
UNIVERSITA’ POLITECNICA
DELLE MARCHE

FACOLTA’ DI INGEGNERIA
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica e
dell’Automazione

Architetture di Deep Learning per
Riconoscimento di Attività Umane Indoor da

stream video RGB in ambienti a risorse illimitate
e limitate

Deep Learning architectures for Indoor Human
Activity Recognition from RGB video stream in
unlimited and constrained resource settings

Relatore:

Prof. Emanuele FRONTONI

Correlatore:

Sara MOCCIA, PhD

Tesi di Laurea Magistrale di:

Sara GIAMBERINI

Matr. 1090962

Anno Accademico 2020-2021

Sommario

Il progresso tecnologico, abbinato alla recente disponibilità di un’elevata potenza di
calcolo, sta determinando un interesse della comunità scientifica sempre maggiore
verso il campo dell’Intelligenza Artificiale. Fra i vari task di questa disciplina spicca
la Human Activity Recognition (HAR) la quale, grazie alla sua versatilità, sta
prendendo sempre più piede in svariati ambiti applicativi come la domotica, i sistemi
di sorveglianza e l’assistenza sanitaria verso gli anziani. Oltre all’introduzione
di tecniche di Intelligenza Artificiale nella quotidianità, il progresso tecnologico
ha anche permesso di sviluppare nuovi paradigmi di computazione in grado di
supportare al meglio l’esecuzione di questo tipo di task, tra i quali si distingue
l’Edge Computing.

Lo scopo di questo lavoro è lo studio di molteplici architetture di Deep Learning
per il riconoscimento di attività umane indoor di alto livello con il fine di realizzare
un framework che permetta di classificare le immagini provenienti da uno stream
video real-time.
Un caso reale di applicazione orientata all’Edge Computing sarà poi affrontato con
il framework sviluppato.

Questo lavoro di tesi è articolato come di seguito riportato.
Nel primo capitolo verranno presentate le tematiche trattate e gli obiettivi che il
progetto si pone.
Nel secondo capitolo verrà data una panoramica in merito alla problematica
relativa all’HAR ed all’Edge Computing. Riguardo all’HAR ci si focalizzerà sulle
fasi che costituiscono la procedura di riconoscimento delle attività, sugli approcci
sensor-based ed image-based proposti per risolvere questo task, nonché sui molte-
plici ambiti applicativi che ne hanno determinato il notevole aumento di interesse
da parte della comunità scientifica. In merito al modello di computazione Edge
Computing, dove l’elaborazione dei dati risiede in prossimità della fonte da cui
questi ultimi sono stati generati, verranno elencate le proprietà ed i vantaggi nell’a-
dozione di questo paradigma e le applicazioni più frequenti.
Nel terzo capitolo verranno presentati i diversi approcci, sensor-based ed image-
based, proposti fino a questo momento in letteratura che si prefiggono di risolvere il

i

task dell’HAR, e verranno illustrate anche le possibili soluzioni di Edge Computing
adottabili per il task stesso.
Nel quarto capitolo verranno discussi gli algoritmi e le architetture che sono
state oggetto di studio. In particolare saranno analizzate le Convolutional Neural
Network (CNN) e le Recurrent Neural Network (RNN), ponendo il focus sulla Rete
Neurale Ricorrente LSTM, che sono state utilizzate per la creazione del modello
utilizzato per il riconoscimento di attività umane.
Verrà presentata l’architettura del modello di rete SingleBranch usato per la clas-
sificazione delle attività umane, verrà data una breve descrizione delle differenti
backbone testate per l’estrazione delle feature spaziali e sarà presentata l’archi-
tettura della rete DoubleBranch come tentativo di miglioramento del modello
precedentemente creato.
Infine sarà presentato l’experimental protocol, descrivendo il dataset utilizzato per
allenare le reti, i training settings e le performance metrics adottate per valutare la
bontà dei modelli.
Nel quinto capitolo sarà discussa la procedura di ottimizzazione e deployment
dei modelli ottenuti all’interno di un hardware a basso costo, evidenziando le
problematiche relative a questa procedura e proponendo un meccanismo di single
camera handling.
Nel sesto capitolo verranno presentate le performance raggiunte dai modelli
creati nell’ambiente a risorse illimitate (Google Colab), ed i risultati del processo
di ottimizzazione ed inferenza real-time nell’hardware a risorse limitate (NVIDIA
Jetson Nano).
Infine, nel settimo e nell’ottavo capitolo saranno esposte le discussioni sui risul-
tati ottenuti e le conclusioni tratte da questo lavoro e saranno proposti eventuali
sviluppi futuri.

ii

Summary

Technological progress, coupled with the recent availability of high computing power,
is leading the scientific community to take an increasing interest in the field of
Artificial Intelligence. One of the various tasks of this discipline is Human Activity
Recognition (HAR), which, thanks to its versatility, is becoming increasingly
popular in various fields of application such as home automation, surveillance
systems and health care for the elderly. In addition to the introduction of Artificial
Intelligence techniques in everyday life, technological progress has also led to the
development of new computational paradigms that can best support the execution
of this type of task, such as Edge Computing.

The aim of this work is to study multiple Deep Learning architectures for the
recognition of indoor high-level human activities in order to create a framework
that allows the classification of images obtained from a real-time video stream.
A real case of Edge Computing oriented application will be approached with the
developed framework.

This thesis is structured as follows.
In the first chapter, the issues and objectives of the project are presented.
In the second chapter, an overview will be given of the problems related to
HAR and Edge Computing. With regard to the HAR we will focus on the phases
that constitute the procedure of recognition of the activities, on the sensor-based
and image-based approaches proposed to solve this task, as well as on the many
application areas that have determined the considerable increase of interest from
the scientific community. With regard to the Edge Computing paradigm, where
the data processing is performed close to the source from which it was generated,
the properties and advantages of adopting this paradigm and the most frequent
applications will be listed.
In the third chapter we will present the different approaches, sensor-based and
image-based, proposed in the literature up to now, which have the objective to solve
the HAR task, and we will also illustrate the possible solutions of Edge Computing
that can be adopted for the task itself.
In the fourth chapter the algorithms and architectures that have been studied

iii

will be discussed. In particular, the Convolutional Neural Networks (CNN) and the
Recurrent Neural Networks (RNN) will be analyzed, with the focus on the LSTM
Recurrent Neural Network, which were used for the creation of the model used for
the recognition of human activities.
The architecture of the SingleBranch network model used for the classification of
human activities will be presented, a brief description of the different backbones
tested for the extraction of spatial features will be given and the architecture of the
DoubleBranch network will be presented as an attempt to improve the previously
created model.
Finally, the experimental protocol will be presented, describing the dataset used to
train the networks, the training settings and the performance metrics adopted to
evaluate the quality of the models.
In the fifth chapter, the procedure of optimization and deployment of the obtained
models in a low cost hardware will be discussed, highlighting the problems related
to this procedure and proposing a single camera handling mechanism.
In the sixth chapter, the performances achieved by the models created in the
unlimited resources environment (Google Colab), and the results of the real-time
optimization and inference process in the limited resources hardware (NVIDIA
Jetson Nano) will be presented.
Finally, in the seventh and eighth chapters, discussions on the results obtained
and the conclusions derived from this work will be presented and possible future
developments will be proposed.

iv

Acknowledgements

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Human Activity Recognition and Edge Computing 3
2.1 Human Activity Recognition . 3

2.1.1 Stages of Human Activity Recognition 4
2.1.2 Approaches to Human Activity Recognition 6
2.1.3 Real-world applications . 7

2.2 Edge Computing . 9
2.2.1 Properties and advantages of Edge Computing 9
2.2.2 Applications of Edge Computing 10

2.3 Aim of the thesis . 12

3 State of the Art 13
3.1 Sensor-based methods . 13
3.2 Image-based methods . 16
3.3 HAR and Edge Computing . 19

4 Materials and Methods 23
4.1 Convolutional Neural Networks (CNNs) 23
4.2 Recurrent Neural Networks (RNNs) 27

4.2.1 Long Short-Term Memory (LSTM) 30
4.3 SingleBranch Proposed Architecture 34
4.4 Different Backbones . 35
4.5 DoubleBranch Neural Network . 39

4.5.1 MaskRCNN . 41
4.5.2 DoubleBranch_DenseNet201 41
4.5.3 DoubleBranch_VGG16 . 43

vii

4.6 Experimental Protocols . 44
4.6.1 Dataset . 47
4.6.2 Training Settings . 49
4.6.3 Performance Metrics . 50

5 Deployment On Limited Resources Hardware 52
5.1 Cameras . 52
5.2 NVIDIA Jetson Nano . 54
5.3 TensorRT and Model Optimization 56
5.4 Single-camera Handling . 58

6 Results 61
6.1 Unlimited Resource Environment 61

6.1.1 SingleBranch Backbone Performance Comparison 62
6.1.2 DoubleBranch Performances 65

6.2 Constrained Resource Environment 67
6.2.1 Model Optimization on Jetson Nano 67
6.2.2 Model Results and Performances 69

7 Discussion 73

8 Conclusions and future work 78

Bibliography 80

viii

List of Tables

6.1 Backbone performance comparison 62
6.2 Model performances with the DenseNet201 backbone 63
6.3 Model performances with the VGG16 backbone 64
6.4 Model performances with the MobileNetV2 backbone 65
6.5 Model performances with the MobileNetV3Small backbone 66
6.6 Model performances with the MobileNetV3Large backbone 67
6.7 DoubleBranch model performances with the VGG16 backbone . . . 68
6.8 SingleBranch_VGG16 and DoubleBranch_VGG16 comparison with

same epochs training . 68
6.9 SingleBranch_VGG16 and DoubleBranch_VGG16 comparison with

same epochs training and optimizer 69

ix

List of Figures

2.1 Typical steps in the Activity Recognition 5

3.1 HAR Architecture . 15
3.2 Two-stream architecture for video classification 17
3.3 Optical flow . 17
3.4 Proposed HAR framework . 18
3.5 Two-steps Neural Network scheme 19
3.6 On-device Computation . 20
3.7 Offloading with model selection . 21
3.8 Computing Across Edge Devices with DNN model partitioning . . . 22
3.9 Distributed Computing with DNN model partitioning 22

4.1 CNN architecture . 24
4.2 A 4x4x3 RGB image . 25
4.3 Convolution operation . 25
4.4 Max and Global Average Pooling 26
4.5 A Recurrent Neuron and unrolled through time. 27
4.6 Gates in a LSTM cell. 30
4.7 Elements in LSTM architecture. 31
4.8 LSTM first step. 31
4.9 LSTM second step. 32
4.10 LSTM third step. 32
4.11 LSTM fourth step. 33
4.12 Bi-LSTM architecture. 33
4.13 SingleBranch architecture. 35
4.14 DoubleBranch architecture. 39
4.15 Two examples of RGB frames and RGB masks. 40
4.16 MaskRCNN architecture. 41
4.17 Anchor sorting and filtering. 42
4.18 Bounding box refinement. 42
4.19 Mask generation. 43

x

4.20 Composing the different pieces into a final result. 43
4.21 SingleBranch DenseNet201 architecture. 44
4.22 DoubleBranch_DenseNet201 architecture. 45
4.23 DoubleBranch_VGG16 architecture. 46
4.24 Examples of Kinetics dataset classes. 48

5.1 IP Bullet Camera and IP Eyeball Camera. 53
5.2 Camera configuration interface. 53
5.3 NVIDIA Jetson Nano. 54
5.4 NVIDIA Jetson Nano data sheet. 55
5.5 TensorRT build phase. 57
5.6 TF-TRT workflow for SavedModel format models. 57
5.7 TF-TRT workflow for Checkpoints models. 58
5.8 Single-camera Handling Workflow. 60

6.1 Right prediction of using_computer class. 71
6.2 Wrong prediction of using_computer class. 71
6.3 Another wrong prediction of using_computer class. 72

7.1 Two examples of masks in which the portions of interest (bottle and
iron) are eliminated. 74

7.2 Two examples of using_computer class RGB images that focus on
hands and keyboards. 77

xi

Chapter 1

Introduction

In recent years, HAR has received considerable attention from the scientific com-
munity due to its many application domains, thanks also to the Internet of Things
(IoT), which has made it possible to connect billions of intelligent physical objects
of different categories to the Internet.
Within the IoT, in fact, a task of particularly importance is the HAR1, which
aims is to detect and classify high-level human activities executed in real-world
contexts by processing spatial and temporal features extracted from data coming
from different sources.
HAR techniques can be grouped according to the type of source, i.e. sensor, used
for the acquisition of the data that will then be processed to allow the classification
of actions. The sensors that are mainly adopted in HAR can be divided into
three categories: sensors that can be connected to objects, sensors that can be
worn directly by the individual and finally sensors that can be inserted into the
environment.
The first category includes those sensors able to acquire logs from the use of certain
objects, the second category includes sensors such as accelerometers and gyroscopes
and finally the third category includes, among others, video cameras [1].
Two main types of approaches can be distinguished: those that exploit optical data,
such as images from the camera stream, and those that use non-optical data, such
as motion and proximity sensors.
The approach adopted in this work falls into the first type, the image-based one,
and allows to exploit the stream coming from RGB cameras to analyze frames from
which it is possible, through processing, to classify human actions.

When video streams have to be analyzed, it is essential to adopt solutions
capable of reducing processing latency in order to produce real-time responses.

1https://www.redhat.com/it/topics/internet-of-things/what-is-iot

1

Introduction

The optimal solution in this scenario is to use the computation paradigm called
Edge Computing which, by bringing data processing close to where it is collected,
reduces processing latency, always guaranteeing real-time responses.

The objective of this thesis is to develop and implement a framework able to
offer a solution to the Indoor HAR task through the use of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) able to process the
spatial and temporal features extracted from RGB images coming from real-time
camera stream.
A real case of Edge Computing oriented application will be approached with the
developed framework.
This work was carried out in collaboration with the company Inim Electronics S.r.l.
of Monteprandone (AP), which made it possible to have and use the hardware
instruments necessary to achieve the goal.

2

Chapter 2

Human Activity
Recognition and Edge
Computing

2.1 Human Activity Recognition
The term HAR defines the discipline that aims to recognize the activities, both
simple and complex, of one or more agents in real world contexts starting from a
series of observations, on the actions of the agents, extrapolated from sensory data
of multiple nature1.
Several approaches to HAR have been proposed by the scientific community and
each one differs depending on the type of sensor, and thus the type of data, used.
We distinguish between sensor-based approaches that use non-optical data and
image-based approaches that use images extracted from cameras.
HAR can also be applied in many domains, such as smart homes and monitoring
and surveillance systems.
In order to better understand this particular discipline, it is essential to spend some
time on the semantics of what are the fundamental concepts through which the
recognition of the activities is made possible.
Different categorizations are provided in the literature and two of them will be
analyzed below [2].
A first categorization involves concepts such as Action Primitives, Action and
Activity.
An Action Primitive can be defined as an atomic movement that can be described

1https://en.wikipedia.org/wiki/Activity_recognition

3

Human Activity Recognition and Edge Computing

at the limb level.
An Action can be defined as the set of several Action Primitives that can describe
a movement, possibly cyclic, of the whole body.
The term Activity, on the opposite, refers to a number of successive Actions capable
of providing an interpretation of the movement performed by the agent.
To give an example, think of "Left leg forward" as an Action Primitive and "Running"
as an Action. "Jumping over obstacles" at this point can be considered as an Activity
as it contains the Actions of starting, jumping and running.
A second categorization is that there is a hierarchy in which activities are classified
according to their complexity. This hierarchy consists of four levels: Gestures,
Actions, Interactions and Group Activities.
Gestures can be considered as elementary movements of a single part of an agent’s
body, and therefore as atomic components able to describe the movement of a
subject. "Extending the arm" and "Lifting a leg" are two examples of gestures.
The term Action refers to the activity of a single person, which may consist of
several temporally organized single Gestures, such as "Running", "Walking" or
"Jumping".
Interactions, on the other hand, are nothing more than Activities involving two or
more persons and/or objects. An example of a person-person Interaction is "Two
people kissing", while an example of a person-object Interaction is "A person using
a mobile phone".
Finally, the term Group Activity refers to Activities which, as the name suggests,
are carried out by groups of several people and/or objects, such as "A group of
people walking".
Activity Recognition is therefore the task that is responsible for recognising and
labelling the input data with the identified classes of human activities.

2.1.1 Stages of Human Activity Recognition
As previously mentioned, HAR is the process by which raw data acquired by sensors
are interpreted to classify a given activity.
As shown in Fig.2.1, the activity recognition process can be divided into three main
phases: data collection, training of a learning model and the activity recognition
[3].

In order to train a HAR model, it is essential to have a collection of data to feed
to it in such a way to learn the characteristics of interest for the task.
The initial data obtained from the sensors is called raw data. Due to the different
nature of the sensors, this collected data may contain noise that could potentially
compromise classification task. For this reason, before using the data, a Prepro-
cessing phase (Fig.2.1 (1)) is performed to remove any noise in the data collection.
Once the data has been collected, the following phase foresees the training of a

4

Human Activity Recognition and Edge Computing

Figure 2.1: Typical steps in the Activity Recognition.
Image taken from [3].

learning model. The learning can be carried out in a supervised or unsupervised
way. The first method is based on labelled observations, i.e. associated with a
specific class of activity, whereas unsupervised techniques are not based on labelled
data. Since a HAR system returns a label associated with a human activity class,
supervised or semi-supervised approaches are usually adopted. In semi-supervised
approaches a part of the model training data may be without an activity class
label.
In order for the learning model to be able to associate a class of activity to the
data it is given, it is necessary that the data it processes in the learning phase,
is labelled with the class of action (Fig.2.1 (2)). This operation is very often a
slow and tedious process and sometimes involves hand-labelling the data with the
representative action class.
The learning model performs what is called Feature Extraction (Fig.2.1 (3)), which
is nothing more than a form of dimensionality reduction. Through this operation
the high dimensional input sensor data is reduced to a smaller set of features in
order to limit the memory usage and decrease the complexity of the processing.
During the learning phase the model continuously modifies its parameters (Fig.2.1
(4)) until the optimal parameters are obtained (Fig.2.1 (5)).
Once the best parameters of the learning model have been calculated, the test can
be performed on a new data stream (Fig.2.1 (6)).

5

Human Activity Recognition and Edge Computing

Analyzing a continuous stream of data is a problem of considerable complexity.
Different techniques are applied to reduce the problem: one of these is the segmen-
tation (Fig.2.1 (7)), through which the input signal is divided into smaller time
segments. On these temporal segments a Preprocessing (Fig.2.1 (8)) is carried out
with which the eventual present noise is eliminated and the Feature Extraction
(Fig.2.1 (9)) is carried out to transform the data into useful descriptors for the
classification (Fig.2.1 (10)).
The result of the process is the return of the label showing the class of human
activity detected by the model adopted (Fig.2.1 (11)).

2.1.2 Approaches to Human Activity Recognition
Several approaches to HAR have been proposed by the scientific community and
each of them differs from the others depending on the type of sensor used. The
sensors adopted can be worn directly by the agent (wearable sensors), attached to
objects in the environment or fused into the environment itself [1].
Therefore, two main categories can be distinguished, which differ from each other
in the use of non-optical and optical sensory data: the first category includes
sensor-based approaches, which include sensors worn by agents and those attached
to objects in the environment, and the second category includes image-based
approaches, which involve the use of sensors directly fused within the environment.

Sensor-based approaches

As already mentioned, this category of approaches includes sensors worn by the
agent and sensors attached directly to objects in the environment, which detect
non-optical data. Wearable sensors are special sensors that are attached to certain
parts of the agent’s body to capture movements and recognize simple activities
such as walking and sitting.
These sensors include accelerometers, which can detect a change in the speed of
the body part concerned, gyroscopes, which can detect angular rotation around
an axis, and magnetometers which, combined with accelerometers and gyroscopes,
can track the orientation of a body with respect to all three axes.
Technological evolution has brought major changes in this respect, making it possi-
ble to use smartphones, smart watches and fitness bracelets as wearable sensors 2.
These devices, in fact, are equipped with a wide variety of sensors that can keep
track of agent activities, being carried all day long by the agents themselves.
The disadvantages in the use of this type of sensors lie in the fact that, being
mobile devices, they need to be powered by batteries that must be periodically

2https://madoc.bib.uni-mannheim.de/49914/1/thesis_compressed.pdf

6

Human Activity Recognition and Edge Computing

recharged. Moreover, given the nature of these devices, the agent is forced to wear
them constantly, making the approach rather invasive. The possible forgetfulness
of the agent in wearing the devices should also be underlined.
However, this type of devices protects the privacy of the agent, as it does not record
audio, video or any physiological information, and the new generation devices are,
moreover, equipped with hardware sufficiently able to perform some elaborations
internally, obtaining good results in terms of performance and accuracy [4].

Wearable sensors provide important information regarding the movement and
physical exercises of the agent, but do not provide any information about the
agent’s interaction with objects. For this reason, the scientific community has
focused its attention on smart homes, in the sense of homes equipped with sensors
connected to objects in the environment. This category includes sensors that are
connected to, among others, furniture, walls or doors. For example, an accelerom-
eter attached to certain objects or doors to detect the moment when the agent
interacts with them.

Image-based approaches

This category includes sensors that allow the extraction of optical data.
RGB or RGBD cameras are examples of sensors that fall into this category as
devices fused within the environment.
The advantage of adopting this approach is that, unlike the sensors described in
sensor-based approaches, the cameras are directly connected in the environment,
making possible a passive analysis of the agent’s activities, who does not have to
remember to wear the device or to recharge its batteries. These devices are much
less invasive than the previous category, allowing agents to perform activities as if
the system did not exist.
The use of these sensors, on the other hand, means that a first Preprocessing phase
is necessary in order to remove uninteresting information such as, for example,
information related to the environment and not to humans.
In this thesis work the image-based approach is followed. In the following chapters,
the management modalities of the input stream will be discussed and a real
application will be seen through the use of RGB video camera.

2.1.3 Real-world applications
HAR is a discipline that has been enjoying considerable success in recent years
thanks to its many application domains.
The application domains are among the most varied, but can be summarized in
three main categories: Ambient Assisted Living (AAL) systems for smart homes,

7

Human Activity Recognition and Edge Computing

applications for monitoring and healthcare, and monitoring and surveillance systems
for indoor and outdoor activities [1].

Ambient Assisted Living for smart home

The term Ambient Assisted Living3, AAL for short, refers to the set of technological
solutions aimed at making the environment in which we live active, intelligent and
cooperative, capable of providing greater safety, wellness and satisfaction in carrying
out the activities of daily life. The main objectives of AAL include increasing the
autonomy and self-sufficiency of people living in that environment, increasing the
functional capacity and health assurance of older people, and promoting better
and healthier lifestyles for people at risk.
Using HAR techniques, smart homes are able to provide independence and comfort
to residents, exploiting different types of technological devices interconnected within
the network that are able to communicate and learn through the habits of the user.

Monitoring and healthcare

In recent years, HAR has become very important in the field of care, due to the
progressive ageing of the world’s population as a result of the development of medical
science and technology [1]. This leads to an increase in the demand for medical
personnel. The use of HAR systems can increase the autonomy and efficiency of
existing monitoring systems and reduce the need for human intervention.
HAR systems used in the care sector typically perform activities such as identifying
potentially dangerous activities or situations for the elderly person, e.g. by Fall
Detection, and alerting specialized personnel to ensure rapid intervention.

Indoor and outdoor monitoring and surveillance

Nowadays, traditional surveillance systems are characterized by the presence of a
human operator who supervises and monitors the environments concerned, signalling
any critical situation by means of an alarm.
Usually these operators have to spend a very high number of hours in front of the
monitors, leading to a potential loss of attention that could result in a failure to
detect a critical situation.
In order to limit potential distractions of the human operator and to make his
workload easier, the integration of automatic HAR techniques in video surveillance
systems would be a good solution to automate these systems, which would then be
able to send autonomous alarm signals to specialized personnel or law enforcement

3http://www.foritaal2012.unipr.it/ambient-assisted-living

8

Human Activity Recognition and Edge Computing

agencies in case critical situations are detected.
These types of systems can be used in industry to supervise production plants
and send alarms in the event of breakdowns or malfunctions, but also for security
purposes in public places, such as events or concerts, or at a private level by
reporting theft or attempted break-ins to the police.

2.2 Edge Computing
Today’s most commonly used devices, such as smartphones and Internet-of-Things
sensors, generate large amounts of data that in many cases need to be analyzed in
real-time using Machine Learning or Deep Learning techniques. However, inference
requires significant computing resources to be performed quickly. Edge Computing
is a valid solution to satisfy the high computation and low latency requirements
of Deep Learning on edge devices and also provides additional benefits in terms
of privacy, bandwidth efficiency and scalability. Edge Computing is a distributed
computing model in which processing takes place close to where the data is collected.
The principle on which it is based is to keep the data collection and processing
operations physically close to each other, against the principle of Cloud Computing
which aims to perform the processing in one central data center to which all data
must be sent.

2.2.1 Properties and advantages of Edge Computing
Through the use of many small data centers, located close to the sensors or devices,
capable of collecting and analyzing data autonomously, it is possible to obtain an
architecture composed of multiple nodes that guarantees a considerable reduction
in network costs and bandwidth constraints, a decrease in latency times in data
transmission, the limitation of service errors and a better control of sensitive data
transfers. In addition to all these advantages, there is also a greater proximity of
service delivery to users and a simpler and more immediate control of the data4.
Thanks to this decentralized structure and the proximity to the data source, Edge
Computing guarantees the following properties5:

• Latency: a low response time or real-time inference is essential for certain
types of tasks. The adoption of Edge Computing in these cases is the optimal
choice to carry out these types of tasks because the presence of local mini-data
centres connected directly to the same network of sensor and cameras allows to

4https://www.redhat.com/it/topics/edge-computing/what-is-edge-computing
5https://en.wikipedia.org/wiki/Edge_computing

9

Human Activity Recognition and Edge Computing

greatly reduce latency and data transmission times. For example, frames from
the camera of an autonomous vehicle need to be processed very quickly to
detect and avoid obstacles, or a voice-assistance application needs to quickly
analyze and understand the user’s request and return a response;

• Reliability: Edge Computing systems guarantee different levels of reliability
and the activation of alarm mechanisms in the event of a malfunction of data
centres. It is possible to detect a device that is not working properly and carry
out timely repair or replacement operations without affecting the operation of
the others. Edge Computing keeps the various services offered by the systems
active even in the event of Internet connection problems. This is possible
because the entire processing takes place locally;

• Scalability and Modularity: in a centralized architecture, sending data from
sources to the Cloud can introduce scalability issues due to the fact that the
access to the Cloud can become a bottleneck as the number of connected
devices increases. Edge computing ensures easy expansion of processing
capacity and task variety due to the large number of IoT devices and small
perimeter data centres that will be additional nodes to add to the existing
network6;

• Security and Privacy: a protection policy must be implemented for each
small data centre in the local network or directly on the data collection and
processing device. Edge computing allows data to be analyzed close to the
source, for example from a trusted local server, avoiding the need for data to
travel across the public Internet, thus reducing exposure to possible attacks.

The advantage of having several decentralized processing devices is that a
potential attacker would not be able to obtain data from all the sensors, in the
event that he tries to break the security of a single device. However, this structure
has several disadvantages. Edge devices will have less hardware power availability,
which may limit the activities that can be performed. Moreover, each device will
have to be provided with its own security methods and protocols.

2.2.2 Applications of Edge Computing
Edge computing is an excellent computing paradigm for all those tasks that cannot
be managed efficiently by a centralized approach. In fact, many of the limitations

6https://www.cybersecurity360.it/soluzioni-aziendali/edge-computing-in-crescita-ecco-
vantaggi-e-fronti-critici-per-le-aziende/

10

Human Activity Recognition and Edge Computing

of the centralized approach lie in the need to obtain results in real-time. Some
examples of applications that exploit Edge Computing will be presented7.

Artificial Vision

Image Classification and Object Detection are fundamental tasks of Computer
Vision and are applicable in many specific domains, such as video surveillance,
vehicle detection or object counting. The data to perform these tasks comes from
cameras, so it is necessary to analyze real-time video streams using Artificial
Intelligence algorithms. Many of these tasks need to be completed in the shortest
possible time in order to ensure that, in the event of anomalies, an alarm signal
is generated and the necessary action is taken. An example of a vision system is
Vigil [5] which is characterized by the presence of a network of cameras connected
via wireless. Within each node of the Edge architecture, algorithms are run to
select interesting frames. The selected frames are analyzed, for example, to find
missing persons in surveillance cameras or to analyze customer queues in retail
environments.

Self-driving Cars

Many of the latest generation of vehicles incorporate Deep Learning algorithms
to perform tasks related to autonomous driving. While driving, a lot of data is
collected and needs to be analyzed in real-time in order to promptly perform various
vehicle operations such as changing the trajectory, avoiding obstacles or performing
a forced stop.

Natural Language Processing

Deep Learning has become popular not only with images and videos but also with
tasks for Speech Synthesis, Recognition and understanding of different parts of a
sentence and Automatic Translation. An example of Natural Language Processing
on the Edge are voice assistants, such as Amazon Alexa or Apple Siri [5]. Although
these voice assistants perform most of their processing in the Cloud, they typically
use on-the-edge processing to detect passwords such as "Alexa" or "Hey Siri". The
voice recording is sent to the Cloud to perform further analysis and produce a
response only if the keyword is detected. In the case of Apple Siri, keyword
processing uses two Deep Neural Networks on the device to classify speech into
one of 20 classes.

7https://www.internet4things.it/edge-computing/edge-platform/edge-computing-cosa-e-
benefici/

11

Human Activity Recognition and Edge Computing

Augmented Reality

In Augmented Reality (AR), Deep Learning can be used to detect objects of interest
in the user’s field of view and apply virtual overlays. The use of an Edge Computing
platform is essential to support Augmented Reality services by providing highly
localized data specific to the user’s point of interest8.

Financial Transactions

Real-time analysis is also required in the financial sector. POS financial transactions
are captured and analyzed in micro data centres within bank branches in order to
identify anomalous transactions that must be intercepted as quickly as possible
and blocked.

2.3 Aim of the thesis
The aim of this thesis is to carry out a study on Deep Learning architectures in
order to build a model for Indoor HAR. CNNs for feature extraction and a RNN
(LSTM) for the analysis of dependencies between frames coming from videos will
be analyzed.
Concerning the feature extraction, different types of backbones will be analyzed
and their differences in complexity (number of parameters) and effectiveness will
be compared.
In addition, a two-stream network typology will be introduced to try to improve
the performance of the previously created model.
Once the model has been obtained, we will proceed with the testing phase both in
an environment with "unlimited" resources (Google Colab) and in an environment
with limited resources (NVIDIA Jetson Nano).
A real-case of application oriented to Edge Computing will be handled with the
developed framework.
For inference on hardware with limited resources, the procedure of optimization
and deployment of the model on the Jetson Nano will be presented, underlining
what are the problems with the use of low cost hardware.
Finally, the results obtained in the "unlimited" and limited resource environment
will be compared, focusing on the compromises that have to be accepted to work
in a limited resource environment.

8https://www.internet4things.it/edge-computing/edge-platform/edge-computing-ecco-i-casi-
concreti-di-applicazione/

12

Chapter 3

State of the Art

HAR is one of the main tasks of Computer Vision, due to its wide applicability in
everyday domains. For this reason, the scientific community is paying particular
attention to this task, proposing several methodologies to solve it.
In section 3.1 sensor-based approaches, that analyze non optical data to detect
information useful for the recognition of human activity, will be discussed while
in section 3.2 image-based approaches, that use optical data such as images to
recognize human activity, will be presented.
Finally in section 3.3 approaches to HAR using microprocessors will be presented.
Also in section 3.3 various Edge Computing architectures that can best accomplish
the various Deep Learning tasks will be proposed.

3.1 Sensor-based methods
As previously mentioned, sensor-based methods exploit sensory data, such as
motion sensors, temperature sensors, door sensors, etc., placed inside a smart home
or worn directly by the agent, to detect information useful for the recognition of
human activity.

The authors of the paper [6] propose Machine Learning techniques for HAR
using sensor data from smart watches. The data obtained comes from sensors
such as accelerometer, gyroscope, pedometer and heart rate sensors. The approach
suggested in the paper is to apply Principal Component Analysis (PCA) to select
the most characteristic features and speed up the classification process. The
Machine Learning techniques tested are: Random Forest (RF), Support Vector
Machine (SVM), C4.5, K-nearest neighbor (KNN). The different models were
trained on a set of 2800 samples of different daily human activities extracted from
five participants. In the RF algorithm the number of trees was chosen as 10, in the
SVM the kernel function RBF (Radial Basis function) was set as kernel function,

13

State of the Art

in C4.5 the maximum number of trees was set to 100 and in the KNN the k-value
was set to 5.
The best result was obtained with the RF algorithm.
The innovation introduced by the study conducted by this paper is in the use of a
hybrid method characterized by the use of PCA, for the creation of higher quality
features and for the reduction of the dimensionality of the data, in addition to the
RF algorithm.
Furthermore, this study makes use of pedometer and heart rate sensors in addition
to the traditional accelerometers and gyroscopes. The study demonstrated that
the use of these sensors led to an increase in classification accuracy.
However, one of the limitations of this work is that a real-time application for
activity recognition with the proposed method has not yet been implemented.

In [7] two architectures for HAR using data from accelerometers and gyroscopes
in smartphones are proposed and compared. A first architecture uses a CNN for
feature extraction and SVM as classifier, while the second architecture consists of
a CNN and a combination of Fully-Connected layer and Softmax classifier.
The models were trained on a dataset of 7352 examples consisting of sensory data
from tri-axial accelerometers and gyroscopes. The data were collected from 30
volunteers who performed six different activities while holding a smartphone in
their pocket.
The Deep Learning architecture consisting of CNN and Fully-Connected layer
achieved a very high performance with an accuracy level of 99.66%. This architec-
ture proved to be able to classify even similar activities that were considered very
difficult to classify. The SVM classifier architecture, on the other hand, performed
slightly less well at 94.91% and failed to classify similar assets.
A negative aspect highlighted by the authors of the paper is that the addition of
Convolutional layers does not necessarily lead to an increase in performance.

The scientific community has proposed several solutions of Machine Learning
that adopt classification algorithms such as Naive Bayes, Random Forest, K-NN
and SVM, but they are static models that are not able to evolve and adapt to the
changing environment. For this reason the Deep Neural Networks (DNNs), the
CNNs, the RNNs and the Long Short Term Memory (LSTM) have become the
most used techniques of Deep Learning to solve the task of HAR.
In [1] multiple versions of the LSTM are proposed, which has proved to be one of
the best solutions for the HAR in the case in which the input data comes from
sensors present in the surrounding environment. A first version analyzed of the
LSTM is the Uni-LSTM which is nothing more than an RNN architecture with
the addition of a hidden layer of LSTM cells. Then more complex versions are
analyzed, such as the Bi-LSTM that foresees the presence of an LSTM architecture
with forward and backward connections able to extract information from the past

14

State of the Art

and the future, modelling at the best the temporal dependencies of the features,
the Casc-LSTM whose input layer is a Bi-LSTM cascaded with a Uni-LSTM, the
Ensemble2-LSTM which combines the output of a Bi-LSTM and a Uni-LSTM,
and finally a CascadeEnsemble which is an architecture consisting of a cascaded
Ensemble2-LSTM and a Uni-LSTM. In Fig.3.1 is shown the architecture proposed
by the authors. It includes a first phase of Preprocessing, in which operations of
Filtering and Aggregation of the input data are carried out, and a second phase
of Classification which, through the use of the LSTM and of a Softmax layer, is
able to predict the class of activity. Thanks to the capacity of this typology of
network to capture the long-term temporal dependencies of the human activities,
all the versions of the LSTM architecture have proved to be more effective in
the prediction of the human activity, both of the existing techniques of Machine
Learning and of those of Deep Learning.
The authors of the paper show that the ability of LSTM to automatically extract
spatio-temporal informations leads to a significant improvement in accuracy com-
pared to ML approaches.
However, increasing the complexity of LSTM-based models has not always led to a
significant improvement in performance.

Figure 3.1: HAR Architecture.
Image taken from [1].

15

State of the Art

3.2 Image-based methods
Differently from sensor-based methods, image-based methods use image analysis
to detect human activity. Usually, these images come from video camera streams
located within the environment in which the agent is interacting.
Also for this type of methods there are several solutions in the literature that adopt
Machine Learning and Deep Learning techniques.

The authors of the paper [8] propose an approach based on the use of the SVM
classifier to classify human activities from a video stream. The approach involves
analysing consecutive frames. An image is produced as a result of the pixel by
pixel difference of the consecutive images obtaining a Region of Interest (RoI). On
the RoI a measure for the evaluation of the movement is calculated and only the
portions of RoI with the greatest value of the movement measure will be considered.
The feature vector will then be passed to the SVM classifier.
Two versions of the SVM were tested: Polynomial SVM and RBF SVM. The
training of the models was performed with a subset of the KTH dataset restricted
to four scenarios related to 7 persons.
The results show that the RBF SVM performed better than the Polynomial SVM,
with an accuracy of 94.58% compared to 87.92%.
This approach was compared with other works in the literature, obtaining compa-
rable performance.
An issue with this approach is that this architecture is not able to recognize similar
activities, such as running and walking, with high accuracy.

In [9] and [10] alternative methods are proposed that try to increase the perfor-
mance of the activity recognition model. In this case the architecture consists of
two streams, according to the hypothesis that the human visual cortex contains
two pathways: the ventral stream (which deals with Object Recognition) and the
dorsal stream (which deals with Motion Recognition).

The architecture proposed in [9] is shown in Fig.3.2. It is based on streams
to process data, both implemented as ConvNets: a spatial stream is in charge of
performing the recognition of the scene and the objects depicted in the video, while
a temporal stream is in charge of recognizing the activity from the motion detected
by a dense optical stream. The two streams are then combined through two fusion
methods: averaging and a trained multi-class linear SVM.

As can be seen in Fig.3.2, the inputs to this model are both frames and optical
flows between consecutive frames. The optical flow (Fig.3.3) can be considered
as a set of displacement vector fields between pairs of consecutive frames. In this
way the input explicitly describes the movement between video frames. The paper
shown that this type of architecture significantly outperforms many state-of-the-art

16

State of the Art

Figure 3.2: Two-stream architecture for video classification.
Image taken from [9].

architectures.
Some negative aspects relate to the fact that using bi-directional flow is not
beneficial in the case of ConvNet fusion and that the model was trained on a
relatively small data set.

Also in [10] a two-stream network architecture is proposed with the use of
a Recurrent LSTM Network for the classification of human activities. This is
determined by the fact that a structure capable of extracting both spatial and
temporal information has proven to be a competitive approach in dealing with
video comprehension problems. In recent years, many studies in the literature
have proposed the introduction of optical flow, as a complement to RGB frames,
achieving a significant improvement in performance.

Figure 3.3: Optical flow. (a),(b) pair of consecutive frames with part of the moving body
highlighted by a cyan coloured rectangle; (c) dense optical flow of the highlighted area; (d)

horizontal component of the displacement vector field; (e) vertical component.
Image taken from [9].

As shown in Fig.3.4 the architecture consists of two flows implemented as Con-
vNet: the spatial flow is fed by the RGB frames sampled from the video, and the
temporal flow is fed by an optical flow that will be calculated from the frames.
The resulting feature maps are then merged to obtain feature maps that contain
both spatial and temporal information. Finally, the feature maps are fed into
a ConvLSTM which is used to further learn spatio-temporal dependencies. A

17

State of the Art

ConvLSTM is a variant of the traditional LSTM, whose gates are replaced by
convolutional gates.
The authors demonstrated that, using two stream network + ConvLSTM, spa-
tiotemporal correlation information is kept through the whole feature map learning
process, achieving state-of-the-art accuracy on both UCF101 and HMDB51 without
using Kinetics to pre-train the model. On the other hand, large memory and GPU
cost needed cause the proposed network is a two-stage network; furthermore, this
network may not work well on those dataset whose length of video sequences largely
varies.

Figure 3.4: Proposed HAR framework.
Image taken from [10].

In [11] a network architecture made of two parts is proposed. As it is possible
to observe in Fig.3.5, the input of the architecture is composed by a sequence of
frames that is fed to the first part of the architecture, characterized by a CNN and
a RNN, that is focused on the extraction of the spatial and temporal features, and
a second part characterized by Dense layers to classify the human activity.

The classic Convolutional blocks are replaced by the 3D Convolutions, which
are nothing else than extensions of the latter, able to learn the spatio-temporal
characteristics of a number of consecutive frames (for example less than 15) coming
from video inputs. An LSTM is proposed as RNN for its capacity to consider
the context using recurrent connections in the hidden layers. In the paper it is
also shown how, with the use of the LSTM Classifier, significant performance
improvements are obtained with respect to the best correlated results, but it should
be remarked that the model was tested on a dataset containing simple actions.

18

State of the Art

Figure 3.5: Two-steps Neural Network scheme.
Image taken from [1].

3.3 HAR and Edge Computing
The inference of a model of Deep Learning is a computationally expensive operation
that requires high resources of calculation in order to be executed in the shortest
possible time, due to the high number of calculations that must be performed and
the high dimensionality of the input data.
This problem is even more evident when the inference has to be performed on
the final devices, which are very often low-cost hardware with limited computing
power.
Edge Computing is the best solution to overcome the problems related to high
computational costs and low latency for inference on final devices.
Different architectures are proposed in the literature to speed up the inference of
Deep Learning models [5]: On-Device Computation, Edge Server-based Architecture
and Joint Computation among End Devices, Edge Servers and the Cloud.

On-Device Computation

The paper shown that this architecture requires Deep Neural Networks to be
executed directly on the end device in order to reduce latency times (See Fig.3.6).
Several aspects must be taken into consideration:

• Model Design: when deciding to make inference within resource-limited de-
vices, Deep Learning models must be designed to reduce memory occupation
and execution latency. This can be done by reducing the number of model
parameters, minimizing the loss of Accuracy.
Several Deep Learning models for resource-constrained devices have been
proposed by the scientific community, and among these the best known are
MobileNets, Single Shot Detector (SSD) and YOLO. In particular, MobileNets
reduce the number of calculations to be performed by decomposing Convolution
filters into simpler operations;

19

State of the Art

• Model Compression: Deep Learning model compression is another technique to
perform inference in edge devices. Compression techniques include parameter
quantization, parameter pruning and knowledge distillation.
Parameter quantization involves compressing model parameters from floating
point numbers to low bit-width numbers, thus limiting costly floating point
multiplications. The pruning is the operation with which the less important
parameters are removed, for example, those very close to 0. Finally, the
distillation of the knowledge foresees the creation of a smaller Deep Neural
Network that imitates the behaviour of a larger and more powerful one;

• Hardware: it is important to design the hardware in such a way as to make
memory accesses efficient, reduce power consumption and latency.

In [12] a framework for HAR task as a Service using WiFi signal was developed.
The on-board intelligence of IoT devices was exploited to perform inference, using
a Raspberry Pi connected to a WiFi network, on data collected from IoT devices.
The CNN model was tested both using the Raspberry Pi resources and using the
Raspberry Pi and the Intel Neural Compute Stick2 resources combined. Neural
Compute Stick2 is a device developed by Intel that is able to accelerate the inference
of the models. Accurate results with latency time reduction and large performance
boost were archieved, but it is necessary to design lightweight Machine Learning
and Deep Learning algorithms.

Figure 3.6: On-device Computation.
Image taken from [5]

Edge Server Computation

The paper described the Edge Server Computation architecture that involves
sending data from end devices to one or more on-board servers for computation.
The end devices then send their data to a neighbouring edge server that processes
it and receives the corresponding results.

20

State of the Art

In this scenario, data pre-processing is required to reduce data redundancy and
communication time.

Computing Across Edge Devices

The paper described also the Computing Across Edge Devices. Several strategies
can be adopted in this architecture: intelligent Offloading, partitioning of the Deep
Learning model, use of edge devices plus the Cloud and distribution of computation:

• Offloading: as can be seen in Fig. 3.7, Offloading is combined with the
inference of a more complex Deep Neural Network present on the edge server
and a lighter and simpler Deep Neural Network available on the final device;

Figure 3.7: Offloading with model selection.
Image taken from [5]

• DNN Model Partitioning: with this strategy the model is partitioned in
such a way that some layers are computed directly on the device and others
are computed on the Edge Server or in the Cloud (See Fig.3.8). With this
approach, significant latency reductions can be achieved by exploiting the
computing power of other devices;

• Edge Devices Plus the Cloud: with this strategy the inference of a Deep
Learning model can be performed not only on the Edge devices but also in the
Cloud, as shown in Fig.3.8. This type of architecture can potentially decrease
the total processing time.
By exploiting the partitioning of the Deep Learning model, some layers can
be executed on the end devices, and others on the Edge Server and the Cloud.
In this way, the Edge Server receives the input data and performs the processing

21

State of the Art

of the model layers and then sends the intermediate results to the Cloud which,
after processing the upper layers, sends the final results to the end devices;

Figure 3.8: Computing Across Edge Devices with DNN model partitioning.
Image taken from [5]

• Distributed Computation: this last strategy requires that the computations of
the Deep Learning model are distributed over several edge helper devices, as
shown in Fig.3.9.

Figure 3.9: Distributed Computing with DNN model partitioning.
Image taken from [5]

22

Chapter 4

Materials and Methods

In this Chapter we will illustrate the Deep Learning techniques adopted that in the
literature have proved to be the best solution to solve the task of HAR, focusing
on CNNs and RNNs.
The network architecture designed for this thesis work will be presented and the
different backbones tested for spatial feature extraction will be illustrated.
A two-stream network architecture will also be proposed as an attempt to improve
the previously illustrated network model.
The dataset used for training the previously developed models will be shown, as
well as the training configurations adopted and the performance metrics used to
evaluate the models during testing.

4.1 Convolutional Neural Networks (CNNs)

CNNs are Artificial Neural Networks used for automatic learning in Deep Learning.
The behaviour and architecture of CNNs are inspired by the organization of the
connections of the neurons within the human brain and are designed to learn
automatically and adaptively the spatial hierarchies of features from low and high
level models.
Due to their high performance in the literature, CNNs are used in various fields,
from Object Classification to the Detection of lymph node metastases and skin
lesions [13].
The objective of CNNs is to analyze images and reduce them to a form that is easy
to process without losing those features that are fundamental to obtain a good
prediction of the class.

23

Materials and Methods

Fig.4.1 shows the architecture of a CNN1. As it is possible to observe, the architec-
ture takes in input an image and it is composed by two parts: a first part in which
the operation of feature extraction is performed and a second part in which the
classification is performed and, through it, the class of the input image is given in
output.

Figure 4.1: CNN architecture.

The input for this architecture is an image in Grayscale or RGB or HSV or
CMYK format. In the case of an RGB image, it is divided into the three colour
planes, as shown in Fig.4.2, and represents the input tensor in the form of a matrix
of pixel values.

Feature Extraction

Feature extraction is the process of converting input images into a set of interesting
features. When the input data is large, it is necessary to perform this dimensionality
reduction operation to reduce the number of variables involved and to simplify the
cost of resources required.
The part of the network that performs the feature extraction is also called backbone
and is typically composed of Convolutional and Pooling layers.
Convolutional layers perform feature extraction through a combination of linear
and non-linear operations, respectively Convolution and Activation Function [13].
With the Convolution operation, many small matrices called kernels (Fig.4.3 in
yellow) are applied to the input image (Fig.4.3 in green) and, through matrix
multiplications and sums, produce many feature maps (Fig.4.3 in red).

The feature maps obtained from the Convolution process are then passed
through a non-linear Activation Function that takes the feature map in output to

1https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53

24

Materials and Methods

Figure 4.2: A 4x4x3 RGB image.

Figure 4.3: Convolution operation. On the left, the kernel (in yellow) is applied to the
matrix of pixels representing the image (in green), producing the feature map in red on the right.

a convolution and transforms it applying non-linearity. The Activation Function
helps a Neural Network to learn the relationships and dependencies in the data
and allows the output to be limited to a particular range.
There are different types of Activation Functions: the Sigmoid and the Hyperbolic
Tangent are the most famous because they have a mathematical representation that
imitates the behaviour of a biological neuron, but the most used Activation Function
is the Rectified Linear Unit (ReLU), due to its simplicity and its effectiveness with
respect to the others.
The layer of Pooling instead executes an operation of downsampling that reduces
the dimension of the feature maps and therefore the parameters that must be learnt
in the training phase. There are two types of Pooling: the Max Pooling and the
Global Average Pooling.
As shown in Fig.4.4, the difference between these two types of Pooling is that with

25

Materials and Methods

Max Pooling, the matrix is divided into blocks and only the highest value of each
block is retained, while with Global Average Pooling, the average of the values in
each block is calculated. Both types of Pooling make it possible to reduce noise
and the risk of overfitting by keeping only the areas with the highest activation.

Figure 4.4: Max and Global Average Pooling.

Classification

After the Convolutional and Pooling layers, a layer of Fully-Connected neurons is
added, preceded by a Flattening layer. The Flattening layer flattens the output
feature maps of the previous layers into a one dimensional array and connects them
to one or more Fully-Connected layers. The Fully-Connected layers are also known
as Dense layers and each input is connected to each output by a learnable weight
in the training phase.
The mapping between the feature maps and the output neurons of the network is
characterized by the probabilities of each class.
The final Fully-Connected layer has typically a number of output neurons equal to
that of the classes.
An Activation Function is applied to the last Fully-Connected layer, which is usually
different from those previously discussed and depends on the task to be carried
out. If we have a task of multi-class classification, the Activation Function applied
is usually the Softmax that normalizes the real values of the output from the last
Fully-Connected layer belonging to each class. Each value varies between 0 and 1
and the sum of all values is equal to 1.

26

Materials and Methods

4.2 Recurrent Neural Networks (RNNs)
RNN is a type of Neural Network able to analyze time series or sequential data
and predict future trends.
This class of Neural Networks is typically used for tasks in which data are temporally
ordered, or in general when dealing with sequences of data. Some examples of
applications are: Speech Recognition, Natural Language Processing, Language
Translation and Activity Recognition.
They can be applied in several popular technologies such as Google Translate and
Apple Siri2.
RNNs differ from Feedforward Neural Networks, such as CNN, in that the data
does not flow in only one direction, from the input layer to the output layer, but
the architecture allows the data to flow back to the input layer. This means that
the output produced at the previous time step will become part of the input for
the current time step.
Considering a simple RNN3 constituted by a single neuron that receives an input,
processes it, produces an output and sends it back to itself as a new input (Fig.4.5
on the left).

Figure 4.5: A Recurrent Neuron (left), unrolled through time (right).

At each time step (t), defined also with the term frame, the recurrent neuron
receives as input x(t) and the output produced by itself at the previous time step
(y(t-1)).
To better understand the functioning of this network constituted by a single
recurrent neuron, we can use a method called unrolling the network through time,
through which it is possible to observe the flow of input received and output

2https://www.ibm.com/cloud/learn/recurrent-neural-networks
3https://andreaprovino.it/rnn-recurrent-neural-network/

27

Materials and Methods

produced during each time step (Fig.4.5 on the right).
Once the functioning of a single recurrent neuron is understood, modelling a layer
of recurrent neurons becomes easier.
This time at each time step t, each neuron receives as input a vector x(t) and the
output vector y(t-1) produced in the previous time step.
Two weight sets, or weight vectors, have to be elaborated by each recurrent neuron
present in the layer:

• wx, for the input x(t);

• wy, for the output y(t-1) of the previous time step.

To obtain the formula for the computation of the output vector of a layer of the
network, we insert the weight vectors in two weight matrices Wx and Wy, we add
a bias term b and the Activation Function for example ReLU (φ(−)).
The formula obtained is as follows:

y(t) = φ(WT
x · x(t) + WT

y · y(t-1) + b)

To calculate the output of a single mini-batch, all the inputs of a time step t are
inserted into an input matrix X(t), giving the following result:

Y(t) = φ(X(t) ·Wx + Y(t-1) ·Wy ·+b) = φ([X(t)Y(t-1)] ·W + b) with W =
[
Wx

Wy

]

where:

• Y(t) is an m × n-neuron matrix containing the output of the layer at time
step t for the mini-batch (m is the number of instances and n is the number
of neurons);

• X(t) is an m × n-inputs matrix containing all instance inputs (n-inputs is the
number of input features);

• Wx is an n-inputs × n-neurons matrix containing the weights for the inputs
of the current time step;

• Wy is an n-neurons × n-neurons matrix containing the weights for the outputs
of the previous time step;

• b is a vector of size n-neurons containing the bias term of each neuron;

• The matrices of weights Wx and Wy are often represented in a vertical
concatenation in a single matrix W of size (n-inputs + n-neurons) × n-
neurons;

28

Materials and Methods

• The notation [X(t) Y(t-1)] represents a horizontal concatenation of the ma-
trices X(t) and Y(t-1).

The output of the recurrent neuron at time step t is a function of all the inputs
of the previous time step. This binding determines the introduction of a form
of memory. This is what makes RNNs so successful in dealing with sequential
data. The part of the Neural Network able to preserve the state over time is called
memory cell. In this way a single recurrent neuron or a layer of recurrent neurons
is called basic cell.
An important aspect of RNNs is that their architecture is very flexible, allowing
for different combinations of input and output sequences.
The four most used types of RNN architectures4 are:

• Many-to-one: it can have input sequences with arbitrary time steps and pro-
duces only one output. This architecture is mainly used to classify sequential
data, such as for Sentiment Analysis;

• One-to-many: this is the opposite of the Many-to-one architecture. It has
only one input which in this case is not a sequence and generates a sequence
in output. It is used as a sequence generator, for example to generate a piece
of music from an initial note;

• Many-to-many (synced): in this architecture each output is calculated on the
basis of its corresponding input and all previous outputs. It is used for the
prediction of time series such as the hourly energy consumption of a factory
or the daily sales of each product of a company;

• Many-to-many (unsynced): this architecture is used when sequences need to
be generated only after processing the entire input sequence. In this case, the
length of the output sequence can be different from that of the input, giving
us a certain flexibility. The most common application of this architecture is
for automatic translation.

The most known types of RNN are the Bi-directional RNN (BRNN), the Gated
Recurrent Unit (GRU) and the Long Short-Term Memory (LSTM).
BRNN is an evolution of the classic RNN that, instead of using only the previous
inputs to make predictions on the current state, uses also the future data to improve
the precision.
GRU is used to handle the problem of the short term memory of the RNN models.

4https://medium.com/@ODSC/understanding-the-mechanism-and-types-of-recurrent-
neural-networks-6a93ee347e23

29

Materials and Methods

It uses hidden states and two ports, a reset port and an update port, to control
how much and what information is retained.
A separate section will be dedicated to LSTMs for further study.

4.2.1 Long Short-Term Memory (LSTM)
LSTM is a type of RNN able to learn long-term dependencies.
They are used mainly for the classification and prediction of time series with
intervals of unknown duration.
The architecture of an LSTM5 is characterized by a chain structure of repetitive
modules, called cells, where each of these modules consists of gates, as shown in
Fig.4.6.

Figure 4.6: Gates in a LSTM cell.

There are three types of gates: the Input Gate, the Forget Gate and the Output
Gate.
With the Input Gate it is decided which value of the input to keep and use in
order to modify the state of the memory. With the Forget Gate it is decided which
information should be discarded, and with the Output Gate the input and memory
of the block are merged to produce the output.
The architecture shown in Fig.4.6 is composed by different elements shown in
Fig.4.7: the yellow boxes indicate the learned layers of the Neural Network, the

5https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e

30

Materials and Methods

pink circles represent point operations, the lines indicate the direction of scrolling
of a vector, two or more lines that join indicate the operation of concatenation
and finally, a line that bifurcates indicates that the content is copied in different
positions.

Figure 4.7: Elements in LSTM architecture.

The state of the LSTM6 cells is divided, for performance reasons, into two state
vectors ht and ct (Fig.4.8). ht can be seen as the short-term state and ct as the
long-term state.
The first step is to decide which information to discard from the cell state. This
operation is carried out by the Forget Gate that, through a Sigmoidal layer, analyzes
the short term state ht-1 and the input xt and produces a value between 0 and
1. If the value produced is 1 it means that the information has to be completely
maintained, instead, if the value is 0 the information has to be completely discarded
(Fig.4.8).

Figure 4.8: First step.

The second step to be carried out is the analysis of which new information to
add to the state of the cell. This step, as can be seen in Fig.4.9, is carried out by
the Input Gate, and consists of two operations: in the first operation a Sigmoidal
layer decides which values to update, while in the second operation a tanh layer
creates the vector of new C̃t values that could be added to the state.

6http://colah.github.io/posts/2015-08-Understanding-LSTMs/

31

Materials and Methods

Figure 4.9: Second step.

Now we need to update the old status of the cell, C̃t-1 , by combining the two
values calculated in the previous step (Fig.4.10).
Two point operations are performed: the old state is multiplied by ft , discarding
the information we decided to forget in the first step, and the value calculated in
the second step is added.

Figure 4.10: Third step.

The final step involves deciding what we want the output to be. The output will
be a filtered version of the cell state. This step is performed by the Output Gate
and consists of two phases (Fig.4.11): a Sigmoidal layer is performed to establish
which parts of the state will constitute the output of the cell, then a tanh layer
is performed to ensure that the values of the state are between -1 and 1. Finally,
the state of the cell is multiplied by the output of the Sigmoidal gate in order to
output only the information that we have decided to return.

Variants of LSTM

There are different variants of LSTMs. Among these we distinguish the LSTMs
with Peephole Connections and the Bi-directional LSTM (Bi-LSTM).

32

Materials and Methods

Figure 4.11: Fourth step.

LSTMs with Peephole Connections7 are LSTMs that are allowed to analyze not
only the input xt and the previous short term state ht-1 but also the long term
state in order to give them a bit more context.
The architecture of a Peephole Connection LSTM has extra connections that make
sure to add the previous long-term state ct-1 as input to the Forget Gate and Input
Gate, and make sure to also add the current long-term state ct as input to the
Output Gate.

Figure 4.12: Bi-LSTM architecture.

The Bi-LSTM8 are two independent LSTMs connected together, as it is possible
to observe in Fig.4.12. A structure of this type allows to analyze the information
both in one direction and in the other on the input sequence at each temporal step,

7https://www.oreilly.com/library/view/neural-networks-and/9781492037354/ch04.html
8https://medium.com/@raghavaggarwal0089/bi-lstm-bc3d68da8bd0

33

Materials and Methods

proving to obtain excellent results because they are able to better understand the
context.
In this way the input is analyzed in two directions, one from the past to the future
and the other from the future to the past, and is therefore able to store information
from both the past and the future at any point in time.

4.3 SingleBranch Proposed Architecture
In this section the network architecture proposed to solve the Indoor HAR task is
presented.
The network architecture will be called SingleBranch because an attempt of improve-
ment will be proposed with another architecture, called DoubleBranch, characterized
by the presence of two streams.
The SingleBranch, observable in Fig.4.13, has an architecture constituted by a
backbone coming from a CNN for the extraction of the spatial features, a Bi-LSTM
layer for the extraction of the temporal features and a classifier.
The input of this architecture is the set of 10 frames, of dimension 224x224x3,
extracted from an input video.
The extraction of the spatial features from the input images is carried out by the
backbone of a CNN. In Fig.4.13 a generic architecture of backbone is shown because
different types of backbones, discussed in the Different Backbone section, will be
tested. The performances of the different backbones will be evaluated to identify
the most performing network architecture of which we will try to implement an
improvement.
Once extracted the spatial features, they will be passed to the second part of the
network architecture constituted by a GlobalAveragePooling2D that will average
each channel of the input feature map to obtain a value, by the Bi-LSTM layer that
will capture time dependencies, by a layer of BatchNormalization that accelerates
the training reducing the training epochs and the error of generalization providing a
certain regularization, by a first Dense layer with 512 neurons and ReLU Activation
Function, by a Dropout layer that "switches off" in a random way a certain number
of neurons and allows to obtain reduced networks able to better generalize, and
finally, by a second Dense layer with a number of neurons equal to the number of
the human activity classes and Softmax Activation Function.
The output of the SingleBranch architecture will then be the class of human activity
detected by the SingleBranch on the set of frames passed as input.

TimeDistributed layer

When analyzing a time sequence of frames, it is necessary to adapt certain layers
by introducing a TimeDistributed layer.

34

Materials and Methods

The TimeDistributed layer is nothing more than a wrapper that is applied, in this
case, to the layers of the different backbones, such as the Convolutional, Pooling
and Dropout layers, and to the GlobalAveragePooling2D so that they are able to
operate on a time sequence. The TimeDistributed layer adds an extra dimension to
the input that instead of being of size (sample, width, length, channel) will become
(sample, time, width, length, channel).

Figure 4.13: SingleBranch architecture.

4.4 Different Backbones
As previously mentioned, the backbone is the part of the Neural Network specialized
in the extraction of the spatial features that will be used for the final classification.
There are many types of backbones and they differ among them both for the logic
of functioning and for the complexity, that is, the depth of the network and the
number of parameters.
Some backbones that will be used as feature extractors in the previously introduced
SingleBranch network architecture will be discussed below.

VGG

The VGG [14] is a CNN architecture for classification and identification tasks.
A VGG CNN is characterized by an architecture that makes use of very small
convolutional filters (small receptive fields) of size 3x3. The use of these small

35

Materials and Methods

filters has demonstrated a significant improvement over previously implemented
configurations.
There are two versions: VGG16 and VGG19.
VGG16 has 16 levels and just over 138 million parameters, while VGG19 has 19
levels and just over 143 million parameters. VGG19 is more complex but has similar
performance to VGG16, which is why many developers are opting to remain with
the simpler structure of VGG16.
The two versions of VGG are able to generalize the data, adapting and obtaining
good results even on new datasets.

ResNet

The developers realized that Neural Networks with a high depth are more difficult
to train. They proposed a Residual Neural Network (ResNet) [15] structure to
facilitate the training of deep networks. They reformulate the architecture layers
as learning residual functions with reference to the layer inputs, instead of learning
unreferenced functions.
ResNets 8 times deeper than VGG networks were tested on ImageNet.The ResNets
achieved comparable performance while maintaining lower complexity.
ResNets are mainly used for Visual Recognition tasks.

Inception

While ResNet focuses on depth, Inception [16][17] focuses on extension. In particular,
the developers of Inception were interested in the computational efficiency of training
larger networks.
The architecture is characterized by 1×1 Convolutions to reduce dimensionality
and "filter" the depth of the outputs. These Convolutions can extract spatial
information and compress it into a smaller dimension. Classification tests have
been performed on the ILSVRC 2012 dataset, yielding substantial performance
gains over the state-of-the-art [16].
The Inception family includes the InceptionResNet which, by introducing residual
connections, produced very good state-of-the-art performance in the 2015 ILSVRC
challenge [17]. It would therefore appear that there are benefits to combining the
Inception architecture with residual connections.

Xception

Xception [18], as its name suggests, takes the principle of Inception to the extreme.
The architecture of Xception is inspired by that of Inception, where however,
the Inception modules are replaced by "Depthwise Separable Convolution" which
consists of a spatial Convolution (Depthwise Convolution) performed independently

36

Materials and Methods

for each channel, followed by a 1x1 Convolution (Pointwise Convolution) between
the channels.
Correlations are then searched first in a two-dimensional space and then in a
one-dimensional space.
The Xception architecture marginally outperforms InceptionV3 on the ImageNet
dataset, while significantly outperforming InceptionV3 on a classification dataset
with 350 million images and 17,000 classes.
The Xception architecture has the same number of parameters as InceptionV3 but
performance gains are achieved due to more efficient use of model parameters.

MobileNet

MobileNets [19] are efficient network models for mobile and embedded vision
applications. They are a simplified version of the Xception architecture, that uses
Depthwise Separable Convolutions to build light weight Deep Neural Networks. They
are mainly used for large-scale Object Detection, classification, Face Recognition
and Geolocation applications.
There are different types of MobileNet: MobileNetV2, MobileNetV3Small and
MobileNetV3Large.
The architecture of MobileNetV2 uses lightweight Convolutions to extract input
features and uses an inverted residual structure in which the input and output of
the residual block are thin bottleneck layers [20].
The remaining two models, MobileNetV3Small and MobileNetV3Large, are mainly
used for Object Detection and Semantic Segmentation tasks on hardware with
limited resources [21]. Their lighter architecture has led to very good results.
MobileNetV3Large was 3.2% more accurate in classification on ImageNet with a
latency reduction of about 20% compared to MobileNetV2.

DenseNet

Recent studies have shown that the CNNs can be more efficient and accurate,
increasing their depth, if trained with an architecture that contains shorter connec-
tions between the input and output layers.
Dense Convolutional Network (DenseNet) [22] uses the same concepts of Convolu-
tion, Pooling and ReLU Activation Functions to work, but the innovation is in the
introduction in the network architecture of Dense blocks.
Within DenseNet each layer is connected in a feed-forward manner to every other
layer. Differently from the traditional CNNs that with N layers have N connections,
each one between each layer and the next, in the DenseNet there are N(N+1)/2
direct connections.
The feature maps of all the previous layers are used as input for each layer, and
the feature maps of this last one are used as input for all the following layers.

37

Materials and Methods

There are several advantages to using DenseNets: they improve feature propagation,
encourage feature reuse, reduce the escape gradient problem, and also reduce the
number of parameters.
There are many types of DenseNet which differ in depth. These include the
DenseNet121 with 121 layers and just over 8 million parameters, the DenseNet169
with 169 layers and about 14 million parameters and finally the DenseNet201 with
201 layers and just over 20 million parameters.
The DenseNets have achieved great performance improvements over other state-of-
the-art work, requiring fewer calculations.

EfficientNet

EfficientNet [23] is a type of Neural Network that improves model accuracy and
computational requirements by efficiently scaling depth, width and resolution.
EfficientNet does not require as many computational requirements as CNN, resulting
in higher Accuracy.
To achieve EfficientNet, the scientific community realized that by carefully balancing
the depth, width and resolution of the network, better performance could be
achieved. Therefore, a scaling method was proposed that uniformly scales all three
dimensions using a simple and very effective compound coefficient.
This type of Neural Network has a higher Accuracy and efficiency than traditional
CNNs.
There are different types: from EfficientNetB0, with about 5 million parameters, to
EfficientNetB7 with more than 66 million parameters. The last one has exceeded
80% Accuracy on ImageNet, being 8.4 times smaller and 6.1 times faster in inference
than the best existing CNN.
Tests were also carried out on the CIFAR-100 dataset, obtaining an average Accuracy
of over 91% and reaching 98.8% Accuracy for the Flower class.

NasNet

The NasNet [24] is a typology of Neural Network in which the Convolution layer
(or "cell") has been improved. It is able to generalize very well on different
datasets thanks to the introduction of a new technique of regularization called
ScheduleDropPath.
Tests were performed on CIFAR-10 achieving an error rate of 2.4%.
Tests were also performed on ImageNet achieving Accuracy comparable to other
state-of-the-art work. A small version of NasNet is able to exceed the Accuracy of
other models of comparable size for mobile platforms by about 3%.

38

Materials and Methods

4.5 DoubleBranch Neural Network
In this section a new network, called DoubleBranch, will be presented as an attempt
to improve the SingleBranch network architecture discussed previously.
The DoubleBranch, as the name suggests, is characterized by the presence of two
flows. The architecture of the DoubleBranch is shown in Fig.4.14.
As for the SingleBranch, also the DoubleBranch has an architecture constituted
by a first part of extraction of spatial features (backbone) coming from a CNN,
then by a Bi-LSTM layer for the extraction of temporal features and finally by a
classifier.
Also in this case, two generic backbone architectures are shown in Fig.4.14, as they
will be replaced by the one that obtained the best performance in the test phase.
The part of the architecture of the DoubleBranch after the extraction of the spatial
features is the same discussed already for the SingleBranch: it is then composed
by a layer of GlobalAveragePooling2D, by the Bi-LSTM layer, by the layer of
BatchNormalization, by a first Dense layer, by one of Dropout and finally by a last
Dense layer with number of neurons equal to the number of the classes of human
activity and Softmax Activation Function.

Figure 4.14: DoubleBranch architecture.

What distinguishes the DoubleBranch from the SingleBranch is the presence of
two flows and the interconnections between the Convolutional layers of the two
backbones.

39

Materials and Methods

As also proposed in the literature by the scientific community, a second branch
has been introduced to improve the performance of the network. As input to the
second branch, however, it was decided to use a set of 10 masks of size 224x224x3.
One mask, Fig.4.15 on the right, is an RGB image obtained as a result of the
Segmentation process carried out by a further Neural Network called MaskRCNN
that will be briefly described in the next section.
In the mask the Segmentation process will highlight the interesting parts obscuring
all the rest.
Having available both the RGB frames and the relative RGB masks with the
interesting parts highlighted, merge is then carried out after each Convolution. In
this way, the aim is to concentrate the network only on certain portions of the
images that are considered important.
Also in this case, having to analyze temporal sequences, some layers have been
wrapped by the TimeDistributed layer in order to be able to operate on frame
sequences.

Figure 4.15: Two examples of RGB frames (on the left) and RGB masks (on the right).

40

Materials and Methods

4.5.1 MaskRCNN
MaskRCNN9 [12][13], extension of the Faster R-CNN Neural Network, is a Neural
Network used for instance Segmentation problems.
It allows to efficiently detect objects within an image and, at the same time, gener-
ate a high quality segmentation mask for each detected instance.
Compared to the Faster R-CNN there is the addition of a third branch that allows
the prediction of the mask of the detected object instance within the image.

Figure 4.16: MaskRCNN architecture.

The architecture, observable in Fig.4.16, consists of a first extraction of the
features performed through a ResNet101 and a Feature Pyramid Network (FPN)
that exploits a pyramidal structure for the extraction of the features. After the
extraction of the features, a Region Proposal Network (RPN) generates multiple
regions of interest (RoI - anchor boxes), shown in Fig.4.17 and Fig.4.18, each
characterized by the presence of a score that determines the presence of the object
in the region and four coordinates representing the bounding box of the region.

For each RoI the MaskRCNN will generate a mask, observable in Fig.4.19, that
will be expanded to adapt it to the dimensions of the corresponding bounding
box. For each instance of object identified, MaskRCNN will produce an output
like the one observed in Fig.4.20, characterized by the class, the bounding box and
an overlapping mask.

4.5.2 DoubleBranch_DenseNet201
Due to the performance obtained from the training and testing phase of the different
backbones of the SingleBranch shown in Chapter 6 of Results, the DenseNet201

9https://github.com/matterport/Mask_RCNN

41

Materials and Methods

Figure 4.17: Anchor sorting and filtering.

Figure 4.18: Bounding box refinement.

was considered to be the backbone with the best results.
It was decided, then, to apply the DenseNet201 as the backbone for the extraction
of the spatial features of the two branches of the DoubleBranch.
In this way an architecture was created as an attempt to improve the SingleBranch.
Fig.4.21 shows the architecture of the backbone of a DenseNet201. It consists of a
first layer of Convolution 7 x 7 and stride 2, a second layer of MaxPooling and a
series of Dense Blocks and Transition Layers. Each Dense Block is characterized
by two Convolutions: a 1 x 1 Convolution and a 3 x 3 Convolution. The Transition

42

Materials and Methods

Figure 4.19: Mask generation.

Figure 4.20: Composing the different pieces into a final result.

Layers are characterized by a 1 x 1 Convolution and an AveragePooling. The
architecture is defined by a repetition of the two Convolutions of the Dense Blocks
for 6, 12, 48 and 32 times respectively.

To create the DoubleBranch_DenseNet201, shown in Fig.4.22, the Convolutions,
the Dense Blocks and the Transition Layers characteristic of the DenseNet201 have
been reproduced for the two branches of the DoubleBranch, with the addition of
the merge of the results of each Convolution. The backbone is also wrapped by a
TimeDistributed layer that makes possible the processing of temporal sequences.
The second part of the network, on the other hand, is the same as that discussed
for the SingleBranch. It consists of a Bi-LSTM for the extraction of temporal
features and the classifier.

4.5.3 DoubleBranch_VGG16
As shown in Chapter 6 of Results, DoubleBranch_DenseNet201 did not produce
any results during the learning phase. This is probably due to the complex and
deep architecture of the model.
It was decided, therefore, to model a new DoubleBranch with the use of the

43

Materials and Methods

Figure 4.21: SingleBranch DenseNet201 backbone architecture.

backbone VGG16 which has a structure very easy to manipulate and because it is
very used in literature for tasks of classification.
The architecture of the DoubleBranch_VGG16 is shown in Fig.4.23.
The backbones of the two branches have a structure of this type: 3 x 3 Convolution,
merge of results, MaxPooling, two 3 x 3 Convolutions, merge of results, MaxPooling,
three 3 x 3 Convolutions, merge of results, MaxPooling, a Dropout layer, three 3 x
3 Convolutions, merge of results, Maxpooling, another Dropout layer, three 3 x 3
Convolutions, merge of results, MaxPooling of the merge result and a last Dropout
layer. To the classic backbone architecture of VGG16, then, merge of Convolutions
and Dropout layers were added to improve learning and generalization capability.

4.6 Experimental Protocols

In this section we will discuss the dataset used for training the previously introduced
models and the preprocessing related to the sampling process for frame extraction
and adaptation to the network input, the various configurations adopted for training,
giving a brief description of the optimizers tested, and the performance metrics
that will be used to evaluate the performance of the models.

44

Materials and Methods

Figure 4.22: DoubleBranch_DenseNet201 architecture.

45

Materials and Methods

Figure 4.23: DoubleBranch_VGG16 architecture.

46

Materials and Methods

4.6.1 Dataset

The dataset that was used for training the network models is a subset of Kinetics.

Kinetics

The Kinetics dataset can be considered as the successor to two well-known reference
datasets for HAR: HMDB-51 and UCF101 [25].
The creation of Kinetics is due to the fact that the use of HMDB-51 and UCF101
has decreased considerably because of their small size and variations.
Kinetics is a collection of up to 650,000 YouTube annotated video clips, each of 10s,
that cover 400/600/700 human action classes, depending on the dataset version.
The clips come from YouTube and are mainly amateur videos, so they have a
variable resolution and frame rate. For this reason, there may be considerable
camera movements, lighting variations, shadows, etc. Being amateur videos, there
is a great variety of performers and a lot of difference in the way the same action
can be performed.
The dataset contains different actions like Singular Person Actions (e.g. "robot
dancing", "stretching leg"), Person-Person Actions (e.g. "shaking hands", "tickling")
and Person-Object Actions (e.g. "riding a bike"). There are also actions with same
verb but different objects (e.g. "playing violin", "playing trumpet") and actions with
same object but different verbs (e.g. "dribbling basketball", "dunking basketball").
As can be observed in Fig.4.24, in some cases it is not easy to recognize the human
activity, as for the class "headbanging", or to distinguish the class, as for "dribbling
basketball" and "dunking basketball".

For the training of the models in this work, a manually created subset of Kinetics
was used, containing 11584 video clips of 20 interesting activity classes (brush-
ing_teeth, cleaning_floor, cleaning_toilet, cleaning_windows, crawling_baby, din-
ing, doing_nails, drinking, hugging, ironing, kissing, making_beds, opening_bottles,
playing_cards, reading_books, setting_the_table, using_the_computer, washing_
dishes, washing_hair and washing_hands) divided into 92% and 8%. The 92% was
further divided into 80% (8556 video clips) for the training set and 20% (2140 video
clips) for the test set, while the remaining 30% (888 video clips) was dedicated to
the validation set.
When dividing the dataset into training, validation and test set, the stratified mode
was used to make sure that the number of video clips of each class was balanced
between the different sets.
The 20 classes extracted from the original dataset were chosen to focus on Indoor
HAR.

47

Materials and Methods

Figure 4.24: Examples of Kinetics dataset classes.
Image taken from [25]

48

Materials and Methods

Preprocessing

Once the dataset was acquired, preprocessing had to be carried out in order to
adapt the input of the models.
A sampling process had to be performed on the videos for frame extraction. For
each video it was experimentally decided to extract a number of 10 frames and to
create a folder, containing the 10 frames, for each video.
The sampling process involves the extraction of frames with a frequency determined
by the following calculation:

SamplingRate = video length in seconds
no. of desired frames

Once the frames have been extracted, they were resized to 224x224 pixels.
Finally, the average of the values is subtracted from the data set and the normal-
ization is performed.

4.6.2 Training Settings
The training of network models on Kinetics was performed using different configu-
rations.
First of all, the training was performed on an environment with "unlimited" re-
sources: Google Colab. Google Colab is a tool provided by Google that allows
Python code to be written directly from the Browser and allows robust and efficient
network models to be built and implemented, providing significant computing power.

Fine Tuning was performed to realize transfer learning using the pre-trained
ImageNet weights.
As can be seen in Chapter 6 of Results, different configurations were tested to find
the best configuration to obtain the best model.
The training set was divided into subgroups called batches of varying size.
Training was carried out with a variable number of epochs: from 30, 60 to 80 epochs.
The loss function calculated on the training and validation set, used to evaluate
the performance of the model, is the Categorical Crossentropy. It is mainly used
for multi-class classification problems.
Finally, different types of optimizers were tested but not all of them produced
results:

• SGD: acronym for Stochastic Gradient Descent, is an optimizer used to
minimize the loss function. It calculates the gradient and updates it after
each observation;

49

Materials and Methods

• Adam: is an optimizer that calculates adaptive learning rates for each pa-
rameter by storing an exponential decay average of past square gradients and
maintaining an exponentially decreasing average of past gradients;

• Adagrad: a gradient-based algorithm that adapts the learning rate to the pa-
rameters, performing larger updates for parameters associated with infrequent
features and smaller updates for those associated with more frequent features.
It is therefore no longer necessary to set the learning rate manually, but the
default value of 0.01 is often used;

• Adamax: is an optimizer that is a variant of Adam that, in the calculation
formula, it uses a different norm;

• Adadelta: is an extension of Adagrad that, instead of accumulating past
squared gradients, limits the window of accumulated past gradients to a fixed
size;

• Nadam: is an optimizer that incorporates NAG (Nesterov Accelerated Gradi-
ent) into Adam. It is obtained by modifying the momentum term.

4.6.3 Performance Metrics
All network models discussed above will be evaluated using the metrics of Accuracy,
Precision, Recall and F1-score. To assess the performance of the whole approach,
we computed the classification Accuracy (Eq.4.1) as a global metric.

Accuracy (Acc), as the name suggests, indicates the accuracy of the model and
describes how the model performs with respect to all classes. The values of Acc,
and all other metrics, range from 0 (worst case) to 1 (best case). It is calculated as
the average Acc per class, which is the ratio of the number of correct predictions
to the total number of predictions:

Acc =
∑

i
(T Pi+T Ni)

T Pi+T Ni+F Pi+F Ni

|C|
(4.1)

where TP, TN, FP and FN are TruePositive, TrueNegative, FalsePositive and
FalseNegative respectively.
Acc is very useful when the dataset is balanced between the various classes, but
when we have an unbalanced dataset, we must be careful and avoid giving a wrong
interpretation to the values as the calculated Acc may not be valid for all classes.

Precision (Prec) measures the Acc of the model in classifying a sample as positive
and is calculated for each class as the ratio of the number of positive samples that
were classified correctly to the total number of samples classified as positive both

50

Materials and Methods

correctly and incorrectly. Said another way, "for all instances classified as positive,
what percentage were correct?"10.

Prec = TP

TP + FP

Recall (Rec) indicates the ability of a classifier to detect all positive instances.
For each class it is defined as the ratio between the number of positive samples
correctly classified as positive and the total number of positive samples. Said
another way, "for all the instances that were actually positive, what percentage were
correctly classified?".

Rec = TP

TP + FN

Finally, the F1-score (F1) is a fusion of Prec and Rec. It is the weighted
harmonic mean of the previous two and is used to compare classification models
and not overall Acc.

F1 = 2 ·Rec · Prec
Rec+ Prec

10https://www.lorenzogovoni.com/matrice-di-confusione/

51

Chapter 5

Deployment On Limited
Resources Hardware

In this Chapter we will describe the cameras used to obtain the video stream to be
analyzed, the microprocessor used (NVIDIA Jetson Nano) and everything related
to the deployment of network models on hardware.
We will introduce TensorRT which is a platform for the optimization of inference
on hardware and finally we will present the management mechanism of the video
stream of the camera for the recognition of human activities.

5.1 Cameras
The cameras used to acquire the video stream on which the Indoor HAR task was
performed are presented in Fig.5.1.
Two types of cameras provided by Dahua were used: an IP Bullet Camera (Fig.5.1
on the left) and an IP Eyeball Camera (Fig.5.1 on the right).
For both cameras, the setup and configuration were very simple as it was only
necessary to connect the two cameras to the Internet and type in the URL bar
of the Browser the IP address 192.168.1.108 (default) which allows access to the
configuration interface (Fig.5.2).
It should be noted, however, that by default the address 192.168.1.108 is assigned to
each camera, therefore, if tests are to be carried out with several cameras connected
at the same time it is necessary to change the address of the cameras from the
configuration interface in order to avoid conflicts.
In our case, the default configurations of the various camera parameters have been
maintained except for a few parameters listed below:

• Codec (Encode Mode): H.264;

52

Deployment On Limited Resources Hardware

• Resolution: 1280 * 720 pixels;

• Fps: 25;

• Bit Rate: 2048.

In order for the NVIDIA Jetson Nano to receive the video stream from the
camera, the RTSP protocol (Real Time Streaming Protocol) was used, which is a
network protocol that controls multimedia streaming servers. With the use of this
protocol it is possible to establish and manage streaming sessions between clients
and servers. The standard communication port used is port 554.

Figure 5.1: IP Bullet Camera (left) and IP Eyeball Camera (right).

Figure 5.2: Camera configuration interface.

53

Deployment On Limited Resources Hardware

5.2 NVIDIA Jetson Nano
The NVIDIA Jetson Nano1 (Fig.5.3) is a small, powerful computer designed by
NVIDIA dedicated to Edge Computing tasks on mobile or embedded devices.
It is a CUDA-X processor with 472 GFLOPs of power and 4GB of RAM capable
of running on just 5 Watts of power.
It is currently used by more than 200,000 developers for the development of drones,
security cameras and many other devices that can run without the use of an Internet
connection.

Figure 5.3: NVIDIA Jetson Nano.

The NVIDIA Jetson Nano allows image Classification, Segmentation and Object
Detection tasks to be performed by running multiple Neural Networks in parallel.
Jetson Nano is supported by the NVIDIA JetPack which includes the latest Jetson
Linux Driver Package with Linux operating system and CUDA-X accelerated APIs
and libraries for Deep Learning, Computer Vision and Accelerated Computing and
Multimedia.
It also includes documentation and tools for developers to create products with
increased performance and scalability. Tools include NVIDIA DeepStream and

1https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-
nano/product-development/

54

Deployment On Limited Resources Hardware

Transfer Learning Toolkit for video analysis, NVIDIA Clara for imaging and patient
monitoring tasks, and NVIDIA Isaac for robotics.
The NVIDIA Jetson Nano can be used in two modes:

• Desktop Mode: in this mode, the Jetson Nano is connected directly to a
monitor, keyboard and mouse. No additional PC support is required;

• Headless Mode: in this mode, no monitor, keyboard or mouse are required, but
it is necessary to connect the Jetson Nano to a PC and establish a connection
via SSH protocol.

The mode of use of the Jetson Nano for this thesis work was Desktop Mode.
Below is the data sheet with all the information about the NVIDIA Jetson Nano
(Fig.5.4).

Figure 5.4: NVIDIA Jetson Nano data sheet.

55

Deployment On Limited Resources Hardware

Setting Up and Configuration

The NVIDIA Jetson Nano setup2 was performed following the guide provided di-
rectly by NVIDIA. The setup procedure involves writing the Jetson Nano Developer
Kit SD Card Image to our microSD card. NVIDIA Jetson Nano uses the microSD
card as a boot device and for main storage.
Once the setup was done, a virtual environment was created on which every-
thing needed to set up the working environment was installed. Among others,
Python3, Tensorflow2.4.0 and other utilities such as pandas, natsort and numpy
were installed.

5.3 TensorRT and Model Optimization
NVIDIA TensorRT34 is a Software Development Kit (SDK) for high - performance
inference of Deep Learning models. It contains an inference optimizer and runtime
that provides high throughput and low latency for Deep Learning pattern inference
applications.
TensorRT is built on CUDA, which is an NVIDIA parallel programming model, and
enables optimized model inference through the use of CUDA-X development tools,
libraries and technologies for Artificial Intelligence, high-performance computing
and autonomous machines.
To optimize the network model, TensorRT performs a process called build phase
(Fig.5.5). In the build phase, TensorRT takes the definition of the network model,
performs network and platform optimization and generates the inference engine.
In the build phase, dead computations are eliminated, operations are reordered
and combined to execute more efficiently on the GPU, floating point computations
can be reduced to 32, 16 and 8 bits through the quantization process, multiple
implementations of operators can be run to find those that produce the fastest
network implementation, where possible the Convolution, bias and ReLU layers
are merged to form a single layer and horizontal merges or aggregations of layers
are performed to improve model performance.

As shown in Fig.5.5, several operations are performed during the network model
optimization process. Mixed precision (1) can be used which maximizes throughput
by quantizing models at INT8 while preserving accuracy; layer and tensor merging
(2) can be performed by merging nodes into a kernel and optimizing memory
usage; the best data layers and algorithms can be selected based on the target

2https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
3https://developer.nvidia.com/tensorrt
4https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

56

Deployment On Limited Resources Hardware

Figure 5.5: TensorRT build phase.

GPU platform (3); a dynamic tensor memory (4) is used which minimizes memory
occupancy and promotes memory reuse for tensors efficiently; promotes multi-
stream execution (5) using a scalable design to process multiple streams in parallel
and finally performs temporal fusion (6) by optimizing RNNs in time steps with
dynamically generated kernels.

There is a version of TensorRT integrated directly within Tensorflow: TF-TRT5.
For the conversion of the network models built in this thesis work, TF-TRT was
used as a model optimizer for performing inference within the NVIDIA Jetson
Nano.

Figure 5.6: TF-TRT workflow for SavedModel format models.

5https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

57

Deployment On Limited Resources Hardware

TF-TRT optimizes and executes the compatible subgraphs, allowing Tensorflow
to execute the remaining part of the graph.
The model optimization procedure, which can be observed in Fig.5.6 and Fig.5.7,
requires that a model saved in SavedModel format (or in regular checkpoints) from
a trained Tensorflow model is provided as input. At this point, TF-TRT returns the
SavedModel optimized by TensorRT (or the frozen inference graph). TF-TRT will
replace each subgraph supported by it with a node optimized by TensorRT (called
TRTEngineOp) and produce a new graph on which inference can be performed.

Figure 5.7: TF-TRT workflow for Checkpoints models.

5.4 Single-camera Handling
The management of the camera stream for the execution of inference within the
Jetson Nano is summarized in Fig.5.8.
In this mechanism there are six actors: the Main Thread that manages the whole
program, the TrtThread that is the thread that manages the mechanism of creation
of the input to give to the model and to start the inference process, the Model that
is the model optimized in TF-TRT and loaded inside the Jetson Nano, Camera
Handle that is a class that manages the camera, CapturingThread that continuously
acquires the frames and Camera that refers to one of the two types of IP Camera
described previously and from which the video stream will be acquired.
The Main Thread first creates a Camera Handler object of the class that manages
the camera.
The Camera Handler establishes a connection, through the RTSP protocol, with
the Camera and starts the secondary Capturing Thread.
The Capturing Thread is responsible for continuously extracting frames from the
camera stream and inserting them into an attribute of the Camera Handler object.
The Main Thread, at this point, loads the TF-TRT optimized Model and performs
a first simple inference on 10 images to load all the libraries and utilities functions
needed for inference. This loading process takes a few seconds so it was decided
to perform a first single inference to ensure that the libraries and functions were
already loaded and therefore there would be no delays in the inference performed
in real-time.
Once everything is loaded, the Main Thread starts the TrtThread.
The TrtThread executes in loop the extraction operation, from the attribute of the

58

Deployment On Limited Resources Hardware

Camera Handler object, of 10 frames to create the input tensor of the model and
asks the Model to execute the inference on the 10 frames. Every time it obtains
the results of the inference relative to the predicted class, to the confidence score,
to the FPS and to the prediction time, it sends them to the Main Thread that will
take care of the visualization process.
In the moment in which it is decided to terminate the application, the Main Thread
will ask the TrtThread to stop and will forward to the Camera Handler the request
to stop the Capturing Thread and the closing of the communication with the
Camera.

59

Deployment On Limited Resources Hardware

Figure 5.8: Single-camera Handling Workflow.

60

Chapter 6

Results

In this Chapter, we will present the test results obtained on an environment with
"unlimited" resources (Google Colab) and on an environment with limited resources
(NVIDIA Jetson Nano).
As regards the environment with "unlimited" resources, the performances achieved
in the test phase by the network models discussed in the previous chapters will be
presented. As already mentioned, the performance obtained on Google Colab was
evaluated by analyzing the performance metrics of Acc, Rec, Prec and F1.
An overview of the results obtained from the various backbones on the Kinetics
dataset will be presented.
A focus will be given to the performance of the best SingleBranch model and the
models with which it was possible to perform inference within Jetson Nano.
The results of the training of the DoubleBranch model on dataset will also be
reported.
As concerning the NVIDIA Jetson Nano, the results obtained from the optimization
process of the network models and the performances obtained from the real-time
inference, on the successfully optimized models, performed on the stream of a video
camera will be presented.
Finally, some examples of correct and incorrect prediction of the activity class will
be illustrated.

6.1 Unlimited Resource Environment

This section will show the performance achieved by the tested backbones as
spatial feature extractors for SingleBranch models and the results obtained by
DoubleBranch models.

61

Results

6.1.1 Backbone Performance Comparison

Table 6.1 shows the performance obtained in the test phase of the SingleBranch
with the different backbones. The table shows for each backbone the results of the
performance metrics of Acc, weighted avg Prec, weighted avg Rec, weighted avg F1,
macro avg Prec, macro avg Rec and macro avg F1 achieved in the training phase.
The reported averages include macro average (averaging the unweighted mean per
label) and weighted average (averaging the support-weighted mean per label).
Given the different complexity of the backbones and the variable allocation of
hardware resources by Google Colab, it was not possible in some cases to train
models with a batch size of 16.

Table 6.1: Backbone performance comparison.

Network
Acc weighted

avg Prec
weighted
avg Rec

weighted
avg F1

macro
avg Prec

macro
avg Rec

macro
avg F1

VGG16 75% 76% 75% 75% 74% 72% 73%

MobileNetV2 77% 77% 77% 77% 76% 74% 75%

MobileNetV3Small 69% 69% 69% 69% 68% 66% 66%

MobileNetV3Large 76% 77% 76% 76% 74% 74% 74%

EfficientNetB2 82% 82% 82% 82% 80% 79% 79%

EfficientNetB1 82% 82% 82% 82% 80% 79% 79%

EfficientNetB0 80% 80% 80% 80% 79% 77% 78%

InceptionResNetV2 82% 82% 82% 82% 81% 79% 80%

NasNetMobile 79% 80% 79% 79% 78% 77% 77%

ResNet152 80% 81% 80% 80% 80% 78% 78%

ResNet152V2 78% 79% 78% 78% 77% 76% 76%

Xception 82% 82% 82% 82% 81% 79% 80%

DenseNet201 82% 83% 82% 82% 81% 80% 80%

DenseNet121 81% 81% 81% 81% 80% 78% 79%

The performances shown in the table were obtained by performing Fine Tuning,
and therefore taking networks already pre-trained on ImageNet, and training the
models at 80 epochs with the Adagrad optimizer and learning rate of 0.001 and

62

Results

ReLU Activation Function.
From Table 6.1, it can be seen that the backbone with the best results is the
DenseNet201. With its 18 million parameters it achieved an Acc of 82%, a weighted
avg Prec of 83%, a weighted avg Rec of 82% and an weighted avg F1 of 82%.

Table 6.2, Table 6.3, Table 6.4, Table 6.5 and Table 6.6 show the performances ob-
tained with the DenseNet201, the VGG16, the MobileNetV2, the MobileNetV3Small
and the MobileNetV3Large respectively. Only the results obtained with these back-
bones have been highlighted because the DenseNet201 is the best performing model
obtained and together with the VGG16 will be used also for the modeling of the
DoubleBranch, while the three MobileNets, due to their lighter architecture, are
the only network models with which it has been possible to perform successfully
the inference inside the Jetson Nano.

Table 6.2: Model performances with the DenseNet201 backbone.

DenseNet201 model performances
Class Prec Rec F1 Support

brushing_teeth 0.90 0.77 0.83 183
cleaning_floor 0.82 0.90 0.86 128
cleaning_toilet 0.91 0.87 0.89 70

cleaning_windows 0.81 0.85 0.83 95
crawling_baby 0.93 0.91 0.92 183

dining 0.75 0.87 0.81 95
doing_nails 0.91 0.85 0.88 129
drinking 0.64 0.53 0.58 77
hugging 0.56 0.77 0.65 64
ironing 0.95 0.83 0.89 66
kissing 0.63 0.69 0.66 59

making_bed 0.85 0.82 0.84 91
opening_bottle 0.77 0.63 0.69 98
playing_cards 0.91 0.94 0.93 102
reading_book 0.85 0.85 0.85 177
setting_table 0.86 0.78 0.82 55

using_computer 0.97 0.93 0.95 135
washing_dishes 0.74 0.85 0.79 157
washing_hair 0.81 0.59 0.68 44
washing_hands 0.68 0.77 0.73 132

Acc 0.82 2140
macro avg 0.81 0.80 0.80 2140

weighted avg 0.83 0.82 0.82 2140

63

Results

For the DenseNet201, having a deeper and more complex architecture, the
results were obtained with an 80 epochs training, Adagrad optimizer with learning
rate equals to 0.001, batch size equals to 4 and ReLU Activation Function.
For VGG16 the results were obtained with 80 epochs training, Adagrad optimizer
with learning rate equals to 0.001, batch size equals to 16 and ReLU Activation
Function.
Finally, for all three MobileNets the results shown in the tables were obtained with
80 epochs training, Adagrad optimizer with learning rate equals to 0.001, batch size
equals to 16 and ReLU Activation Function.

Table 6.3: Model performances with the VGG16 backbone.

VGG16 model performances
Class Prec Rec F1 Support

brushing_teeth 0.79 0.77 0.78 183
cleaning_floor 0.83 0.75 0.79 128
cleaning_toilet 0.83 0.79 0.81 70

cleaning_windows 0.85 0.85 0.85 95
crawling_baby 0.85 0.88 0.87 183

dining 0.71 0.92 0.80 95
doing_nails 0.76 0.88 0.81 129
drinking 0.37 0.60 0.46 77
hugging 0.48 0.44 0.46 64
ironing 0.86 0.64 0.73 66
kissing 0.79 0.58 0.67 59

making_bed 0.73 0.79 0.76 91
opening_bottle 0.58 0.52 0.55 98
playing_cards 0.93 0.90 0.92 102
reading_book 0.76 0.81 0.79 177
setting_table 0.73 0.65 0.69 55

using_computer 0.90 0.90 0.90 135
washing_dishes 0.78 0.78 0.78 157
washing_hair 0.54 0.48 0.51 44
washing_hands 0.70 0.52 0.60 132

Acc 0.75 2140
macro avg 0.74 0.72 0.73 2140

weighted avg 0.76 0.75 0.75 2140

The tables show, for each class, the corresponding Prec, Rec and F1 values. In
the lower part of the tables, on the other hand, there are the average values and
the Acc. The reported averages include macro average (averaging the unweighted

64

Results

mean per label) and weighted average (averaging the support-weighted mean per
label). Finally, the right side of the table shows the number of samples for each
class in the test set.

Table 6.4: Model performances with the MobileNetV2 backbone.

MobileNetV2 model performances
Class Prec Rec F1 Support

brushing_teeth 0.78 0.80 0.79 183
cleaning_floor 0.75 0.88 0.81 128
cleaning_toilet 0.90 0.86 0.88 70

cleaning_windows 0.80 0.81 0.81 95
crawling_baby 0.83 0.90 0.87 183

dining 0.75 0.86 0.80 95
doing_nails 0.81 0.80 0.80 129
drinking 0.64 0.47 0.54 77
hugging 0.47 0.36 0.41 64
ironing 0.79 0.82 0.81 66
kissing 0.56 0.80 0.66 59

making_bed 0.85 0.74 0.79 91
opening_bottle 0.65 0.55 0.60 98
playing_cards 0.95 0.93 0.94 102
reading_book 0.84 0.77 0.80 177
setting_table 0.84 0.69 0.76 55

using_computer 0.94 0.93 0.93 135
washing_dishes 0.71 0.83 0.77 157
washing_hair 0.67 0.50 0.57 44
washing_hands 0.61 0.60 0.61 132

Acc 0.77 2140
macro avg 0.76 0.74 0.75 2140

weighted avg 0.77 0.77 0.77 2140

6.1.2 DoubleBranch Performances
The attempt to improve SingleBranch model with the DoubleBranch_DenseNet201,
and so with the addition of a further branch to analyze the masks in which only
the areas considered interesting for classification were focused, did not succeed.
Although several training configurations were tested, DoubleBranch_DenseNet201
was not able to learn.
Not having obtained results with the DoubleBranch_DenseNet201, due to the deep
and complex architecture, as well as the scarce quality of the dataset of the RGB

65

Results

Table 6.5: Model performances with the MobileNetV3Small backbone.

MobileNetV3Small model performances
Class Prec Rec F1 Support

brushing_teeth 0.59 0.73 0.66 183
cleaning_floor 0.71 0.81 0.76 128
cleaning_toilet 0.74 0.79 0.76 70

cleaning_windows 0.81 0.75 0.78 95
crawling_baby 0.78 0.85 0.81 183

dining 0.70 0.85 0.77 95
doing_nails 0.81 0.81 0.81 129
drinking 0.33 0.34 0.33 77
hugging 0.38 0.36 0.37 64
ironing 0.70 0.59 0.64 66
kissing 0.63 0.53 0.57 59

making_bed 0.83 0.71 0.77 91
opening_bottle 0.49 0.44 0.46 98
playing_cards 0.88 0.91 0.89 102
reading_book 0.74 0.72 0.73 177
setting_table 0.75 0.65 0.70 55

using_computer 0.94 0.83 0.88 135
washing_dishes 0.66 0.69 0.67 157
washing_hair 0.45 0.34 0.39 44
washing_hands 0.58 0.47 0.52 132

Acc 0.69 2140
macro avg 0.68 0.66 0.66 2140

weighted avg 0.69 0.69 0.69 2140

images and of the masks, it was decided to model a new DoubleBranch with the
use of the backbone of the VGG16. The best results obtained during training
and testing on the Kinetics dataset are shown in Table 6.7. The results were
obtained with the following training setting: 80 training epochs, batch size of 8,
ReLU Activation Function and SGD optimizer with learning rate of 0.0005 and
momentum of 0.9.

Table 6.8 and Table 6.9 show the comparison between the SingleBranch_VGG16
and the DoubleBranch_VGG16. Table 6.8 shows which model performs better
on the Kinetics dataset with the same training epochs. Table 6.9 shows the best
performing model on the Kinetics dataset for the same training epochs and for the
same Adagrad optimizer, since the Adagrad optimizer was the one that gave the
best results for the different backbones.

66

Results

Table 6.6: Model performances with the MobileNetV3Large backbone.

MobileNetV3Large model performances
Class Prec Rec F1 Support

brushing_teeth 0.76 0.79 0.77 183
cleaning_floor 0.81 0.81 0.81 128
cleaning_toilet 0.87 0.79 0.83 70

cleaning_windows 0.81 0.79 0.80 95
crawling_baby 0.89 0.87 0.88 183

dining 0.81 0.92 0.86 95
doing_nails 0.89 0.78 0.83 129
drinking 0.64 0.45 0.53 77
hugging 0.42 0.55 0.47 64
ironing 0.78 0.80 0.79 66
kissing 0.53 0.68 0.59 59

making_bed 0.77 0.82 0.80 91
opening_bottle 0.56 0.53 0.54 98
playing_cards 0.90 0.90 0.90 102
reading_book 0.77 0.77 0.77 177
setting_table 0.75 0.69 0.72 55

using_computer 0.96 0.92 0.94 135
washing_dishes 0.70 0.80 0.75 157
washing_hair 0.55 0.52 0.53 44
washing_hands 0.68 0.58 0.62 132

Acc 0.76 2140
macro avg 0.74 0.74 0.74 2140

weighted avg 0.77 0.76 0.76 2140

6.2 Constrained Resource Environment
Regarding the tests carried out on the NVIDIA Jetson Nano, the results that will
be reported will refer to the process of optimization and deployment of the models
inside the microprocessor and to the performance obtained in the inference phase.

6.2.1 Model Optimization on Jetson Nano
In order to perform inference within the NVIDIA Jetson Nano, the model op-
timization operation must be performed within the Jetson Nano itself because
the procedure takes in consideration the characteristics of the GPU on which the
procedure is performed.
It was therefore not possible to perform inference on the Jetson Nano with the

67

Results

Table 6.7: DoubleBranch model performances with the VGG16 backbone.

DoubleBranch_VGG16 model performances
Class Prec Rec F1 Support

brushing_teeth 0.70 0.80 0.75 183
cleaning_floor 0.73 0.85 0.79 128
cleaning_toilet 0.74 0.79 0.76 70

cleaning_windows 0.75 0.79 0.77 95
crawling_baby 0.83 0.93 0.87 183

dining 0.81 0.85 0.83 95
doing_nails 0.86 0.79 0.82 129
drinking 0.56 0.47 0.51 77
hugging 0.45 0.44 0.44 64
ironing 0.86 0.73 0.79 66
kissing 0.61 0.64 0.63 59

making_bed 0.77 0.74 0.75 91
opening_bottle 0.79 0.46 0.58 98
playing_cards 0.91 0.91 0.91 102
reading_book 0.79 0.79 0.79 177
setting_table 0.73 0.73 0.73 55

using_computer 0.94 0.89 0.92 135
washing_dishes 0.79 0.75 0.76 157
washing_hair 0.77 0.39 0.52 44
washing_hands 0.55 0.67 0.60 132

Acc 0.76 2140
macro avg 0.75 0.72 0.73 2140

weighted avg 0.76 0.76 0.75 2140

Table 6.8: SingleBranch_VGG16 and DoubleBranch_VGG16 comparison with same epochs
training.

Epochs Network Model
30 SingleBranch_VGG16 (Adagrad, batch size 16)
60 DoubleBranch_VGG16 (SGD, batch size 8)
80 DoubleBranch_VGG16 (SGD, batch size 8)

models that have been previously optimized on Google Colab.
The Jetson Nano, as already mentioned, has limited resources as it only has 4GB
of RAM. For this reason, many of the models discussed in the previous chapters
could not be optimized and used for inference within the Jetson Nano because of
the Out Of Memory error due to the complexity and high number of parameters of

68

Results

Table 6.9: SingleBranch_VGG16 and DoubleBranch_VGG16 comparison with same epochs
training and optimizer.

Epochs Network Model
30 SingleBranch_VGG16 (batch size 16)
60 SingleBranch_VGG16 (batch size 16)
80 SingleBranch_VGG16 (batch size 16)

the network models.
Regarding the SingleBranch models, the FP32 optimization in TF-TRT was suc-
cessfully done only for the SingleBranch with MobileNetV2, MobileNetV3Small and
MobileNetV3Large backbones. As can be seen in Table 6.1, the computing power of
the NVIDIA Jetson Nano is able to successfully support the optimization and load-
ing of network models with less than 3 million parameters. In fact, MobileNetV2
has 2,257,984 parameters, MobileNetV3Small 1,031,848, and MobilenetV3Large
2,667,688.
Regarding the DoubleBranch instead, it was not possible to perform the opti-
mization in TF-TRT because it has a much more complex architecture than the
SingleBranch and in particular because there were incompatibility problems be-
tween the TensorFlow versions. As we know, the DoubleBranch has one of the two
branches that takes in input the masks that are the result of the execution of the
MaskRCNN. The MaskRCNN is implemented in version 1.x of TensorFlow, but the
TF-TRT methods and functions for optimizing models are implemented in version
2.x of TensorFlow, so incompatibility problems arose that made it impossible to
use DoubleBranch.

6.2.2 Model Results and Performances
The results discussed in this section refer to tests performed with only SingleBranch
models with MobileNetV2, MobileNetV3Small and MobileNetV3Large backbones.
Once the model has been optimized, the next step is to load it into memory.
From the tests carried out, despite the three previous models being quite light, it
appears that only one model at a time can be loaded into RAM.

Below will be an overview of the results obtained for the three MobileNets. The
average loading times of the models, libraries and utility functions and the first
inference are shown, and the average inference times and FPS are also reported.
The inference time tests were performed both with the results displayed on screen
(examples of results displayed on screen are shown in Fig.6.1, Fig.6.2 and Fig.6.3)
and without the results displayed on screen but using only the results printed on
the console.

69

Results

The results obtained are as follows:

• MobileNetV2

– ~9 minutes for libraries and model loading and first inference;
– ~0.25s average inference time with camera visualization (FPS: ~27);
– ~0.25s average inference time without camera visualization (FPS: ~31).

• MobileNetV3Small

– ~6 minutes for libraries and model loading and first inference;
– ~0.08s average inference time with camera visualization (FPS: ~29);
– ~0.08s average inference time without camera visualization (FPS: ~67).

• MobileNetV3Large

– ~9 minutes for libraries and model loading and first inference;
– ~0.20s average inference time with camera visualization (FPS: ~25);
– ~0.20s average inference time without camera visualization (FPS: ~37).

Fig.6.1 shows an example of correct classification of the activity using_computer,
while Fig.6.2 and Fig.6.3 show two incorrect classifications of the same class of
activity.

Remembering that the input of the models is in terms of size (batch, timestep,
width, height, channels), the maximum number of batches that the model can
analyze was also tested.
Being able to analyze a number of batches greater than 1 means that it is possible
to analyze the stream of several cameras in parallel.
In order to do this, several batches were created with a single image repeated for
10 timesteps. The result of the tests performed on the three MobileNets is that the
models were able to perform inference on more than 10 batches.

70

Results

Figure 6.1: Right prediction of using_computer class.

Figure 6.2: Wrong prediction of using_computer class.

71

Results

Figure 6.3: Another wrong prediction of using_computer class.

72

Chapter 7

Discussion

The aim of this work is to create a framework able to classify in real-time indoor
human activities from a video stream and to test it in a real case of Edge Computing
oriented application.
To do this, different models of Neural Networks have been studied and mod-
elled. The most performing model obtained is the single branch model with the
DenseNet201 as backbone for the extraction of the spatial features (Table 6.1).
Its deep architecture, despite being quite complex, allowed to obtain the best
results. In fact, performances of 82% Acc, 83% Prec, 82% Rec and 82% F1 were
achieved.
As already mentioned, the architecture of the DenseNet201 is quite complex, due
to the Dense and recursive blocks, as well as to the high number of parameters
(just over 18 million), so it was necessary to lower the batch size to 4 in order to
train the model on Google Colab without encountering an Out Of Memory error
due to the variable GPU assignment by Colab.
It can also be seen from Table 6.1 that increasing the number of model parameters,
and so its complexity, does not lead to an improvement in performance. In fact
the most complex models in terms of the number of parameters, the two ResNets
and the InceptionResNet, did not lead to an increase in performance. On the other
hand, models with a lower number of parameters, such as the MobileNets, were
also able to achieve acceptable performance.
Looking at the results shown in Table 6.2, Table 6.3, Table 6.4, Table 6.5 and
Table 6.6, referring respectively to the DenseNet201, VGG16, MobileNetV2, Mo-
bileNetV3Small and MobileNetV3Large, the performances result unbalanced among
the classes: in fact, observing the Support we can notice that the dataset results
unbalanced among the classes and therefore the classes like hugging, kissing and
washing_hair reach performances much lower than those with high Support like for
example crawling_baby and using_computer. This is not entirely true, in fact some
classes with low Support, such as ironing and setting_table, achieve comparable

73

Discussion

performance to those with higher Support. This may suggest that the problem is
related to the quality of the dataset which means that some classes are represented
by less significant images.
A good solution, to improve the performance of those classes with limited Support,
could be Data Augmentation. With this last technique we could increase the
samples of those classes that have obtained limited performance by rotating or
mirroring the existing images.

An attempt to improve the performance of the SingleBranch_DenseNet201
model, by adding an additional branch to analyze masks that only highlighted
portions of interest, failed. The DoubleBranch_DenseNet201 has a very complex
architecture and this led to a total lack of learning. The reason due to the lack of
learning is probably not only due to the complex architecture, but also to the poor
quality of the RGB images and especially of the masks created (see Fig.7.1).

Figure 7.1: two examples of masks in which the portions of interest (bottle and iron) are
eliminated.

Due to the complexity of the DenseNet201, it was therefore decided to try a
further attempt using the VGG16 which is simpler and widely used in the literature
for classification tasks.

74

Discussion

Comparable results with those obtained with the SingleBranch_VGG16 were
achieved by the DoubleBranch_VGG16 (see Table 6.7). The best performances
achieved by DoubleBranch_VGG16 are 76% Acc, 76% Prec, 76% Rec and 75% F1
(with the SGD optimizer) compared to 75% Acc, 76% Prec, 75% Rec and 75% F1
achieved by SingleBranch_VGG16 (with the Adagrad optimizer).
Evaluating the performance at individual class level, on the other hand, it can be
seen that DoubleBranch_VGG16 has more balanced values between the various
classes.
Comparisons between the two models were also carried out with the same training
epochs (see Table 6.8) and training settings (see Table 6.9): with the same epochs it
can be seen that, although the performance values are comparable, with increasing
epochs the DoubleBranch_VGG16 obtains slightly better values, while with the
same epochs and Adagrad optimizer the SingleBranch_VGG16 obtains better
performances. Since the SingleBranch_VGG16 did not produce any results using
the SGD optimizer, the comparison with Adagrad was the only possible way to
make a direct comparison between the two models with the same configuration.

Once the models were created, the model optimization procedure was performed
with TF-TRT in order to perform inference within the Jetson Nano. The opti-
mization procedure had to be performed inside the Jetson Nano as it considers the
characteristics of the GPU.
As mentioned in the previous chapters, the Jetson Nano has only 4GB of RAM so
only the lightest models were successfully optimized without running into an Out
Of Memory error. As far as SingleBranch models are concerned, only the three
MobileNets have been successfully optimized, while it has not been possible to
convert the DoubleBranch models, first because the architecture is too complex for
the computational power of the Jetson Nano, and also because there are incompat-
ibility problems between TensorFlow versions: the model optimization procedure
is implemented in 2.x version of TensorFlow, while the MaskRCNN, necessary for
creating the masks of the second branch of the model, is implemented in version
1.x of TensorFlow.

Within the Jetson Nano, only the three MobileNets were tested for inference
because they were the lightest. It was also tested that only one model at a time
could be loaded into RAM.
Regarding the comparison of performances, it must be remembered that at the level
of Acc the MobileNetV2 is the most performing model among the three MobileNets
(see Table 6.1), while at the level of complexity of the model, the MobileNetV2
and MobileNetV3Large are the heaviest, with 2,257,984 and 2,667,688 number of
parameters respectively.
The loading time of the model, libraries and the execution of the first inference
depends strongly on the complexity of the model: it is in fact comparable between

75

Discussion

the two heaviest MobileNet (MobileNetV2 and MobileNetV3Large), while for the
MobileNetV3Small, which has half the number of parameters, there is a decrease
in these times.
The complexity of the model also affects the average inference time, with Mo-
bileNetV3Small having the lowest average inference times compared to the other
two more complex MobileNets.
Analyzing the results obtained from the three MobileNet models individually, it
can be seen that the on-screen display of the results does not affect the average
inference time compared to just printing the results in the console.
As might be expected, however, the FPS increases, sometimes significantly, if the
results are printed only in the console.
Tests were also performed to evaluate the batch limit on which the model and the
Jetson Nano are able to perform inference. It was possible to perform inference
on more than 10 batches, which means that it is able to perform inference on a
larger number of cameras. This will lead to the realization of a multi-threading
mechanism for real-time and parallel inference of multiple video streams from
multiple cameras.

From the tests carried out on the Jetson Nano, and observable in Fig.6.1, Fig.6.2
and Fig.6.3, we realized that for some classes of activities, in this case for example
using_computer, the dataset is too focused only on hands and keyboard (see
Fig.7.2). By focusing only on hands and keyboard, the model is able to predict well
and with high confidence the class using_computer (Fig.6.1), while, when we focus
also on elements of the surrounding environment, such as windows and panels, the
model fails to predict the class (Fig.6.2 and Fig.6.3).

76

Discussion

Figure 7.2: Two examples of using_computer class RGB images that focus on hands and
keyboards.

77

Chapter 8

Conclusions and future
work

In recent years, HAR has received considerable attention from the scientific com-
munity due to its many application domains. HAR systems can be mainly used
in the care sector, typically performing activities such as the identification of
potentially dangerous activities or situations for the elderly, and in the context of
video surveillance systems to automate the process of detection of critical situations
and alarm signalling.
Several approaches, falling into two categories, to HAR have been proposed by the
scientific community and each of them differs from the others depending on the
type of sensor used. The first category includes sensor-based approaches, which use
sensors worn by agents and those attached to objects in the environment, and the
second category includes image-based approaches, which use sensors directly fused
into the environment. With the image-based method, RGB images extracted from
cameras placed in the environment are analyzed. The scientific community has
proposed different architectures: both single branch models that analyze the RGB
frames, and double branch models that analyze the RGB frames and the optical
flow.
The objective of this thesis was to elaborate and implement a Deep Learning
framework able to offer a solution to the task of the Indoor HAR through the use
of CNNs and RNNs able to elaborate the spatial and temporal features extracted
from RGB images coming from a real-time video camera stream. The capabilities
of the framework will then be evaluated in a real-case of Edge Computing oriented
application.

Various network architectures have been proposed in this work. They are divided
into single branch and double branch architectures. A TimeDistributed wrapper
was added to the SingleBranch model layers to guarantee the ability to analyze

78

Conclusions and future work

image sequences and different backbones were tested for spatial feature extraction
in order to identify the best performing model. The best model obtained is the
SingleBranch_DenseNet201 with an Acc of 82%.
The DoubleBranch models were also wrapped by a TimeDistributed layer for the
analysis of image sequences and were implemented to analyze both RGB image
sequences and RGB masks with only the portions of interest highlighted. It was not
possible to model a DoubleBranch_DenseNet201 architecture due to the complexity
of the DenseNet201 model, but a DoubleBranch_VGG16 model was created, which
achieved comparable performances, and for some metrics even slightly better, than
the SingleBranch_VGG16.
A real-case of application oriented to Edge Computing has been handled with the
developed framework.
The process of optimizing and deploying the models within the NVIDIA Jetson
Nano was also successfully implemented.
However, due to the limited computing power of the Jetson Nano, only the three
MobileNets models were successfully optimized for inference. Of these three,
the best performing model is the MobileNetV2 with an Acc of 77%. Finally, a
mechanism for real-time inference was successfully implemented on the Jetson Nano
from the video stream coming from an IP Camera.

Relative to future works, a Data Augmentation could be carried out to bal-
ance the classes that have a relatively low number of samples, it could be also
carried out a focused training for the SingleBranch_DenseNet201 and for the
SingleBranch_MobileNetV2 in order to increase the level of learning of the best
performing models obtained in environments with "unlimited" and limited resources
respectively increasing the training epochs and testing further training settings.
Having used the MaskRCNN with the pre-trained weights, we could also further
train the MaskRCNN in order to get better masks.
When dealing with resource-constrained hardware, a good test might be to change
the encoding standard to H.265 for video compression and see if there are any
advantages, as well as trying to convert models to FP16 to see if there are any
advantages in efficiency for inference. We can also try to use hardware with higher
computing power so that we can do the optimization and deployment of heavier
but more performant models such as the SingleBranch_DenseNet201.
Finally we have tested that the Jetson Nano and the model support multiple batch
inference.

79

Bibliography

[1] L. Liciotti and M. Bernardini et al. «A sequential deep learning application
for recognising human activities in smart homes». In: Neurocomputing 396
(2020). doi: https://doi.org/10.1016/j.neucom.2018.10.104 (cit. on
pp. 1, 6, 8, 14, 15, 19).

[2] J. K. Dhillon and A. K. S. Kushwaha et al. «A recent survey for human
activity recoginition based on deep learning approach». In: fourth international
conference on image information processing (2017). doi: 10.1109/ICIIP.
2017.8313715 (cit. on p. 3).

[3] O. D. Incel and M. Kose et al. «A review and taxonomy of activity recognition
on mobile phones». In: BioNanoScience (2013). doi: 10.1007/s12668-013-
0088-3 (cit. on pp. 4, 5).

[4] O. D. Lara and M. A. Labrador et al. «A survey on human activity recognition
using wearable sensors». In: IEEE communications surveys & tutorials (2012).
doi: 10.1109/SURV.2012.110112.00192 (cit. on p. 7).

[5] J. Chen and X. Ran et al. «Deep Learning With Edge Computing: A Review.»
In: Proceedings of the IEEE (2019). doi: 10.1109/JPROC.2019.2921977
(cit. on pp. 11, 19–22).

[6] Serkan Balli, Ensar Arif Sağbaş, and Musa Peker. «Human activity recognition
from smart watch sensor data using a hybrid of principal component analysis
and random forest algorithm». In: Measurement and Control 52.1-2 (2019),
pp. 37–45. doi: https://doi.org/10.1177/0020294018813692 (cit. on
p. 13).

[7] Charissa Ann Ronao and Sung-Bae Cho. «Human activity recognition with
smartphone sensors using deep learning neural networks». In: Expert systems
with applications 59 (2016), pp. 235–244. doi: https://doi.org/10.1016/j.
eswa.2016.04.032 (cit. on p. 14).

[8] J Arunnehru and M Kalaiselvi Geetha. «Automatic activity recognition for
video surveillance». In: International Journal of Computer Applications 75.9
(2013). doi: https://doi.org/10.5120/13136-0537 (cit. on p. 16).

80

https://doi.org/https://doi.org/10.1016/j.neucom.2018.10.104
https://doi.org/10.1109/ICIIP.2017.8313715
https://doi.org/10.1109/ICIIP.2017.8313715
https://doi.org/10.1007/s12668-013-0088-3
https://doi.org/10.1007/s12668-013-0088-3
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/https://doi.org/10.1177/0020294018813692
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/https://doi.org/10.5120/13136-0537

BIBLIOGRAPHY

[9] K. Simonyan and A. Zisserman et al. «Two-stream convolutional networks
for action recognition in videos». In: arXiv preprint arXiv:1406.2199 (2014)
(cit. on pp. 16, 17).

[10] W. Ye and J. Cheng et al. «Two-stream convolutional network for improving
activity recognition using convolutional long short-term memory networks».
In: IEEE Access (2019). doi: 10.1109/ACCESS.2019.2918808 (cit. on pp. 16–
18).

[11] M. Baccouche and F. Mamalet et al. «Sequential deep learning for human
action recognition». In: International workshop on human behavior under-
standing (2011). doi: https://doi.org/10.1007/978-3-642-25446-8_4
(cit. on p. 18).

[12] Jin Zhang, Bo Wei, and Jun Cheng. «HARaaS: HAR as a service using
wifi signal in IoT-enabled edge computing». In: (2020), pp. 681–682. doi:
https://doi.org/10.1145/3384419.3430469 (cit. on p. 20).

[13] R. Yamashita and M. Nishio et al. «Convolutional neural networks: an
overview and application in radiology.» In: Insights into imaging (2018). doi:
https://doi.org/10.1007/s13244-018-0639-9 (cit. on pp. 23, 24).

[14] K. Simonyan and A. Zisserman et al. «Very deep convolutional networks for
large-scale image recognition.» In: arXiv preprint arXiv:1409.1556 (2014).
doi: http://www.robots.ox.ac.uk/Ëœvgg/research/very_deep/ (cit. on
p. 35).

[15] K. He and X. Zhang et al. «Deep residual learning for image recognition.» In:
Proceedings of the IEEE conference on computer vision and pattern recognition
(2016). doi: https://doi.org/10.1109/cvpr.2016.90 (cit. on p. 36).

[16] C. Szegedy and V. Vanhoucke et al. «Rethinking the inception architecture
for computer vision.» In: Proceedings of the IEEE conference on computer
vision and pattern recognition (2016). doi: https://doi.org/10.1109/cvpr.
2016.308 (cit. on p. 36).

[17] C. Szegedy and S. Ioffe et al. «Inception-v4, inception-resnet and the impact
of residual connections on learning.» In: Proceedings of the AAAI Conference
on Artificial Intelligence (2017). doi: https://ojs.aaai.org/index.php/
AAAI/article/view/11231 (cit. on p. 36).

[18] F. Chollet. «Xception: Deep learning with depthwise separable convolutions.»
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition (2017). doi: https://doi.org/10.1109/cvpr.2017.195 (cit. on
p. 36).

81

https://doi.org/10.1109/ACCESS.2019.2918808
https://doi.org/https://doi.org/10.1007/978-3-642-25446-8_4
https://doi.org/https://doi.org/10.1145/3384419.3430469
https://doi.org/https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/http://www.robots.ox.ac.uk/%cb%9cvgg/research/very_deep/
https://doi.org/https://doi.org/10.1109/cvpr.2016.90
https://doi.org/https://doi.org/10.1109/cvpr.2016.308
https://doi.org/https://doi.org/10.1109/cvpr.2016.308
https://doi.org/https://ojs.aaai.org/index.php/AAAI/article/view/11231
https://doi.org/https://ojs.aaai.org/index.php/AAAI/article/view/11231
https://doi.org/https://doi.org/10.1109/cvpr.2017.195

BIBLIOGRAPHY

[19] A. Howard and M. Zhu et al. «Mobilenets: Efficient convolutional neural
networks for mobile vision applications.» In: arXiv preprint arXiv:1704.04861
(2017) (cit. on p. 37).

[20] M. Sandler and A. Howard et al. «Mobilenetv2: Inverted residuals and linear
bottlenecks.» In: Proceedings of the IEEE conference on computer vision and
pattern recognition (2018). doi: https://doi.org/10.1109/cvpr.2018.
00474 (cit. on p. 37).

[21] A. Howard and M. Sandler et al. «Searching for mobilenetv3.» In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (2019). doi:
https://doi.org/10.1109/iccv.2019.00140 (cit. on p. 37).

[22] G. Huang and Z. Liu et al. «Densely connected convolutional networks.» In:
Proceedings of the IEEE conference on computer vision and pattern recognition
(2017). doi: https://doi.org/10.1109/cvpr.2017.195 (cit. on p. 37).

[23] M. Tan and Q. Le et al. «Efficientnet: Rethinking model scaling for convolu-
tional neural networks.» In: International Conference on Machine Learning
(2019) (cit. on p. 38).

[24] B. Zoph and V. Vasudevan et al. «Learning transferable architectures for scal-
able image recognition.» In: Proceedings of the IEEE conference on computer
vision and pattern recognition (2018). doi: https://doi.org/10.1109/cvpr.
2018.00907 (cit. on p. 38).

[25] Will Kay et al. «The kinetics human action video dataset». In: arXiv preprint
arXiv:1705.06950 (2017) (cit. on pp. 47, 48).

82

https://doi.org/https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/https://doi.org/10.1109/iccv.2019.00140
https://doi.org/https://doi.org/10.1109/cvpr.2017.195
https://doi.org/https://doi.org/10.1109/cvpr.2018.00907
https://doi.org/https://doi.org/10.1109/cvpr.2018.00907

	List of Tables
	List of Figures
	Introduction
	Human Activity Recognition and Edge Computing
	Human Activity Recognition
	Stages of Human Activity Recognition
	Approaches to Human Activity Recognition
	Real-world applications

	Edge Computing
	Properties and advantages of Edge Computing
	Applications of Edge Computing

	Aim of the thesis

	State of the Art
	Sensor-based methods
	Image-based methods
	HAR and Edge Computing

	Materials and Methods
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM)

	SingleBranch Proposed Architecture
	Different Backbones
	DoubleBranch Neural Network
	MaskRCNN
	DoubleBranch_DenseNet201
	DoubleBranch_VGG16

	Experimental Protocols
	Dataset
	Training Settings
	Performance Metrics

	Deployment On Limited Resources Hardware
	Cameras
	NVIDIA Jetson Nano
	TensorRT and Model Optimization
	Single-camera Handling

	Results
	Unlimited Resource Environment
	SingleBranch Backbone Performance Comparison
	DoubleBranch Performances

	Constrained Resource Environment
	Model Optimization on Jetson Nano
	Model Results and Performances

	Discussion
	Conclusions and future work
	Bibliography

