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Abstract

Atrial Ąbrillation (AF), the most prevalent sustained cardiac arrhythmia, presents

intricate diagnostic and therapeutic hurdles. Central to unraveling AF complexities

lies the analysis of Ąbrillatory waves (F-waves) within electrocardiographic (ECG)

signals. These dynamic F-waves, evolving in characteristics as AF progresses, play a

pivotal role in guiding treatment strategies.

This thesis rigorously explores F-wave extraction methodologies, crucial in delin-

eating the stage and severity of AF, inĆuencing treatment decisions profoundly. The

evolving techniques, from conventional signal processing to sophisticated computa-

tional methods, underscore the need for precision in F-wave analysis.

As AF advances, F-wave characteristicsŮsuch as amplitude and frequencyŮhold

signiĄcant implications for treatment outcomes. Success rates of interventions like

cardioversion or the recurrence of AF post-catheter ablation are intricately linked

to these F-wave features. ReĄnement in F-wave analysis thus holds the promise of

enhancing treatment precision and improving patient outcomes in AF management.

The investigation into extraction algorithmsŮAverage Beat Subtraction (ABS)

and Principal Component Analysis (PCA) on real and simulated datasets highlights

the challenges in accurately isolating F-waves amidst ECG complexities. ABS

demonstrates stability but faces limitations in shorter segments, while PCA offers

consistent performance across varied signal durations.

This study emphasizes the critical need for comprehensive datasets and nuanced

algorithms to elevate diagnostic accuracy, laying a foundation for advancements in AF

management. By elucidating the signiĄcance of F-wave analysis in treatment tailoring,

this research aims to contribute to reĄning therapeutic strategies for improved patient

care in AF.
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Introduction

The human cardiovascular system functions as a complex transport network, ferrying

vital elements such as oxygen, carbon dioxide, and nutrients across the body. Its dual

segments, the systemic and pulmonary circulations, collaborate to supply tissues and

exchange Ćuids between the heart and lungs. Understanding this systemŠs mechanics,

encompassing the heartŠs anatomy, the cardiac cycleŠs mechanical and electrical

events, and the nuances of circulation, lays the foundation for comprehending the

intricate electrocardiographic signals.

Electrocardiography (ECG) serves as a pivotal diagnostic tool in medicine, enabling

the assessment of the heartŠs muscular and electrical activity. The graphical represen-

tation of the cardiac cycle through ECG reveals crucial insights marked by distinctive

waves and spikes. These tracings hold signiĄcance in diagnosing various cardiovas-

cular conditions, including acute myocardial infarctions, arrhythmias, and other

heart disorders. Knowledge of the cardiovascular system, anatomy, and physiological

conditions impacting ECGs forms the bedrock for insightful interpretation.

Atrial Ąbrillation, the most prevalent sustained cardiac rhythm disorder, presents

considerable challenges due to its implications for mortality, morbidity, and quality

of life. Its prevalence is increasing, especially with an aging population and advance-

ments in managing related conditions. A detailed examination of atrial Ąbrillation

encompasses its etiology, symptomatic manifestations, diagnostic approaches, classiĄ-

cation, mechanisms, preventive measures, and management strategies, all delineated

through the lens of ECG patterns.

Extensive literature surrounding atrial Ąbrillation underscores its signiĄcance as a

chronic cardiac arrhythmia. Current research delves into the relationship between

atrial Ąbrillation and parameters such as left atrial size, chronicity, and structural

remodeling, aiming to guide treatment decisions. Distilling Ąbrillatory waves (f-waves)

from ECG signals becomes pivotal, with studies revealing correlations between f-wave

properties and the progression or recurrence of atrial Ąbrillation. However, this

process faces challenges due to the overlap between atrial and ventricular activities,

necessitating advanced extraction methodologies.

Methodologies for extracting atrial activity from ECGs range from blind source

separation to single-lead analysis, each with its advantages and constraints. Un-

derstanding the evolution of these extraction techniques, from conventional signal

processing to contemporary computational algorithms, paves the way for reĄning

diagnostic accuracy and prognostic capabilities in clinical practice.

In this context, this thesis embarks on an exploration of F-wave extraction using

1



List of Figures

average beat subtraction (ABS) and principal component analysis (PCA) algorithms

on actual and simulated datasets. By dissecting their performance, limitations,

and nuances across diverse datasets, this study aims to contribute nuanced insights

into the complexities of F-wave extraction from electrocardiographic signals, laying

a foundation for further exploration and the development of reĄned algorithmic

approaches.
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Chapter 1

Cardiovascular System

The human cardiovascular system is primarily a transport system in which oxygen,

carbon dioxide and nutrients are carried by the blood to and from different parts of

the body. It consists of two separate parts in series to each other:

• Systemic circulation providing the functional blood supply to all body tissue.

• Pulmunary circulation to exchange blood and other tissue Ćuids between the

heart, the lungs, and back.

The two circulations are connected by the heart [1].

Figure 1.1: Overview of the cardiovascular system

1.1 Anatomy of the heart

1.1.1 Location and structure

The heart is situated behind the sternum, in front of thoracic vertebrae 5 to 8, and its

apex is located in the left Ąfth intercostal space, approximately 9 cm from the midline.

It is enclosed within the pericardium, which consists of a Ąbrous pericardial sac Ąrmly

attached to the diaphragm at the bottom and connected to the sternum through the

pericardio-sternal ligament. Inside this sac, the serous parietal pericardium is tightly

affixed. The heart itself and the roots of the major blood vessels are enveloped in

the closely adherent visceral pericardium. In a healthy state, a layer of serous Ćuid

separates these two pericardial layers. When viewed from the front (as shown in

3



Chapter 1 Cardiovascular System

Figure 4.6), you can see parts of all four heart chambers. The right border is entirely

made up of the right atrium, while the left border is primarily composed of the left

ventricle, though the left auricular appendage can be observed in the upper region.

The majority of the anterior surface corresponds to the right ventricle. The inferior

or diaphragmatic surface encompasses both the right and left ventricles, along with

the part of the right atrium that receives blood from the inferior vena cava. The

base or posterior surface is primarily formed by the left atrium, housing the openings

of the pulmonary veins, with a small contribution from the right atrium [2].

Figure 1.2: Anterior view of the heart [2]

1.1.2 Pericardium

The heart is enveloped by the pericardium, which is a Ąbroserous sac composed of

three concentric layers. The outermost layer, known as the Ąbrous pericardium, is

a tough, inelastic, and dense Ąbrous covering. At its lower part, it fuses with the

central tendinous region of the diaphragm, and anteriorly, it attaches to the posterior

surface of the sternum through bands of connective tissue called sternopericardial

ligaments. Within the Ąbrous pericardium resides the serous pericardium, consisting

of two layers (as depicted in Figure 1.3). The outermost of these two layers is Ąrmly

adhered to the inner surface of the Ąbrous pericardium, termed the parietal layer.

This layer wraps around the roots of the major vessels and becomes a continuous

sheet called the visceral layer (also known as the epicardium), which covers the

heartŠs surface and closely adheres to it. Between the parietal and visceral layers

of the serous pericardium is the pericardial cavity, housing a thin layer of Ćuid.

4



1.1 Anatomy of the heart

This Ćuid permits the heart to move smoothly within the pericardium during its

pulsations. The pericardial cavity features two distinct recesses: the transverse sinus

and the oblique sinus. The oblique sinus, located behind the left atrium, is deĄned

by the right by the right pulmonary veins and the inferior vena cava, and on the left

by the left pulmonary veins. The transverse sinus lies behind the roots of the aorta

and pulmonary trunk, with its posterior boundary formed by the atrial chambers.

The Ąbrous pericardium connects with the walls of the great vessels, such as the

superior and inferior vena cavae, ascending aorta, pulmonary trunk, and the four

pulmonary veins, where these vessels penetrate the Ąbrous pericardium. As a result,

accumulations of Ćuid within the pericardial cavity (e.g., hemopericardium) lack a

natural escape route. If these collections become sufficiently large, they can obstruct

cardiac expansion, potentially compromising cardiac output. This life-threatening

situation is known as cardiac tamponade [3].

Figure 1.3: The heart and pericardium seen from the front [3]

1.1.3 Layers and muscles of the heart

When we examine a cross-section of the heart, we can observe several distinct

layers (as shown in Figure 1.4). These layers, ordered from the outermost to the

innermost, include: (1) the parietal pericardium with its dense Ąbrous layer, the

Ąbrous pericardium; (2) the pericardial cavity that containing only serous Ćuid; (3)

a superĄcial visceral pericardium or epicardium; (4) a middle myocardium ; and

(5) a deep lining called the endocardium. The endocardium lines the inside of the

atrial and ventricular chambers, seamlessly connecting with the endothelium that

lines incoming veins and outgoing arteries. It also covers the surfaces of various

valves (AV, pulmonary, and aortic), as well as the chordae tendinae and papillary

muscles. This endocardium comprises a sheet of epithelium known as endothelium,

resting on a dense layer of connective tissue containing elastic and collagen Ąbers.

5



Chapter 1 Cardiovascular System

These Ąbers also extend into the core of the mentioned valves. In contrast, the

myocardium is the heartŠs contracting muscle layer. The myocardium consists of

cardiac muscles which are circularly and spirally arranged networks of muscle cells

that squeeze blood through the heart in the proper directions. Unlike all other types

of muscle cells: (1) cardiac muscle cells branch; (2) cardiac muscles join together

at complex junctions called intercalated discs, so that they form cellular networks;

and (3) each cell contains single centrally located nuclei. A cardiac muscle cell is

typically not called a Ąber. The term cardiac muscle Ąber, when used, refers to a

long row of joined cardiac muscle cells. Similar to skeletal muscle, the activation

of cardiac muscle cells is initiated by the inĆux of Ca2+ ions into the cells. These

cardiac muscle cells are interconnected through intricate structures referred to as

intercalated discs. These intercalated discs house adherans, which serve to maintain

cell cohesion, and they also feature gap junctions designed to facilitate the effortless

passage of ions between adjacent cells. This free movement of ions between cells

enables the direct transmission of electrical impulses across the complete network of

cardiac muscle cells. As a result, this impulse synchronously signals all muscle cells

to contract simultaneously [4].

Figure 1.4: Internal anatomy of the heart [4]

1.1.4 Cardiac chambers

The heart possesses a ŚĄbrous skeletonŠ that provides anchorage for the myocardium

of the cardiac chambers and for the cusps of the heart valves [3].

• The Right atrium : The right atrium, positioned in the upper right part of the

heart, is the heartŠs chamber primarily responsible for receiving deoxygenated

blood from both the systemic venous system and the coronary sinus. This

blood is subsequently directed into the right ventricle via the tricuspid valve.

the clinically important sinoatrial and atrioventricular nodes are located in the

right atrium. The sinoatrial node is the dominant pacemaker of the heart and

is located in the myocardium between the crista terminalis and the superior

vena cava [5].

6



1.1 Anatomy of the heart

• The Right Ventricle : the RV is the most anteriorly positioned chamber,

forming a substantial part of its anterior surface. It has a pyramidal shape

and is separated from the LV by the tricuspid and pulmonary valves and it is

directly connected to the pulmonary artery[6].

• The Left Atrium : The left atrium is the most posteriorly situated of the

cardiac chambers. and it plays a crucial role in receiving oxygenated blood and

directing it to the left ventricle for pumping into the systemic circulation The

left atrium receives oxygenated blood from the pulmonary vein [7].

• The Left Ventricle : The left ventricle is situated posterior to the right ventricle,

it is cone-shaped, more extensive and narrower than the right ventricle; it

slopes from its base in the plane of the atrioventricular groove to the cardiac

apex. At the obtuse margin, the wall is three times thicker than right ventricle

wall, with a typical thickness of 12Ű15 mm excluding the contribution of the

trabeculae. At the apex of the ventricle, the musculature is about 1Ű2 mm [8],

The left ventricle is linked to the aorta, which serves as the bodyŠs primary

artery responsible for transporting blood away from the heart to nourish the

entire body.

1.1.5 Cardiac valves

There are two types of valves atrioventricular valves (AV) between heart chambers and

semilunar valves (SV) between chambers and vessels, Both types control unidirectional

blood Ćow through the heart [9],The four cardiac valves lie behind the body of the

sternum along a line that is nearly vertical. The location of the valves is, from

above downwards, the pulmonary valve, aortic valve, mitral valve and tricuspid valve.

Normal heart sounds are the result of abrupt apposition of valve cusps at the time

of valve closure and are easily detected by auscultation. Each of the four valves

projects its closure sound with maximal intensity to a deĄned and distinct area over

the anterior chest wall [3].

• Pulmonary valve : The pulmonary valve is the semilunar valve that separates

the right ventricle from the pulmonary trunk, the pulmonary valve opens at

the systolic phase of the cardiac cycle enabling the deoxygenated blood to be

pumped from the right ventricle to the pulmonary circulation. It closes at

the diastolic phase of the cardiac cycle, allowing sufficient Ąlling of the right

ventricle [10].

• Aortic valve : located between the left ventricle and the aorta, is a sophisticated

structure that performs a range of functions. These functions include ensuring

the unidirectional Ćow of blood out of the left ventricle, optimizing coronary

blood Ćow, and preserving myocardial function [11].
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Chapter 1 Cardiovascular System

• Mitral valve : Guarding the inlet to the left ventricle, the mitral valve prevents

backĆow to the left atrium during ventricular systole. In its open state,

the valvar leaĆets are like a funnel extending from the hinge line at the

atrioventricular junction to the free margins. Tendinous cords attach the

leaĆets to two closely arranged groups of papillary muscles [12].

• Tricuspid valve : located between the right atrium (RA) and the right ventricle

(RV), The TV is the largest and most apically positioned of the 4 cardiac valves

with a normal oriĄce area between 7 and 9 cm
2 The tricuspid valve (TV) plays

a crucial role in directing blood Ćow within the heart, acting as a one-way

gateway between the right atrium and the right ventricle. It opens during

diastole to allow deoxygenated blood from the body to Ćow from the right

atrium to the right ventricle, and it closes during systole to prevent backĆow

as the right ventricle contracts to send blood to the lungs for oxygenation[13].

These valves are shown in Figure 1.5.

Figure 1.5: Heart valves [13]

1.2 Cardiac cycle

1.2.1 Mechanical events

Systole is deĄned as from the mitral valve closure to the aortic valve closure, with the

rest of the cardiac cycle being deĄned as diastole [14]. Initially, during isovolumetric

contraction, the muscle Ąbers of the LV experience stretch, termed preload, which

correlates directly with the left ventricular end-diastolic volume (LVEDV); this is a

phase where the mitral valve has just closed, and the aortic valve is yet to open. As

systole advances, the LV contracts, maintaining a constant volume until its pressure

exceeds the aortic pressure, leading to the ejection of blood into the aorta as the

aortic valve opens. This phase introduces the concept of afterload, the resistance

that the LV must overcome to eject blood, generally equivalent to aortic blood

pressure. Following the ejection phase and the subsequent closure of the aortic valve,

the LV transitions into diastole, starting with isovolumetric relaxation, where the

ventricle relaxes while maintaining a constant volume, as all the heart valves are
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1.2 Cardiac cycle

closed. The mitral valve then opens, initiating the rapid Ąlling of the LV, leading

to the diastasis phase, where minimal blood Ćow occurs due to the equalization of

pressure between the left atrium and LV. The cardiac cycle concludes with atrial

contraction, enhancing the LVŠs volume before the onset of the subsequent systole,

followed by the closure of the mitral valve as the LV prepares to contract again.

The intrinsic contractile properties of the cardiomyocytes, termed contractility, are

pivotal throughout this process, being signiĄcantly inĆuenced by preload and further

augmented during exercise due to the stimulation of the sympathetic nervous system,

resulting in increased intracellular calcium release. The ejection fraction (EF), a

vital parameter indicating the fraction of blood ejected by the LV during systole,

rises with exercise intensity, demonstrating the enhanced contractile state of the

cardiomyocytes and the heartŠs adaptive mechanisms to accommodate increased

circulatory demands [15]. In the following Figure 1.6 we can see during the cardiac

cycle the changes of blood pressure, volume, heart sounds and electrocardiography

(ECG).

Figure 1.6: The Cardiac cycle [15]

1.2.2 Electrical conduction system

Every myocyte in the heart is capable of transmitting the cardiac impulse, but a

specialized group of these cells is tasked with initiating and guiding this electrical
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Chapter 1 Cardiovascular System

activity from the atrial chambers down to the ventricles. This specialized group

forms what is commonly referred to as the cardiac conduction system [16].

Action potential

Action potentials occur when the membrane potential suddenly depolarizes and then

repolarizes back to its resting state,Nonpacemaker and pacemaker action potentials

are the two main categories of cardiac action potentials While pacemaker cells

can generate action potentials on their own, nonpacemaker cells are activated by

depolarizing currents from nearby cells. The action potentials present in skeletal

muscle and nerve cells are very different from the two types of action potentials seen

in the heart (Figure 1.7). The duration of the action potentials is one signiĄcant

distinction. The action potential duration in a normal nerve is between one and two

milliseconds. The action potential in skeletal muscle cells lasts between two and

Ąve milliseconds. Ventricular action potentials, on the other hand, last between 200

and 400 milliseconds. These variations in the action potentials of cardiac myocytes,

skeletal muscle, and nerves are related to variations in the ionic conductances that

cause the variations in membrane potential.

Figure 1.7: Comparison of action potentials from a nerve cell and a nonpacemaker
cardiac myocyte [17]

• Nonpacemaker action potentials :founds in heart cells like atrial and ventricular

myocytes and Purkinje Ąbers, undergo a sequence of phases for electrical activity.

These cells rest at a stable potential close to the potassium equilibrium due to

high potassium conductance Phase 4. The action potential is divided into Ąve

numbered phases, Phase 0. Upon depolarization from −90 mV to a threshold

voltage of about −70 mV, a rapid depolarization is initiated by a transient

increase in conductance of voltage-gated, fast Na+ channels. At the same time,

gK+ falls. These two conductance changes very rapidly move the membrane

potential away from the potassium equilibrium potential and closer to the

sodium equilibrium potential.

Phase 1 is the Ąrst stage of repolarization that results from the inactivation of
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1.2 Cardiac cycle

the Na+ channels and the opening of a particular kind of K+ channel. However,

the repolarization is delayed and the action potential reaches a plateau phase

in Phase 2 due to the signiĄcant increase in slow inward gCa++. Long-

lasting (L-type) calcium channels, which open when the membrane potential

depolarizes to approximately −40 mV, are responsible for this inward calcium

movement. The predominant calcium channels found in cardiac and vascular

smooth muscle are L-type calcium channels. They are voltage-operated, and

they open by membrane depolarization, holding open for a fair amount of

time. Classical L-type calcium channel blockers block these channels. Phase

3, repolarization, happens when gCa++ falls and gK+ rises via delayed rectiĄer

potassium channels.

Phases 0 through 3 are characterized by the cellŠs refractory state, which means

it cannot be excited to initiate new action potentials. As shown in Figure 1.8,

this is the effective (or absolute) refractory period (ERP, or ARP). also the

Ągure 1.8 shows the ionic mechanisms responsible for the generation of Şfast

responseŤ nonpacemaker action potentials [17].

Figure 1.8: Changes in ion conductances associated with a ventricular myocyte action
potential [17]

• Pacemaker action potential : Instead of having a true resting potential, pace-

maker cells regularly and spontaneously produce action potentials. The de-

polarizing current of the action potential is mainly carried by relatively slow,

inward Ca++ currents (through L-type calcium channels), as opposed to fast

Na+ currents, as is the case with most other cells that exhibit action poten-

tials.Compared to "fast response" nonpacemaker cells, pacemaker cells depo-

larize more slowly. Cells within thesinoatrial (SA) node,located within the
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posterior wall of the right atrium (RA), constitute the primary pacemaker

site within the heart. Other pacemaker cells exist within the AV node and

ventricular conduction system, but their Ąring rates are driven by the higher

rate of the SA node because the intrinsic pacemaker activity of the secondary

pacemakers is suppressed by a mechanism termed overdrive suppression.When

the secondary pacemaker is driven faster than its intrinsic rate, this mechanism

results in hyperpolarization of the device. Because there is more sodium enter-

ing these cells per unit of time due to the increased action potential frequency,

the electrogenic Na+/K+-ATPase pump becomes more active, causing hyperpo-

larization. Overdrive suppression stops when the SA node becomes depressed

or if its action potentials are unable to reach secondary pacemakers, allowing

a secondary site to take over as the heartŠs pacemaker. An ectopic focus is

the term for the new pacemaker that develops outside of the SA node in this

situation. Phase 0 of SA nodal action potentials is the upstroke of the action

potential; phase 3 is the repolarization period; and phase 4 is the spontaneous

depolarization period that results in the subsequent generation of a new action

potential (Figure 1.9). The main cause of phase 0 depolarization is elevated

gCa++ via L-type calcium channels. When the membrane depolarizes to a

threshold voltage of approximately −40 mV, these voltage-operated channels

become active. The term "slow calcium channels" refers to the fact that Ca++

moves through calcium channels more slowly than Na+ moves through fast

sodium channels. As a result, the rate of depolarization, or the slope of phase 0,

is signiĄcantly slower than in other cardiac cells, such as Purkinje cells. A brief

drop in gK+ occurs as the calcium channels open and the membrane potential

approaches the calcium equilibrium potential, which aids in the depolarization

process. Voltage-operated delayed rectiĄer potassium channels open as a result

of depolarization, and the increased gK+ repolarizes the cell in the direction of

the K+ equilibrium potential (phase 3). Simultaneously, gCa++ is reduced and

repolarization is aided by the inactivation of the slow inward Ca++ channels

that opened during phase 0. When the membrane potential approaches −65

mV, phase 3 comes to an end. As the cell becomes repolarized, the potassium

channels close, causing the repolarization phase to be self-limited.

Uncertainty surrounds the ionic mechanisms underlying the spontaneous depo-

larization of the pacemaker potential (phase 4), although it is likely the result

of several ionic currents. First, there is still a decline in gK+ early in phase 4.

Depolarization is aided by this decrease in gK+. Secondly, Figure 1.9 shows

the identiĄcation of a pacemaker current (If), also referred to as the "funny"

current, in the repolarized state. A slow inward movement of Na+ is one of

the components of this depolarizing current. Finally, there is a slight rise in

gCa++ via T-type calcium channels during the latter half of phase 4. T-type, or

"transient," calcium channels are distinct from L-type calcium channels in that
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they do not get blocked by traditional L-type calcium channel blockers and only

open momentarily at very low voltages (−50 mV). Fourth, the L-type calcium

channels open as the depolarization approaches the threshold, increasing gCa++

all the way to the threshold and the start of phase 0 [17].

Figure 1.9: Changes in ion conductances associated with a sinoatrial (SA) nodal
pacemaker action potential [17]

Electrical events

The action potentials generated by the SA node spread throughout the atria primarily

by cell to-cell conduction (Figure 1.10) .

Figure 1.10: Cell-to-cell conduction [17]

When a single myocyte depolarizes, positive charges accumulate just inside the

sarcolemma. Because individual myocytes are joined together by low resistance

gap junctions located at the intercalated disks , ionic currents can Ćow between

two adjoining cells. When these ionic currents are sufficient to rapidly depolarize

the adjoining cell to its threshold potential, an action potential is elicited in the

second cell. This is repeated in every cell, thereby causing action potentials to be

propagated throughout the atria. As action potentials originating from the SA node

spread across and depolarize the atrial muscle excitationŰcontraction coupling is

initiated. Nonconducting connective tissue separates the atria from the ventricles.

Action potentials normally have only one pathway available to enter the ventricles,

a specialized region of cells called the AV node. The AV node, located in the
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inferiorŰposterior region of the interatrial septum separating the left from the right

atrium, is a highly specialized conducting tissue that slows the impulse conduction

velocity to about 0.05 m/s. The delay in conduction between the atria and ventricles

at the AV node is physiologically important. First, it allows sufficient time for

complete atrial depolarization, contraction, and emptying of atrial blood into the

ventricles prior to ventricular depolarization and contraction. Second, the low

conduction velocity helps to limit the frequency of impulses traveling through the AV

node and activating the ventricle. This is important in atrial Ćutter and Ąbrillation,

in which excessively high atrial rates, if transmitted to the ventricles, can lead to a

very high ventricular rate. This can reduce cardiac output because of inadequate

time for ventricular Ąlling. Action potentials leaving the AV node enter the base of

the ventricle at the bundle of His and then follow the left and right bundle branches

along the interventricular septum that separates the two ventricles. These specialized

bundle branch Ąbers conduct action potentials at a high velocity (about 2 m/s). The

bundle branches divide into an extensive system of Purkinje Ąbers that conduct the

impulses at high velocity (about 4 m/s) throughout the ventricles. The Purkinje

Ąber cells connect with ventricular myocytes, which become the Ąnal pathway for

cell-tocell conduction within the ventricles. The conduction system within the heart

is important because it permits rapid, organized, near-synchronous depolarization

and contraction of ventricular myocytes, which is essential to generate pressure

efficiently during ventricular contraction. If the conduction system becomes damaged

or dysfunctional, as can occur during ischemic conditions or myocardial infarction,

this can lead to altered pathways of conduction and decreased conduction velocity

within the heart. The functional consequence is that it diminishes the ability of the

ventricles to generate pressure. Furthermore, damage to the conducting system can

precipitate arrhythmias [17].

Figure 1.11: Global and local reentry [17]

14



1.3 Physical characteristics of the circulation

1.3 Physical characteristics of the circulation

The circulation, shown in Figure 1.12, is divided into the systemic circulation and

the pulmonary circulation. Because the systemic circulation supplies blood Ćow to

all the tissues of the body except the lungs, it is also called the greater circulation or

peripheral circulation [18].

Figure 1.12: Distribution of blood [18]

1.3.1 Functional parts of the circulation

The circulatory system is comprised of various components :

• Arteries: transport blood to the tissues under high pressure, facilitated by their

strong vascular walls. This ensures a high velocity of blood Ćow throughout

the arterial system.

• Arterioles: act as control conduits, regulating the Ćow of blood into the

capillaries with their muscular walls. They can signiĄcantly alter blood Ćow to

meet the speciĄc needs of different tissue beds.

• Capillaries: The primary function of capillaries is to enable the exchange of

Ćuids, nutrients, electrolytes, hormones, and other substances between the

blood and interstitial Ćuid. Their thin walls and permeable pores facilitate

these essential exchange processes.
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• Venules: collect blood from the capillaries, and progressively merge into larger

veins. They serve as conduits for the blood as it begins its journey back to the

heart.

• Veins: Veins transport blood from the venules back to the heart and also

function as a major blood reservoir. Despite their low pressure, their thin yet

muscular walls allow them to adjust their capacity and act as a controllable

reservoir based on the circulatory needs [18].

1.3.2 Pulmonary circulation

The system of transportation that shunts de-oxygenated blood from the heart to

the lungs to be re-saturated with oxygen before being dispersed into the systemic

circulation. Deoxygenated blood from the lower half of the body enters the heart from

the inferior vena cava while deoxygenated blood from the upper body is delivered to

the heart via the superior vena cava. Both the superior vena cava and inferior vena

cava empty blood into the right atrium. Blood Ćows through the tricuspid valve into

the right ventricle. It then Ćows through the pulmonic valve into the pulmonary

artery before being delivered to the lungs. While in the lungs, blood diverges into the

numerous pulmonary capillaries where it releases carbon dioxide and is replenished

with oxygen. Once fully saturated with oxygen, the blood is transported via the

pulmonary vein into the left atrium which pumps blood through the mitral valve

and into the left ventricle. With a powerful contraction, the left ventricle expels

oxygen-rich blood through the aortic valve and into the aorta: This is the beginning

of systemic circulation [19].

1.3.3 Systemic circulation

The systemic circulation is a crucial component of physiology, responsible for deliver-

ing oxygen-rich blood to the bodyŠs tissues and transporting oxygen-poor blood back

to the heart. Oxygenated blood is propelled from the heartŠs left ventricle, traveling

through the aorta, arterial branches, arterioles, and capillaries. At the capillary level,

it reaches a state of equilibrium with the tissue Ćuid. Subsequently, the deoxygenated

blood is collected by venules, travels through veins, and returns to the right atrium

of the heart via the venae cavae. The arterial systemŠs pressure, inĆuenced by the

heartŠs activity and the bloodŠs volume, ensures a steady Ćow of systemic blood.

Notably, the systemic circulation comprises numerous parallel circuits, each with its

own arteriolar resistance, allowing for independent regulation of blood Ćow without

affecting the overall Ćow or pressure [20].
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Electrocardiographic Signal

An important non-invasive diagnostic tool in medicine for evaluating the electrical

and muscular functions of the heart is the electrocardiogram, or EKG. By logging the

electrical activity produced by the heart muscle during each heartbeat, it provides

crucial information. This activity is translated by the ECG into line tracings on

paper, where the graphical representation of the cardiac cycle consists of spikes

and dips referred to as waves. ECGs are a common procedure in both inpatient

and outpatient settings, ranging from routine physical exams to the evaluation of

symptoms, such as palpitations or chest pain, and are essential for the management

of cardiovascular diseases. Acute myocardial infarctions (heart attacks), arrhythmias

(abnormal rhythms), and other heart conditions can be diagnosed with their assistance.

It is necessary to understand the anatomy, physiology, and conditions that can impact

an ECG in order to comprehend an ECG.

2.1 The electrocardiogram

The electrical activity of the electric heart is measured by an electrocardiogram

(ECG; also known as an electrokardio-gram, or EKG) which is a measurement of the

propagation of action potentials throughout the heart during each cardiac cycle. This

indicates electrical differences throughout the heart during the depolarization and

repolarization of these atrial and ventricular cells, but it is not a direct measurement

of the cellular depolarization and repolarization with the heart. Rather, it is the

relative, cumulative magnitude of populations of cells eliciting changes in their

membrane potentials at a given point in time. For the purposes of an ECG, the

human body can be thought of as a large-volume conductor. It is essentially an

ionic Ćuid that conducts and encloses tissues. It is possible to visualize the heart

suspended within that conductive substance. exterior Action potentials that travel

through the heartŠs chambers cause the heart to contract during the cardiac cycle.

Part of the cardiac tissue will be depolarized while it moves, and another part will

be polarized or at rest. This leads to a dipole, or charge separation, as shown in

the Ągure 2.1 where also we can see that after conduction begins at the sinoatrial

(SA) node, cells in the atria begin to depolarize. This creates an electrical wavefront

that moves down toward the ventricles, with polarized cells at the front, followed
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by depolarized cells behind. The separation of charge results in a dipole across the

heart.

Figure 2.1: Cardiac tissue polarization and depolarization [21]

The dipole creates a Ąeld that Ćuctuates throughout the body by causing current

to Ćow between the ends of the heart and the surrounding tissue. This resembles the

electrical Ąeld that would arise, for instance, from a regular battery suspended in

seawater (an electrically conducting medium). Electrodes inserted in the solution

would sense the electric Ąeld produced by the batteryŠs opposite poles current Ćowing

through the surrounding Ćuid, electrodes affixed to the skin can detect an analogous

electrical Ąeld surrounding the heart. The orientation of the electron with respect to

the dipole ends determines the magnitude of the voltage detected. The mass of tissue

used to create that dipole at any given time determines the signalŠs amplitude. The

electrocardiogram is produced by using electrodes applied to the skin to measure

the voltage of this electrical Ąeld. It is important to note, as might be expected,

that because the ECG is measured on the skin, any potential differences within the

body can have an effect on the electrical Ąeld detected. This is why it is considered

important for diagnostic purposes that, while recording an ECG from an individual,

the individual should remain as still as possible. Movements require the use of

skeletal muscles, which then contribute to the changes in voltages detected using

electrodes on the surface of the body [21].

2.2 Electrocardiographic leads

Action potentials, or electrical forces, are propagated in different directions during

myocardial activation. Electrodes can be used to detect these electrical forces from the

bodyŠs surface, and the results can be recorded as an ECG. An electrocardiographic

lead is a pair of electrodes made up of a positive and a negative electrode. Every

lead is positioned to capture electrical forces observed from a particular side of the

heart. These electrodes can be positioned differently to produce various leads. With
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every lead, the electrical activityŠs recorded angle varies. Multiple recording angles

offer a comprehensive view of the heart[22].

The standard 12-lead ECG consists of twelve traditional lead placements (Figure

2.2). The 12 ECG leads are:

• Limb leads or extremity leads-six in number.

• Chest leads or precordial leads-six in number.

Figure 2.2: Conventional 12-lead electrocardiogram [22]

2.2.1 Limb leads

Electrodes affixed to the limbs provide the limb leads. The right arm, left arm, and

left leg are the three limbs on which an electrode is applied. The grounding electrode

is the electrode on the right leg.

• Standard limb leads-three in number.

• Augmented limb leads-three in number.
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Standard limb leads

The electrical forces between two limbs at a time are graphed by the standard limb

leads. As a result, bipolar leads are another name for standard limb leads. A positive

electrode is carried by one limb in these leads, and a negative electrode is carried by

the other. Standard limb leads come in three varieties (Figure 2.3):

• Lead LI.

• Lead LII.

• Lead LIII.

Figure 2.3: Three standard limb leads [22]

Lead Pos. Electrode Neg. Electrode

I LA RA
II LL RA
III LL LA

Table 2.1: Polarities of standard limb leads

Augmented Limb Leads

One limb at a time, the electrical forces are graphed by the augmented limb leads.

As a result, unipolar leads are another name for the augmented limb leads. These

leads have a central terminal that symbolizes the negative pole, which is actually at

zero potential, and one limb that carries the positive electrode. (Figure 2.4) shows

the three augmented limb leads :

• Lead aVR (Right arm).

• Lead aVL (Left arm).

• Lead aVF (Foot left).
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Figure 2.4: Tree unipolar limb leads [22]

Inadvertent swapping of the leads for left and right arms (reversed arm electrodes)

produces what is known as "technical" dextrocardia. The effects of arm electrode

reversal on the limb leads are mirror image inversion of LI, aVR exchanged with Avl

, LII exchanged with LIII and No change in lead aVF. This is distinguished from true

mirror-image dextrocardia by the fact that chest leads are normal.

2.2.2 Chest leads

Electrodes positioned on the precordium in speciĄc locations are used to obtain the

chest leads. On the left side of the chest, an electrode can be positioned six times,

with each position denoting a single lead. Thus, there are six chest leads, which are

as follows:

• Lead V1: Over the fourth intercostal space, just to the right of sternal border.

• Lead V2 : Over the fourth intercostal space, just to the left of sternal border.

• Lead V3 : Over a point midway between V2 and V4.

• Lead V4: Over the Ąfth intercostal space in the midclavicular line.

• Lead V5: Over the anterior axillary line, at the same level as lead V4.

• Lead V6: Over the midaxillary line, at the same level as leads V4 and V5.

Electrodes positioned on the right side of the chest can occasionally be used to obtain

the chest leads. The leads on the right side of the chest are V1R, V2R, V·R, V4RŠ,

V5R, and V6R. The typical left-sided chest leads are mirrored in these leads.

• V1R : 4th intercostal space to left of sternum.

• V2R : 4th intercostal space to right of sternum.

• V3R : Point midway between V2R and V4.

• V4R : 5th intercostal space in midclavicular line, and so on.
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Figure 2.5: Electrod placement for ECG recording [22]

2.2.3 Lead orientation

As a result, the 12-lead ECG is made up of the 12 consecutively recorded leads listed

below: V1, V2, V3, V4, V5, V6, LI, LII, LIII, aVR, aVL, and aVF.

Given its status as the dominant and clinically most signiĄcant chamber of the

heart, the left ventricle requires a thorough examination. There are various views of

the left ventricle, and each view has its own set of leads. Table 2.2 displays the leads

in relation to the various left ventricle regions.

ECG Leads LV Region

V1, V2 Septal
V3, V4 Anterior
V5, V6 Lateral
V1-V4 Anteroseptal
V3-V6 Anterolateral
LI, aVL High lateral
LII, LIII, aVF Inferior

Table 2.2: Left ventricle regions on ECG

2.2.4 Einthoven triangle

The heart is in the center of an equilateral triangle formed by the three standard

limb leads (LI LII LIII). We refer to this triangle as the Einthoven triangle(Figure

2.6). To facilitate the graphic representation of electrical forces, the three limbs

of the Einthoven triangle can be redrawn in such a way that the three leads they

represent bisect each other and pass through a common central point. This produces

a triaxial reference system with each axis separated by 60° from the other, the lead

polarity (+ or -) and direction remaining the same (Figure 2.6).

22



2.2 Electrocardiographic leads

Figure 2.6: (A) Einthoven triangle of limb leads (B) Triaxial reference system [22]

One limb at a time, the augmented limb leads are recorded, with the central point

representing the negative pole and the limb carrying the positive electrode. With

each axis spaced 60° apart from the others, the three augmented limb leads (aVR,

aVL, and aVF) can be observed to form another triaxial reference system (Figure

2.7). We can derive a hexaxial reference system with each axis separated by 30°

from the other by superimposing this triaxial system of unipolar leads on top of the

triaxial system of limb leads (Figure 2.7).

Figure 2.7: (A)Triaxial reference system from unipolar leads (B) Hexaxial system
from unipolar and limb leads [22]

23



Chapter 2 Electrocardiographic Signal

2.3 The ECG wavefrom

Because the atriaŠs muscle mass is smaller than the ventricleŠs muscle mass, there

is less electrical change that occurs when the atria contract. Atria contraction is

connected to the "P" ECG wave. Because of the large ventricular mass, when the

ventricles are depolarized, the ECG exhibits a signiĄcant deĆection, which is known

as the "QRS" complex, in the Ągure 2.8 we can see the shape of normal ECG.

Figure 2.8: Shape of normal ECG including a U wave [23]

The ECGŠs "T" wave is linked to "repolarization" or the ventricular massŠs return to

its electrical resting state. In the early days of ECG history, the letters P,Q,R,S,and

T were chosen at random. The Q,R,and S waves collectively form a complex, and

the interval between the S wave and the start of the T wave is known as the ST

"segment". The P,Q,R,S,and T deĆections are all referred to as waves. A U wave can

sometimes be observed following the T wave on certain ECG traces, although its

origin remains unclear, it is hypothesized to arise from repolarization of the papillary

muscles. The presence of a U wave is generally considered to be within normal limits

if it follows a normally conĄgured T wave. However, if the T wave preceding it is

Ćattened, the U wave may be indicative of a pathological condition [23].

Figure 2.9: A sketch of a common cardiac cycle with the associated waves of an ECG
signal (one-lead) [24]
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Time and speed ECG machines record changes in electrical activity by drawing

a trace on a moving paper strip,run at a standard rate of 25 mm/s and use paper

with standard-sized squares, As shown in Ągure 2.10.

Figure 2.10: Relationship between the squares on ECG paper and time [23]

Each large square (5 mm) is equivalent to 0.2 seconds (s), or 200 milliseconds

(ms). As a result, there are 300 big squares every minute and Ąve big squares every

second, So an ECG event, such as a QRS complex, occurring once per large square

is occurring at a rate of 300/min. The heart rate can be calculated rapidly by

remembering the sequence in the table 2.3.

R-R interval (large squares) Heart rate (beats/min)

1 300

2 150

3 100

4 75

5 60

6 50

Table 2.3: Relationship between the number of large squares between successive R
waves and the heart rate

Just as the length of paper between R waves gives the heart rate, so the distance

between the different parts of the PŰQRSŰT complex shows the time taken for

conduction of the electrical discharge to spread through the different parts of the

heart. The PR interval is measured from the beginning of the P wave to the beginning

of the QRS complex, and it is the time taken for excitation to spread from the SA

node, through the atrial muscle and the AV node, down the bundle of His and into

the ventricular muscle(Figure 2.11).
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Figure 2.11: The components of the ECG complex [23]

The normal PR interval is 120Ű220 ms, represented by 3Ű5 small squares. Most of

this time is taken up by delay in the AV node (Figure 2.12),If the PR interval is very

short, either the atria have been depolarized from close to the AV node, or there is

abnormally fast conduction from the atria to the ventricles.

Figure 2.12: Normal PR interval and QRS complex [23]

The duration of the QRS complex shows how long excitation takes to spread

through the ventricles. The QRS complex duration is normally 120 ms (represented

by three small squares) or less, but any abnormality of conduction takes longer,

and causes widened QRS complexes (Figure 2.13). The QT interval varies with the

heart rate. It is prolonged in patients with some electrolyte abnormalities, and more

importantly it is prolonged by some drugs. A prolonged QT interval (greater than

450 ms) may lead to ventricular tachycardia [23].

Figure 2.13: Normal PR interval and prolonged QRS complex [23]

26



2.4 Interpretation of cardiac rhythms in ECG

2.4 Interpretation of cardiac rhythms in ECG

2.4.1 Normal cardiac rhythms

An essential function of the ECG is to help doctors assess cardiac rhythms that are

unusually irregular, fast, or slow. By taking a rhythm strip recording, the frequency

of P waves and QRS complexes can be used to calculate the rates of depolarization

of the atrium and ventricles. One ECG lead, usually lead II, is used to create

a rhythm strip. P waves and the QRS complex in a normal ECG (Figure 2.14)

consistently correspond one to one, meaning that every P wave is followed by a

QRS complex. This correlation suggests that atrial depolarization is the cause of

ventricular depolarization. Because the SA node regulates the cardiac rhythm in

these normal circumstances, the heart is referred to as being in sinus rhythm. The

typical sinus rhythm has a beat rate of 60Ű100 beats per minute [17].

Figure 2.14: Normal cardiac rhythm [17]

2.4.2 Abnormal cardiac rhythms

Action potentials can form abnormally and lead to abnormal rhythms, or arrhythmias.

Sinus bradycardia refers to a sinus rate of less than 60 beats per minute. Some

people,like athletes, may have normal resting heart rates that are signiĄcantly <60

beats/min but In other individuals, sinus bradycardia may result from depressed

SA nodal function. A sinus rate of 100 to 180 beats/min, sinus tachycardia, is an

abnormal condition for a person at rest, however, it is a normal response when a

person exercises or becomes excited. In a normal ECG, a QRS complex follows

each P wave. Conditions exist, however, when the frequency of P waves and QRS

complexes may be different (Figure 2.15).Atrial rate may become so high in atrial

Ćutter (250 to 350 beats/min) that not all of the impulses are conducted through

the AV node therefore, the ventricular rate may be less than half of the atrial

rate. In atrial Ąbrillation, the SA node does not trigger the atrial depolarizations.

Instead, depolarization currents arise from many sites throughout the atria, leading

to uncoordinated, lowvoltage, high-frequency depolarizations with no discernable P

waves. In this condition, the ventricular rate is irregular and usually rapid.
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Figure 2.15: Atrial Ćutter and atrial Ąbrillation rhythm [17]

Atrial rate is greater than ventricular rate in some forms of AV block (Figure

2.16). This is an example of an arrhythmia caused by abnormal impulse conduction.

With AV block, atrial rate is normal, but every atrial depolarization may not be

followed by a ventricular depolarization. A second-degree AV block may have two

or three P waves preceding each QRS complex. In a Ąrst- degree AV block, the

conduction through the AV node is delayed, but the impulse is still able to pass

through the AV node and excite the ventricles,however, the PR interval is found to

be >0.2 seconds. In an extreme form of AV nodal blockade, third-degree AV block,

no atrial depolarizations are conducted through the AV node into the ventricles,

and P waves and QRS complexes are completely dissociated. The ventricles still

undergo depolarization because of the expression of a secondary, latent pacemaker

site , however, the ventricular rate is generally slow (<40 beats/min).

Figure 2.16: AV Block rhythms [17]

Ventricular bradycardia occurs because the intrinsic Ąring rate of secondary, latent

pacemakers is much slower than in the SA node. If the ectopic foci are located within

the ventricles, the QRS complex will have an abnormal shape and be wider than

normal because depolarization does not follow the normal conduction pathways. A

condition can arise in which ventricular rate is greater than atrial rate; (Figure 2.17).
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This condition is termed ventricular tachycardia (100 to 200 beats/min) or ventricular

Ćutter (>200 beats/min). The most common causes of ventricular tachycardias

are reentry circuits caused by abnormal impulse conduction within the ventricles

or rapidly Ąring ectopic pacemaker sites within the ventricles. With ventricular

tachycardias, there is a complete dissociation between atrial and ventricular rates

because ventricular depolarizations are not being triggered by atrial sites (Figure

2.17).

Figure 2.17: Ventricular tachycardia and Ventricular Ąbrillation rhythms [17]

The ECG can reveal another type of arrhythmia, premature depolarizations (Figure

2.18). These depolarizations can occur within either the atria (premature atrial com-

plex) or the ventricles (premature ventricular complex). They are usually caused by

ectopic pacemaker sites within these cardiac regions and appear as extra (and early)

P waves or QRS complexes. These premature depolarizations are often abnormally

shaped, particularly in ventricles, because the impulses generated by the ectopic site

are not conducted through normal pathways [17].

Figure 2.18: Premature Ventricular Complex [17]
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Atrial Fibrillation

Atrial Ąbrillation is the most common sustained cardiac rhythm disorder, which results

in substantial mortality and morbidity from stroke, thromboembolism, heart failure,

and an impaired quality of life. With the population in developed countries becoming

increasingly elderly, as well as improvements in the management of myocardial

infarction and heart failure, the prevalence of atrial Ąbrillation is substantially

increasing. In the Framingham study [25] the lifetime risks at age 40 years for

developing the disorder were 26% (95% CI 24Ű27%) for men and 23% (95% CI

21Ű24%) for women. In patients without prior or concurrent congestive heart failure

or myocardial infarction, lifetime risks for atrial Ąbrillation were about 16% [26].

Atrial Ąbrillation (AF) is a supraventricular tachyarrhythmia characterized by

uncoordinated atrial activation with consequent deterioration of atrial mechanical

function. On the electrocardiogram (ECG), AF is characterized by the replacement

of consistent P waves by rapid oscillations or Ąbrillatory waves that vary in amplitude,

shape, and timing, associated with an irregular, frequently rapid ventricular response

when atrioventricular (AV) conduction is intact (Figure 4.6). The ventricular response

to AF depends on electrophysiological (EP) properties of the AV node and other

conducting tissues, the level of vagal and sympathetic tone, the presence or absence of

accessory conduction pathways, and the action of drugs. Regular cardiac cycles (R-R

intervals) are possible in the presence of AV block or ventricular or AV junctional

tachycardia. In patients with implanted pacemakers, diagnosis of AF may require

temporary inhibition of the pacemaker to expose atrial Ąbrillatory activity.[27]
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Figure 3.1: Normal heartbeat and atrial Ąbrillation rhythm [28]

3.1 Etiology

Aging and male gender are probably the most important nonmodiĄable risk factors

of AF. The estimated prevalence of AF is 0.4% to 1% in the general population

and is found to be as high as 8% to 10% per year in octogenarians.Data from the

Framingham Heart Study [25] showed that men have a 1.5 fold higher risk for AF

compared with women. There also appears to be an ethnic predisposition with

Caucasians having higher risk for AF than African Americans. Interestingly, however,

African Americans have higher prevalence of RFs and stroke despite overall lower risk

for developing AF. Several genetic mutations affecting repolarization potassium and

calcium channels and myocyte proteins have also been implicated in the genesis of

familial AF. However, many of the RFs for AF are modiĄable and include hypertension

(HTN), obesity, diabetes mellitus (DM), dyslipidemia, heart failure (HF), obstructive

sleep apnea (OSA), and low cardiorespiratory Ątness (CRF). Temporary reversible

RFs include hyperthyroidism, postcardiothoracic surgery, and excess alcohol intake.

Ischemic and structural heart disease from congestive HF, cardiomyopathies, valvular

diseases, and pulmonary HTN are also clinically important modiĄable RFs. More

recently, systemic inĆammatory states such as psoriasis and rheumatoid arthritis

have also been found to be associated with AF, especially in the younger population.7

In this review, we have attempted to describe the epidemiology of the common RFs

and their role in the genesis of AF [29].

3.2 Symptomatic atrial fibrillation

Atrial Ąbrillation (AF) symptoms depend on various factors like ventricular rate,

patientŠs health status, duration of AF episodes, and the presence of structural heart

disease. The loss of atrial contraction in AF can lead to a signiĄcant reduction in

32



3.3 Diagnosis

cardiac output, exacerbated by conditions such as mitral stenosis or hypertension.

Symptoms vary widely among individuals but commonly include palpitations, chest

discomfort, fatigue, and dizziness. Chest pain in AF may occur with or without

underlying coronary artery disease due to demand ischemia or impaired microvascular

Ćow. Persistently high heart rates in AF can lead to cardiomyopathy and heart failure.

Syncope is a rare but possible outcome, particularly if AF terminates abruptly in

certain cardiac conditions.

AF increases the risk of cognitive decline and dementia, with potential contributing

factors including strokes and altered cerebral blood Ćow. Paroxysmal AF may present

as vagal or adrenergic, with vagal AF more common in young males without heart

disease, and adrenergic AF in older individuals with heart disease, often triggered by

physical or emotional stress. Symptoms in AF patients may be subtle, like fatigue,

and comorbid conditions like heart failure or sleep apnea can inĆuence the perceived

severity of symptoms. Assessing the impact of rate control or restoration of normal

rhythm is essential for evaluating the extent to which AF contributes to a patientŠs

symptoms and deciding on therapeutic interventions. [30, 27].

3.3 Diagnosis

While an irregular heartbeat may suggest atrial Ąbrillation (AF), conĄrmation of

the condition requires an electrocardiogram (ECG). Even if the ECG is normal, it

doesnŠt rule out AF because it can be intermittent, known as paroxysmal AF. To

conĄrm a diagnosis of suspected AF, a single-lead rhythm strip or a full 12-lead ECG

should be used to record at least 30 seconds of AF. A 12-lead ECG also has the

beneĄt of identifying other issues, such as left ventricular hypertrophy or ischemia.

Even though paroxysmal AF carries a slightly lower risk of stroke and systemic

embolism compared to persistent forms of AF, all types of AF signiĄcantly increase

the risk, particularly of stroke. This makes it imperative to detect AF, even in

its paroxysmal form, as it often leads to recommending anticoagulant therapy for

most individuals over the age of 65. While extended monitoring methods exist, they

may not be cost-effective or particularly valuable from a public health standpoint.

However, affordable smartphone-based rhythm monitoring devices hold promise for

use in low- and middle-income countries (LMIC), though their deployment and

validation require more research[31].

3.4 Classification of atrial fibrillation

Various classiĄcation schemes have been proposed that vary based on temporality,

underlying etiology and associations with valvular heart disease.
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3.4.1 Based on temporality of episodes

At the initial detection of AF, it is impossible to know the subsequent pattern of

duration and frequency of recurrences. Thus a designation of Ąrst-detected episode

of AF is made on the initial diagnosis, irrespective of the duration of the arrhythmia.

When the patient has experienced two or more episodes, AF is classiĄed as recurrent.

After termination of an episode of AF, the rhythm can be classiĄed as paroxysmal

or persistent. Paroxysmal AF is characterized by self-terminating episodes that

generally last less than 7 days, Persistent AF lasts longer than 7 days and often

requires electrical or pharmacological cardioversion. Subcategories of persistent AF

(according to arrhythmia duration) include early persistent AF (deĄned as AF that

is sustained beyond 7 days but is less than 3 months in duration) and longstanding

persistent AF (deĄned as AF that is sustained longer than 1 year but is being

considered for ablation), Permanent AF refers to AF in which cardioversion has

failed or AF that has been sustained for more than 1 year and further attempts to

restore normal sinus rhythm (NSR) were unsuccessful or have been abandoned [30].

Figure 3.2: ClassiĄcation of AF Based on temporality of episodes [30]

3.4.2 Based on associated valvular disease

Though not widely acknowledged, is signiĄcant for clinical decision-making, par-

ticularly concerning anticoagulation therapy.it can be Valvular AF that refers to

AF occurring alongside moderate-to-severe mitral valve stenosis or in patients with

mechanical heart valve replacements or it can be also Nonvalvular AF, whic is a

term that doesnŠt suggest the complete lack of valvular heart disease, encompasses

AF cases that are associated with all other types of valvular defects, except for

moderate-to-severe mitral valve stenosis or the presence of mechanical heart valves

[29].

3.4.3 Based on etiology of AF

This classiĄcation is endorsed by the ESC as an expert consensus to help decide on

management based on underlying etiology as the pattern of AF could be the same in

all these cases.

• AF secondary to structural heart disease: AF in patients with LV
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systolic/diastolic dysfunction, long-standing HTN with LV hypertrophy and

other structural conditions.

• Focal AF: Patients with repetitive, frequent, short runs of paroxysmal AF.

AF due to one of few reentrant drivers is also considered to be part of this

group.

• Polygenic AF: AF in carriers of common gene variants that have been

associated with early onset AF.

• Postoperative AF: New onset of AF after major surgery (usually cardiac) in

patients who were in sinus rhythm and had no prior history of AF.

• Valvular AF: AF in patients with mitral stenosis or prosthetic heart valves

as mentioned in part B of this section.

• AF in athletes: Usually paroxysmal AF occurring in athletes and related to

duration and intensity of training.

• Monogenic AF: AF in the presence of inherited cardiomyopathies, including

channelopathies [29].

3.5 Mechanism of atrial fibrillation

The pathogenesis of AF remains incompletely understood and is believed to be

complex, multifactorial, and variable in different individuals. Two concepts of the

underlying mechanism of AF have received considerable attention: factors that

trigger AF and factors that perpetuate the arrhythmia. In general, patients with

frequent, self-terminating episodes of AF are likely to have a predominance of factors

that trigger AF, whereas patients with AF that does not terminate spontaneously

are more likely to have a predominance of perpetuating factors. Although such

gross generalization has clinical usefulness, often there is considerable overlap of

these mechanisms. The typical patient with paroxysmal AF has identiĄable ectopic

foci initiating the arrhythmia, but these triggers cannot be recorded in all patients.

Conversely, occasional patients with persistent or permanent AF can be cured

of their arrhythmia by ablation of a single triggering focus, a Ąnding suggesting

that perpetual Ąring of the focus can potentially be the mechanism sustaining this

arrhythmia in some cases. Advanced mapping technologies, along with studies in

animal models, have suggested the potential for complex pathophysiological substrates

and modiĄers responsible for AF (shown in the Figure 3.3), including continuous aging

or degeneration of atrial tissue and the cardiac conduction system, progression of

structural heart disease, myocardial ischemia, local hypoxia, electrolyte derangement,

and metabolic disorders, inĆammation related to pericarditis or myocarditis, genetic

predisposition, drugs, and autonomic inĆuences [30].
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Figure 3.3: The pathophysiological triangle in atrial Ąbrillation (AF) [30]

3.6 Prevention of AF

As Atrial Fibrillation (AF) represents the common arrhythmic manifestation across

a wide array of diseases, itŠs essential that preventative strategies are tailored to

address the underlying causes of AF, reĆecting the heterogeneity of these predispos-

ing conditions. It is crucial to prioritize the identiĄcation of epidemiological risk

factors and conditions that lead to AF and to manage these factors with diligence.

The immediate objectives should include the detection and potential prevention

of the progression of age-related changes and structural and electrophysiological

changes that may encourage the advancement of AF.Preventative measures should

concentrate on comorbidities that underlie AF onset. These include mechanisms

that trigger AF such as the impact of the autonomic nervous system, arrhythmias

predisposing to AF, and unusual electrical pulses from the pulmonary veins, factors

that lead to atrial enlargement, such as those present in valvular heart disease,

hypertension, and heart failure, factors that diminish the ratio of functional atrial

muscle cells to Ąbrotic tissue, which could involve heightened cell death seen with

hypertension and ischemic heart disease, disruptions to the communication pathways

between heart muscle cells as observed in conditions like pericarditis and edema,

an increase in inĆammatory markers which is notable in conditions like pericarditis

and myocarditis, and alterations in the metabolic and redox environments that

inĆuence the behavior of ion channels and the connectivity of cardiac cells. For

effective identiĄcation of these comorbidities, routine diagnostic tests such as ECG,

echocardiography, clinical electrophysiological studies, and imaging tests like x-ray

or ventriculography are essential. Among these, clinical electrophysiological methods

are becoming increasingly recognized for their efficacy in diagnosing and treating

issues like pulmonary venous ectopy.

• Fast Fourier transforms Digital analysis of surface, endocardial, or epi-

cardial electrograms recorded during AF has already provided useful clinical
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information in some patients. Fibrillatory oscillations can be analyzed in detail,

especially after the QRS-T deĆections have been eliminated by subtraction

techniques. Frequency and morphology analyses can demonstrate the origin of

the most rapid atrial activity, information that can then guide assessment of

the mechanisms of the initiation and maintenance of AF.

• High-resolution mapping Activation maps can be constructed during sinus

rhythm or AF. Maps during sinus rhythm may reveal areas of abnormal

conduction or refractoriness that might point to the need for a speciĄc therapy,

eg, ablation or pacing. During ongoing AF, activation maps might demonstrate

areas of rapid focal activity, frequently engaged reentrant pathways, or areas

of consistent activation and organization that give clues to mechanism of the

arrhythmia and its therapy. Increasingly detailed high-resolution technologies

are now being deployed to map the atrial endocardium rapidly. Epicardial

mapping from the right pulmonary artery, esophagus, and pericardial space is

now being developed.

• Autonomic testing Autonomic tone can be investigated by baroreceptor

sensitivity testing, analysis of heart rate variability, and posture- or exercise-

induced or spontaneous changes in heart rate. Considering autonomic input

is important, because it may contribute signiĄcantly as a trigger as well as to

alteration of the atrial substrate [32].

3.7 Management strategies for atrial fibrillation

The majority of patients have rapid, irregular Ąbrillatory waves and an irregular

ventricular response on the surface ECG, which make atrial Ąbrillation easy to

identify. Nonetheless, there is a signiĄcant overlap in ECG appearances between

atrial Ąbrillation, atrial Ćutter, and atrial tachycardia. The clinical presentation of

atrial Ąbrillation can be classiĄed based on the temporal pattern of the arrhythmia.

Recurrent atrial Ąbrillation is the term used to describe a patient who has two

or more episodes of the disorder, which can be either paroxysmal or permanent.If

the episodes end on their own after seven days, paroxysmal atrial Ąbrillation is

identiĄed; however, if medication or electrical cardioversion is required to halt

the arrhythmia, the condition is considered chronic. When a patient persists in

arrhythmia and cardioversion is unsuccessful or deemed inappropriate, permanent

atrial Ąbrillation results. For instance, an inappropriate cardioversion could result

from anticoagulation contraindications, structural heart disease (large left atrium

>5·5 cm, mitral stenosis) that prevents long-term sinus rhythm maintenance, a

history of multiple failed attempts at cardioversion or relapses (or both) even with

concurrent use of antiarrhythmic drugs or non-pharmacological approaches, or a

persistent but treatable cause of atrial Ąbrillation (eg, thyrotoxicosis). Regardless of

the temporal categorization, symptoms, the existence or absence of hemodynamic
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compromise, and related co-morbidities should all be taken into consideration when

managing patients with atrial Ąbrillation.The goals of management and treatment

approaches are deĄned in part by the clinical subtypes of atrial Ąbrillation and the

symptoms experienced by the patients (Ągure 3.4)Based on risk factors for stroke

and thromboembolism, appropriate antithrombotic treatment is required regardless

of the clinical subtype of atrial Ąbrillation.

Either rhythm-control or rate-control strategies can be used initially in patients

with paroxysmal and persistent atrial Ąbrillation; however, most patients will require

both. Drugs or non-pharmacological methods are used to achieve the goal of heart

rate control of the ventricular response in patients on a rate-control strategy. Antiar-

rhythmic medications (AADs) or non-pharmacological methods are used to control

rhythm in patients with paroxysmal atrial Ąbrillation with the goal of reducing

paroxysms and maintaining sinus rhythm over the long term.

The goal of managing persistent atrial Ąbrillation is to restore sinus rhythm,

so cardioversionŮeither electrical or pharmacologicalŮis tried. This subdivision,

however, is oversimpliĄedŮand one could argue artiĄcialŮbecause permanent atrial

Ąbrillation can be effectively treated with catheter and surgical ablation, even in

cases of severe structural heart disease, particularly when antiarrhythmic medication

is taken concurrently. This classiĄcation scheme reiterates that the management of

atrial Ąbrillation should be based on symptoms and only provides an idea of the time

course of the condition, not the Ąnal clinical result. SigniĄcantly, a higher age at

diagnosis is an independent predictor of progression on multivariate analysis, and

many patients with atrial Ąbrillation go on to develop permanent atrial Ąbrillation

[26].

Figure 3.4: Treatment strategy for atrial Ąbrillation [26]
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3.8 Atrial fibrillation ECG

3.8.1 AF ECG Patterns

One of the most prevalent arrhythmias that arises from hyperthyroidism, atheroscle-

rotic disease, pericarditis, and rheumatic diseases is atrial Ąbrillation (AF). While

these AF-related disorders carry a higher risk of stroke than some ventricular ar-

rhythmias, they are not as deadly. The ECG is erratic and rapid in AF. Rhythms of

150Ű220 beats per minute are the result of AF. The ventricular rates of an AF patient

are often faster than those of a healthy heart, but the most noticeable aspect of the

ECG is an abnormal RR interval. Another feature of AF is an ECG P wave that is

either absent or extremely small and does not appear before the QRS complex, which

has a regular appearance. Figure 3.5 shows an example of a typical AF ECG that was

captured using the Wilson placement combined with augmented Einthoven electrode

recording, giving a total of nine recordings. The enhanced Einthoven recordings aVR,

aVL, and aVF, along with the Wilson recordings V1 through V6, provide one of the

standard chart recordings[33].

Figure 3.5: Atrial Ąbrillation ECG [33]

3.8.2 Noise Suppression

ECG signals are always impacted by noise, as was previously mentioned. Low

frequency and muscle noises are the hardest to deal with among the various kinds of

noise.

Low frequency noise

Changes in impedance between the patientŠs body and the electrode are the cause of

this noise. The patientŠs breathing and variations in the area of contact between the
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body and the electrode, which are mostly brought on by the patientŠs movement,

cause variations in the impedance between the electrode and the source of the signal,

which is the patientŠs heart (Figure 3.6).The low frequency noise is located in the

frequency below 1 Hz [34].

Figure 3.6: Low frequency noise present in ECG signal [34]

Muscle noise

This kind of noise is produced by the skeletal muscles contracting as a result of the

patientŠs movement. ECG signals are always correlated with muscle signals (Figure

3.7). Stress tests have the highest amount of noise. Under these circumstances, the

noise is a result of either the patientŠs load from the cycloergometer or the patientŠs

intense muscle contractions while running on a treadmill.
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Figure 3.7: Example of muscle noise of ECG signals [34]

Under normal circumstances, the patient moves during a prolonged ECG signal

recording (which is present in Holter testing). The degree of muscle noise in this

instance is highly dependent on the patientŠs activity level, or movement, which may

change during the test. When skeletal muscle contracts involuntarily as a result of an

uncomfortably high or low ambient temperature, muscle noise is evident during rest

periods. This phenomenon is especially unwanted when microvolt heart potentials, or

micropotentials recorded in the esophagus, heart ventricles, or on the bodyŠs surface,

are involved. The primary issue in this case is the considerable overlap between the

signal and noise spectra. The range of frequencies covered by the noise spectrum

is 20 to 80 Hz, while the signalŠs spectrum spans 0.005Ű150 Hz. The ECG signal

is signiĄcantly distorted as a result of attempts to Ąlter out muscle noise. Medical

professionals and computer systems may produce inaccurate classiĄcation results

as a result of signal distortions caused by an increase in the effectiveness of muscle

noise [34].
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Literature Review

4.1 Introduction

Since atrial Ąbrillation (AF) is the most prevalent sustained cardiac arrhythmia, it is

a signiĄcant topic due to its chronic nature and frequency. AF likely has the most

epidemiological data available as a disease entity[35]. Assessments of left atrial size

and the chronicity of AF are used to guide treatment decisions regarding the feasibility

of restoring sinus rhythm; however, these metrics are not very good at predicting who

will beneĄt from a rhythm control strategy and only provide an approximative picture

of the diseaseŠs progression. This clinical classiĄcation of AF is imprecise and has no

effect on the degree of symptoms, likelihood of progression, or efficacy of treatment.

Fibrillatory waves (f-waves) in the electrocardiographic (ECG) signal are indicative

of atrial Ąbrillation (AF), and they change in size, shape, and organization as the

disease worsens and the atria undergo structural remodeling. Risk stratiĄcation has

been applied to f-wave properties. demonstrated a strong correlation between the

atrial deĄbrillation threshold and f-wave frequency in patients with persistent AF

(PeAF) undergoing cardioversion. It has been demonstrated that in patients who

had catheter ablation, f-wave amplitude could predict the recurrence of persistent

AF. revealed that a higher f-wave amplitude and dominant frequency were linked to

a higher risk of developing PeAF. Additionally, the Wavelet Entropy was employed

to describe the degree of f-wave disorder in order to accurately forecast the outcome

of cardioversion and the successful spontaneous termination of paroxysmal AF (PAF)

in PeAF patients[36]. Decoupling the atrial activity (AA), and more speciĄcally

the f-wave, from the ventricular activity (VA) through a process known as QRST

cancellation is the primary step toward f-wave analysis via the surface ECG. The

primary obstacles are the ventricular responseŠs broad spectral nature, the f-wave

and VAŠs frequency overlap, and the cardiac activityŠs time-varying frequency and

amplitude. The goal of extracting the f-wave from the surface ECG has drawn a lot of

attention to the Ąeld, and various algorithms have been proposed in the literature to

address this challenge. Depending on how many ECG channels the algorithm requires,

these algorithms can be broadly divided into two categories. Adaptive Ąltering and

its variants, spatiotemporal QRST cancellation, independent component analysis,

and principal component analysis (PCA) are examples of blind source separation
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algorithms in the Ąrst category. These methods usually require more than one

channel; they often work with the body surface potential map or the standard 12-lead

ECG signal. Though each of these methods has advantages of its own, it is commonly

known that when we have few surface ECG channels available, the performance

suffers because the spatial information of the cardiac activity is insufficient and

unreachable. Additionally, because 12-lead recording is inconvenient for the patient,

it is not appropriate for long-term monitoring.Algorithms of the second kind are made

to work in scenarios where single-lead ECG is the only data available. Beyond these

cancellation algorithms, the fundamental concept is that there is no "synchronization"

between the ventricular and atrial activities. To extract the ventricular activity

from the single-lead surface ECG, some methods that are available are the wavelet

transform, the singular value decomposition, and the averaged beat subtraction

(ABS) algorithm, as well as its variations based on PCA. Single lead f-wave analysisŠs

main advantage is that it can be used for long-term monitoring. The main steps

of an ABS-type algorithm are two. Finding a pool of cardiac activities using a

selected metric is the Ąrst step; Ąnding the VA template linked to each cardiac

activity is the second.Most ABS-type algorithms use the temporal relationship as

the metric for the Ąrst step, while some also take the morphological relationship

into consideration. The standard method for the second step is to take the mean

of all the beats in the pool, but researchers discovered that the poolŠs principal

component retains more VA information and, as a result, improves f-wave recovery

[37]. In the literature review that forms the foundation of this thesis, a comprehensive

examination of contemporary methodologies for f-wave extraction is undertaken.

This review encapsulates a spectrum of strategies as delineated in current scientiĄc

discourse, recognizing that the electrocardiogram (ECG) remains the quintessential

modality for delineating cardiac rhythm. It elucidates the evolution of extraction

techniques from conventional signal processing to advanced computational algorithms,

offering a panoramic view of the state-of-the-art technologies that are currently being

employed to distill critical atrial information from ECG data. This overview not only

contextualizes the challenges inherent in f-wave extraction but also sets the stage for

the ensuing discussions on how these methodologies can be reĄned or reimagined to

enhance diagnostic accuracy and prognostic capabilities in clinical practice.

4.2 Methods

We conducted a comprehensive search using prominent databases, including PubMed,

IEEE Xplore, and Google Scholar. The key search terms employed were "Elec-

trocardiogram," "atrial Ąbrillation," "F-wave extraction," and "signal processing."

To maintain the focus of our study on F-wave extraction in the context of atrial

Ąbrillation, we deliberately excluded research related to other medical conditions

and studies primarily concerned with AF detection, which did not align with the

primary objective of our investigation.
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4.3 Results

The described search strategy led to the discovery of six research articles published

within the timeframe of 2017 to 2023, This method allowed us to incorporate the

latest research Ąndings into our literature review, ensuring that the information

presented is current and up to date.

4.3.1 Malik J et al. (2017)

The authors of [37] introduce DDNLEM, a single-lead f-wave extraction algorithm

that leverages modern diffusion geometry data analysis principles. This innovative

algorithm represents a signiĄcant advancement in the Ąeld of cardiac signal processing.

Through a meticulous evaluation process, DDNLEM demonstrates its superiority over

conventional algorithms, including average beat subtraction, principal component

analysis, and adaptive singular value cancellation, across various evaluation metrics

such as modiĄed ventricular residue (mVR), spectral concentration (SC), normalized

mean square error (NMSE), signal-to-noise ratio (SNR), and peak signal-to-noise

ratio (PSNR). An illustration of DD-NLEM is shown in Ągure 4.1

The main steps of the algorithm are as follows:

1. Preprocessing: This involves Ąltering and baseline correction of the ECG signal.

2. Feature extraction: The algorithm uses diffusion geometry to identify the f-wave

component of the signal.

3. Postprocessing: Further Ąltering and smoothing of the f-wave signal are applied.

4. Evaluation: A new metric called modiĄed ventricular residue (mVR) is used to

compare the performance of the algorithm to other methods, as described in

the Figure.
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Figure 4.1: Steps of the Algorithm used in [37].

DDNLEMŠs uniqueness lies in two key facets: Ąrstly, its non-local nature, which

allows it to harness information from the entire signal to robustly and accurately

estimate a ventricular activity template for each beat, and secondly, the carefully

crafted ventricular similarity metric, which mitigates potential overĄtting issues.

This algorithm is suitable for the analysis of extended-duration signals ensures its

practicality in clinical settings.

Furthermore, the discussion addresses the inevitable presence of noise in cardiac

signals and the potential need for post-processing techniques, such as adaptive

recurrent Ąltering algorithms, to mitigate noise effects in certain applications. The
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authors also acknowledge the handling of T waves within the algorithm and hint at

the possibility of future improvements by addressing them separately.

Figure 4.2: The results of different f-wave extraction algorithms on a real Holter
recording used in [37].

Figure 4.3: The Ągure evaluates VR and mVR indices for two extracted f-waves from
a simulated ECG. Gray is the ECG signal, blue is the simulated f-wave,
and red curves are extracted f-waves, The top curve is from non-local
aSVC, the bottom from DDNLEM method [37].
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4.3.2 Ghrissi A et al. (2019)

In this paper [38], the authors address the challenging task of non-invasive analysis of

atrial Ąbrillation (AF) arrhythmia, particularly focusing on extracting the Ąbrillatory

pattern known as the f-wave from surface electrocardiograms (ECG). They highlight

the limitations of conventional techniques like average beat subtraction (ABS) and

blind source separation (BSS), which require lengthy ECG recordings and may not

deliver optimal performance. Instead, the authors propose a novel approach based on

compressed sensing (CS), capitalizing on the sparsity of atrial activity (AA) signals in

the frequency domain. Notably, they introduce a block sampling scheme within CS,

enabling the accurate extraction of AA even from short ECG recordings containing

just one heartbeat, a feat unachievable by ABS, BSS, or similar methods relying on

longer observation windows.

This contribution pioneers the application of the CS paradigm to AA extraction

from surface ECG, offering a breakthrough solution to address the challenges posed

by AF analysis. While CS exhibits lower accuracy compared to ASVC in processing

extended ECG recordings, it excels in short recordings, making it a promising

candidate for online processing, especially for handling long recordings efficiently.

Furthermore, a bias-corrected variant of the method enhances accuracy, showcasing

potential for further reĄnement.

Figure 4.4: Extraction of f-wave from synthetic ECG using CS (green) and ASVC
(red) vs. the original Ąbrillatory signal (blue)[38].
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Figure 4.5: Extraction of f-wave from synthetic ECG (1-heartbeat recording) with
bias-corrected CS (magenta) vs. standard CS (green) vs. the original
Ąbrillatory signal (blue)[38].

4.3.3 Saumitra M et al. (2019)

The authors of this article [36] propose the use of the Filter Diagonalization Method

(FDM) to extract f-wave features from ECG traces and statistical machine learning

classiĄers to predict AF outcomes, The core of this approach lies in the feature

extraction pipeline, as illustrated in Figure 4.6. Main Steps: The FDM is used to

decompose an ECG signal into a Fourier basis and extract f-wave frequencies and

amplitudes at frame sizes of 0.15 seconds. Features are extracted from FDM outputs

to train statistical machine learning classiĄers. Ten-fold cross-validation is used to

evaluate the performance of the classiĄers. The Random Forest and Decision Tree

models performed best for the pre-ablation without and with adenosine datasets. The

study demonstrates the effectiveness of the FDM and statistical machine learning

classiĄers in predicting AF outcomes. The authors suggest extending the experiments

to a larger, more balanced dataset and considering other FDM generated features such

as time delay. They also plan to test the predictive power of the system to determine

the likelihood of success of a rhythm control strategy, which could then be readily

deployed through an ECG. Limitations: The study is limited by the small dataset

size and the lack of diversity in patient demographics. The authors acknowledge

the need for a larger, more balanced dataset to improve the generalizability of the

models. Additionally, the study only considers short-duration f-waves and does not

account for longer-term trends in AF outcomes.

Figure 4.6: Functional block diagram of the feature extraction pipeline [36]
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4.3.4 Zhu J, et al. (2022)

In this study [39],], an innovative method for extracting F-waves from atrial Ąbrillation

(AF) ECG signals was introduced. The method combines morphological component

analysis (MCA) with the tunable Q-factor wavelet transform (TQWT) to decompose

AF-ECG signals into shock and harmonic components, representing the QRST-wave

and F-wave, respectively. In order to avoid the randomness arising from the manual

selection of the Q-factor, this paper presents an optimized resonance-based signal

decomposition method by introducing a genetic algorithm (GA) as shown in Figure

4.7. Notably, the selection of the Q-factor, achieved through a genetic algorithm

(GA), plays a crucial role in optimizing the decomposition process. The results of

this study demonstrated the superiority of the presented method over traditional

techniques such as average beat subtraction (ABS) and principal component analysis

(PCA), in Figure 4.8 we can see the F-wave Extraction for ECG Signals of Lead-V5

for the three mentioned methods. It achieved lower root mean square error (RMSE)

values, indicating improved accuracy in F-wave extraction, especially when dealing

with AF signals accompanied by ventricular premature beats. This method holds

promise for enhancing the accuracy of F-wave extraction in mobile ECG monitoring

devices, particularly those with limited leads.

Figure 4.7: F-wave extraction based on the optimized resonance-based signal decom-
position [39]
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Figure 4.8: F-wave Extraction for ECG signals of lead-V5 [39]

4.3.5 Biton S et al. (2022)

In this study [40],the authors introduced a new approach for assessing the performance

of f-wave extraction algorithms and developed a voting scheme for improved estimation

of the dominant atrial frequency (DAF) in atrial Ąbrillation (AF) detection. They

conducted their analysis on a subset of Holter recordings from The University of

Virginia Atrial Fibrillation Database (UVAFDB) with manually annotated AF events

and The study conducted preprocessing of ECG recordings, including signal quality

assessment, bandpass Ąltering to remove noise, notch Ąltering to eliminate power-line

interference and utilized four different template subtraction (TS) algorithms to extract

f-waves which are TB (Temporal Subtraction - Basic), TSCE (Temporal Subtraction

with Gain Scaling), TSSU (Temporal Subtraction with Separate Scaling), TSP CA

(Temporal Subtraction with Principal Component Analysis) and then estimating

DAF from the Ąrst 1-minute window of each AF event,in the Figure 4.10 we can see

an example of f-wave extraction using TB, TSCE, TSSU and TSP CA, and the power

spectra for extracted f-wave signals in Figure 4.10. A random forest classiĄer was

used. We hypothesized that better extraction of the f-wave meant better AF/non-AF

classiĄcation using the DAF as the single input feature of the RF mode, and the

results showed that the best performance in terms of AF/non-AF classiĄcation was

achieved when using the DAF computed from the three best-performing extraction

methods in a voting scheme. The studyŠs main contributions included the novel

method for evaluating f-wave extraction algorithms and the introduction of the voting

scheme for DAF estimation. However, the research also acknowledged limitations,

such as a limited dataset from a single cardiac center, suggesting the need for future

evaluations on diverse datasets, the consideration of additional f-wave features, and

the exploration of other extraction algorithms.
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Figure 4.9: Example of f-wave extraction. (a) A single-lead ECG in AF and related
extracted f-waves obtained using (b) TB, (c) TSCE, (d) TSSU and (e)
TSP CA [40]

Figure 4.10: Example of power spectra for extracted f-wave signals obtained by the
four different algorithms [40]

4.3.6 Ben-moshe N et al. (2023)

This paper [41] introduces an innovative approach to assess the effectiveness of

f-wave extraction methods, which are pivotal for diagnosing atrial Ąbrillation (AF)

based on single-lead ECG data. The study is underpinned by the hypothesis that

superior AF classiĄcation, relying on a set of features derived from the extracted

f-waves, implies more proĄcient extraction methods, Figure 4.11 shows the AF

classiĄcation workĆow. The paper meticulously delineates the three real-world

data sets, comprising Holter ECG recordings, along with a simulated data set,

which served as the basis for rigorous evaluations. Four distinct f-wave extraction

techniques where investigated, Basic ABS Method (ABS), ABS with Scaling Method

1(ABSsc1), ABS with Scaling Method 2 (ABSsc2), and Template Subtraction using

Principal Component Analysis (TSPCA) in the Figure 4.12 the Illustration of f-wave

extraction and the power spectrum for extracted f-wave signals shown in Figure 4.13.

Furthermore, a machine learning approach using a Random Forest (RF) classiĄer
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was adopted for AF classiĄcation. The study culminated in the unveiling of the

TSPCA method as the top-performing approach, as corroborated by its AUROC

(Area Under the Receiver Operating Characteristic) scores. This research underscores

the signiĄcance of robust extraction methods and their potential to propel advanced

investigations into f-wave characteristics and their correlation with clinical outcomes.

Figure 4.11: AF classiĄcation workĆow [41]

Figure 4.12: Illustration of f-wave extraction. (a) A single-lead ECG with AF and
related f-waves extracted using (b) ABS, (c) ABSsc1,(d) ABSsc2, and
(e) TSPCA. [41]

Figure 4.13: Example of power spectrum for extracted f-wave signals obtained by
the four different methods. [41]
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Chapter 5

Materials And Methods

The classical cardiac signal processing tools for non-invasive atrial activity (AA)

signal extraction include average beat subtraction (ABS) and blind source separation

(BSS). Atrial Ąbrillation (AF) occurs due to irregular and chaotic activation in the

atrias, leading to ineffective blood ejection into the ventricles and causing irregular

Ćuctuations in the baseline, which makes the ventricular rate rapid and irregular.

ECGs of AF patients differ from normal sinus rhythm, characterized by the absence

of P-waves and the presence of f-waves in the TQ segments, the intervals between the

end of a T-wave and the beginning of the next Q-wave. During TQ segments, only

AA occurs, while in QT segments (from the beginning to the end of a heartbeat),

AA is masked by the QRST complex.

5.1 Theoretical foundations

5.1.1 Average beat subtraction (ABS)

The most well-known method for extracting f waves in individual leads is average beat

subtraction (ABS). It has become one of the components of the biomedical signal

processing toolbox. The most popular technique for obtaining f waves in individual

leads, The technique was later used to process ECG signals in AF. It was initially

created for the detection of atrioventricular dissociated ventricular tachycardia, a

condition in which the P waves are separated from the QRS complexes. Clinically

focused studies on AF continue to use ABS because of its ease of implementation,

both for the analysis of surface ECGs and electrograms. In the ABS method, the

well-known signal-plus-noise model is the starting point for Ąnding an estimate of the

QRST complex s(n) to be subtracted from the ECG signal; the resulting estimate,

denoted ŝ(n), is referred to as a QRST template. In this model, each beat xi(n) of

the observed signal is assumed to be composed of s(n) and noise zi(n).

xi(n) = s(n) + zi(n), i = 1, . . . , M, n = 0, . . . , N − 1, (5.1)

where M is the number of beats in the ensemble, and N is the number of samples in

each beat. From a conceptual viewpoint, it is advantageous to decompose the noise

57



Chapter 5 Materials And Methods

zi(n) into an f wave signal di(n), being the desired quantity for extraction, and noise

vi(n) of extracardiac origin

zi(n) = di(n) + vi(n) (5.2)

where both terms are usually modeled as random processes. The noisezi(n) is modeled

as a zero-mean stationary process with variance σ2
z , assumed to be uncorrelated from

beat to beat,

E[zi(n)zj(n)] = σ2
zδ(i − j), i, j = 1, . . . , M, (5.3)

where

δ(i) =

∏︂

⨄︂

⋃︂

1, if i = 0,

0, if i ̸= 0.
(5.4)

The structure of the resulting estimator depends on the statistical assumptions

made on s(n) and zi(n). In general, an increasingly more detailed statistical charac-

terization of the different components implies that more statistical parameters need

to be determined from the ECG signal, which in turn may jeopardize performance in

certain situations. In its general form, the linear estimator of s(n) is given by

ŝ(n) =
M
∑︂

m=1

wm(n)xm(n), (5.5)

where the weights wm(n) differ from beat to beat as well as from sample to sample.

To ensure that the estimator in 5.5 is unbiased, wm(n) must fulĄll the following

constraint:
M
∑︂

m=1

wm(n) = 1. (5.6)

For the i-th beat, an estimate of the f wave signal is obtained by subtracting the

QRST template ŝ(n) from xi(n),

d̂i(n) = xi(n) − ŝ(n), (5.7)

where the noise component vi(n) in 5.2 has been neglected.

The ensemble average, being central to the ABS method, is computed by simply

setting all weights in 5.5 to the same value,

wi(n) =
1

M
, i = 1, . . . , M, n = 0, . . . , N − 1. (5.8)

The usefulness of this approach rests on the assumption that the ventricular

activity, modeled by s(n), is decoupled from the atrial activity, modeled by zi(n).

Moreover, s(n) is viewed as a deterministic, but unknown, signal. The main steps
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involved with ABS are illustrated in Figure 5.1.

Figure 5.1: Steps involved with average beat subtraction

(a) Original ECG, and (b) QRST complexes with similar morphology used for

computing an averaged QRST complex. (c) Ventricular signal, constructed from the

averaged QRST complexes and subtracted from the ECG in (a) to produce (d) the

extracted f wave signal [42].

5.1.2 Principal component analysis (PCA)

Principal components analysis (PCA) is a statistical technique which performs an

orthogonal linear transformation of the observed signal for the purpose of decorrelating

the samples of the signal and maximizing the variance of the transformed vector,

i.e., the principal components. The Ąrst axis of the transformed coordinate system

corresponds to the maximal variance, the second axis to the maximal variance in the

direction orthogonal to the Ąrst axis, and so on. The emphasis on variance stems from

the observation that larger variance is usually associated with the more interesting

dynamics of the signal, whereas lower variance is usually associated with noise [42].

The subspace deĄned by the principal components with the largest variances usually

receive the most attention as that subspace offers optimal dimensionality reduction

in the LS sense. However, other subspaces may also be of interest. In single-lead

PCA, each beat is segmented by selecting the samples of an interval centered around

a QRS-related Ąducial point. The samples of the k-th beat are contained in the

vector
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xk =

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

x(nk)

x(nk + 1)
...

x(nk + N − 1)

⋂︁

⎥

⎥

⎥

⎥

⎥

⋀︁

, k = 1, . . . , M, (5.9)

where nk is the onset of the k-th beat, N is the number of samples per beat, and

M is the number of beats. The ensemble of beats is represented by the N × M data

matrix

X = [x1x2 . . . xM ]. (5.10)

While X may contain beats with widely different morphology, it is often desirable to

only include beats with similar morphology as an homogenous ensemble implies that a

smaller value of M is needed. The transformation producing the principal components

w = [w1 w2 . . . wN ]T rests on the assumption that the observed signal x can be

treated as a zero-mean random process, where x1, . . . , xM are different realizations

of x. This process is characterized by the intralead correlation matrix Rx = E[xx
T ].

the correlation between different samples in x. The principal components w result

from applying an orthogonal linear transformation to x, deĄned by the N × N matrix

Φ = [ϕ1 ϕ2 . . . ϕN ], (5.11)

and

w = Φ
T

x. (5.12)

This transformation rotates x so that the elements of w become mutually uncorre-

lated. The Ąrst principal component is obtained as the scalar product w1 = φT
1 x,

where the vector φ1 is chosen so that the variance of w1,

E[w2
1] = E[φT

1 xx
T φ1] = φT

1 Rxφ1, (5.13)

is maximized subject to the constraint that φT
1 φ1 = 1. The maximal variance

is obtained when φ1 is chosen as the normalized eigenvector corresponding to the

largest eigenvalue of Rx, denoted λ1. The resulting variance is

E[w2
1] = φT

1 Rxφ1 = λ1φT
1 φ1 = λ1. (5.14)

Subject to the constraint that w1 and the second principal component w2 should

be uncorrelated, w2 is obtained by choosing ϕ2 as the eigenvector corresponding to

the second largest eigenvalue of Rx, and so on until the variance of x is completely

represented by w. Accordingly, to obtain the whole set of N different principal
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components, the eigenvector equation for Rx needs to be solved,

Rxφ = φΛ, (5.15)

where Λ is a diagonal matrix deĄned by the eigenvalues λ1, . . . , λN . Since Rx is not

known in practice, the N × N sample correlation matrix Rx, deĄned by

R̂x =
1

M
XX

T , (5.16)

replaces Rx when computing the eigenvectors in 5.15 The seven Ąrst eigenvectors

are illustrated in Fig. 5.12 for Ąve different ECGs, the related, normalized eigenvalues

are presented in Fig. 5.13.

For the purpose of extracting the f wave signal, the following decomposition of x

is proposed:

x =
N

∑︂

k=1

wkϕk =

Ny
∑︂

k=1

wkϕk +
Na
∑︂

k=Ny+1

wkϕk +
N

∑︂

k=Na+1

wkϕk, (5.17)

where the weights are determined by wk = ϕT
k x. The ventricular subspace is

spanned by the Ąrst Nv eigenvectors,so that the eigenvectors corresponding to the Nv

largest eigenvalues, the atrial subspace is spanned by the next Na − Nv eigenvectors,

and the "noise subspace" is spanned by the remaining eigenvectors. From the

decomposition in 5.17,it is evident that an estimate of the f wave signal may be

obtained by subtracting the two sums which produce estimates of the QRST complex

and the noise from x,provided that the two dimensionality parameters Nv and Na

have Ąrst been properly identiĄed.

d̂ = x −

Nv
∑︂

k=1

wkϕk −
N

∑︂

k=Na+1

wkϕk =
Na
∑︂

k=Nv+1

wkϕk, (5.18)
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Figure 5.2: Steps involved with PCA

(a) Single-lead ECGs obtained from Ąve different patients, (b) the Ąrst eigenvector

ϕ1 and the ensemble average of the dominant beats (the two waveforms coincide so

they cannot be distinguished from one another), and (c) the second until the seventh

most signiĄcant eigenvectors. The eigenvectors are plotted using a time scale zoomed

by a factor of two relative to the scale used in (a)
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Figure 5.3: Normalized Eigenvalues

Figure 5.3 The normalized eigenvalues λ′

k = λk/λ1, k = 1, . . . , 20, of the Ąve

single-lead ECGs displayed in Figure 5.2 . PCA outputs the projection of each

component has on each beat. Taking these considerations into account, the QRS

complex and T wave can be removed at each beat by considering the projections of

the ventricular components and removing them from the ECG signal. Equivalently,

the same result would be obtained by estimating the atrial activity at each beat

from the projections of the nonventricular components (Figure 5.4). Cancellation

of ventricular activity using the single-lead approach is closely related to adaptive

template subtraction, but with the advantage that dynamics in the QRST waveform

are also considered, thus producing a more accurate estimate of the atrial signal [43].

Figure 5.4: Block diagram of interbeat PCA to estimate F-wave

63



Chapter 5 Materials And Methods

5.2 Datasets

5.2.1 Reference database

Reference database introduced by Raúl Alcaraz and colleagues, which is a pioneering

reference database of simulated Electrocardiogram (ECG) signals. This dataset is

speciĄcally designed for the evaluation and comparison of atrial Ąbrillatory wave

(f-wave) extraction methods in ECGs. It comprises a rich variety of simulated

signals, all representing atrial Ąbrillation conditions. The database encapsulates

the complexity of real-world ECG signals by including a wide range of challenging

characteristics, such as varying heart rates, morphological QRST variability, and the

presence of ventricular premature beats. Organized into eight sets, each containing 30

5-minute signals with different f-wave amplitudes, the dataset is tailored to assess the

performance of f-wave extraction techniques under various conditions. A reference

database composed of simulated ECG signals is created using the model recently

proposed in Petrėnas et al (2017), offering a large number of choices such as type

of f-wave (synthetic or real), type of QRST complex (synthetic or real), type of

RR-interval series (synthetic or real), and type of noise and artifacts, the database

contains 12-lead ECG signals along with associated f-waves. Annotations of R-peak

position and beat type (i.e. normal or ectopic beat) are also provided. Moreover, all

simulated signals are in AF [44].

5.2.2 Real signals

The dataset contains electrical cardiac signal recordings from a total of Ąfteen pigs,

with each subjectŠs data organized into individual folders identiĄed by unique labels.

Within each folder, there are datasets from two distinct recording systems: a "Holter"

system and a "Mapping" system. The Holter system offers comprehensive, long-

duration recordings from the standard 12-lead ECG at a sampling frequency of 250

Hz, designed to capture the heartŠs electrical activity extensively to monitor for

arrhythmias and other cardiac irregularities over time. Conversely, the Mapping

system provides detailed, 4-second unipolar electrograms of myocardial activity at a

higher sampling frequency of 4 kHz.
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5.3 Methodology

5.3.1 Preprocessing

Reference database

comprehensive preprocessing strategy is also applied to the ECG signals, mirroring the

meticulous steps utilized in clinical signal processing. Initially, bandpass Butterworth

Ąlter was applied to the reference database ECG signals to attenuate noise outside

the crucial 3 to 40 Hz frequency range, effectively eliminating high-frequency noise.

Furthermore, for the Ąltered ECG signals where the R peaks wasnt provided, QRS

complex detection was performed employing the Pan-Tompkins algorithm, with

speciĄc adjustments to ensure accurate QRS detection.

Real data

Meticulous preprocessing strategy for ECG holter signals, encompassing several

essential steps. Initially, applying a bandpass Butterworth Ąlter to the ECG Holter

signal to eliminate noise outside the 0.5 to 50 Hz range, which is crucial for removing

high-frequency noise. Subsequently, a combination of a median Ąlter and a moving

average Ąlter is used to estimate and remove baseline wander, thereby stabilizing the

ECG signalŠs baseline. for the mapping signals similar approach was used Ąltering

and baseline wander removal .

QRS complex detection is achieved for the Ąltered signals using the Pan-Tompkins

algorithm, with adjustments to ensure accurate detection. Finally, detailed QRS

complex analysis was performed for the Ąltererd holter signal, including identifying

Q and S wave locations and extracting QRS templates based on the median QRS

duration which was used later to insure better detection of the R peaks.

The correlation analysis between the ECG Holter data and the mapping signal,

downsampled to 250 Hz, is a pivotal part of this study. This process begins with nor-

malizing both signals, ensuring they are on a common scale for accurate comparison.

Subsequently, heart rate (HR) data is derived from both signals by calculating RR

intervals - the intervals between consecutive R-peaks in the ECG signal. This con-

version from raw ECG data to HR is signiĄcant as it provides a direct and clinically

relevant measure of cardiac rhythm. The core of this analysis is the cross-correlation

technique, which computes the degree of similarity between the HR data from the

Holter monitor and the mapping signal as a function of the time-lag between the

two signals. The objective is to identify the time shifts where the correlation peaks,

which would indicate the strongest relationship between the two datasets.

In a broader clinical context, correlation analyses are instrumental in identifying

relationships between different physiological signals. However, the speciĄc aim in this

study is more targeted. The mapping signal, recorded during an episode of Atrial

Fibrillation (AF), provides a unique opportunity. By cross-correlating it with the

continuous ECG data, the goal is to pinpoint the segments in the Holter data that
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most closely correspond to the AF episode captured in the mapping signal. in the

Ągure 5.5 we can see the segment of the ECG holter that corespond to the highest

correlation with the mapping signal for the subject (124)

Figure 5.5: Highest Correlation Segment between ECG Holter Data and Mapping
Signal
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5.3.2 F-wave extraction

Reference database

Upon completing the preprocessing of the ECG signls, which included bandpass

Butterworth Ąltering and baseline wander correction and QRS detection,initially, we

tailored the window size to the characteristics of our ECG signals. This customization

of the window size was pivotal to accommodate the unique attributes of the simulated

ECG data, thereby optimizing the extraction of f-waves and ensuring that the

subsequent analysis was based on accurately isolated cardiac rhythms. The process

iterates through the detected R peaks, extracting segments of the ECG signal,

centered on these peaks. If a segment is shorter than the deĄned length, it is padded

with zeros for uniformity. then two algorithms for f-wave extraction were applied.

• Average beat subtraction (ABS) After extracting all heartbeat segments,

the average of these segments is computed, representing the typical QRST

complex. This average beat is then subtracted from each individual segment

to isolate the f-wave component, effectively removing the QRST complex

and leaving the residual signal, which primarily contains the f-wave. The

isolated f-wave segments are then reassembled into a continuous signal, f-

wave. Additionally, frequency analysis of the reconstructed f-wave is performed,

employing the Fast Fourier Transform (FFT) to identify its dominant frequency

and amplitude. The power spectrum of the f-wave is also visualized to show

the frequency distribution. Finally, the mean and standard deviation of the

reconstructed f-wave are calculated and displayed, providing insights into its

typical amplitude and variability. This ABS method is a comprehensive process

involving segmentation, averaging to create a QRST template, subtraction for

f-wave isolation, and extensive analysis of the extracted f-wave in both time

and frequency domains.

• Principal component analysis (PCA) After extracting all heartbeat seg-

ments, The next step involves mean-centering each row in the matrix heartbeats,

which contains these segmented heartbeats. This mean-centering is crucial

for PCA, as it centralizes the data around the origin. The covariance matrix

of these mean-centered segments is then computed to capture the variance

and covariance among the data points. Eigenvalue decomposition is applied

to this matrix, yielding eigenvectors (principal components) and eigenvalues,

which indicate the variance captured by each component. The eigenvectors are

sorted according to their corresponding eigenvalues in descending order, and a

predeĄned number of top principal components are selected, reducing the dataŠs

dimensionality while retaining signiĄcant features. The mean-centered heart-

beats are then projected onto these selected principal components, transforming

the dataset. The eigenvalues are normalized and plotted to visualize each prin-

cipal componentŠs contribution to the total variance. In AF waveform analysis,
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the PCs contain the separated atrial, ventricular, and noise components of the

ECG signal. For subsequent AF waveform analysis, speciĄc PCs were identiĄed

visually as the ones containing the largest amplitude AF waveform (PCAF).

The f-wave is reconstructed from the atrial components of this projected data.

Frequency analysis of the reconstructed f-wave is conducted using FFT to

identify the dominant frequency and amplitude. The standard deviation and

mean of the F wave are calculated and displayed, along with its frequency

spectrum and power spectrum, highlighting the dominant frequency. This

PCA process involves intricate steps of segmenting, mean-centering, covariance

computation, eigenvalue decomposition, component selection, data projection,

and reconstruction for comprehensive signal analysis.

Real data

The raw segment from subject 124, recorded using lead number 5 of the Holter monitor

and identiĄed as exhibiting the highest correlation with the mapping signal indicative

of an atrial Ąbrillation episode, undergoes a crucial preprocessing step, where it

is Ąltered using a third-order Butterworth bandpass Ąlter. This particular Ąlter,

with its normalized cutoff frequencies set at 2 Hz and 50 Hz, effectively attenuates

unwanted noise and frequencies outside the cardiac signalŠs range of interest which

is in our work the f-wave , typically [4-12] Hz, thereby enhancing the clarity and

quality of the ECG data for subsequent analysis (Ągure 5.6).

Figure 5.6: Comparison of raw and processed ECG signal

Following the Ąltering process, a peak detection algorithm was employs to identify

R-peaks within this reĄned ECG segment (Ągure 5.7). The detection of these R-peaks

is pivotal as they represent the ventricular depolarization, a key event in the cardiac

cycle. Accurate identiĄcation of these peaks is essential for the next phase of the

analysis, which involves segmenting the ECG signal. The segmentation is executed
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through a deĄned window size (61 samples), which is centered around each detected

R-peak, to ensures that each segment encapsulates a complete heartbeat, including

the QRS complex and adjacent waveforms.

Figure 5.7: R-peaks detection

then these heartbeat segments are extracted from the Ąltered ECG data. Each

segment is carefully aligned and padded as necessary to maintain a uniform length,

ensuring consistency across all extracted heartbeats. This segmentation process is

critical as it isolates individual heartbeats from the segment that correlates most

with the atrial Ąbrillation episode, setting the stage for a more detailed and focused

analysis about the extraction of the f-wave.

Upon completing the extraction of all heartbeat segments , two algorithms for

f-wave extraction were applied, average Beat Subtraction (ABS) and principal

Component Analysis (PCA).
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These algorithms were implemented following their standard methodologies and the

steps described earilier to ensure the Ądelity of the extraction process. However, we

tailored the window size to the characteristics of our real signals, setting it to 61

samples for the Ąrst subject (124). This customization of the window size was pivotal

to accommodate the unique attributes of the reference database signals, thereby

optimizing the extraction of f-waves and ensuring that the subsequent analysis was

based on accurately isolated cardiac rhythms.
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Results And Discussion

6.1 Results

The results of F-wave extraction for the reference database are shown in the Ągure

6.1 where shows the extraction effect of F-wave by using average beat subtraction

(ABS) and principal component analysis (PCA) respectively from the Ąrst lead of

the Ąrst subject signal. However the results of F-wave extraction for the real data

are shown in the Ągure 6.2 for the Ąrst lead of the Ąrst subject signal.

Figure 6.1: Comparison of F-Wave Extraction: ABS vs. PCA in reference database
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Figure 6.2: Comparison of F-Wave Extraction: ABS vs. PCA in real data

The position of the largest peak in the power spectrum of the extracted f wave signal

deĄnes the dominant atrial frequency (DAF). Nonparametric spectral estimation

is typically employed, which, in most cases and in ours, is synonymous to WelchŠs

method, where the signal is divided into shorter, overlapping segments, followed by

windowing of each segment. The power spectrum is obtained by averaging the power

spectra (periodograms) of the segments. Each segment is padded with zeros so that

the position of the spectral peak can be determined more accurately [45].

Figure 6.3 displays the power spectrum computed from extracted f wave signals for

both algorithms ABS and PCA in the reference database (a), and the also for the

real data (b).
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Figure 6.3: Comparison of power spectrum in F-wave extraction algorithms

A detailed table 6.1 illustrates the mean value with the standard deviation of the

amplitude of ECG signals for the Ąrst subject through the 30 signals and the mean

value with the standard deviation of the amplitude of the extracted f-wave showing

also the mean value of the dominand atrial frequency with the standard deviation ,

utilizing two distinct analysis methods PCA (Principal Component Analysis) and

ABS (Average Beat Subtraction). The table is structured to facilitate a direct

comparison between these methodologies. For each approach, we document the

amplitude of the extracted F-wave and its dominant frequency.However the table 6.2

shows the values for the Lead Number 1 from the records of the Ąrst subject in the

real data.
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Lead 

Num. 
Lead Amplitude 
(µV) (mean ± sd) 

 

F-wave Amplitude 
(µV) (mean ± sd) 

 

ABS PCA 

F wave amplitude 
(µV) (mean ± sd) 

 

Dominant 
freq. (Hz) 

F wave amplitude 
(µV)  (mean ± sd) 

 

Dominant 
freq. (Hz) 

1 512 ± 151 38 ± 31 119 ± 57 5.4 ± 1.3 44 ± 25 6.8 ± 2.5 

2 604 ± 301 45 ± 36 141 ± 74 5.1 ± 1.4 53 ± 31 6.7 ± 2.5 

3 437 ± 207 65 ± 51 142 ± 94 5.4 ± 1.1 61 ± 42 7.2 ± 2.0 

4 520 ± 204 27 ± 21 108 ± 49 5.1 ± 1.3 37 ± 19 6.3 ± 2.6 

5 363 ± 117 48 ± 37 109 ± 67 5.4 ± 1.4 46 ± 30 7.4 ± 2.5 

6 462 ± 243 52 ± 41 129 ± 77 5.3 ± 1.2 52 ± 34 6.5 ± 2.3 

7 840 ± 131 103 ±  64 238 ± 11  5.3 ± 1.6 99 ± 48 8.0 ± 2.4 

8 925 ± 200 83 ± 58 238 ± 10 4.7 ± 1.4 94 ± 50 6.7 ± 2.1 

9 1062 ± 314 61 ±  45 263 + 12  4.4 ± 0.9 84 ± 42 6.0 ± 2.1  
10 1109 ± 399 40 ± 30 236 ± 11 4.3 ± 0.9 70 ± 34 5.9 ± 2.7 

11 1025 ± 352 20 ± 16 184 ± 93 4.6 ± 1.5 51 ± 28 6.4 ± 4.6 

12 805 ± 234 16 ± 13 191 ± 61 4.7 ± 1.7 39 ± 20 5.5 ± 4.1 

 

Table 6.1: F-wave characteristics using ABS and PCA in refence database (S1) 

 

 

Table 6.2: F-wave characteristics using ABS and PCA in real data (AF 124) 

 

 

Lead 

Num. 
Lead Amplitude 

(µV) 
ABS PCA 

F wave amplitude (µV) 
 

Dominant 
freq.(Hz) 

F wave amplitude (µV) 
 

Dominant 
freq.(Hz) 

1 967 280 11.5 52 13 

2 1110  470 11 44 9 

3 995  411 11 70  11 

4 914  358 11.75 41  9.5 

5 809  230 11 53  11.5 

6 937  422 11 53  10 

7 604 266 11 30 9 

8 567 259 11 34 9 

9 827 306  11 47 14.5 

10 1794 258 11.5 55 13 

11 2084 385 11.5 47 15.25 

12 1339 460 11.75 58 10.25 



6.2 Discussion

6.2 Discussion

The study involved implementing two distinct algorithms, ABS and PCA, on two

separate datasets,real dataset where we only considered one subject according to the

difficulties in processing the data, and a reference database where we considered one

subject with 30 signals. The analysis revealed intriguing insights for both scenarios.

For the real dataset, ABS consistently showcased a stable F-wave frequency with

notably higher amplitudes compared to PCA. However, in the reference database,

while similar trends were observed, the amplitude variance between ABS and PCA was

less pronounced. Notably, this could be attributed to the nature of the datasetsŮreal

data comprised shorter ECG segments (4 seconds) while the reference database

spanned longer ECG records. This discrepancy might underscore a limitation of

the ABS algorithm, as it still works poorly when few beats are contained in the

signals. Building upon the established observations, the divergence in the dominant

atrial frequency (DAF) between the reference database and real datasets further

underscores the distinct characteristics these datasets present to the ABS and PCA

algorithms. In the reference database, the range of DAF differs notably between

ABS and PCA, with ABS consistently showing a narrower range between 4.3 and

5.4 Hz, while PCA displays a slightly wider range from 5.5 to 8.0 Hz.

Conversely, the real dataset showcases a contrasting pattern. ABS demonstrates

a relatively narrow DAF range of 11 to 11.75 Hz, while PCA illustrates a broader

spectrum, ranging from 9 to 14.5 Hz.

This distinct divergence in DAF ranges emphasizes how ABS and PCA interpret

and analyze the frequency components within these datasets differently. The narrower

DAF ranges in the reference database might indicate a more controlled and predictable

frequency spectrum, allowing both algorithms to exhibit somewhat closer results.

However, in the real dataset, the broader DAF range suggests a more diverse and

complex frequency composition, contributing to the wider variation in results between

ABS and PCA.

These nuances highlight the signiĄcance of dataset-speciĄc characteristics and

how they inĆuence algorithm performance. The variations in DAF across reference

database and real datasets further elucidate the complexities inherent in signal

processing, underscoring the need for tailored approaches when applying algorithms

like ABS and PCA to different types of data.

Examining the power spectrum corroborated these Ąndings. In the case of the

actual dataset, signiĄcant disparities between the ABS and PCA spectra were evident,

echoing the amplitude differences observed earlier. Conversely, in the reference

database, the power spectrum variations were less pronounced due to the minor

disparities in F-wave amplitudes derived from ABS and PCA.

the scope and outcomes of our study on F-wave extraction, it is important to

acknowledge several key limitations. Firstly for the real dataset, the dataset employed

in our analysis was limited in size and diversity, which may restrict the generalizability
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of our Ąndings. A broader dataset could potentially provide more comprehensive

insights. Secondly, a signiĄcant constraint was the duration of the mapping signals,

which were only 4 seconds long. This relatively short duration, particularly for the

Average Beat Subtraction (ABS) algorithm, posed challenges in achieving optimal

performance, as longer signals are typically more conducive to accurate and robust

analysis. Lastly, our study primarily focused on the extraction of the Dominant

Atrial Frequency (DAF) as the primary feature for evaluating the effectiveness of

F-wave extraction algorithms. Relying predominantly on this single feature may not

sufficiently encapsulate the complexities and nuances of F-wave extraction, potentially

limiting the depth of our comparative analysis.

76



Conclusion

In navigating the intricate landscape of F-wave extraction from electrocardiographic

signals, this study ventured into unearthing the performance nuances of ABS and

PCA algorithms across real data and reference database. Delving into the realms

of Dominant Atrial Frequency (DAF) and power spectrum analysis, the outcomes

spotlighted pivotal insights while also illuminating notable limitations. The analysis

of the actual dataset showcased the stability of ABS in F-wave frequency and higher

amplitudes compared to PCA. However, limitations surfaced, especially in dealing

with shorter ECG segments, highlighting potential constraints of ABS, particularly

in scenarios with fewer beats within the signal.

Conversely, the reference database painted a nuanced picture with fewer disparities

between ABS and PCA due to longer ECG records. However, this also revealed a

limitation, our reliance on a shorter duration dataset hindered optimal performance,

particularly for ABS, emphasizing the signiĄcance of signal length in accurate analy-

sis.

Additionally, focusing primarily on DAF as the main evaluation feature might have

constrained the depth of comparative analysis, potentially overlooking other essential

facets of F-wave extraction. Moving forward, addressing these limitations could

involve expanding datasets to encompass greater diversity and duration, broaden-

ing the scope of analyzed features beyond DAF, and potentially exploring hybrid

methodologies that synergize the strengths of ABS and PCA. This study serves

as a foundational step, urging further exploration and reĄnement of algorithmic

approaches, ultimately striving for enhanced accuracy and robustness in F-wave

extraction from electrocardiographic signals in clinical settings.
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