


   

Abstract 

Nowadays, lung cancer is one of the riskiest tumors in the world and its incidence is rapidly growing 

due to increased smoking and air pollution. Since only 20% of all cases are diagnosed early, lung 

cancer appears to be one of the cancers with the highest mortality rate in both men and women.  

Clinically, many radiological imaging methods such as computed tomography and positron emission 

tomography are available to diagnose lung cancer. However, to verify the actual malignancy of the 

tumor mass and to find out which histological type it belongs to, a biopsy is required.  

Deep learning algorithms for lung cancer diagnosis applied to both planar images and volumetric 

scans are growing in popularity, however most of them are focused on classifying the image or scan 

based on whether or not the cancer is present. Only few studies, instead, are focused on the very 

demanding task of identifying the histological type of lung cancer directly from the radiological 

datum. One of them is that of Tomassini et al. in which a neural network called Cloud-YLung has 

been trained with computed tomography whole-lung scans to recognize two histological types of lung 

cancer. 

The aim of this thesis is to train Cloud-YLung with positron emission tomography scans to evaluate 

which kind of radiological data between positron emission tomography and computed tomography 

scans is more suitable in non-invasive lung cancer histological type classification.  

According to the results obtained in this study and those obtained by Tomassini et al., it was possible 

to conclude that computed tomography data seem to be more informative for this task, achieving a 

higher accuracy in distinguishing the histological types. Nevertheless, Cloud-YLung was suitably 

built to be trained with computed tomography data, so tweaking it to better fit positron emission 

tomography data would likely increase the performances. 

In conclusion, the task addressed in this thesis is highly challenging and the results obtained are 

however promising for future studies focused on deep learning algorithms for the automatic detection 

of the histological type of lung cancer, in order to avoid the need for biopsy, thus reducing the cost 

and time for lung cancer diagnosis.  
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Introduction 

Lung cancer is one of the most threatening forms of tumor existing nowadays, being the one with the 

highest mortality rate in man and the second highest mortality rate in women, ranking lower only in 

relation to breast cancer. It is so risky mainly because it is usually diagnosed in advanced stage, since 

this disease doesn’t cause any signs or symptoms in the early stage, and this precludes many curative 

treatments. Thus, an early diagnosis is crucial to reduce the mortality rate of this disease.  

The main causes that may lead to the onset of lung cancer are smoking, air pollution or genetic causes 

and the possible treatments for this disease are various, from surgical removement of the tumor mass 

to less invasive treatments, such as chemotherapy or radiotherapy, according to the severity of the 

condition.  

Lung cancer constitutes a group of heterogenous tumors, that include a variety of different 

histological types. Generally, lung cancer can be divided into non-small cell carcinoma (NSCC) and 

small cell lung carcinoma (SCLC). NSCCs are more common and can be further divided into 

adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC).  

There are several ways to diagnose the presence of lung cancer, such as through a chest radiography, 

a computed tomography (CT) or a positron emission tomography (PET). However, to check the 

malignancy or benignity of the tumor mass and possibly to find out which histological group the 

tumor belongs to, a biopsy is required.  

Based on this, it would be very useful to find a way to identify the histological type of lung cancer 

directly from CT or PET scans, avoiding the need for biopsy, thus reducing the costs and time for the 

diagnosis. 

Nowadays different studies are focused on the development of neural networks able to automatically 

identify a lung tumor from a CT or from a PET scan, discriminating between an image in which the 

tumoral mass is present and an image in which it is absent. However, the field of recognizing the 

histological type of lung cancer directly from the scan in an automatic way through a neural network 

is still not so developed.  

According to that, the purpose of this thesis is to test the abilities of a neural network in distinguishing 

two histological types of lung cancer, namely ADC and SCC, from properly preprocessed PET scans, 

understanding if this kind of approach may be accurate enough to avoid the need for biopsy, or if this 

field should be further investigated.  

In the following, a brief description of all the chapters of this study is reported, so that the reader can 

easily follow the thesis. 
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The first chapters introduce the main notions necessary to understand the research topics. Particularly, 

Chapter 1 illustrates the anatomy and physiology of the respiratory system, focusing on the 

anatomical parts that make up the respiratory system and on some physical aspects underlying the 

mechanics of breathing. In Chapter 2 lung cancer is described, highlighting the main causes, signs, 

symptoms, and histological types that compose this heterogeneous group, together with the 

description of how to diagnose this disease and possible therapies or preventive treatments. Chapter 

3 clears up the most used diagnostic imaging modalities for lung cancer, centering on CT, PET, and 

the hybrid modality PET/CT. Chapter 4 reports a theoretical overview of neural networks, focusing 

on the convolutional neural networks for planar and volumetric data classification, whereas Chapter 

5 illustrates a literature review on the deep learning techniques applied to the field of automatic 

recognition of lung cancer, centered on the methods for planar and volumetric data classification for 

both CT and PET/CT acquisition techniques. 

The last chapters, instead, are focused on illustrating the work done in this thesis. Particularly, Chapter 

6 describes the methods used in this study to reach the mentioned purpose, focusing on the dataset, 

the methodology and the statistic used. Chapter 7, instead, illustrates the results obtained which are 

then discussed in Chapter 8. Finally, in Chapter 9 the reader can appreciate the conclusions drawn in 

this thesis work.   
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1. Anatomy and physiology of the respiratory system 

The respiratory system is a set of specialized organs involved in supplying oxygen (O2) to the blood 

and removing carbon dioxide (CO2) from the blood and it has more different functions than is 

commonly assumed, such as: 

• Gas exchange: it provides for the exchange of O2 and CO2 between the blood and the air. 

• Oxygen supplier: the respiratory system keeps the body constantly supplied with oxygen. 

• Elimination: it eliminates carbon dioxide from the circulation. 

• Humidifier: the respiratory system purifies, humidifies, and warms incoming air. 

• Communication: it allows people to talk, laugh, cry. 

• Smell: it provides for the sense of smell. 

• Acid-base balance: by eliminating CO2, it helps to control the pH of the blood. Excess CO2 

reacts with water and releases hydrogen ions (H+), so, if the respiratory system fails to 

eliminate all the CO2 produced, the H+ ions accumulate in the blood, causing a lowering of 

pH (acidosis). 

• Regulation of blood pressure: the lungs perform a leading role in the synthesis of angiotensin 

II, an important vasoconstrictor. 

• Blood and lymphatic flow: the act of breathing creates a gradient between the rib cage and the 

abdomen which favors the lymphatic flow and venous return. 

1.1 Path of the air within the respiratory system 

The main organs of the respiratory system include nose, pharynx, larynx, trachea, bronchi and their 

smaller branches, and the lungs.  

The conducting portion of the respiratory system consists of those ducts that are only used for the 

passage of the air flow from the nostrils to the bronchioles. In these passages there are no gas 

exchanges with blood because the walls of those ducts are too thick to allow gas diffusion quickly 

enough. The respiratory portion is made up of the alveoli and other regions placed distally, where 

gas exchanges occur. 

The airways that go from the nose to the larynx are often referred to as the upper respiratory tract, 

whereas the portion that goes from the trachea to the lungs constitutes the lower respiratory tract (the 

respiratory organs located in the chest). In Figure 1 the overall respiratory system is briefly illustrated. 

1.1.1 Upper airways: Nose 

The nose, see Figure 2, is the only externally visible part of the respiratory system, and it has several 

functions:  
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1.1.2 Upper airways: Pharynx 

The pharynx is a funnel-shaped muscular organ that extends approximately 13 cm from the choanae 

to the larynx and serves as a common passageway for food and air. It is divided into three regions: 

nasopharynx, oropharynx, laryngopharynx. Air enters the superior portion, the nasopharynx, from the 

nasal cavity and then descends through the oropharynx and laryngopharynx to enter the larynx below. 

The peculiarity of the nasopharynx is that the inhaled air deviates 90° downward as it passes into it, 

such that relatively large particles generally collide with the posterior wall of the nasopharynx and 

attach to the mucosa near the tonsil, which respond to air-inhaled pathogens.  

In the nasopharynx passes only air, while in the oropharynx and laryngopharynx it passes air, food, 

and drink. The muscles of the pharynx play the necessary roles in swallowing and speaking. 

1.1.3 Upper airways: Larynx 

The larynx, illustrated in Figure 2, is a cartilage cavity about 4 cm long. Its primary function is to 

prevent food and liquids from entering the airways, but another important function it has is the ability 

to produce sounds (phonation). The upper opening of the larynx is characterized by the presence of a 

particular leaf-like structure called the epiglottis. At rest, the epiglottis is positioned almost vertically. 

During swallowing, however, the extrinsic muscles of the larynx pull the larynx upwards, towards 

the epiglottis, while the tongue pushes the epiglottis downwards, so that the epiglottis closes the 

airways and directs food and liquids into the esophagus which is located behind the airways.  

1.1.4 Lower airways: Trachea 

The trachea, represented in Figure 2, is a rigid tube approximately 12 cm long with a diameter of 2.5 

cm, anterior to the esophagus and it is supported by 16-20 C-shaped rings of hyaline cartilage. The 

open part of the C-shaped rings faces posteriorly and leaves space for the esophagus to dilate when 

the swallowed food passes.  

The inner lining of the trachea presents muco-secerning goblet cells. The mucus traps inhaled 

particles, and the movement of upward cilia pushes debris and mucus itself towards the pharynx, 

where they are ingested through a mechanism called “mucociliary escalator”.  

At the sternal angle, the trachea forks to form the left and right main bronchus. The lower tracheal 

cartilage has an internal median ridge called the carina, which directs the air flow to the right and 

left.  
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2) Total lung capacity (TLC): it is the sum of the vital capacity and the residual volume. 

3) Inspiratory capacity (IC): it is the sum of the tidal volume and the inspiratory reserve volume. 

4) Functional residual capacity (FRC): it is the sum of the expiratory reserve and the residual 

volume.   
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smoking, is also a cause of lung cancer in non-smokers. However, lung cancer also occurs in 

people who never smoked and in those who never had prolonged exposure to secondhand 

smoke.  

 

• Radon gas  

Radon is a colorless and odorless gas generated by the breakdown of radioactive radium, 

which in turn is the decay product of uranium, found in the Earth's crust. The radiation decay 

products ionize genetic material, causing mutations that sometimes become cancerous.  

 

• Asbestos  

Asbestos is a naturally occurring fibrous silicate mineral, that has been used for construction 

and fireproofing, before becoming illegal in many countries. However, many older buildings 

still contain asbestos, and the inhalation of asbestos fibers can cause a variety of lung diseases 

such as lung cancer.  

 

• Air pollution 

Outdoor air pollutants, especially chemicals released from the burning of fossil fuels, increase 

the risk of lung cancer. 

 

• Genetics 

A small amount of lung cancer cases is caused by inherited (genetic) factors. Nevertheless, in 

relatives of people who are diagnosed with lung cancer, the risk is higher, likely due to 

a combination of genes. 

 

• Other causes 

Numerous other substances, occupations, and environmental exposures have been linked to 

lung cancer, such as some metals (aluminum production, cadmium and cadmium compounds, 

chromium compounds), some products of combustion, ionizing radiations (X-ray and gamma 

radiations) and some toxic gases. 

2.2 Signs and symptoms  

Lung cancer typically doesn't cause signs and symptoms in its earliest stages, but they typically occur 

when the disease is advanced. Signs and symptoms that may suggest lung cancer include: 

• Respiratory symptoms: coughing, coughing up blood, wheezing, or shortness of breath. 
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• Systemic symptoms: weight loss, weakness, fever, or clubbing of the fingernails. 

• Symptoms due to the cancer mass pressing on adjacent structures: chest pain, bone pain, 

superior vena cava obstruction, or difficulty swallowing. If the cancer grows in the airways, 

it may obstruct airflow causing breathing difficulties.  

In many people, the cancer has already spread beyond the original site by the time they have 

symptoms and seek medical attention.  

2.3 Lung cancer histological types  

Lung cancer constitutes a group of heterogeneous tumors, with several differentiation types, 

recognized by the WHO classification of lung tumors. Thus, lung cancers are mainly classified 

according to their histological type, i.e., the size and appearance of the malignant cells seen by a 

histopathologist under a microscope.  

Lung cancers are traditionally divided into non–small cell carcinoma (NSCC) and small cell 

carcinoma (small cell lung carcinoma, SCLC), with the former accounting for 80% of the cases and 

the latter accounting for the remaining 20% [2]. SCLCs behave aggressively and are treated non-

surgically in most cases, whereas NSCCs are managed by a combination of surgery and adjuvant 

therapy. NSCCs are subclassified into adenocarcinoma, squamous cell carcinoma (SSC), and large 

cell carcinoma (LCC). 

2.3.1 Small cell lung cancer 

Small cell carcinomas or SCLCs comprise slightly less than 20% of all lung cancers and is a highly 

aggressive malignancy. Smoking history is present in virtually all cases of SCLC. Patients usually 

have metastatic disease at the time of presentation. Moreover, most patients relapse within the first 2 

years after treatment and the 2-year survival rate is less than 10% in metastatic patients [2]. SCLC is 

commonly centrally located in the major airway and the tumor cells are small in size compared with 

other types of lung cancers, hence the name “small” cell lung cancer. WHO classification divides 

SCLC into 2 subtypes: pure SCLC and combined SCLC containing a component of NSCC.  

2.3.2 Non-small cell lung cancer 

Non-small cell lung cancers account for the majority of the cases and can be subdivided into 

adenocarcinoma, squamous cell carcinoma and large cell carcinoma. 
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2.3.2.1 Adenocarcinoma 

Adenocarcinoma is the most common type of lung cancer, accounting for more than 40% of lung 

cancers, 60% of the NSCC, and more than 70% of surgically resected cases [2], being also the most 

common form of lung cancer among non-smoker people and ex-smokers.  

Lung adenocarcinoma commonly forms a peripherally located mass with central fibrosis and pleural 

puckering. It can also have a variety of other gross appearances, including centrally located mass, 

diffuse lobar consolidation, bilateral multi-nodular distribution, and pleural thickening.  

Multiple gene alterations can occur in adenocarcinomas, leading to a subclassification into minimally 

invasive adenocarcinoma (MIA), invasive non-mucinous adenocarcinoma, invasive mucinous 

adenocarcinoma (IMA), colloid adenocarcinoma, fetal adenocarcinoma, and enteric-type 

adenocarcinoma [3]. Invasive non-mucinous adenocarcinomas are the most common subtype of lung 

cancer, whereas colloid, fetal, and enteric-type variants are rare subtypes. 

2.3.2.2 Squamous cell carcinoma 

Squamous cell carcinomas (SCCs) make up about 20% of lung cancers and usually occurs in the 

central portion of the lung, along major airways, forming cavities when it achieves a large size. Thus, 

Survival rate for SCC is significantly better than that of adenocarcinoma [2]. SCCs are further divided 

into keratinizing, non-keratinizing, and basaloid subtypes. 

2.3.2.3 Large cell carcinoma 

Large cell carcinomas (LCCs) represent a minority of NSCCs, accounting for less that 3% of the lung 

cancers. LCC is usually peripherally located, bulky, and necrotic in appearance [2].  

2.3.3 Neuroendocrine tumors 

Neuroendocrine tumors (NETs) are relatively common lung tumors, accounting for about 20% to 

25% of lung cancers. Their common morphologic, immunohistochemical, and ultra-structural 

features set them apart from other lung tumors.  

The 2021 WHO classification categorizes NETs of the lung as a single group of tumors, which 

includes low- and intermediate-grade typical carcinoid and atypical carcinoid, respectively, and the 

high-grade neuroendocrine carcinomas (NECs), including large cell neuroendocrine carcinoma 

(LCNEC) and small cell carcinoma (SCLC). Nevertheless, it is recognized that typical and atypical 

carcinoids are clinically, epidemiologically, histologically, immunohistochemically, and genetically 

very different from LCNEC and SCLC [3]. 
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• Typical Carcinoid 

Carcinoid tumors are rare, accounting for 1% to 2% of all lung tumors, even if they are more 

common in the pediatric population. Indeed, typical carcinoids are different from other types 

of lung cancers in their presentation at a relatively younger age and more frequent presentation 

at an earlier stage, as well as good prognosis (more than 90% 5-year survival rate) [2]. 

 

• Atypical Carcinoid 

Like typical carcinoids, atypical carcinoids are relatively common in the younger age group 

compared with other types of lung cancers and are frequently presented as early staged disease 

[2]. The prognosis of atypical carcinoid is significantly lower than typical carcinoid, with 5-

year overall survival rate less than 80%. 

 

• SCLC 

SCLCs comprise slightly more than 10% of all lung cancers and is a highly aggressive 

malignancy [2], in fact the survival rate is less than 10% in metastatic patients. 

 

• LCNEC 

LCNEC, like SCLC, is associated with heavy smoking history and it is usually peripherally 

located in the lung. LCNEC is a highly aggressive neuroendocrine carcinoma, and 5-year 

survival rate is reported close to 30%, significantly worse than other types of NSCC [2].  

2.4 Lung cancer diagnosis 

Lung cancer may be seen on chest radiographs and computed tomography (CT) scans. The diagnosis 

is confirmed by biopsy, which is usually performed by bronchoscopy or CT-guidance.  

Performing a chest radiograph (x-ray) is one of the first investigative steps if a person reports 

symptoms suggesting the presence of lung cancer. Computed tomography (CT) imaging of the chest 

is often used for diagnosis and may reveal a spiculated mass which is highly suggestive of lung cancer. 

CT imaging is also used to provide more information about the type and extent of disease.  

The definitive diagnosis of lung cancer is based on the histological examination of the suspicious 

tissue in the context of the clinical and radiological features, called immunohistochemistry (IHC). 

The significance of applying IHC includes aiding effective and accurate classification of tumors, 

minimizing potential diagnostic errors, improving delineation of tumor types suitable for molecular 

testing, and utilizing lineage-specific markers for the exclusion of metastatic origin of the tumors.  
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2.5 Therapies 

Treatment for lung cancer depends on the cancer's specific cell type, how far it has spread, and the 

person's performance status. Common treatments include:  

• Surgery 

When the tumor is still localized, the treatment for lung cancers is surgery and, in such cases, 

chances for cure are high. In most cases of early-stage NSCLC, removal of a lobe of lung 

(lobectomy) is the surgical treatment of choice. Rarely, removal of a whole lung 

(pneumonectomy) is performed. Surgery might improve outcomes when added to 

chemotherapy and radiation therapies in early-stage SCLC. 

 

• Radiotherapy 

Radiotherapy is often given together with chemotherapy and may be used with curative intent 

in people with NSCLC that are not eligible for surgery. For potentially curable SCLC cases 

treated with surgery, post-operative chest radiotherapy is recommended.  

Recent improvements in targeting and imaging have led to the development of “stereotactic 

radiation” in the treatment of early-stage lung cancer. In this form of radiotherapy, high doses 

are delivered over several sessions using stereotactic targeting techniques. For both NSCLC 

and SCLC patients, smaller doses of radiation to the chest may be used for symptom control 

(palliative radiotherapy). 

 

• Chemotherapy 

The chemotherapy regimen depends on the tumor type. SCLC is usually treated primarily 

with chemotherapy and radiation. In advanced NSCLC, chemotherapy improves survival and 

is used as first-line treatment. Adjuvant chemotherapy refers to the use of chemotherapy after 

apparently curative surgery to improve the outcome. Moreover, chemotherapy before 

surgery in NSCLC that can be removed surgically may improve outcomes. 

 

• Targeted and immunotherapy 

Several drugs that target molecular pathways in lung cancer are available, especially for the 

treatment of advanced disease and may be used for both SCLC and NSCLC.  

 

• Bronchoscopy 

Several treatments can be provided via bronchoscopy for the management of airway 

obstruction or bleeding, i.e., if an airway becomes obstructed by cancer growth.  
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• Palliative care 

Palliative care, when added to usual cancer care, benefits people even when they are still 

receiving chemotherapy. 

 

• Noninvasive interventions 

The most effective intervention for avoiding death from lung cancer is to stop smoking. Some 

weak evidence suggests that certain supportive care interventions (non-invasive) that focus 

on well-being for people with lung cancer may improve quality of life [4]. Exercise training 

may benefit people with NSCLC who are recovering from lung surgery [5]. In addition, 

exercise training may benefit people with NSCLC who have received radiotherapy, 

chemotherapy, chemoradiotherapy, or palliative care [6]. 

2.6 Prevention 

There's no sure way to prevent lung cancer, but there are some prevention factors that may reduce the 

risk: 

1. Tobacco control 

Eliminating tobacco smoking is a primary goal in the prevention of lung cancer, and smoking 

cessation is an important preventive tool in this process.  

 

2. Screening 

For individuals with high risk of developing lung cancer, computed tomography (CT) 

screening can detect cancer and give a person some options to respond to it in a way that 

prolongs life, this the chance of death from lung cancer. 

 

3. Other prevention strategies 

Vitamin C supplementation might reduce the risk of lung cancer. However, several rigorous 

studies have not demonstrated a clear association between diet and lung cancer risk, although 

meta-analysis that accounts for smoking status may show benefit from a healthy diet. 
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3. Diagnostic imaging modalities for lung cancer  

3.1 Lung cancer screening 

Despite advances in clinical care and diagnostic imaging, most lung cancer patients present with 

advanced-stage disease, for which a cure remains elusive, and the prognosis is therefore generally 

poor. However, low-dose computed tomography (LDCT) has recently been shown to result in the 

detection of earlier-stage lung cancers [7]. LDCT produces images of sufficient quality to detect many 

abnormalities, while involving 10–30% lower radiation doses that does the standard CT examination 

[8]. 

The effectiveness of various lung cancer screening programs in high-risk patients has been assessed 

in multiple studies in the last decade. Some of these programs were based on chest radiography 

(CXR), while others on low dose computed tomography (LDCT) [8]. In 2011, a high-quality trial, 

the National Lung Screening Trial (NLST), compared LDCT to CXR in a large sample of high-risk 

adults and showed a 20% relative reduction in lung cancer mortality for LDCT [9]. In September 

2018, new data from the largest European trial (NELSON) showed an even bigger reduction in deaths 

from lung cancer than was seen in NLST [9]. 

Lung cancer screening has many benefits: 

• Because CT scans can detect even very small nodules in the lungs, LDCT of the chest is 

especially effective for diagnosing lung cancer at its earliest, most treatable stage. 

• CT is painless, noninvasive, and fast, which is important for patients who have trouble holding 

their breath. 

• No radiation remains in a patient's body after a CT exam. 

• X-rays used in LDCT of the chest have no immediate side effects and do not affect any metal 

parts in your body, such as pacemakers or artificial joints. 

• LDCT scans of the chest produce images of high enough quality to detect many abnormalities 

while using up to 90% less ionizing radiation than a conventional chest CT scan.  

• Studies prove that lung cancer screening with LDCT reduces the number of deaths from lung 

cancer in patients at high risk.  

On the other hand, however, lung cancer screening has also some risks: 

• False positive results may occur when a test appears to be abnormal, but no lung cancer is 

found. Those abnormal findings may require additional testing to determine whether cancer 

is present, thus involving risks and possibly causing patient anxiety.  

• Test results that appear to be normal even when lung cancer is present are called false-negative 

results. A person who receives a false-negative test result may delay seeking medical care. 
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• Not all cancers detected by LDCT will be found in the early stage of the disease.  

• Overdiagnosis occurs when screening identifies histologically confirmed lung cancer that 

would not have resulted in a patient’s death if left untreated. Potential harmful effects of 

overdiagnosis include the psychological stress that accompanies a diagnosis of cancer as well 

as the morbidity and mortality that may accompany unnecessary medical procedures. 

• Despite the use of a low-dose screening technique, the risk of radiation-induced malignancy 

is still a consideration. Furthermore, the risk of developing radiation-induced lung cancer may 

be increased in patients who smoke [7].  

3.2 Screening techniques 

The most common screening techniques for lung cancer detection are computed tomography (CT) 

and positron emission tomography/computed tomography (PET/CT). 

3.2.1 Computed tomography 

Computed Tomography was formally introduced in 1972 by a British engineer, Sir Godfrey 

Hounsfield, and it was a revolutionary invention in terms of medical imaging, because, for the first 

time, physicians were able to obtain high-quality tomographic (cross-sectional) images of internal 

structures of the body. With the first CT scanner, the projection data were acquired in approximately 

5 minutes and the tomographic image was reconstructed in approximately 20 min. Since then, CT 

technology has developed dramatically and nowadays projection data are typically acquired in 

approximately 1 second, or even less, while the image is reconstructed in 3 to 5 sec [10].  

The fundamental task of CT systems is to make an extremely large number of highly accurate 

measurements of x-ray transmission through the patient in a precisely controlled geometry. The final 

image of a CT, thus, is made by viewing the patient via X-ray imaging from numerous angles, by 

mathematically reconstructing the detailed structures and displaying the reconstructed image on a 

video monitor [11]. The X-ray source and detectors are mounted opposite to each other in a rigid 

gantry with the patient lying in between on a motorized couch, that is moved into the aperture of the 

gantry, see Figure 9.  

Nowadays, there are mainly six generations of CT scanners which differ on the motion of the gantry 

during the acquisition and on the type of X-ray source used. These generations are: 

 

1. First Generation: Parallel-Beam Geometry 

First-generation CT systems are characterized by a single X-ray source, called pencil beam, 

directing across the object and a single detector. Both the source and the detector translate 
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semicircular tungsten strip anode. X-rays are produced at the point where the electron beam 

hits the anode, resulting in a source of x-rays that rotates about the patient with no moving 

parts [10]. This configuration further reduces the scanning times, which are around 50 msec. 

 

6. Spiral/Helical Scanning 

With this technology, multiple images are acquired while the patient is translated through the 

gantry in a smooth continuous motion rather than stopping for each image [10] and the result 

is a helical profile instead of a circular one. By avoiding the time required to translate the 

patient table, the total scan time required to image the patient can be much shorter. 

3.2.2 Positron emission tomography/computed tomography  

Positron emission tomography (PET) is an imaging modality for obtaining in vivo cross-sectional 

images of positron-emitting isotopes that demonstrate biological function, physiology, or pathology. 

Unlike anatomical imaging techniques like CT, X-ray, and ultrasound, PET imaging provides 

“functional” information about the human body. In this technique, a chemical compound with the 

desired biological activity is labelled with a radioactive isotope that decays by emitting a positron. 

The emitted positron almost immediately combines with an electron and the two are mutually 

annihilated with the emission of two gamma rays. The two gamma ray photons travel in almost 

opposite directions, penetrate the surrounding tissue, and recorded outside the subject by a circular 

array of detectors. A mathematical algorithm applied by a computer rapidly reconstructs the spatial 

distribution of the radioactivity within the subject for a selected plane and displays the resulting image 

in the monitor.  

During the 1990s there was interest in combining (fusing) different imaging modalities to obtain a 

more complete picture of disease. One of the most common combinations of imaging modalities is 

the PET/CT. Such a device provides a medical imaging department with the capability to acquire 

accurately aligned anatomic and functional images for a patient from a single scanning session.  

The PET/CT scanner, by combining two established modalities such as CT and PET, is an evolution 

in imaging technology, integrating two existing technologies that have historically progressed along 

separate but parallel paths. The two modalities are complementary, with CT images lacking the 

functional specificity of PET and PET images lacking the anatomic detail seen on CT.  

The improved PET imaging capability and the use of the CT provide the attenuation correction factors 

for PET in a few seconds instead of the many minutes required in PET-only scanners, resulted in 

greatly increased patient throughput compared with PET-only scanners.  
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4. Deep learning for automatic recognition of lung cancer: Theory 

Deep learning (DL), that is a subfield of machine learning, which in turn is a field within artificial 

intelligence (AI), has become very popular in everyday life and can be used for many applications. 

In general, DL consists of massive multilayer networks of artificial neurons that can automatically 

discover useful features, that are needed for many tasks such as detection and classification, given 

large amounts of unlabeled or labeled data [13]. Nowadays, deep learning algorithms are commonly 

used for analyzing medical images and can be applied in many fields, such as radiology, oncology, 

neurology, musculoskeletal imaging, digital pathology, cardiology, and dentistry.  [14] 

4.1 Neural networks 

Neural networks are a type of learning algorithm which forms the basis of most deep learning 

methods. Development of Neural Networks (NNs) dates back to the early 1940s and experienced an 

upsurge in popularity in the late 1980s. Much of the inspiration for the field of NNs came from the 

desire to produce artificial systems capable of sophisticated, perhaps intelligent, computations similar 

to those that the human brain routinely performs. For this reason, NNs are inspired by the neural 

network of our brain, that is composed by billions of interconnected neurons, which are cells that use 

biochemical reactions to receive, process and transmit information. Artificial neurons are arranged in 

layers and each artificial neuron is usually a simple processing unit which takes one or more inputs 

and produces an output. At each artificial neuron, every input has an associated weight which 

modifies the strength of each input. The artificial neuron simply adds together all the inputs and 

calculates an output to be passed on. Layers in between the input and output are often referred to as 

‘hidden’ layers. When a neural network contains multiple hidden layers, it is typically considered a 

‘deep’ neural network, hence the term ‘deep learning’ [15]. 

NNs learn from examples and exhibit some capability for generalization beyond the training data. 

Thus, there isn’t the need of an explicit description of the problem, neither the need for a programmer. 

After sufficient training the NN is able to relate the problem data to the solutions, inputs to outputs, 

and it is then able to offer a viable solution to a brand-new problem.  

4.1.1 Learning methods 

• Supervised learning  

In supervised training, both the inputs and the outputs are provided. The network then 

processes the inputs and compares its resulting outputs against the desired outputs, computing 

the error generated by the difference between the two outputs. Errors are then propagated back 

through the system, causing the system to adjust the weights which control the network in 
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order to reduce this error. This process occurs over and over as the weights are continually 

tweaked.  

 

• Unsupervised learning 

In unsupervised training, the network is provided with inputs but not with desired outputs. 

The system itself must then decide what features it will use to group the input data. This is 

often referred to as self-organization or adaption. 

The most common form of machine learning, deep or not, is supervised learning [16].  

4.1.2 Supervised learning: Dataset split and truth labels for training, validating, and testing 

Data and ground truth labels are the most important components in research applying deep learning 

or other machine learning methods. Indeed, careful collection of data and ground truth labels with 

which to train and test a model is mandatory for a successful deep learning project; however, 

obtaining high-quality labeled data can be costly and time-consuming. 

Data are typically split into three sets: a training, a validation, and a test set, see Figure 10. A training 

set is used to train a network, where loss values are calculated via forward propagation and learnable 

parameters are updated via backpropagation. A validation set is used to evaluate the model during the 

training process. A test set is ideally used only once at the very end of the project in order to evaluate 

the performance of the final model [17]. 

For training data, augmentation is sometimes performed to increase the amount of data for training 

and to reduce the risk of the overfitting problem, i.e., when the system models the training data too 

well and thus fail in modeling other datasets. Even if the same patient is examined, images would not 

be identical between examinations due to slight differences in positioning. Therefore, use of rotated 

or parallel‐shifted images would get the model robust for slight differences in patient positions. 

Mirrored images are also sometimes utilized.  

Care should be paid to the data volume of input images. Use of input data with large data volume 

would be associated with some computation problems and computers with large memories would be 

necessary. Training of such large CNNs requires more calculations and longer times. To solve these 

problems, cropped images from the original image and/or resized images are utilized for much 

research [18].  
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4.2.2 Convolutional neural network for planar data classification 

Two-dimensional image classification plays an important role in computer vision and can be applied 

in many fields, such as that of medical image classification. In particular, CNNs have demonstrated 

high performances on image classification. In recent years a variety of architectures have been 

proposed for classifying 2D images. Some of the most famous are: 

 

▪ LeNet-5 

LeCun et al. [19] proposed the first convolutional neural network called LeNet-5 in 1989. 

They developed a multi-layer artificial neural network which can classify handwritten 

numbers with the backpropagation algorithm. The handwritten digit-recognition application 

was chosen because it is a relatively simple machine vision task: the input consists of black 

or white pixels, the digits are usually well-separated from the background, and there are only 

ten output categories.  

Acquisition, binarization, location of the zip code, and preliminary segmentation were 

performed by Postal Service contractors. Then, the input data were resized to fit in a 16 x 16-

pixel image. The network has four hidden layers respectively named HI, H2, H3, and H4. 

Layers HI and H3 are shared weights feature extractors, while H2 and H4 are 

averaging/subsampling layers.  

After 30 training passes the error rate on training set was 1.1%, while on the whole test set the 

error rate was 3.4%. However, due to the lack of large training data and computing power at 

that time, LeNet-5 cannot perform well on more complex problems, such as large-scale image 

and video classification. 

 

▪ AlexNet 

In 2012, Krizhevsky et al. [20] built a deep convolutional neural network called AlexNet and 

trained to classify the 1.2 million high-resolution images in the ImageNet database, which 

consists of over 15 million labeled high-resolution images in over 22,000 categories.  

The neural network, which has 60 million parameters and 650,000 neurons, consists of five 

convolutional layers, some of which are followed by max-pooling layers, and three fully 

connected layers with a final 1000-way SoftMax. The authors highlighted that removing any 

convolutional layer resulted in inferior performance.  

To reduce overfitting in the fully connected layers the authors employed two methods: data 

augmentation and “dropout”. Data augmentation is the easiest and most common method to 

reduce overfitting on image data by artificially enlarging the dataset using label-preserving 
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transformations. The first form of data augmentation used in this CNN consists of generating 

image translations and horizontal reflections. The second form consists of altering the 

intensities of the RGB channels in training images. The recently introduced technique, called 

“dropout”, instead, consists of setting to zero the output of each hidden neuron with 

probability 0.5. The neurons which are “dropped out” in this way do not contribute to the 

forward pass and do not participate in back- propagation. The dropout has been used in the 

first two fully connected layers  

Two numbers are usually reported: the top-1 accuracy rate, which compares the ground truth 

against the first predicted class, and the top-5 error rate, which compares the ground truth 

against the first 5 predicted classes: an image is deemed correctly classified if the ground truth 

is among the top-5, regardless of its rank in them. On the test data, this newly CNN achieved 

top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous 

state-of-the-art at that time. 

 

▪ VGGNet 

In 2015 Simonyan et al. [21] proposed a very deep convolutional network (up to 19 weight 

layers) for large-scale image classification, which consists of running a model over several 

rescaled versions of a test image. It was demonstrated that the representation depth is 

beneficial for the classification accuracy, and that state-of-the-art performance on the 

ImageNet challenge dataset can be achieved using a conventional convolutional network 

architecture. The best single-network performance they achieved on the validation set was 

24.8%/7.5% top-1/top-5 error. 

A peculiarity of the VGGNet proposed by Simonyan et al. is that the filter used in the 

convolutional layers were with a very small receptive field (i.e., 3 x 3). Moreover, spatial 

pooling is carried out by five max-pooling layers, which follow some of the convolutional 

layers. A stack of convolutional layers is followed by three fully connected layers. All hidden 

layers are equipped with the rectification (ReLU) non-linearity.  

 

▪ GoogLeNet 

In 2014 Szegedy et al. [22] proposed a deep convolutional neural network architecture 

codenamed Inception that achieves the new state of the art for classification and detection in 

the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main idea 

of the Inception architecture is to consider how an optimal local sparse structure of a 
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convolutional vision network can be approximated and covered by readily available dense 

components.  

The main hallmark of this architecture is the improved utilization of the computing resources 

inside the network. By a carefully crafted design, we increased the depth and width of the 

network while keeping the computational budget constant. This newly architecture is called 

GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of 

classification and detection.  

The final submission to the challenge obtains a top-5 error of 6.67% on both the validation 

and testing data, ranking the first among other participants. This is a 56.5% relative reduction 

compared to the SuperVision approach in 2012, and about 40% relative reduction compared 

to the previous year’s best approach. 

The obtained results yield solid evidence that approximating the expected optimal sparse 

structure by readily available dense building blocks is a viable method for improving neural 

networks for computer vision. The main advantage of this method is a significant quality gain 

at a modest increase of computational requirements compared to shallower and narrower 

architectures.  

 

4.2.3 Convolutional neural network for volumetric data classification 

Techniques for analyzing 3D shapes are becoming increasingly important due to the vast number of 

sensors that are capturing 3D data, as well as numerous computer graphics applications [23], even if 

they require a huge computational power. This high-cost approach forces to reduce the volume 

resolutions when applying 3D CNN on volumetric data [24].  

In recent years a variety of deep architectures have been approached for classifying 3D shapes. These 

are: 

 

• Multiview CNN (MVCNN) 

The MVCNN architecture uses rendered images of the model from different views as input, 

as illustrated in Figure 16. Each image is fed into a CNN with shared weights. Then, a max-

pooling layer across different views is used to perform an orderless aggregation of the 

individual representations followed by several non-linear layers for classification. [23] 
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5. Deep learning for automatic recognition of lung cancer: Literature review 

As mentioned earlier, computed tomography (CT) is the most effective method of detecting lung 

nodules due to its ability to extract three-dimensional (3D) images of the chest, resulting in greater 

resolution of nodules and tumor pathology. Given the complexity of lung cancer classification and 

the limitations of current practices, there is a need for innovative clinical data assessment tools to 

augment the biopsy and help better describe disease characteristics.  

Some attempts have recently been made to use deep learning (DL) techniques and especially CNNs, 

since, unlike other feature learning methods that build data representation models in an unsupervised 

manner, CNNs learn features and train an ANN classifier at the same time, by minimizing the 

classification error [28].  

Additionally, PET/CT is an imaging technique that provides both metabolic and anatomical 

information; therefore, it is also useful for the early detection of lung cancer [29]. In particular, 

PET/CT imaging using 18F-fluorodeoxyglucose (FDG) is an established method for the staging of 

patients with lung cancer. Some FDG-related features that can be analyzed in order to establish the 

presence of lung cancer are the standard uptake value (SUV), i.e., the amount of tracer uptake inside 

the nodules, that has been demonstrated good quantitative repeatability in lung nodules, and the 

spatial distribution of FDG, which also contains important information since the uptake of FDG is 

not homogeneously distributed within the lesions [30]. 

In the following sections, some methods for classifying lung cancer from CT or from PET/CT images 

are reported, both for planar (two-dimensional) and volumetric (three-dimensional) data. 

5.1 Methods for planar data classification 

5.1.1 Computed tomography data 

In this section, many different studies focused on planar CT data classification are reported. Table 1 

summarizes and compares the most important aspects of the studies. 

5.1.1.1 Li et al. (2014) 

In this study, Li et al. [31] proposed a customized CNN with shallow convolution layer to classify 

lung image patches with interstitial lung disease (ILD). Moreover, the authors designed a fully 

automatic neural-based machine learning framework to extract discriminative features from training 

samples and perform classification at the same time, instead of defining a set of features manually. 

The proposed CNN is composed by a convolutional layer, a max pooling layer and three fully 

connected layers. In particular, the first layer is a convolutional layer with kernel size of 7 × 7 pixels 
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and 16 output channels; the second layer is a max pooling layer with 2×2 kernel size; the following 

three layers are fully connected neural layers with 100-50-5 neurons in each layer.  

The publicly available ILD database is used for evaluation. The database contains 113 sets of High-

Resolution Computed Tomography (HRCT) images, with 2062 2D regions of interest (ROI) 

annotated indicting the ILD category. The authors chose to classify image patches of five ILD 

categories: normal (N), emphysema (E), ground glass (G), fibrosis (F) and micronodules (M). The 

CT slices were divided into half-overlapping image patches of 32 × 32 pixels.  

The proposed method is capable of extracting discriminative features automatically without manual 

feature design and achieving good benchmark performance. In particular, in this study the precision 

obtained ranges from 50% for the detection of emphysema to 95% for the detection of micronodules.  

5.1.1.2 Anthimopoulos et al. (2016) 

In this work, Anthimopoulos et al. [28] proposed a deep CNN to classify CT image patches into 7 

classes, including 6 different ILD (interstitial lung disease) patterns and healthy tissue. Their proposed 

network consists of 5 convolutional layers with 2 x 2 kernels and LeakyReLU activations, followed 

by just one average pooling, with size equal to the size of final feature maps and three dense layers. 

The LeakyReLU is a variant of ReLU, for activating every convolutional layer, which was proposed 

as a solution to the “dying ReLU” problem, i.e., the tendency of ReLU to keep a neuron constantly 

inactive as may happen after a large gradient update.  

The dataset used for training and evaluating the proposed method was made using two databases of 

ILD CT scans from two different Swiss university hospitals:  

• The first is the publicly available multimedia database of ILDs from the University Hospital 

of Geneva, which consists of 109 HRCT scans of different ILD cases with 512 x 512 pixels 

per slice. Manual annotations for 17 different lung patterns are also provided 

• The second database was provided by the Bern University Hospital, “Inselspital”, and consists 

of 26 HRCT scans of ILD cases with resolution 512 x 512.  

After the preprocessing, the input of the network is a 32x32 image patch.  

In this study, the authors used the Adam optimizer to minimize the categorical cross entropy, giving 

promising results with a relatively slow training (typically a few hours).  

The proposed method was implemented using the Theano framework; the methods which do not 

involve convolutional networks were coded in python and MATLAB.  

In this study, the authors reached an accuracy of 85.6%. 
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The same authors presented an improved method for training the proposed network by transferring 

knowledge from the similar domain of general texture classification in [32] by using the same 

architecture of their previous study. 

5.1.1.3 Gao et al. (2018) 

In this study, Gao et al. [33] proposed a method that classifies and labels ILD tags for holistic CT 

slices and can possibly be used to prescreen a large amount of radiology data. Their network contains 

multiple layers: first five layers are convolutional layers followed by three fully connected layers and 

the final SoftMax classification layer.  

The database used in this work contains 120 HRCT scans with 512 × 512 pixels per axial slice, where 

17 types of lung tissues are annotated on marked regions of interest (ROIs). Most existing 

classification methods evaluated on the ILD dataset first extract many image patches from ROIs and 

then only classify patches into five lung tissue classes: normal (N), emphysema (E), ground glass (G), 

fibrosis (F) and micronodules (M). Here, consolidation (CD), as a highly prevalent type of ILD, is 

also included within our classification scheme.  

The database contains 2084 ROIs labelled with specific type of ILD disease, out of 120 patients. All 

patients are randomly split into two subsets at the patient level for training (100 patients) and testing 

(20 patients). All images containing the six types of diseases are selected, resulting 1689 images in 

total for training and testing. The input images were resized to 224 x 224 pixels.  

For fair comparisons with previous work, Gao et al. conducted experiments under two different 

settings. One is patch-based classification. In this case, an overall accuracy of 87.9% is achieved. 

Another experiment shows the holistic image classification results. In this case, the overall accuracy 

is 68.6%.  

5.1.1.4 Song et al. (2017) 

In their work, Song et al. [34] compared three methods for the classification of benign and malign 

lung cancer using the convolution neural network (CNN), deep neural network (DNN), and stacked 

autoencoder (SAE).  

The database used in this paper is the LIDC- IDRI, which contains 244,527 images of the 1010 cases. 

Each subject includes images from a clinical thoracic CT scan and an associated XML file that records 

the results of a two-phase image annotation process performed by four experienced thoracic 

radiologists, that classify the degree of malignancy of pulmonary nodules into five categories: (1) 

highly unlikely for cancer, (2) moderately unlikely for cancer, (3) indeterminate likelihood, (4) 

moderately suspicious for cancer and (5) highly suspicious for cancer.  
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Let’s now discuss the three methods separately, starting from the CNN. The architecture of the 

proposed CNN is composed by two convolutional layers with 5 x 5 kernels, two pooling layers with 

2 x 2 kernels, two fully connected layers and a SoftMax classification layer. The results of the CNN 

architecture show an accuracy of 84.15%, a sensitivity of 83.96%, and a specificity of 84.32%. 

The architecture of the DNN, instead, is composed by one input layer, four fully connected layers and 

a SoftMax classification layer. The results obtained with this architecture show an accuracy of 

82.37%, a sensitivity of 80.66%, and a specificity of 83.9%. 

A SAE neural network is a multilayer sparse autoencoder of a neural network and it is an unsupervised 

learning algorithm. The sparse autoencoder architecture for this study is composed by an input layer, 

three fully connected layers and a SoftMax classification layer. The results obtained with this neural 

network show an accuracy of 82.59%, a sensitivity of 83.96% and a specificity of 81.35%. 

In conclusion, the result of this study show that the CNN architecture has the best precision. 

5.1.2 Positron emission tomography/computed tomography data 

In this section, many different studies focused on planar PET/CT data classification are reported. 

Table 2 summarizes and compares the most important aspects of the studies. 

5.1.2.1 Teramoto et al. (2016) 

In this study, Teramoto et al. [29] aimed to develop an ensemble FP (false positive)-reduction method 

using a convolutional neural network (CNN). The outline of the overall scheme for the detection of 

pulmonary nodules presented is as follows: first, initial nodule candidates were identified separately 

on the PET and CT images using the algorithm specific to each image type; subsequently, candidate 

regions obtained from the two images were combined. FPs contained in the initial candidates were 

eliminated by an ensemble method using multistep classifiers on characteristic features obtained by 

a shape/metabolic analysis and a CNN.  

With regard to the detection in CT images, the massive region was first enhanced using an active 

contour filter (ACF), which is a type of contrast-enhancement filter that has a deformable kernel 

shape. The active contour encloses the nodule without touching normal organs such as blood vessels 

and lung wall. The PET images were subsequently binarized using a pre-determined threshold to 

detect regions of increased uptake. Here, candidate regions other than the lungs were eliminated using 

the lung regions obtained by CT images.  

 

 



 38  

Table 1: Main characteristics of the studies on planar data classification for CT images 

 Dataset 

Input 

shape 

(pixels) 

Classes 
Neural 

network 

Composition of 

the neural 

network 

Performance 

(%) 

Li et al. 

HRCT (92 

scans, 16220 

patches) 

32 × 32 

5 ILD 

categories (N 

E, G, F and 

M) 

CNN 

• 1 Conv  

• 1 max 

pooling  

• 3 FC  

Precision from 

50.0% to 95.00% 

for the 5 

categories 

Anthimopoulos 

et al. 

2 databases: 

• HRCT 

(109 

scans) 

• HRCT 

(26 

scans) 

32 x 32 

7 classes, 

including 6 

different ILD 

patterns and 

healthy tissue 

CNN 

• 5 Conv 

• LeakyReLU 

activation 

• 1 average 

pooling 

Accuracy of 

85.60% 

Gao et al. 
HRCT (120 

scans)  
224 x 224 

6 ILD 

categories (N 

E, G, F, M 

and CD)  

CNN 

• 5 Conv  

• 3 FC  

• 1 SoftMax 

Accuracy of 

87.90% for the 

first setting  

Accuracy of 

68.60% for the 

second 

Song et al. 

LIDC- IDRI 

(1010 scans, 

244,527 

images) 

28 x 28 

5 categories of 

degree of 

malignancy  

CNN 

• 2 Conv 

• 2 pooling 

• 2 FC  

• 1 SoftMax  

Accuracy of 

84.15% 

Sensitivity of 

83.96% 

Specificity of 

84.32%. 

DNN 

• 1 input  

• 4 FC  

• 1 SoftMax  

Accuracy of 

82.37% 

Sensitivity of 

80.66% 

Specificity of 

83.90%. 

 

SAE 

• 1 input  

• 3 FC  

• 1 SoftMax  

Accuracy of 

82.59% 

Sensitivity of 

83.96% 

Specificity of 

81.35% 

 

Some FPs represent image features that are similar to nodules. In order to eliminate such FPs while 

maintaining the value of true positives (TPs), this study focused on a CNN, whose architecture 

consists of three convolution layers, three pooling layers, and two fully connected layers. The input 

to the first convolutional layer is (32×32) ×3 images; CT-axial, CT-sagittal, and PET-MIP (Maximum 

intensity projection PET) images are resized to 32 × 32 pixels.  
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Relating the dataset, Teramoto et al. considered a total of 104 Japanese men and women who 

underwent whole-body PET/CT during cancer screening programs from 2009 to 2012.  

The number of detected nodules in the initial detection was 176, and its sensitivity exceeded 97%, so 

satisfactory performance was obtained. However, it was accompanied by a large number of FPs at 

initial detection.  

5.1.2.2. Kirienko et al. (2018) 

The present study by Kirienko et al. [35] aimed to develop an algorithm for the classification of lung 

cancer as T1-T2 or T3-T4 according to the TMN staging FDG positron emission tomography images. 

The stage of a cancer tells how big it is and whether it has spread. The TNM (where TNM stands for 

Tumor, Node, Metastasis) staging system is the most common way for doctors to stage non-small cell 

lung cancer, with stages 1 to 4. 

With regard to the dataset, the authors screened all patients who underwent FDG-PET/CT between 

01/01/2011 and 27/06/2017 for the purpose of staging a suspected lung lesion, within 60 days before 

biopsy or surgical procedure. The original CT and PET image size was 512 × 512 × Nslices and 128 × 

128 × Nslices, respectively, where Nslices is the number of slices in which the lesion appears. 

Consequently, the dataset consisted of 3D bounding boxes on both PET and CT images, cropped 

around the lesion center, identified by two nuclear medicine physicians with dimension 128 × 128 × 

Nslices. 

The algorithm was composed of two networks: a feature extractor and a classifier. The feature 

extractor was a CNN that took a CT-PET image patch of 128 × 128 pixels as input and performed 

classification (T1-T2 with label = 0 and T3-T4 with label = 1) according to the appearance of the 

image patch. Thus, the feature extractor aimed to extract the most relevant features from a single 

patch. The classifier took as input the mean of the second to last layer of features extracted from all 

slices of a single patient and aimed to perform a classification (T1-T2 vs. T3-T4) for that patient. The 

SoftMax function was applied to the last layer of both networks, in order to obtain the probability of 

being T1- T2 and T3-T4. The class having the highest probability was assigned to each patient.  

The algorithm developed and tested in the present work achieved an accuracy of 69%, a recall of 

70%, and a specificity of 67% in the test set, for the identification of T1-T2 and T3-T4 lung cancer, 

in the final model analysis. The AUC was 0.83, 0.73, and 0.68 in the training, validation, and test 

sets, respectively. The algorithm developed and tested in the present work achieved an accuracy of 

87% and 69% in the training and validation sets, respectively. 

In conclusion, the key result in the present preliminary investigation is the feasibility and promising 

performance of CNNs in assessing the T-parameter in lung cancer.  
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5.1.2.3 Zhang et al. (2019) 

Zhang et al. [36] proposed a novel deep learning-based method using multiscale Mask Region–Based 

Convolutional Neural Network (Mask R-CNN) to address the issues for detecting lung tumor in PET 

imaging. Mask R-CNN, a deep neural network that can deduce instance segmentation and 

classification, is the latest and the most effective and beneficial in-depth learning model. The Mask 

R-CNN comes across as a network that is easy to implement and train. 

In this proposed method, the authors firstly produced 3 models of Mask R-CNN, which is a state-of-

the-art object detection and segmentation model for lung tumor candidate detection. All the 3 models 

were fine-tuned and trained with certain data sets using images from 3 different scales. Then, these 3 

models of Mask R-CNN were integrated using weighted voting strategy to diminish false-positive 

outcomes.  

Images with 3 different scales were used to produce 3 training data sets: PET images with resolution 

512 x 512, 768 x 768, and 1024 x 1024, respectively. All the PET images used in this study were 

obtained from Changhai Hospital PET/CT Center, and the data were stored in the DICOM (Imaging 

and Communications in Medicine) format. The image pixels were 168 x 168, and the full-body PET 

image was of 274 slices, where the PET slice from 40th to 120th layers corresponded to the location 

of the thoracic cavity.  

Recall of all 3 models was obtained to be 1, which affirmed that every single model was sensitive 

enough for detecting lung tumor with an effective detection of true positives. Precision values of the 

three models were 0.60, 0.53, and 0.59, which suggested that each single model could still produce 

several false positives. The precision and F score of the ensemble model was 0.90 and 0.95, which 

was 0.3 and 0.2 higher than that of the best-performing single model.  

 

Table 2: Main characteristics of the studies on planar data classification for PET/CT images 

 Dataset 

Input 

shape 

(pixels) 

Classes 
Neural 

network 

Composition of 

the neural 

network 

Performance 

(%) 

Teramoto 

et al. 

Whole-body PET/CT 

(104 scans) 
32 x 32 - CNN 

• 3 Conv 

• 3 pooling 

• 2 FC 

Sensitivity of 

97.00% 

Kirienko 

et al. 

FDG-PET/CT scans 

between 01/01/2011 

and 27/06/2017 

128 x 128 
T1-T2 or T3-

T4 
CNN - 

Accuracy of 

69.00% 

Zhang et 

al. 

PET/CT images from 

the Changhai 

Hospital  

168 x 168 
Cancer vs 

Non-cancer 

Mask R-

CNN 
- 

Precision of 

90.00% 
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5.2 Methods for volumetric data classification 

5.2.1 Computed tomography data 

In this section, some methods for volumetric CT data classification are reported. Table 3 illustrates 

some key aspects of the presented studies.  

5.2.1.1 Jin et al. (2017) 

Jin et al. [37] developed a 3D CNN architecture with segmented CT lung volumes as training and 

testing samples. The proposed model is constructed with eleven layers where there are five 

convolutions, three max pooling and three full connections layers. The input volume for the 

architecture of the CNN is of 128 x 128 x 20 pixels. The dataset used for this work comes from the 

Kaggle Data Science Bowl 2017 dataset, which includes 1,397 instances of high-risk patients’ lung 

low-dose CT scans saved in DICOM standard, which is a standard format of medical imagery. For 

each patient’s scan, it contains a series of axial 2D slices. The CT slices are reconstructed in size of 

512 x 512 pixels while the number of slices in each chest cavity scan varies from 128 to 220 

depending on the machine and patient. Each instance (patient scan) is labeled as 0 or 1, where 0 means 

the patient is not diagnosed as cancer, and 1 represents being diagnosed as cancer.  

The new model proposed by Jin et al. extracts and projects 3D features to the hidden layers, which 

preserves the temporal relations between neighboring CT slices, achieving a prediction accuracy of 

87.5%. The lowest accuracy of 75.0% was obtained without the pre-segmentation of lung volume.  

5.2.1.2 Moradi et al. (2019) 

Moradi et al. [38] presented a new method based on 3D convolutional neural networks (CNN) that 

can reduce the false positives rate while providing a high sensitivity in detecting lung cancer lesions 

using multi-level contextual CNNs and obtained 91.23% accuracy.  

The architecture of their 3D CNN is composed by four convolutional layers, where two are with 

5x5x3 kernels and two with 3x3x3 kernels, four max pooling layers and a SoftMax activation 

function. 

The authors used the LUNA16 (Lung Nodule Analysis) dataset to train and evaluate their system. 

This dataset is made up based on the Lung Image Database Consortium (LIDC) dataset of CT images, 

with the exception that slices with a thickness of more than 2.5 mm were removed. The LIDC dataset 

contains 1018 CT image series. After applying this constraint, ultimately this dataset contains 888 

CT image series. 
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5.2.1.3 Polat et al. (2019) 

Polat et al. [39] compared two CNN-based models to diagnose lung cancer on lung CT images. These 

are Straight 3D-CNN with conventional SoftMax and hybrid 3D-CNN with Radial Basis Function 

(RBF)-based SVM. Straight 3D-CNN was the proposed CNN architecture which used SoftMax as its 

conventional classifier and additionally hybrid 3D-CNN was the second proposed CNN architecture 

which utilized Radial Basis Function (RBF)-based SVM as its classifier instead of SoftMax.  

The main structures of both proposed 3D-CNN architectures, contain six convolutional layers, four 

max pooling layers, and two fully connected layers. The kernel size in all convolutional layers is 

considered 3 x 3 x 3 and 2 x 2 x 2 respectively. For non-linearity, the Relu activation function with 

less computation cost is applied to the output of each convolutional layer and fully connected layers. 

In this study, CT scan images of Data Science Bowl and Kaggle are used. This dataset consists of 

2101 high-risk patients with CT scans of chest cavity which includes multiple 2D slices in a DICOM 

format. Moreover, each CT scan is labeled as with cancer or without cancer by pathology diagnosis 

which contains a different number of images. Each CT scan consists of slices by 512 × 512 sizes with 

a variable number of slices (z dimension) based on the resolution of the scanner machine. The input 

has been rescaled to a to a 227 × 227 × 227 volume. The proposed hybrid 3D-CNN with SVM 

achieved more satisfying results (91.81%, 88.53% and 91.91% for accuracy rate, sensitivity, and 

precision respectively) compared to straight 3D-CNN in the diagnosis of lung cancer (90.23%, 

86.40% and 90.37% for accuracy rate, sensitivity, and precision respectively).  

5.2.1.4 Ahmed et al. (2020) 

Ahmed et al. [40] proposed a 3D CNN to detect early lung cancer by first preprocessing the raw 

images using thresholding technique and then using the Vanilla 3D CNN classifier to determine 

whether the image is cancerous or non-cancerous. The proposed CNN architecture mainly consists 

of the following layers: two convolution layers which follow two max-pooling layers and one fully 

connected layer with two SoftMax units.  

The authors used LUNA16 datasets (CT scans with labeled nodules). The inputs are the image files 

that are in “DICOM” format. Actually, the images are of size (z × 512 × 512), where z is the number 

of slices in the CT scan and varies depending on the resolution of the scanner. Such large images 

cannot be fed directly into convolutional neural network architecture because of the limit on the 

computation power. To reduce the size of the input data, the authors have segmented the image and 

resized to 50 x 50 x 20. The experimental results show that the proposed method can achieve a 

detection accuracy of about 80%. 
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Table 3: Main characteristics of the studies on volumetric data classification for CT images 

 Dataset 

Input 

shape 

(pixels) 

Classes 
Neural 

network 

Composition of the 

neural network 

Performance 

(%) 

Jin et al. 
Low-dose CT 

(1,397 scans) 

128 x 128 x 

20 

Cancer vs 

non-cancer 
CNN 

• 5 Conv 

• 3 max pooling 

• 3 FC 

Accuracy of 

87.50% 

Moradi 

et al. 

LUNA16 dataset 

(888 images) 
- - CNN 

• 4 Conv 

• 4 max pooling 

• 1 SoftMax 

Accuracy of 

91.23% 

Polat et 

al. 

Data Science 

Bowl and Kaggle 

dataset 

227 x 227 x 

227 

Cancer vs 

non-cancer 

Straight 

3D CNN 

• 6 Conv  

• 4 max pooling 

• 2 FC 

• 1 SoftMax 

Accuracy of 

90.23% 

Sensitivity of 

86.40% 

Precision of 

90.37% 

Hybrid 3D 

CNN 

• 6 Conv  

• 4 max pooling 

• 2 FC 

• 1 RBF-based 

SVM classifier 

Accuracy of 

91.81% 

Sensitivity of 

88.53% 

Precision of 

91.91% 

Ahmed 

et al. 
LUNA16 datasets 

50 x 50     x 

20 

Cancer vs 

non-cancer 
CNN 

• 2 Conv 

• 2 max pooling  

• 1 FC with two 

SoftMax units. 

Accuracy of 

80.00% 

 

5.2.2 Positron emission tomography/computed tomography data 

In this section, some methods for volumetric PET/CT data classification are reported. Table 4 

illustrates some key aspects of the presented studies. 

5.2.2.1 Sibille et al. (2020)  

In this study [41], Sibille et al. aimed to evaluate various configurations of deep CNNs for their ability 

to correctly localize and classify uptake patterns into foci suspicious and nonsuspicious for cancer 

from whole-body 18F-FDG PET/CT images of patients with lung cancer and lymphoma. 

The dataset they used was composed by 302 consecutive patients with lung cancer and 327 

consecutive patients with lymphoma undergoing routine whole-body PET/CT at the University 

Hospital of Münster, Germany, from August 2011 to August 2013. Patients were randomly split into 

three independent subsets: validation (20% of all patients), training (60%), and test (20%).  

PET volumes of interest were first segmented by using a fixed thresholding algorithm to create 

candidate regions. Subsequently, each volume of interest was evaluated by the CNN independently.  
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For the test set of 123 patients, the areas under the receiver operating characteristic curve (AUCs) of 

the CNN in determining hypermetabolic 18F-FDG PET/CT foci that was suspicious for cancer versus 

nonsuspicious were as follows: CT alone, 0.78 (95% confidence interval [CI]: 0.72, 0.83); 18F-FDG 

PET alone, 0.97 (95% CI: 0.97, 0.98); 18F-FDG PET/CT, 0.98 (95% CI: 0.97, 0.99). 

In conclusion, the study by Sibille et al. is promising in presenting a CNN that can detect, delineate, 

and classify lesions as suspicious or nonsuspicious for malignancy with high accuracy and although 

not stated, likely faster than most clinician. 

5.2.2.2 Wang et al. (2017) 

This study by Wang et al. [42] aimed to compare the performance of multiple machine learning 

methods for classifying mediastinal lymph node NSCLC from PET/CT images. The evaluated 

methods included both classical feature-based methods and the state-of-the-art deep learning 

approach. For the classical methods, the texture features were compared with the features used by 

human doctors for clinical diagnosis, such as tumor size, CT value, SUV (standardized uptake value), 

image contrast, and intensity standard deviation. The machine learning methods were also compared 

with human doctors, so as to evaluate the value of computerized methods for classifying mediastinal 

lymph node NSCLC from FDG PET/CT images.  

18F-FDG PET/CT images of 168 patients were retrieved from the Tumor Hospital of Harbin Medical 

University database within the period from June 2009 to September 2014. From the 168 patients, 

1397 lymph nodes were confirmed cancerous by pathology, and the number of negative and positive 

samples were 1270 and 127, respectively. Based on the PET/CT images, diagnosis of lymph node 

metastasis status (positive or negative) was made by four doctors from our institute. 

This study compared four mainstream classical machine learning methods and one deep learning 

method. The classical methods included random forest (RF), support vector machines (SVM), 

adaptive boosting (AdaBoost), and back-propagation artificial neural network (BP-ANN). The deep 

learning method was the CNN, which performs classification according to the appearance of the 

image patch; it learns the patterns of patch appearance from a large amount of training patches. The 

outputs of CNN are the scores for different classes, and the class with the highest score is deemed as 

the classification result. For their application, Wang et al. considered as the input of CNN a patch 

around the lymph node, whereas the outputs were two scores of being benign and malignant. This 

study used the well-known AlexNet architecture [20] implemented using the Keras library for Python. 

To avoid overfitting to our data, the number of AlexNet layers was reduced to five. 
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Table 4: Main characteristics of the studies on volumetric data classification for PET/CT images 

 Dataset 

Input 

shape 

(pixels) 

Classes 
Neural 

network 

Composition 

of the neural 

network 

Performance (%) 

Sibille 

et al. 

Whole-body 

PET/CT (302 

scans with lung 

cancer and 327 

scans with 

lymphoma) 

- 

Suspicious vs 

Nonsuspicious 

lesions 

CNN - AUC of 98.00% 

Wang 

et al. 

18F-FDG PET/CT 

(168 scans) 
51 x 51 

Lymph node 

metastasis status 

(positive or 

negative) 

RF - 

Accuracy of 85.08% 

Sensitivity of 81.56% 

Specificity of 88.59% 

SVM - 

Accuracy of 82.73% 

Sensitivity of 77.08% 

Specificity of 88.37% 

AdaBoost - 

Accuracy of 85.05% 

Sensitivity of 85.65% 

Specificity of 84.45% 

BP-ANN - 

Accuracy of 80.51% 

Sensitivity of 75.65% 

Specificity of 85.38% 

CNN 
AlexNet with 

5 layers 

Accuracy of 85.64% 

Sensitivity of 83.53% 

Specificity of 87.76% 

 

For both training and testing stages, the inputs of CNN were six axial image patches cropped from 

the CT and PET SUV images. The patches were cropped around the lymph node center and resampled 

into 51 × 51 pixels of 1.0-mm size. To generate the patches, the center of each lymph node was 

specified by the doctor. This was the only step requiring user input.  

The accuracy reached for the four classical methods was 82.73%, 85.08%, 85.05% and 80.51% for 

the SVM, RF, AdaBoost and BP-ANN respectively. For the CNN the accuracy reached was 85.64%. 

Relating the sensitivity, it was 77.08%, 81.56%, 85.65% and 75.65% for the SVM, RF, AdaBoost 

and BP-ANN respectively, while for the CNN it was 83.53%. Finally, the specificity was 88.37%, 

88.59%, 84.45% and 85.38% for the SVM, RF, AdaBoost and BP-ANN respectively and for the CNN 

it was 87.76%. 

Thus, it can be observed that in this study, the performance of CNN is not significantly different from 

the best classical methods, even if in many recent publications of medical image analysis, CNN was 
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reported to outperform classical methods for imaging modalities other than PET/CT. The reason of 

this is probably related to the fact that CNN has not fully explored the functional nature of PET. In 

fact, before the image patches are input to CNN, the pixel intensities are normalized to a range of [−1, 

1], thus the discriminative power of SUV is lost during the normalization.  
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6. Materials and methodology  

This study aims to test the performance of an already-tested neural network, called Cloud-YLung 

[43], on PET scans. The mentioned neural network has been properly designed to classify two 

histological types of lung tumor directly from 3D CT whole-lung scans, particularly ADC and SCC, 

achieving a test accuracy of 75% and AUC of 84%.  

In this work, instead, 3D PET whole-lung scans have been used to train the Cloud-YLung neural 

network, to compare the predictions obtained with those already achieved by [43] and evaluate which 

kind of radiological data is better suited to non-invasively classify ADC and SCC. 

6.1 Dataset 

The PET data used in this work consisted of 68 whole-body scans selected from three openly accessed 

datasets, notably TCGA-LUAD, TCGA-LUSC and NSCLC-Radiogenomics. All the scans were 

stored in DICOM format and, above them, 34 belonged to the class of ADC lung tumor and 34 to the 

class of SCC lung tumor. Each scan was composed by a variable number of slices from 91 to 551, 

with an original resolution of 192x192 pixels, 168x168 pixels or 128x128 pixels.  

6.2 Proposed methodology 

All the pre- and post-processing steps have been performed on the free version of Google Colab, 

whereas the training and the classification procedures have been done on the Pro version to greatly 

reduce the computational time. Figure 18 shows the workflow of both pre- and post-processing steps. 

6.2.1 Pre-processing 

The first part of this works consisted of four preprocessing steps. 

 

1 Firstly, all the scans have been converted from DICOM format to numpy format and a 1-mm 

resampling has been performed to make slices within scans spatially homogenous. After this 

first step, the scans were composed by a number of slices between 298 and 1802 with a 

resolution between 500x500 pixels and 700x700 pixels.  

 

2 The second pre-processing step consisted of slice selection centering the lung volume. This 

step has been performed “manually”, meaning that the initial and final slices to be kept were 

selected one by one by observing the scans, as well as the black parts to be removed around 

the body volume. This step is essential to enormously reduce the dimension of each scan and 

to remove all the useless black pixels from the images.  







 50  

6.2.2 Post-processing  

After performing the pre-processing steps, the final scans were divided into train and test set with a 

split ratio of 60:40 and 40% of the train set served as validation set, according to [43]. Each of these 

three sets was created so that the two classes, ADC and SCC, were balanced. In particular, the train 

set was composed by 24 scans, the validation set by 16 scans, and the test set by 28 scans, all equally 

distributed between ADC and SCC. Then, the post-processing steps simply consisted in compression 

of the three sets in .h5 format and augmentation of the train set, consisting in 15° left/right rotation 

and random zooming between 0.8 and 1.2. After the augmentation process, the number of scans in 

the train set increased from 24 to 72.  

At this point, the scans were ready to train and test the Cloud-YLung neural network. For the first 

dataset, the neural network was trained using the same setups described in [43] in order to have a fair 

comparison with its results. For the second dataset, instead, a tuning of the parameters of the neural 

network has been accomplished to increase its performances. Particularly, the dropout rate was 

changed from 0.5 to 0.3 and the learning rate was reduced from 0.0001 to 0.00001.  

6.3 Statistics 

To evaluate the performances of the neural network on the test set, some statistical parameters have 

been considered. Particularly, the precision (1), which describes how close or dispersed the 

measurements are to each other.  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃            (1) 

 

The accuracy (2), which assesses whether a series of measurements are correct on average.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁° 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑁° 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠            (2) 

 

Then, the sensitivity, or true positive rate (3), and specificity, or true negative rate (4), which refer to 

the probability of a positive test, conditioned on truly being positive and to the probability of a 

negative test, conditioned on truly being negative, respectively.  

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁           (3) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃           (4) 

 

Finally, also the F1-score (5), i.e., the harmonic mean of the precision and sensitivity, the Area Under 

the Curve (AUC) and the Receiver Operating Characteristics (ROC) curve were taken into account.  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦            (5) 

 

Especially, the AUC and ROC are two of the most important evaluation metrics for checking any 

classification model’s performance since ROC is a probability curve and AUC represents the degree 

or measure of separability, i.e., it tells how much the model is capable of distinguishing between 

classes. Thus, the higher is the AUC, the better the model is at distinguishing between the classes.  
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8. Discussion of the results  

In this study, two trainings have been done with the purpose of comparing the performances of Cloud-

YLung in classifying two histological types of lung cancer from differently sized PET scans. In 

particular, the first experiment was performed using a pre-processed dataset with the same size as 

[43] and in this case the neural network was trained with the same parameter configuration used in 

[43] to have a fair comparison with its results. The second experiment, instead, was done to optimize 

the performance of Cloud-YLung as much as possible by choosing a size suitable for the PET scans 

and fine-tuning some parameters of the neural network, namely the learning rate and the dropout rate.  

Observing the results reported in Tables 5 and 6, it is possible to state that the performances of Cloud-

YLung with the two datasets are almost comparable, since they show the same accuracy (68%), and 

the AUC of the second dataset is higher than that of the first dataset for only one point (65% versus 

64%). This suggests that the tuning of the parameters performed in the second experiment does not 

improve so much the performances of this neural network and that probably those obtained are the 

maximum performances achievable with Cloud-YLung trained with PET scans. Presumably, using a 

neural network designed “ad hoc” for this task can increase the performances. However, it is worth 

to highlight how challenging this task is, as it is a matter of discriminating the histotype of lung cancer 

directly from a radiological datum and not from a histological one. Therefore, even if the accuracies 

reached in this study are not that high, they are nevertheless promising for the development of future 

studies focused on this task.  

Table 7 illustrates a comparison between the results obtained training Cloud-YLung with CT scans 

[43] and that obtained training Cloud-YLung with PET scans of both sizes. From this comparison it 

is possible to note that the performances achieved in [43] are quite better than those obtained in this 

work, especially in terms of AUC, which in the case of CT scans is almost twenty points higher than 

those obtained in this work using PET scans (85% vs 64% and 65%). This result suggests that among 

the two types of radiological data, CT appears to be more informative than PET in terms of 

distinguishing between histological types of lung cancer. Based on this, it might be interesting to 

develop a future study focused on using PET / CT scans to train this neural network for the same task, 

understanding whether that type of radiological data can boost Cloud-YLung's performance. 

 

Table 7: Performance of Cloud-YLung in classifying ADC and SCC from CT scans [43] and from PET scans 

 Accuracy (%) AUC (%) 

Cloud-YLung CT 75 84 

Cloud-YLung PET (250;200;250) 68 64 

Cloud-YLung PET (180;270;430) 68 65 
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Comparing the results obtained in this work with those present in the literature is not so obvious, 

since almost all studies focused on neural networks for the classification of lung cancer are based on 

the recognition of scans containing the tumor with respect to healthy subjects’ scans. In fact, focusing 

on the methods for volumetric data classification illustrated in Chapter 5.2, in the studies of Jin et al. 

[37], Polat et al. [39] and Ahmed et al. [40] the focus was on discriminating between the cancerous 

and non-cancerous scans. Moreover, in their study Sibille et al. [41] classified the PET/CT scans as 

suspicious or nonsuspicious, while Wang et al. [42] compared different approaches to classify the 

metastasis status as positive or negative. Although the accuracies achieved in the studies present in 

the literature are decidedly superior to the best achieved in this study, as it is can be seen in Table 8, 

this work is the only one that attempts to classify lung cancer according to its histological type from 

PET data, thus remarking how complex and underdeveloped this task is.  

  

Table 8: Comparison between methods for volumetric data classification and Cloud-YLung trained with PET 180x270x430 pixels in 

terms of classification classes and accuracy 

 Classes Accuracy (%) 

Jin et al. Cancer vs non-cancer 87.50 

Polat et al. Cancer vs non-cancer 91.021 

Ahmed et al. Cancer vs non-cancer 80.00 

Sibille et al. Suspicious vs nonsuspicious lesion - 

Wang et al. Positive vs negative metastasis status 83.801 

Cloud-YLung PET (180;270;430) ADC vs SCC 65.00 

1 The accuracies reported for the studies of Polat et al. and Wang et al. are a mean of the accuracies reached in the single experiments  
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Conclusion 

This thesis investigated the performances of a neural network, namely Cloud-YLung, in classifying 

two histological types of lung cancer directly from PET scans. Two training experiments have been 

proposed: a first one in which the scans were cut with a standard dimension according to a previous 

experiment done with Cloud-YLung, and a second one in which the dimensions of the scans were 

accurately chosen, and the parameters of the neural network were carefully tuned to optimize its 

performances. The results obtained suggested that Cloud-YLung, between the two radiological data, 

CT scans resulted to be more informative in non-invasively classify ADC and SCC. However, making 

a new neural network suitably designed to work with PET scans as well as strengthening the pre-

processing phase is likely to lead to increased performance. 

Furthermore, in this work it was possible to realize that the classification of two or more histological 

types of lung cancer directly from radiological data is not such a developed field, neither using CT 

scans, much less using PET scans as input. For this reason, even if the accuracies achieved are not 

that high, they are still promising for further studies focused on this very demanding task. 

Some future developments of this thesis could be the realization of a neural network carefully 

designed to work with PET scans in identifying the histological type of lung cancer or the training of 

Cloud-YLung with PET / CT scans to verify if this method of hybrid acquisition could increase the 

performances. These developments could lead to a future in which it will be possible to diagnose the 

histological type of lung cancer a patient is suffering from avoiding the need for biopsy, thus reducing 

the time required for diagnosis and the costs that the medical facility has to face.  
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