning operations, initially by
reaching the desired points and identifying objects, and subsequently by calculating
a new trajectory to revisit these points of interest.
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(a)

(b)

Figure 4.8: ArduSub Simulator: (a) parameters setting (b) terminal
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(a)

(b)

Figure 4.9: MAVProxy Console
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Figure 4.10: ROS terminal

Figure 4.11: Unity-ROS connection

Figure 4.12: QGC localization map
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Figure 4.13: Rov’s path
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(a)

(b)

Figure 4.14: Python script terminal: (a) initialization, (b) new waypoints scanning
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Conclusions

This thesis project, centered around the challenges of marine robotics, has culmi-
nated in an exploration of the field, integrating advanced technological solutions with
practical applications. The selection of the BlueROV2 as the vehicle of choice, paired
with the Seatrac USBL navigation system, was a strategic decision based on the
project’s requirements and the environmental challenges of underwater navigation.
Implementing the Line of Sight control strategy with a linear trajectory proved to
be highly effective for the project’s objectives, ensuring precision and efficiency in
the vehicle’s movements.
Furthermore, the incorporation of a digital twin, mirroring the ROV’s behavior in
real-time using intermediary software such as ROS and Unity, represents an advance-
ment in remote vehicle monitoring and control. This digital replication not only
the system’s functionality but also provided a tool for testing and simulation. The
successful sea trial of the NGC system and the digital simulation using ArduSub
firmware are proofs to the system’s reliability and effectiveness.
The NGC system’s performance during these tests demonstrated a high degree of
control over the ROV’s movements. It efficiently maintained stability, navigated to
precise coordinates, and adapted its orientation in accordance with the mission’s
requirements. The data plots derived from these tests offer an analysis of the system’s
operational capabilities. They highlight not only the strengths of the system but also
areas for potential improvement. For instance, further fine-tuning could minimize
oscillations in the vehicle’s pitch and optimize path efficiency, as seen in the variations
in latitude and longitude. Such enhancements could lead to even more precise and
efficient operations in future applications of marine robotics.

Moreover, this NGC system has some points of weakness, mostly dependent on the
chosen hardware. Firstly, there is an inconsistent behavior of the
set_mode("ALT_HOLD") function suggesting a possible firmware compatibility issue
with the QGC version in use.
Then, the Seatrac system’s limitation in providing accurate depth values under
non-optimal environmental conditions was observed, indicating a sensitivity to exter-
nal factors that could affect its reliability, like distances from surfaces or unknown
interference.
Additionally, the Seatrac can transmit data at a minimum interval of every 4 seconds.
While this delay did not pose a significant problem due to the low operational speed of
the ROV, it is a factor that could limit the system’s responsiveness in more dynamic
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or demanding scenarios.
Furthermore, the inherent inaccuracies in the GPS and Seatrac systems, with poten-
tial errors up to two meters and one meter respectively, must be taken into account
for precision operations.

In conclusion, future developments should focus on improving the positioning system
by solving the identified issues.
Additionally, it is crucial to test the ROV system in conjunction with the digital
twin in an actual marine environment and to develop a bidirectional communication
between the two. This would enable not just data transmission from the ROV to
Unity but also the sending of commands from the Unity simulated environment
directly to the ROV.
A further advancement could involve adding a device for scanning points of interest in
order to find objects, and incorporating this functionality into the existing algorithm.
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