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1. INTRODUCTION 

Cardiovascular diseases (CVD) are the leading cause of death globally. They are usually divided 

into: Heart disorders that affect the heart, its valves, and the blood vessels that supply blood to 

the heart muscle and Peripheral vascular diseases that affect the blood vessels of the arms, legs, 

and trunk [1]. 

Diseases affecting the blood vessels supplying the brain are referred to as cerebrovascular 

diseases. 

Heart diseases include: 

• Diseases of the blood vessels, such as coronary artery disease 

• Irregular heartbeats (arrhythmias) 

• Congenital heart problems (congenital heart defects) 

• Heart muscle disease 

• Diseases of the heart valves 

Understanding the various disorders affecting the heart requires adequate knowledge of cardiac 

physiology. 

1.1 HEART: ANATOMY AND PHYSIOLOGY 

“All the information presented in this chapter are taken from [2]”. 

The heart is an involuntary muscle about the size of a fist, located at the center of the chest in an 

area called the mediastinum. It is surrounded by a sac called the pericardium and divided into a 

right and left part, separated by a septum. Each of the two parts consists of two chambers, an 

upper atrium and a lower ventricle, see Figure 1. Each atrium is connected to the corresponding 

ventricle through the atrioventricular opening equipped with valves: the tricuspid valve separates 

the right cavities, while the mitral valve is located between the left atrium and the left ventricle. 

The openings that connect the heart chambers to the efferent vessels are protected by valves that 

prevent blood backflow: the semilunar (pulmonary) valve in the right ventricle for the pulmonary 

artery and the semilunar (aortic) valve in the left ventricle for the aorta. Blood flow occurs only 

when there is a pressure difference across the valves, causing them to open. Under normal 
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conditions, the valves allow blood to flow in one direction. The heart pumps blood to the lungs 

and to all tissues of the body through a highly organized sequence of contractions of the four 

chambers. For the heart to function properly, the four chambers must beat in an organized manner 

[2]." 

 

 

 

 

 

 

 

 

 

Figure 1. | Anatomy of the heart 

 

1.1.1 CARDIAC CONDUCTION SYSTEM 

“All the information presented in this chapter are taken from [2]”. 

As shown in Figure 2, the cardiac conduction system consists of: 

• Sinoatrial node (natural pacemaker) 

• Internodal pathways (atrial conduction) 

• Atrioventricular node 

• Intraventricular conduction system (bundle of His, common trunk, and right and left branches) 

• Purkinje fibers 

 



7 
 

 

 

 

 

 

 

 

Figure 2 | Anatomy of cardiac conduction system 

 

The sinoatrial node is located in the right atrium near the opening of the superior vena cava, just 

below the endocardium. It has a length of approximately 15 mm and a thickness of 2 mm. It 

generates impulses at a frequency of 60-100 beats per minute. In addition to having this intrinsic 

mechanism, it is subject to external control, allowing the heart rate to adapt to the body's various 

needs. External control of the heart is essentially supported by the autonomic nervous system with 

its sympathetic (adrenergic) and parasympathetic (vagal) branches. Sympathetic stimulation 

increases cardiac metabolism, conduction velocity, heart rate, and contractile force, prevailing 

during physical exercise. During sleep or rest, parasympathetic tone prevails, slowing the heart 

rate and acting in the opposite direction. From the sinoatrial node, internodal pathways extend, 

forming the conduction pathways through which the impulse spreads from the sinoatrial node to 

the atrioventricular node. The atrioventricular node is located posteriorly on the right side of the 

interatrial septum, near the coronary sinus. It has a length of 22 mm and a thickness of 3 mm. 

Since the atrial and ventricular myocardium are not electrically connected, electrical activity 

propagates to the ventricles exclusively through the atrioventricular node. The atrioventricular 

node serves as a secondary impulse formation center with a spontaneous discharge frequency of 

40-60 beats per minute. Its function is to delay the propagation of the impulse from the atria to 

the ventricles, acting as a filter. The intraventricular conduction system consists of the bundle of 

His, which runs along the right side of the interventricular septum in a subendocardial position 

for approximately 12 mm. The common trunk of the bundle of His, along with the atrioventricular 
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node, forms the atrioventricular junction. From the common trunk, the right and left branches 

originate, directed towards their respective ventricles. The right branch continues the course of 

the bundle of His along the septum. The left branch, of larger diameter, perforates the 

interventricular septum, dividing into an anterosuperior bundle and a posteroinferior bundle. 

Purkinje fibers constitute the final conduction network branching into the subendocardium of both 

ventricles, representing the terminal part of the cardiac conduction system. These fibers propagate 

the electrical impulse to all parts of the ventricular myocardium, allowing for the synchronized 

contraction of both ventricles. 

 

1.1.2 ELECTRICAL ACTIVITY OF MYOCARDIAL CELLS 

The heart is composed of a set of excitable and contractile cells called cardiomyocytes, which 

come in three different types: 

• Working myocardium, which mainly contains contractile material; 

• Nodal cells, endowed with automatic excitability, from which the electrical stimulus originates; 

• Conduction tissue, with cells organized for rapid and orderly propagation of excitation 

throughout the working myocardium. 

The cyclical functioning of the heart is ensured by the continuous transition of myocardial cells 

from the resting state to the excited state, due to cellular bioelectrical phenomena. Every 

mechanical activity, i.e., every contraction of the heart, is preceded by electrical activity, which 

we record with an ECG (electrocardiogram). Myocardial cells have an electrical potential on their 

membrane, known as the "resting potential," of -90 mV compared to the surrounding 

environment. This potential is determined by the different concentrations of ions on both sides of 

the plasma membrane. These concentration variations are maintained by pumps that expel some 

ions in exchange for others, consuming energy to counteract the natural tendency towards 

equilibrium and the electrical neutrality of the cell. In this condition, the myocardial cell is 

excitable, meaning it can change its resting potential and transmit this rapid change throughout 

the cell and to neighboring cells. This phenomenon is known as the action potential. When the 

passage of charges through the membrane reduces the membrane potential, depolarization occurs. 

This is the starting point for the formation and propagation of the electrical impulse. Once a 

certain "threshold value" is exceeded, a significant change in potential (from -90 to +50 mV) 
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occurs very rapidly. The action potential returns rapidly to its initial value, leading to 

hyperpolarization (increase in membrane potential), making the cell refractory for a certain period 

during which it cannot be excited again (refractory period). The action potential has different 

characteristics depending on the type of myocardial tissue in which it occurs. Common 

myocardial cells (comprising the atria and ventricles, as well as Purkinje fibers) exhibit a "fast 

response" action potential. As shown in Figure 3, this is determined by the opening of sodium 

channels entering the cell (phase 0), followed by subsequent repolarization due to the transient 

passage of chloride ions (phase 1) and a phase (2) in which calcium and sodium ions enter the 

cell through slow channels (plateau). There is then the final repolarization phase (phase 3), during 

which the cell returns to its initial conditions due to potassium efflux from the cell and the 

subsequent restoration of ion concentrations to resting values (phase 4). At the level of the 

sinoatrial and atrioventricular nodes, the action potential assumes a "slow response": phase 0 

begins more slowly, there is no plateau, and phase 3 is more gradual. Additionally, there is a phase 

4, represented by a constant and gradual depolarization (due to weak sodium influx and decreased 

potassium efflux). Once the threshold value is reached, this phase leads to the generation of the 

action potential. This phenomenon is fundamental for cardiac activity, as it autonomously and 

independently generates an electrical impulse at well-defined rhythmic intervals. This impulse 

spreads and triggers a cardiac contraction. For this reason, cells with a slow response are called 

pacemakers. In summary, an electrical system sends rhythmic impulses that determine cardiac 

contraction. 

 

 

 

 

 

 

 

 

Figure 3 | Action Potential of Cardiac Muscles 
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1.2 ARRHYTHMIAS 

The term "arrhythmia" refers to any problem with the rhythm or rate of a person's heartbeat [3]. 

During an arrhythmia, electrical impulses may be too fast, too slow, or irregular, resulting in an 

irregular heartbeat. This occurs when the electrical signals that instruct the heart to beat do not 

work properly. Multiple factors can cause an arrhythmia. For example, anxiety, daily stress, or 

anything that activates the "fight or flight" stress response can speed up the heartbeat and cause 

tachycardia. Other common causes of irregular heartbeats associated with cardiac arrhythmias 

include autonomic imbalances, heart diseases, overstimulation of the vagus nerve, medications 

that trigger or exacerbate arrhythmias, electrolyte or metabolic disturbances, and genetic 

disorders. In general, cardiac arrhythmias are grouped based on heart rate [4]. For example, 

tachycardia is a fast heartbeat, with a rate of more than 100 beats per minute, while bradycardia 

is a slow heartbeat, with a rate of less than 60 beats per minute. Types of tachycardia include: 

- Atrial fibrillation: Chaotic heart signals cause a rapid and disorganized heartbeat. Atrial 

fibrillation may be temporary and start and stop on its own, but some episodes may not stop 

without treatment. 

- Atrial flutter: Similar to atrial fibrillation, but heartbeats are more organized. Atrial flutter is also 

associated with the risk of stroke. 

- Supraventricular tachycardia: This generic term includes irregular heartbeats originating above 

the lower chambers of the heart, called ventricles. Supraventricular tachycardia causes episodes 

of pounding heartbeat that start and stop suddenly. 

- Ventricular fibrillation: Fast and chaotic electrical signals cause the lower chambers of the heart 

to quiver instead of contracting cohesively. This serious problem can lead to death if a regular 

heart rhythm is not restored within a few minutes. Most people with ventricular fibrillation have 

an underlying heart disease or have suffered serious trauma. 

- Ventricular tachycardia: This fast and irregular heart rate starts with faulty electrical signals in 

the lower chambers, called ventricles. The rapid heart rate prevents the ventricles from filling 

properly with blood, so the heart may not be able to pump enough blood to the body. Ventricular 

tachycardia may not cause serious problems in people with otherwise healthy hearts, but in those 

with heart diseases, it can be a medical emergency that requires immediate attention. 
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Bradycardia, a slow heartbeat with a rate of less than 60 beats per minute, can be caused by: 

- Sick sinus syndrome: The sinoatrial node determines the heart rate. If the node does not function 

properly, the heart rate may alternate between too slow and too fast. Sick sinus syndrome can be 

caused by scars near the sinoatrial node that slow down, interrupt, or block the heart rate signals. 

The condition is more common among the elderly. 

- Conduction block: A blockage in the heart's electrical pathways can cause the slowing or 

interruption of signals that activate heartbeats. Some blocks may not cause symptoms, while 

others may cause skipped or slowed heartbeats. 

Premature heartbeats are extra beats that occur singly, sometimes in alternating patterns with a 

regular heartbeat [5]. If the extra beats come from the upper part of the heart, they are called 

premature atrial contractions (PACs). If they come from the lower part, they are called premature 

ventricular contractions (PVCs). A premature heartbeat may feel like the heart skipped a beat. 

Generally, these extra beats are not a cause for concern and rarely indicate a more serious 

condition. However, a premature beat can trigger a sustained arrhythmia, especially in people 

with heart disease. Sometimes, having very frequent premature ventricular contractions can lead 

to weakening of the heart. Premature heartbeats can occur at rest. Stress, intense physical exercise, 

and the use of stimulants such as caffeine or nicotine can also cause premature heartbeats. 

 

1.3 CARDIOMYOPATHIES 

Cardiomyopathy is a disease of the heart muscle that makes it harder for the heart to pump blood 

to the rest of the body. The various types of the disease have many causes, signs, symptoms, as 

well as treatments. In most cases, cardiomyopathy causes the heart muscle to become enlarged or 

stiffened. In rare cases, the tissue of the diseased heart muscle is replaced with scar tissue. As 

cardiomyopathy worsens, the heart becomes weaker. The heart becomes less able to pump blood 

throughout the body and unable to maintain a normal electrical rhythm. The result can be heart 

failure or irregular heartbeats called arrhythmias. A weakened heart can also cause other 

complications, such as problems with heart valves. 

The main types of cardiomyopathy are: 

- Dilated cardiomyopathy 
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- Hypertrophic cardiomyopathy 

- Restrictive cardiomyopathy 

Some cases of cardiomyopathy have no signs or symptoms and do not require treatment. In other 

cases, cardiomyopathy develops rapidly with severe symptoms and serious complications occur. 

In these cases, treatment is necessary [6]. Treatments include lifestyle changes, medications, 

surgeries, implanted devices to correct arrhythmias, and other non-surgical procedures. These 

treatments can control symptoms, reduce complications, and prevent the worsening of the disease. 

 

1.3.1 DILATED CARDIOMYOPATHY 

Dilated cardiomyopathy (DCM) is the most common type and mainly occurs in adults under the 

age of 50. It affects the ventricles and atria of the heart, the lower and upper chambers of the heart. 

Often, the disease begins in the left ventricle, the heart's main pumping chamber. The heart muscle 

begins to dilate, stretching and thinning. As a result, the inside of the chamber enlarges. The 

problem often spreads to the right ventricle and then to the atria. When the heart chambers dilate, 

the heart muscle does not contract normally and cannot pump blood well. When the heart 

weakens, heart failure can occur. Common symptoms of heart failure include shortness of breath, 

fatigue, and swelling of the ankles, feet, legs, abdomen, and neck veins. Dilated cardiomyopathy 

can also lead to problems with heart valves, arrhythmias (irregular heartbeats), and blood clots in 

the heart. 

 

1.3.2 HYPERTROPHIC CARDIOMYOPATHY 

Hypertrophic cardiomyopathy is often caused by abnormal genes in the heart muscle. These genes 

cause the walls of the heart chamber (left ventricle) to become thicker than normal. The thickened 

walls can stiffen, reducing the amount of blood drawn in and pumped out to the body with each 

heartbeat. In obstructive HCM, the thickened part of the heart muscle, usually the wall (septum) 

between the two lower chambers (ventricles), blocks or reduces blood flow from the left ventricle 

to the aorta. Most people with HCM have this type. In non-obstructive HCM, the heart muscle is 

thickened but does not block the flow of blood leaving the heart. 
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1.3.3 RESTRICTIVE CARDIOMYOPATHY 

Restrictive cardiomyopathy tends to affect the elderly. The heart's ventricles stiffen because 

abnormal tissue, such as scar tissue, replaces normal heart muscle. As a result, the ventricles 

cannot relax normally and fill with blood, and the atria enlarge. Blood flow in the heart decreases 

over time. This can lead to problems such as heart failure or arrhythmias. Restrictive 

cardiomyopathy is the least common form of cardiomyopathy, which can be divided into two 

main categories: 

- Non-obliterative: characterized by the abnormal infiltration of the myocardium by a foreign 

substance. 

- Obliterative: characterized by endocardial and subendocardial fibrosis. 

 

1.4 INCIDCENCE AND MORTALITY 

According to Istat data for the year 2020 [7], there were 63,952 reported deaths in Italy due to 

ischemic heart diseases, of which 34,095 were males and 29,857 were females. According to an 

article published by the Ministry of Health [8], cardiovascular diseases caused 224,482 deaths 

(97,952 in men and 126,530 in women), accounting for 38.8% of total deaths. Such a high 

percentage is partly attributed to the aging population and low birth rates that have characterized 

the country in recent years. For ischemic heart disease, there were 75,046 deaths (37,827 in men 

and 37,219 in women), approximately 33% of all deaths due to circulatory system diseases. In 

men, mortality is negligible until the age of 40, starts to emerge between 40 and 50 years, and 

then increases exponentially with age. In women, this phenomenon starts around the age of 50-

60 and increases rapidly. The disadvantage of men compared to women is more pronounced in 

reproductive age and tends to decrease with advancing age. The difference in disease frequency 

between the sexes is also associated with clinical differences, with more frequent sudden deaths 

and silent heart attacks in women. The term "incidence" refers to the number of new cases of a 

disease occurring in a population during a specific period, usually a year. Incidence data were 

obtained from studies conducted as part of the CUORE Project, which enrolled over 21,000 men 

and women aged 35 to 74 starting in the mid-1980s, with an average follow-up period of 13 years. 

Rates showed an incidence of coronary events (6.1 per 1,000 per year in men with a 28% 28-day 
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mortality rate and 1.6 per 1,000 per year in women with a 25% mortality rate). The mortality rate 

was 27.9% in men and 25.4% in women, increasing significantly with age. 

The data are reported in Table 1. 

 

Table 1. | The project HEART reports a section of the table on incidence and fatality rates. 

 

Age 

(years) 

Coronary events 

Man Women 

Rates of 

incidence 

per year 
per 1,000 

Lethality, 

% 

Rates of 

incidence 

per year 
per 1,000 

Lethality, 

% 

35-44 3,2 9,6 0,5 8,3 

45-54 4,5 15,3 1,2 11,4 

55-64 9,7 33,6 2,8 27,1 

65-74 10,1 54,2 4,5 54,5 

35-74 6,1 27,9 1,6 25,4 

 

 

1.5 TREATMENTS 

The treatments for arrhythmias are described in The New York Times on July 23, 2014 [9], and 

these treatments include: therapy with electric shock (defibrillation or cardioversion) and 

implantation of a pacemaker in the patient's chest, antiarrhythmic drugs that can be used to prevent 

the recurrence of an arrhythmia and to prevent the heart rate from becoming too fast or too slow, 

cardiac ablation for rhythm problems, implantable cardiac defibrillator to control heart failure, 

and pacemaker device when the heart beats irregularly. It sends a signal to the heart to beat at a 

precise and normal rate. The choice among all these different approaches depends on various 

factors such as the patient's age, pre-existing specific medical conditions, and the different types 

of arrhythmia. 
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1.5.1 ANTIARRHYTHMIC DRUGS 

The Cardiac Arrhythmia Suppression Trial (CAST) changed the use of antiarrhythmic drugs [10]. 

CAST was designed to test the hypothesis that suppressing antiarrhythmic drugs for premature 

ventricular contractions (PVC) and unsustained ventricular tachycardia (VT) might improve 

mortality in post-myocardial infarction patients with reduced left ventricular function. The 

preferred drugs Moricizine, Flecainide, and Encainide were known to have potent ventricular 

arrhythmia suppression properties. However, CAST demonstrated an increase in mortality in 

patients treated with antiarrhythmic drugs compared to placebo. Perhaps the increased mortality 

rate was due to the proarrhythmic effects of these drugs, especially in the presence of ischemia 

and left ventricular dysfunction [11]. Therefore, class 1C drugs are contraindicated in patients 

with coronary artery disease (CAD) and ischemia. There is concern that an increase in mortality 

may occur with other antiarrhythmics, especially if administered for relatively benign arrhythmias 

(e.g., atrial fibrillation, PVC). Quinidine has been shown to increase mortality when given to 

patients with atrial fibrillation [12]. The Vaughn Williams classification of antiarrhythmic drugs 

is as shown in Chaudhry et al. [11]. Class 1, sodium channel blockers; Class 1A, depresses phase 

0 of the action potential, delays conduction, and prolongs repolarization: phase 3 or 4 (quinidine, 

procainamide, disopyramide); Class 1B, minimal effect on phase 0 of the action potential in 

normal tissues, depresses phase 0 in abnormal tissues, shortens repolarization or minimal effect 

(lidocaine, tocainide, mexiletine, phenytoin); Class 1C, depresses phase 0 of the action potential, 

slows conduction in normal tissues (Flecainide, Propafenone, Moricizine); Class 2, adrenergic 

beta-blockers (Acebutolol, Atenolol, Bisoprolol, Carvedilol, Metoprolol, Nadolol, Pindolol, 

Propranolol); Class 3, prolongs action potential duration by increasing repolarization and 

refractoriness (Amiodarone, Sotalol, Bretylium, Dofetilide, Azimilide, Ibutilide); Class 4, 

calcium antagonists (Diltiazem, Verapamil); and others (Digoxin, Adenosine). Following the 

CAST study, several reports have confirmed the proarrhythmic effects of antiarrhythmic drugs if 

used capriciously, leading to specific guidelines for the use of antiarrhythmic drugs, especially 

those that prolong the QT interval and increase proarrhythmia. Usually, class IA and III agents 

are initiated in the hospital with telemetry monitoring. Class IC agents are relatively safe if used 

in a normal heart. Similarly, amiodarone, due to its longer half-life (from 43 days to a few months) 

and low incidence of proarrhythmia, can be initiated at low doses on an outpatient basis in the 

absence of severe left ventricular dysfunction or bradycardia. Based on the results of the CAST 

study, the Food and Drug Administration (FDA), the United States, and pharmaceutical industries 

have taken measures to ensure appropriate prescribing practices and medical credentials when the 
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new antiarrhythmic drug, Dofetilide (Tikosyn), was released for use in patients with atrial 

fibrillation. 

 

1.5.2 PACEMAKER AND IMPLANTABLE CARDIAC 

DEFIBRILLATOR (ICD) 

The implantation of a permanent pacemaker (PPM) requires specific levels of evidence and 

indications based on the guidelines of the American College of Cardiology and the American 

Heart Association (ACC/AHA) [13]. Class I and Class II indications are appropriate for PPM 

implantation. Correlation of symptoms with underlying bradyarrhythmias or heart block is 

necessary. The implantable cardiac defibrillator (ICD) is indicated for sustained ventricular 

tachycardia (VT) or ventricular fibrillation (VF), for survivors of sudden cardiac death, for the 

Antiarrhythmics versus Implantable Defibrillators (AVID) study for secondary prevention [14], 

or for the Multicenter Automatic Defibrillator Implantation Trial I (MADIT I) study for inducible 

monomorphic VT and secondary prevention [15,16]. These devices can be single or dual-

chambered and may have rate-responsive capabilities. The results of studies on biventricular and 

single-chamber ICDs (Dual-Chamber and VVI [DAVID]) have shown that biventricular ICDs in 

patients with reduced left ventricular function lead to a higher incidence of congestive heart 

failure (CHF) and increased mortality [17]. The presumed mechanism is the creation of functional 

left bundle branch block (LBBB), which can lead to cardiac desynchronization and heart failure. 

Conversely, restoration of cardiac resynchronization with biventricular pacing may improve CHF 

symptoms, leading to increased referrals for patients implanted with class II to IV CHF and severe 

ventricular dysfunction [18]. For primary prevention of sudden death in patients with severe left 

ventricular dysfunction, intact normal sinus node, AV node, and conduction, and no perceived or 

anticipated indication for pacing, the preferred ICD device is a single-chamber device (stimulated 

and inhibited ventricular pacemaker [VVI]). Biventricular ICDs should be reserved for patients 

with abnormal SA or AV nodal or conduction system or those with frequent supraventricular 

arrhythmias, such as atrial fibrillation, to avoid shocks secondary to rapid ventricular responses. 

When biventricular pacing is necessary and the left ventricle is severely compromised, 

consideration should be given to a biventricular ICD. 
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1.5.3 ABLATION 

Transcatheter radiofrequency ablation (RFA) has been a significant advancement in the treatment 

of cardiac arrhythmias [19]. RFA has provided the opportunity to address specific cardiac 

conditions. Introduced over 20 years ago as DC ablation and in the 1980s with radiofrequency, 

RFA has proven to be a safe and cost-effective treatment for specific cardiac arrhythmias such as 

atrioventricular nodal reentrant tachycardia (AVNRT), orthodromic reciprocating tachycardia 

associated with Wolff-Parkinson-White syndrome (WPW), concealed accessory pathways, 

normal cardiac ventricular tachycardia (especially right ventricular outflow tract tachycardia or 

fascicular tachycardia), and atrial flutter [20,21]. RFA can also provide adjunctive therapy for 

ischemic ventricular tachycardia when patients experience frequent ICD shocks or failed 

antiarrhythmic therapy. Pulmonary vein isolation is a therapeutic option for symptomatic drug-

refractory, paroxysmal, or persistent atrial fibrillation and is an acceptable method currently under 

clinical investigation. However, rate control and chronic anticoagulation are acceptable 

alternatives for patients with atrial fibrillation, as highlighted by the AFFIRM (Atrial Fibrillation 

Follow-up Investigation of Rhythm Management) study [22]. Macro reentrant tachycardia, 

known as orthodromic alternate tachycardia (ORT) or AVRT, alternate tachycardia, occurs when 

the AV node is used in the anterograde direction and the accessory pathway is used in the 

retrograde direction. AVRT is a narrow and complex tachycardia but may have small retrograde 

P waves visible between the QRS and T waves. When the accessory pathway is used in the 

anterograde direction, antidromic alternate tachycardia (ART) occurs, resulting in wide and 

complex tachycardia mimicking ventricular tachycardia. Atrial fibrillation is common with WPW 

syndrome, constant retrograde reentry into the atrium during ventricular depolarization. Due to 

the potential for rapid conduction over an accessory pathway with atrial fibrillation and WPW, 

caution is needed with AV nodal blocking agents, digoxin, and calcium channel blockers. 

Although rare, atrial fibrillation with rapid ventricular response over an accessory pathway can 

trigger ventricular fibrillation, leading to sudden death. Acute treatment of atrial fibrillation and 

WPW consists of cardioversion and occasionally intravenous procainamide. The most common 

location for an accessory pathway is in the left free ventricular wall, but it can also be 

posteroseptal or right. RFA has been successful in ablating and curing WPW. The success rate is 

97% and has been safely achieved in many centers. For symptomatic WPW, especially in young 

patients, RFA is considered the treatment of choice. Radiofrequency ablation (RFA) has also been 

extremely useful in curing typical atrial flutter, identified by an atrial rate of 240 beats/min or 

higher and characteristic negative sawtooth flutter waves on the ECG, typically in the inferior 
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leads (II, III, and aVF). Mapping studies have shown that typical flutter occurs with 

counterclockwise rotation of atrial activation descending on the free wall of the right atrium, 

crossing the isthmus (area between the opening of the coronary sinus and the tricuspid annulus), 

and ascending the intra-atrial septum. Interruption of conduction on the isthmus by RFA can 

successfully eliminate typical flutter. However, 25% of patients continued to have atrial 

tachyarrhythmias, particularly atrial fibrillation. RFA is an acceptable first-line therapy for 

symptomatic atrial flutter. 

 

1.5.3.1 PROCEDURE OF ABLATION 

Catheter ablation procedures are performed in electrophysiology laboratories [23]. In this process, 

three or four electrode catheters are percutaneously inserted into a femoral vein, internal jugular 

vein, or subclavian vein and are positioned inside the heart to allow stimulation and recording at 

crucial sites. The efficacy of trans-catheter ablation is closely linked to the accurate identification 

of the site of origin of the arrhythmia. Once identified, an electrode catheter is placed directly in 

contact with the site, and radiofrequency energy is applied through the catheter to destroy it. 

Radiofrequency energy is delivered with wavelengths ranging from 300 to 750 kHz during trans-

catheter ablation procedures. This process induces resistive heating of the tissue in contact with 

the electrode. Since the degree of tissue heating is inversely proportional to the radius to the fourth 

power, the lesions created by radiofrequency energy are small. Typical ablation catheters, with a 

diameter of 2.2 mm (7 French) and a distal electrode length of 4 mm, create lesions approximately 

5-6 mm in diameter and 2-3 mm in depth. Larger lesions can be obtained with larger electrodes 

or irrigated catheters using saline solution. Although electrical damage may contribute, the 

primary mechanism for tissue destruction through radiofrequency current is thermal damage. 

Irreversible tissue destruction requires the tissue temperature to reach about 50°C. In most 

ablation procedures, the power supplied by the radiofrequency generator is manually or 

automatically adjusted to maintain a temperature between 60 and 75°C at the interface between 

the electrode and tissue. If the temperature at the electrode-tissue interface exceeds 100°C, plasma 

clots and dried electrode tissue may form, impeding effective current flow, increasing the risk of 

thromboembolic complications, and necessitating catheter disposal to allow removal of 

coagulated material from the electrode. 
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1.5.3.2 IMPORTANCE OF MAPPING 

In the early 1990s, trans-catheter ablation was limited to accessory pathways, atrioventricular 

nodal reentry tachycardia, and atrial tachycardia/flutter, all based on standard electrophysiological 

mapping systems. Subsequently, the expansion of ablation included atypical flutters, ventricular 

tachycardia, and atrial fibrillation (AF). Since conventional fluoroscopic catheter mapping has 

limited spatial resolution and involves prolonged fluoroscopy, a non-fluoroscopic 

electroanatomical mapping technique has been developed to overcome these drawbacks. As a 

result, the past decade has witnessed the development of an increasing number of atrial fibrillation 

ablation procedures, largely based on anatomical considerations, leading to the explosive 

development of computerized mapping for increased precision. [24] Three-dimensional (3D) 

mapping technology enhances our understanding of atrial fibrillation and improves the safety, 

efficacy, and efficiency of radiofrequency (RF) ablation by enabling the construction of a 3D 

geometry to guide catheter navigation and lesion placement. [25]. For successful ablation, two 

factors must come together: detailed mapping and the ability to navigate catheters delivering 

energy to specific targets. Therefore, 3D mapping systems are an important component of many 

atrial fibrillation ablation strategies, enabling navigation to relevant anatomical structures for 

atrial fibrillation ablation. This is why these systems have suddenly become crucial, being used 

in most EP laboratories. As the catheter moves inside the heart, 3D mapping systems continuously 

analyse its position and orientation and present this data to the user on the monitor of a graphical 

workstation, enabling fluoroscopy-free navigation. Compared to conventional mapping, EAM 

has been shown to reduce fluoroscopy time and radiation exposure while improving procedural 

success. [26]. CARTO (Biosense, Diamond Bar, CA, USA) and EnSite NavX (St. Jude Medical, 

Saint Paul, MN, USA) are the most common EAM systems used in clinical practice. These 

computerized EAM systems accurately reconstruct and identify the target composition of an 

anticipated ablation field. Arrhythmia management has been revolutionized by the introduction 

of RFCA procedures. The combination of high procedural success and low complication rates has 

made RFCA the treatment of choice for most arrhythmias. 
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2. OBJECTIVES 

For years, one of the primary challenges associated with cardiovascular diseases has been the risk 

of recurrence, i.e., the possibility of symptoms or complications recurring after a period of 

stability or after a specific intervention or treatment. For conditions such as arrhythmias and heart 

diseases, extensive and thorough studies have already been conducted. Pharmacological 

treatments and targeted interventions have been developed, especially in the case of ablation 

procedures as described previously. The most effective method would be to prevent the risk of 

recurrence by addressing parameters that are most significant and correlated to the problem. For 

this reason, many physicians are exploring various parameters that can predict whether a patient 

may have relapses or not, in order to act accordingly to minimize the chances of recurrence. In a 

previous analysis, machine learning methods were implemented to provide predictive models for 

recurrence. In particular, models created based on variables from the patient's medical records 

and variables from electroanatomical maps obtained from the CARTO 3 system were evaluated. 

The results highlighted high correlations with recurrence for variables related to the patient's 

clinical history as well as electroanatomical variables. 

In this study, the main purpose is to separately analyse the variables from the clinical records and 

the electroanatomical variables to try to identify what additional information and correlations 

come from the CARTO 3 values in order to provide physicians with new assessment tools to 

consider for reducing the risk of recurrence. All parameters extracted from the electroanatomical 

mapping exports were divided into 8 different quadrants indicative of specific areas of the 

ventricle to analyse whether a specific part compared to another could influence recurrence. 

The number of patients analysed is too low to establish scientific evidence, but a preliminary 

analysis has been conducted to develop a promising prototype to continue this research and 

increase the number of patients. The idea of this work is to use various machine learning 

techniques, such as logistic regression and support vector machine, to discover which features are 

most correlated with outcomes and how. All the results obtained were designed to be integrated 

with the patients' clinical records as additional values that can be used by physicians in making 

important decisions. The idea is also to compare the results obtained from the various 

methodologies used to provide a better and more accurate outcome, as well as to determine which 

of the proposed methodologies is most suitable for this task. 
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3. MATERIALS AND METHODS 

 

3.1 HARDWARE AND SOFTWARE 

For this work, a computer with an i9 processor and 64 GB of RAM was utilized. The program 

used to conduct various analyses was the MATLAB working environment, specifically version 

R2023b, both in online and desktop modes. Several toolboxes within the program were employed, 

including the Statistics and Machine Learning Toolbox and Experiment Manager Toolbox for the 

analysis part. Additionally, the Parallel Computing Toolbox was utilized for parallel processing 

to fully leverage all processor cores and perform calculations simultaneously. The main advantage 

is undoubtedly the reduction in computation times during execution. Furthermore, data from the 

CARTO 3 system, designated and developed by Biosense Webster, were also utilized in the 

project for electroanatomical mapping. 

 

3.2 ELECTROANATOMICAL MAPS 

Electroanatomical mapping, particularly when referring to the heart, is a process used to identify 

and track the distribution both over time and in space of electrical signals that occur during a 

specific cardiac rhythm. Electroanatomical mapping systems have allowed and facilitated 

challenging interventional ablation procedures for over a decade. Initially, their use was in 

arrhythmias where the ablation target is difficult to identify, such as ventricular tachycardias in 

structural heart diseases, atypical atrial flutters, or arrhythmias in patients with complex 

congenital heart defects. In recent years, electroanatomical mapping systems have also been used 

to guide catheter-based pulmonary vein isolation, an important component of modern atrial 

fibrillation (AF) management [27]. Electroanatomical mapping systems integrate three important 

functionalities: 

- Non-fluoroscopic localization of electrophysiological catheters in a three-dimensional (3D) 

space; 

- 3D analysis and visualization of activation sequences calculated from local electrograms or 

computed, and 3D visualization of electrogram voltage ("scar tissue"); 
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- Integration of these "electroanatomical" information with non-invasive images of the heart 

(mainly computed tomography or magnetic resonance imaging) [28]. 

 

3.2.1 BASIC PRINCIPLES 

The basic concepts of mapping are founded on three essential notions: ECG, Position, and 

Mapping. 

ECG: The ECG subsystem supports surface ECG signals and channels for IC-ECG (intracardiac 

electrogram). Its function is to sample, filter, display, and record ECG signals. Additionally, it 

transmits ECG signals through the recording system. 

Position: The system utilizes two detection technologies: 

- CARTO® magnetic detection technology, which provides the position using the magnetic fields 

generated by the Location Pad and measured by Biosense Webster catheters equipped with an 

internal magnetic sensor. 

- Advanced Catheter Location (ACL) detection, which provides position data for each electrode 

connected to the system. The position is calculated based on signals received from six patches 

connected to the patient. Tissue conductivity variation is calibrated using magnetic detection 

technology, which is not influenced by body conductivity. 

Mapping: Mapping technology is used to create maps of the heart chambers for display in the 

Main Map Viewer. These maps are created by combining precise position data with ECG data. 

The system allows the use of the following mapping methods: 

- Electroanatomic mapping (EA) 

- Fast Anatomical Mapping (FAM) technology for rapid anatomical mapping 

- Mapping with ultrasound catheter 

The maps can be combined. For example, electroanatomic points can be added to a reconstruction 

created from ultrasound contours. 
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3.2.2 MAIN COMPONENTS 

The Carto system consists of a low-intensity magnetic field generator composed of three coils 

positioned under the patient's chest (Figure 4), six skin patches, three on the back and three on the 

patient's chest (Figure 5), a computer for data processing, and a display. 

 

 

 

 

 

 

Figure 4 | Example of location pad of the CARTO 3 System 

 

 

 

 

 

 

 

 

Figure 5 | The image on the left shows the correct placement of the patches on the patient. The image on the right 

shows the localization of these patch within the reference system of the Location Pad 

 

To perform 3D electroanatomical mapping of the cardiac chambers, specialized catheters with 

location sensors at their tips are required. These sensors consist of spirals positioned orthogonally 

along the three spatial axes. The Carto system uses magnetic fields to determine the position and 
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orientation of the catheter and records intracavitary electrocardiograms from the sensors at the 

catheter tip. By collecting spatial and electrical information from different points, the system 

reconstructs the geometry of the cardiac chambers in real-time and analyzes arrhythmia 

mechanisms and ablation substrates. This process is based on the principle that metal spirals 

generate electric current when exposed to a magnetic field, with the current intensity depending 

on the intensity of the magnetic field and the orientation of the spirals (see Figure 6). 

 

 

Figure 6 | Image of the positioning and arrangement of the spirals inside the catheter used to generate a local 

reference system. 

 

The Carto system employs a triangulation algorithm similar to that used in GPS. The sensors on 

the catheter tip measure the current intensity in each spiral (along the x, y, and z axes), allowing 

the system to determine the distance between the catheter and each magnetic field source, see 

Figure 7. 

 

 

 

 

 

 

 

 

Figure 7 | Upper and lateral views of the triangulation-based localization system 
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These distances are then used to create a spherical cap representing the possible catheter position 

towards each source. However, the catheter can only be positioned in the area where the spheres 

intersect, thus determining the three-dimensional position.  

The Carto system can also calculate the roll, pitch, and yaw of the catheter, in addition to the x, y, 

and z coordinates. Intracavitary electrocardiograms are recorded and integrated with positional 

information for each endocardial site reached, allowing for the creation of the activation map and 

cardiac geometry. To compensate for artifacts caused by cardiac and respiratory movements, the 

Carto system makes corrections to the map coordinates, using the surface electrocardiogram as a 

reference and anatomical tags. The surface electrocardiogram is synchronized with activation data 

recorded by the catheter during map creation. The anatomical reference, often a skin patch or a 

catheter fixed inside the heart, is used to correct distortions caused by patient thoracic movements as 

shown in Figure 8. 

 

 

 

 

 

Figure 8 | Image representing the interaction of patches to correct breathing artifacts 

 

Furthermore, the system requires the definition of an "area of interest," representing the time 

interval, relative to a reference point on the surface electrocardiogram, during which local 

activation occurs, either early or late compared to the reference. The total duration of the area of 

interest cannot exceed the duration of the cardiac cycle in the case of tachycardia. The Carto 

system offers the possibility of overlaying the electroanatomical map with CT or MRI images 

acquired before the procedure, allowing verification of anatomical landmarks, improvement of 

cardiac geometry, and more precise guidance during ablation. In the latest version, Carto3, two 

additional modules are available: the CartoUNIVU module, which allows overlaying fluoroscopic 

images onto the electroanatomical map in real-time, and the CartoSound module, which uses 
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intracardiac echocardiography as a tool for procedure monitoring and anatomical support in map 

creation. [29, 30] 

 

3.2.3 EXPORT 

All data recorded by the system is collected in an export file containing all the information. This 

export includes various details for each contact point, meaning every point on the inner heart wall 

touched by the catheter. Among the many details we have, such as point indices, catheter IDs, the 

most relevant point-to-point values include: 

- Coordinate Position, specifically three coordinates, one for each of the previously described 

imaginary axes. These are, of course, useful for determining the point's position. 

- Angular Coordinate, i.e., the three angles that determine the catheter's orientation relative to the 

fixed reference system at the time of signal acquisition. These specific pieces of information are 

not relevant for this project. 

- Unipolar Voltage Value uses a single electrode to record electrical activity at a specific point 

inside the heart. This type of recording measures the amplitude (intensity) of the electrical signal 

at that point. 

- Bipolar Voltage Value, on the other hand, uses two electrodes positioned at a certain distance 

from each other to record electrical activity between them. This recording provides information 

about the direction and sequence of propagation of the electrical impulse between the two 

electrodes. 

- Local Activation Time (LAT) value refers to the precise moment when heart cells at a specific 

point in the heart activate during the cardiac cycle. LAT represents the time elapsed from the 

beginning of the cardiac cycle or from the onset of the electrocardiographic (ECG) wave to the 

moment when heart cells in a particular region begin to contract in response to the electrical 

impulse. In other words, LAT indicates when the electrical impulse reaches that specific point 

and begins to trigger the contraction of heart cells in that area. This can help determine if a point 

or an entire region is delayed or early in its activation. With a LAT map, the system color-codes 

activation time data for each acquired point and overlays this information onto the anatomical 

geometry. For example, red indicates sites activated early, blue and purple indicate areas activated 

late, and yellow and green areas indicate intermediate activation times. 
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- Impedance value is expressed in Ohms and refers to the voltage difference between two points 

in the electrical circuit (i.e., between the electrodes). This voltage difference is influenced by the 

resistance of the cardiac tissues. The higher the impedance, the greater the electrical resistance 

offered by the tissues. This is because when an electrical impulse spreads through the cardiac 

tissues, it encounters a certain resistance, represented by impedance. This resistance affects the 

shape and amplitude of the electrical signals recorded by the electrodes. Impedance is primarily 

used to assess the quality of contact between electrodes or catheters and cardiac tissues. A 

significant change in impedance could indicate a contact problem or a non-ideal electrode 

position, which could affect the accuracy of electrical activity measurements. 

The export is downloaded as a digital file, available in various formats, including the most 

commonly used ones, such as text files (.txt) and Excel files (.xlsx). 

 

3.2.4 EXTRACTION ALGORITMH 

In this study, one of the main purposes is to extract from the data provided by the system 

additional parameters that are not directly calculated but can be significant and representative of 

some pathology or symptom of a possible future relapse. In particular, we have calculated, starting 

from the data provided by the exports: 

- Gradient (ms): The value in milliseconds of the difference between the area with the greatest 

delay and the area with the greatest advancement relative to their distance. 

- Voltage: Point-to-point difference of the bipolar potential with unipolar potential with possible 

identification of more organized regions, where multiple points with high differences are grouped 

in the same area. 

- Impedance: the average of the Impedance values. 

To calculate these new parameters, a specific algorithm has been created. The main problem with 

these mapping systems is that only some points are measured from the entire image displayed on 

the monitor, while other intermediate values are estimated and calculated by the system and 

therefore are not present in the exports. Then there is the problem that each patient's heart is of 

different sizes and positioned with a slight difference in orientation compared to another. It was 

therefore decided to normalize these values by projecting them onto a sphere. More precisely, a 

sphere of fixed dimensions is constructed, the entire surface of the sphere is precisely divided into 
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14400 faces of equal area, the centroid of the cloud of points resulting from the measurements 

made is calculated, the centroid is positioned at the center of the sphere, and all points are 

projected from the centroid to the inner surface of this sphere. Each face of the surface of the 

sphere can have only two values: null value if the face has not been hit by any projection, 

otherwise, the face takes on the values corresponding to the projected point. The number of faces 

in which to divide the sphere was chosen following many tests, and that value was selected for 

which no more than one projected point corresponded to each face, this in order not to reduce the 

accuracy of the analysis and not have to make any kind of approximation. The main advantages 

of this projection are two: one referred to the position problem described above, and the other to 

the possibility of calculating the required values. The first is because the coordinates of each face 

are known a priori and the dimensions of both the sphere and the faces are fixed, and therefore 

are the same for each measurement. This allows us to compare all patient mappings with each 

other, something that would not have been possible without normalization in terms of space and 

orientation. The second is that without an algorithm like this, the export would be difficult to 

understand and therefore unusable. Many values are reported in the export for each point, but 

being able to interpret the distances and differences between the values simply by reading them 

is too difficult and not at all enjoyable. Instead, thanks to this algorithm, we can automatically 

extract not only the individual point-to-point values but also the values, as in the case of the 

required parameters, which are calculated as iterations between values of different points. For the 

evaluation of the zones with the greatest delay and with the greatest advancement, the LAT value 

is used. Values below a certain threshold (last 20% between maximum and minimum values) are 

considered late, and adjacent delay points are part of the same delay area. This allows calculating 

the extension and position of the late potentials as a percentage of the non-late ones. Following 

the same criteria, the positions and extensions of the areas with early potentials are calculated. By 

applying a similar process, the amplitudes of the point-to-point potentials, both bipolar and 

unipolar, are calculated. The difference is calculated for each individual point, and those with 

values above a certain threshold (last 20% between maximum and minimum values) are 

considered critical. In this way, it is possible to evaluate the presence of regions where multiple 

points with significant differences, i.e., critical values, are grouped in the same area. Below, in 

Figure 9, two images resulting from the execution of the designed program are shown. In addition 

to the numerical results useful for the continuation of this project, it was thought that the 

possibility of visually seeing what is happening would also be useful for the clinician. 
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Figure 9 | Two images resulting from the extraction algorithm. The image at the top shows the spatial distribution 

of points in the left ventricle measured during an examination with the CARTO 3 system. The image at the bottom 

represents the spherical distribution of the same points. 

 

An additional algorithm has been further implemented to divide the sphere into eight different 

quadrants, as can be seen in Figure 10, each representing a specific position of the patient's 

ventricle. In this way, for each parameter, we have eight different values associated with the 

specific zone where they are measured. 
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Figure 10 | Images resulting from the extraction algorithm. The image shows the division into eight quadrants of 

the sphere where the points of the left ventricle measured during an examination with the CARTO 3 system are 

projected. 

 

3.3 STUDY COHORT 

Retrospectively, data from consecutive patients referred to the Department of Clinical Cardiology 

and Arrhythmology Department of the Univeristy Hospital of the Ospedali Riuniti di Ancona 

were collected from September 2018 to July 2023. Patients for this study were selected using 

various inclusion and exclusion criteria. The primary inclusion criterion is the presence of any 

cardiac pathology, ischemic or non-ischemic, in the clinical record. Additionally, among all 

patients in the department, those who underwent electroanatomical mapping, in addition to the 

traditional clinical tests we will discuss in detail later, were selected for this study. To be included 

in the study cohort, the patient must have undergone follow-up, as otherwise predicting the 

outcome would be impossible. Regarding the exclusion criteria, relevance was fundamental; 

characteristics in the entire clinical record that, according to the literature, are not indicative for 

predicting cardiac diseases were disregarded and not included in the database. Characteristics 
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with an excessive number of missing values, i.e., parameters not common to all patients, were 

excluded. Features with non-heterogeneous binary logical values were also eliminated because it 

is pointless to use a parameter that always contains the same value as input for our model; they 

would have been parameters without any statistical significance. 

 

3.4 CLINICAL TESTS 

All patients in the database, in addition to the medical history conducted by the physician, 

underwent several clinical tests from which specific values considered risk factors for this field 

of study were extracted. The clinical examinations in question are echocardiogram, 

electrocardiogram, magnetic resonance imaging, electroanatomical mapping, and blood tests. 

Naturally, a follow-up was then conducted for each patient to ascertain those who had a relapse 

and those who did not. 

 

3.5 DATA PREPARATION 

The input values for our models, regardless of the machine learning technique used, are always 

the same. In particular, we have divided the inputs from the clinical records and the inputs from 

the data extracted from the mapping system. Regarding the first set of data, they consist of 

numerical or binary values, depending on the type of variable, and they refer to one or more 

specific parameters emerged from the medical history, follow-up, or clinical tests. The numerical 

values are expressed in percentage or in a specific muscle unit, while binary values 0 and 1 often 

represent the logical value "yes/no," indicating whether that parameter is present or not in the 

patient. Binary values also express membership in two different classes, such as males and 

females in the "gender" parameter. When there are more than two classes, the variable represents 

a value between one and the number of classes to indicate membership. According to the 

literature, there are various parameters that can be indicative of some type of heart disease, which 

is why only a few values considered valid for the study have been chosen from the patient's entire 

clinical record. Specifically, the values in question refer to: risk factors and pathological 

conditions, symptoms, characteristics of heart diseases, echocardiogram, electrocardiogram, 

magnetic resonance imaging, electroanatomical mapping, reason for intervention, ablation 

intervention, and blood tests. As for the second set of data, they are all numerical values 
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representing the value of Gradient, Voltage, or Impedance in that specific area.  The "recurrence" 

parameter in the database is selected as the expected value, aiming to predict it accurately. The 

value we want as the output of our models is logical, where the value 1 corresponds to the patient 

who had a relapse and the value 0 to the patient who did not. Specifically, initially, 223 features 

were provided for each patient. Following careful analysis and after applying inclusion and 

exclusion criteria, 166 features were discarded, and 57 were then considered for analysis. One 

feature, namely "Recurrence," is the variable to be predicted. The other 60 features used for the 

study are summarized in Table 2. The "Variables" column shows the names or acronyms of the 

57 features used for this study. For better understanding, all acronyms or abbreviations are written 

out in full and listed below in Table 3. The variable type is indicated in the "Type" column. The 

letters V, B, and C correspond respectively to: Value, to indicate if the variable takes real values, 

Binary, where values 0 and 1 generally imply the presence or absence of that parameter, and 

Class, in case the variable takes values for a certain range. The last three columns report the mean 

values for V-type variables, the count of parameter presence in the case of B-type variables, and 

the most present class number in the case of C-type variables. In the "Total" row, these values are 

reported for all 220 patients, in the "No" row, the values refer to patients who do not relapse, and 

in the "Yes" row, those refer to patients who relapse. 

 

Table 2. | The variables used for the study are reported, with an indication of the variable type: N for numerical 

value, B for binary, C for categorical. Average values are also provided, namely the count of the presence or 

absence of the variable for all subjects and for those who had a relapse and those who did not. 

 

Variables Type Total 

(n=220) 
Recurrence 

No (n=175) 

 

 

Yes 

(n=45) 

Age (years) V 55 54 62 

Sex B M=180/F=40 M=137/F=38 M=43/F=2 

BMI V 0,0026 0,0026 0,0028 

Hypertension B 87 62 25 

Diabetes mellitus B 15 10 5 

Smoking B 69 49 20 

Family history of MCI B 14 10 4 

OSAS B 10 7 3 

BPCO B 8 5 3 

Vascular disease B 34 22 12 

Prior TIA/STROKE B 14 9 5 

Previous angioplasty B 38 28 10 

Bypass surgery B 13 7 6 
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FA B 35 21 14 

HF B 121 80 41 

NYHA Class C 0 0 2 

HFpEF B 62 44 18 

HFmEF B 16 16 0 

HFrEF B 59 34 25 

COVID19 B 25 22 3 

Anemia B 7 5 2 

Palpitations B 67 55 12 

Dyspnea B 41 32 9 

Lightheadedness B 23 16 7 

Syncope B 13 9 4 

Chest pain B 28 22 6 

Fatigue B 16 9 7 

Dilated cardiomyopathy B 41 30 11 

Ischemic cardiomyopathy B 46 30 16 

Myocarditis B 20 15 5 

Valvular cardiomyopathy B 24 19 5 

VT Idiopathic B 61 59 2 

FE (%) V 49,12 50,98 41,91 

LAV (ml/m2) V 33,71 32,66 39,04 

RVD (mm) V 37,48 37,40 37,92 

TAPSE (mm) V 22,48 22,69 21,62 

Mitral valve insufficiency B 174 137 37 

Tricuspid valve insufficiency B 160 130 30 

Aortic valve insufficiency B 54 43 11 

PAPs (mmHg) V 28,55 27,87 31,12 

LV aneurysm B 22 15 7 

Rhythm B 39 24 15 

T-wave inversion B 36 33 3 

LVEDV (ml/m2) V 92,58 92,40 93,80 

LGE B 107 97 10 

BEV B 118 112 6 

Arrhythmic storm B 49 23 26 
TV Paroxysmal B 74 57 17 
Ablation (Yes/No) B 155 113 42 
Presence of late potentials B 94 61 33 
Substrate ablation B 139 102 37 

Bipolar endocardiacal low-
voltage area 

B 76 55 21 

Bipolar endocardiacal scar area B 59 39 20 
Inducibility (Yes/No) B 13 9 4 
HB (g/dl) V 13,90 13,97 13,63 

RDW V 13,37 13,24 13,88 
Blood glucose V 98,87 93,82 118,69 
Creatinine V 1,01 0,97 1,16 
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Table 3. | The full meaning of the acronyms or abbreviations used to indicate the considered variables is provided. 

In cases where the word 'or' is used between two acronyms, it is because some variables are presented in the 

Italian language 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.1 FEATURE SELECTION 

Before beginning the various machine learning analyses, a feature selection algorithm was 

implemented to assess whether the different variables from the patient's clinical records and those 

extracted from the CARTO exports are significant for the analysis to be conducted. For both sets 

of variables, an analysis using the p-value was performed. P-value, also known as probability 

value or asymptotic significance, is a probability value associated with a given statistical model. 

It represents the probability that, if the null hypothesis is true, a set of statistical observations, 

commonly referred to as the statistical summary, would be greater than or equal in magnitude to 

the observed results. 

The results are reported in Table 4 and 5. 

 

 
BMI Body Mass Index 

MCI Unexpected Cardiac Death 

OSAS Obstructive Sleep Apnea Syndrome 

BPCO or COPD Chronic Obstructive Pulmonary Disease 

Prior TIA/STROKE Preceding Transient Ischemic Attack or Stroke 

FA or AF Atrial Fibrillation 

HF Heart Failure 

Classe NYHA New York Heart Association functional classification 

HFpEF Heart Failure with Preserved Ejection Fraction 

HFmEF Heart Failure with Mid-Range Ejection Fraction 

HFrEF Heart Failure with Mid-Range Ejection Fraction 

FE o EF (%) Ejection Fraction 

LAV (ml/m2) Left Atrial Volume 

RVD (mm) Right Ventricular Diameter 

TAPSE (mm) Tricuspid Annular Plane Systolic Excursion 

PAPs (mmHg) Pulmonary Artery Pressure 

LV refered to the Left Ventricol 

LVEDV (ml/m2) Left Ventricular End-Diastolic Volume 

LGE Late Gadolinium Enhancement 

BEV Ventricular Ectopic Beats 

TV or VT Ventricular Tachycardia 

HB (g/dl) concentration of Hemoglobin in the Blood 

RDW Red cell Distribution Width 

Percentage uni/bi 

potential (%) 

expansion of areas with high potential difference Unipolar and Bipolar 
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Table 4 | Feature selection of the variables of CARTO              Table 5 | Feature selection of the variables of medical records 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the variables from CARTO, the p-values have shown values below 0.05 for all, 

indicating that all are considered significant. For the variables from medical records, the top 

twenty-four with p-values below 0.05 were selected to match the same number of features. 

 

3.5.2 MULTICOLLINEARITY 

Multicollinearity is the occurrence of high intercorrelations among two or more independent 

variables in a regression model. Multicollinearity can lead to skewed or misleading results when 

we try to determine how well each independent variable can be used most effectively to predict a 

dependent variable. In general, multicollinearity can lead to wider confidence intervals that 

produce less reliable probabilities in terms of the effect of independent variables in a model. 

Feature P Value

GR1 0,012

GR2 0,040

GR3 0,028

GR4 0,036

GR5 0,025

GR6 0,035

GR7 0,047

GR8 0,036

VLT1 0,046

VLT2 0,038

VLT3 0,043

VLT4 0,049

VLT5 0,042

VLT6 0,046

VLT7 0,035

VLT8 0,044

IMP1 0,014

IMP2 0,032

IMP3 0,020

IMP4 0,042

IMP5 0,033

IMP6 0,047

IMP7 0,040

IMP8 0,034

Feature Pvalue

Sex 0,022

Diabetes mellitus 0,037

BPCO 0,018

Vascular disease 0,014

Bypass surgery 0,025

FA 0,040

HF 0,038

NYHA Class 0,034

HFmEF 0,043

Anemia 0,039

Dilated cardiomyopathy 0,045

Valvular cardiomyopathy 0,070

VT Idiopathic 0,039

Mitral valve insufficiency 0,044

Tricuspid valve insufficiency 0,028

PAPs(mmHg) 0,041

Rhythm 0,012

T-wave inversion 0,032

LVEDV (ml/m2) 0,019

LGE 0,040

Ablation (Yes/No) 0,032

Presence of late potentials 0,034

Bipolar endocardiacal scar area 0,045

Hypertension 0,029
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We can represent the multicollinearity results by heatmaps. If features have low correlation, we 

maintain both features, if they have high correlation instead, we maintain the feature that have the 

highest correlation with the gold standard. In table 6 are reported the result of this analysis that 

give us the certainty that all the variables are independent one from the other so we can maintain 

all of them.  

 

Table 6 | Multicollinearity of Carto’s variables 

 

 

 

 

 

 

 

3.6 TRAINING, VALIDATION AND TESTING 

The database used consists of 220 patients, with an 80% split for training and a 20% split for 

testing. With limited samples available, we chose to use K-fold cross-validation to evaluate the 

model. For validation purposes, it is standard practice to consciously partition the data into 

training and test sets. Data in the test set are not used for model training, allowing us to simulate 

real-world scenarios where the model encounters previously unseen variables. Cross-validation 

is a widely used technique that extends this approach. It involves repeatedly dividing the data into 

distinct training and test (validation) sets, known as "fold," with different combinations. This 

iterative process can be performed as many times as necessary to generate an average assessment 

of the model's performance. In doing so, it reduces the risk of overfitting the model to the data, 

thereby improving the model's ability to make predictions that generalize well to a broader 

population [31]. The number of folds is 3. The parameters used to evaluate the performance of 

the various models are AUC, Sensitivity, Specificity, Accuracy, and Precision. The area under 

the Receiver Operating Characteristic (ROC) curve (AUC) is a metric used in binary classification 

1 0,33 0,30 0,32 0,26 0,25 0,46 0,12 0,03 0,12 0,08 0,06 0,11 0,10 0,10 0,08 0,07 0,11 0,07 0,03 0,08 0,01 0,13 0,23

0,33 1,00 0,32 0,26 0,34 0,26 0,18 0,28 0,07 0,08 0,05 0,06 0,03 0,03 0,07 0,01 0,14 0,14 0,16 0,09 0,12 0,17 0,16 0,20

0,3 0,32 1,00 0,20 0,21 0,12 0,18 0,03 0,06 0,08 0,11 0,08 0,06 0,05 0,04 0,05 0,10 0,02 0,08 0,01 0,09 0,05 0,10 0,13

0,32 0,26 0,20 1,00 0,20 0,26 0,19 0,07 0,01 0,05 0,04 0,01 0,05 0,03 0,02 0,04 0,06 0,04 0,20 0,17 0,02 0,17 0,12 0,09

0,26 0,34 0,21 0,20 1,00 0,19 0,29 0,29 0,30 0,03 0,09 0,03 0,09 0,04 0,05 0,07 0,07 0,11 0,12 0,13 0,02 0,06 0,08 0,13

0,25 0,26 0,12 0,26 0,19 1,00 0,25 0,23 0,08 0,15 0,15 0,07 0,06 0,04 0,03 0,06 0,04 0,20 0,14 0,17 0,10 0,03 0,15 0,14

0,46 0,18 0,18 0,19 0,29 0,25 1,00 0,22 0,03 0,07 0,09 0,11 0,09 0,09 0,09 0,04 0,05 0,10 0,14 0,09 0,10 0,04 0,21 0,15

0,12 0,28 0,03 0,07 0,29 0,23 0,22 1,00 0,12 0,11 0,02 0,06 0,07 0,09 0,05 0,02 0,03 0,17 0,07 0,09 0,09 0,07 0,07 0,12

0,03 0,07 0,06 0,01 0,30 0,08 0,03 0,12 1,00 0,26 0,23 0,05 0,35 0,33 0,30 0,21 0,01 0,06 0,02 0,04 0,07 0,04 0,03 0,06

0,12 0,08 0,08 0,05 0,03 0,15 0,07 0,11 0,26 1,00 0,12 0,23 0,19 0,48 0,44 0,34 0,11 0,04 0,09 0,01 0,05 0,05 0,07 0,06

0,08 0,05 0,11 0,04 0,09 0,15 0,09 0,02 0,23 0,12 1,00 0,05 0,33 0,22 0,15 0,08 0,06 0,01 0,14 0,04 0,04 0,08 0,04 0,04

0,06 0,06 0,08 0,01 0,03 0,07 0,11 0,06 0,05 0,23 0,05 1,00 0,04 0,20 0,01 0,01 0,02 0,07 0,05 0,04 0,04 0,04 0,02 0,06

0,11 0,03 0,06 0,05 0,09 0,06 0,09 0,07 0,35 0,19 0,33 0,04 1,00 0,54 0,41 0,23 0,03 0,06 0,04 0,04 0,04 0,04 0,02 0,05

0,1 0,03 0,05 0,03 0,04 0,04 0,09 0,09 0,33 0,48 0,22 0,20 0,54 1,00 0,86 0,62 0,07 0,09 0,06 0,05 0,03 0,02 0,03 0,06

0,1 0,07 0,04 0,02 0,05 0,03 0,09 0,05 0,30 0,44 0,15 0,01 0,41 0,86 1,00 0,63 0,02 0,02 0,01 0,03 0,03 0,00 0,03 0,01

0,08 0,01 0,05 0,04 0,07 0,06 0,04 0,02 0,21 0,34 0,08 0,01 0,23 0,62 0,63 1,00 0,04 0,08 0,03 0,03 0,05 0,06 0,10 0,13

0,07 0,14 0,10 0,06 0,07 0,04 0,05 0,03 0,01 0,11 0,06 0,02 0,03 0,07 0,02 0,04 1,00 0,32 0,24 0,17 0,19 0,17 0,36 0,32

0,11 0,14 0,02 0,04 0,11 0,20 0,10 0,17 0,06 0,04 0,01 0,07 0,06 0,09 0,02 0,08 0,32 1,00 0,20 0,18 0,10 0,20 0,34 0,54

0,07 0,16 0,08 0,20 0,12 0,14 0,14 0,07 0,02 0,09 0,14 0,05 0,04 0,06 0,01 0,03 0,24 0,20 1,00 0,07 0,29 0,01 0,18 0,10

0,03 0,09 0,01 0,17 0,13 0,17 0,09 0,09 0,04 0,01 0,04 0,04 0,04 0,05 0,03 0,03 0,17 0,18 0,07 1,00 0,06 0,05 0,08 0,03

0,08 0,12 0,09 0,02 0,02 0,10 0,10 0,09 0,07 0,05 0,04 0,04 0,04 0,03 0,03 0,05 0,19 0,10 0,29 0,06 1,00 0,16 0,17 0,07

0,01 0,17 0,05 0,17 0,06 0,03 0,04 0,07 0,04 0,05 0,08 0,04 0,04 0,02 0,00 0,06 0,17 0,20 0,01 0,05 0,16 1,00 0,25 0,41

0,13 0,16 0,10 0,12 0,08 0,15 0,21 0,07 0,03 0,07 0,04 0,02 0,02 0,03 0,03 0,10 0,36 0,34 0,18 0,08 0,17 0,25 1,00 0,35

0,23 0,20 0,13 0,09 0,13 0,14 0,15 0,12 0,06 0,06 0,04 0,06 0,05 0,06 0,01 0,13 0,32 0,54 0,10 0,03 0,07 0,41 0,35 1,00

Multicollinearity



37 
 

tasks. The ROC curve plots the false positive rate against the true positive rate, and the AUC 

quantifies the area under the curve. An AUC of 0.5 corresponds to random classification, while 

an AUC of 1.0 indicates a model making perfect predictions. Sensitivity, also known as Recall or 

True Positive Rate, represents the ability of a classification model to correctly identify all positive 

cases in the test data. High sensitivity indicates that the model is effective at detecting the presence 

of the class of interest, minimizing false negatives. Sensitivity = TP / (TP + FN). Specificity 

measures the ability of a model to correctly identify negative cases. It expresses the percentage 

of true negatives relative to the total negative cases and indicates how accurately the model can 

distinguish examples that do not belong to the class of interest. Specificity = TN / (TN + FP). 

Precision is a measure of the fraction of positive instances correctly identified by the model 

relative to the total number of instances identified as positive. It is calculated as the ratio of true 

positives to the sum of true positives and false positives. Accuracy focuses on the accuracy of 

positive predictions. Precision = TP / (TP + FP).  Accuracy, on the other hand, is a general 

measure of the overall correctness of the model. It represents the fraction of all correct estimates 

relative to the total number of estimates. Accuracy evaluates the overall correctness of the model, 

considering both positive and negative predictions. Accuracy = (TP + TN) / (TP + TN + FP + 

FN). [32] 

 

3.7 MACHINE LEARNING METHODS 

Artificial intelligence (AI) in the medical field has been gaining momentum in recent years, 

introducing new methods and technologies capable of revolutionizing medicine. Over the past 30 

years, there have been technological advancements that could make this a reality, including 

exponential increases in computing power, big data processing technologies, access to large 

clinical data sets using electronic health records, and machine learning (ML) [33]. In the field of 

medicine, ML has the potential to improve the accuracy of diagnostic algorithms and personalize 

patient treatment. The fundamental concept of ML is to employ algorithms that acquire input data, 

apply computer analysis to predict output values within an acceptable range of accuracy, discern 

patterns and trends within the data, and ultimately learn from experience. Although ML is not a 

new concept and has been around since the advent of modern computing, the idea of a thinking 

machine has been proposed to harness the computational capacity of computers to discover 

patterns and draw conclusions that may be difficult to reach through conventional statistical 

methods. These traditional methods often rely on human operators to formulate and provide a 



38 
 

basis of rules or hypotheses regarding correlations for further computer analysis [34]. ML relies 

on statistical foundations or incorporates them to support its operation [35]. 

 

3.7.1 REGRESSION 

Linear regression is arguably the simplest ML algorithm. The central concept in regression 

analysis is to establish a connection between one or more numeric features and a single 

numeric target. Linear regression is an analytical method employed to address regression 

problems by employing a straight line to characterize a dataset. In the case of univariate linear 

regression, which focuses on predicting a target value using just a single feature, it can be 

represented in a slope-intercept form: 

𝑌 = 𝛽0 + 𝛽1𝑋 

In this representation, 𝛽1 serves as the slope weight, describing how much the line rises on the 

y-axis for each increment in x. The intercept, 𝛽0, indicates the point where the line 

intersects the y-axis. [36, 37] Linear regression models a dataset using this slope-intercept 

form, with the machine's task being to ascertain values of a and b that enable the determined 

line to best correlate the provided x values with the y values. To be more precise:  

 

 

 

Where 𝑋, 𝑌 are the detected values and �̅�,�̅� are the theoretical values. Multiple linear 

regression is similar; however, there are multiple weights in the algorithm, each describing to 

what degree each feature influences the target. Basically, there is rarely a single function that 

fits a dataset perfectly. To measure the error associated with a fit, the residuals are measured. 

Conceptually, residuals are the vertical distances between predicted values, �̅� and actual 

values, 𝑌. For multiple linear regression the model is: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

Logistic regression is a classification algorithm where the goal is to find a relationship 

between features and the probability of a particular outcome. Instead of employing the straight 

line generated by linear regression to estimate class probability, logistic regression uses a 

sigmoidal curve to estimate class probability. This curve is determined by the sigmoid function: 
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which produces an S-shaped curve that transforms discrete or continuous numeric features 

(x) into a single numerical value (y) between 0 and 1. The key advantage of this approach is 

that probabilities are bounded within the range of 0 and 1 (i.e., probabilities cannot be negative 

or exceed 1). Logistic regression can be either binomial, where there are only two possible 

outcomes, or multinomial, where there can be three or more possible outcomes. [33, 34] In 

statistics, the logistic model (or logit model) is a statistical model that shapes the probability 

of an event taking place by expressing the log-odds for the event as a linear combination of 

one or more independent variables. In regression analysis, logistic regression (or logit 

regression) entails estimating the parameters of a logistic model, which are the coefficients in 

the linear combination. Formally, in binary logistic regression, there is a single binary 

dependent variable, coded using an indicator variable, where the two values are labeled "0" 

and "1," while the independent variables can each be a binary variable (two classes, coded by 

an indicator variable) or a continuous variable (any real value). The logistic function is therefore 

represented as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

Notice that the right hand side of the equation above looks like the multiple linear regression 

equation. However, the technique to estimate the regression coefficients in a logistic 

regression model is different from that used to estimate the regression coefficients in a 

multiple linear regression model. In logistic regression the coefficients derived from the model 

(e.g., 𝛽1) indicate the change in the expected log odds relative to a one unit change in 𝑋1, 

holding all other predictors constant. Defined p as the probability, the multiple logistic 

regression model can be written as follows: 

 

 

p is the expected probability that the outcome is present; 𝑋1 through 𝑋𝑛 are distinct independent 

variables; and 𝛽1 through 𝛽𝑛 are the regression coefficients. In this thesis work, the first machine 

learning method was chosen to use a model based on multinomial logistic regression. The choice 

of a logistic regression was made because the variable to be predicted is binary, so the outputs we 

expect can only be 0 or 1. Multinomial because the parameters used as predictors are multiple. In 
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MATLAB, in the function used for the regression, it was specified that the model was linear and 

that the distribution was binomial. Several models equal to all the combinations of five variables 

were proposed, for each combination the test performance was calculated to see which was the 

best. 

 

3.7.2 SUPPORT VECTOR MACHINE (SVM) 

Support Vector Machines (SVMs) are one of the cornerstones of machine learning and are 

particularly powerful for binary classification. In this chapter, we will delve into the theory 

behind SVMs, including the details of how to find the optimal hyperplane and the optimization 

problem. Furthermore, we will explore the use of nonlinear kernels, including the polynomial 

and sigmoid kernels. Support Vector Machines (SVMs) are a machine learning model used 

for both classification and regression tasks. The primary goal of an SVM is to find an optimal 

hyperplane in a multidimensional space that can effectively separate different data classes. 

This hyperplane is chosen to maximize the margin between classes, which is the distance 

between the hyperplane and the nearest data points from each class, referred to as "support 

vectors". The equation of a hyperplane in an N-dimensional space is given by: 

 

𝑥𝑇𝛽 + 𝛽0 = 0 
 

Where: 

 

• 𝛽 is a weight vector that determines the orientation of the hyperplane. 

• 𝑥 is an input vector. 

• 𝛽0 is the bias term that regulates the position of the hyperplane relative to the origin. 
 

 

In a Figure 11, we can see how this technique works. The decision boundary is the central 

line, while the two lateral lines bound the shaded maximal margin of width 2M = 2/||𝛽 [33, 

34] The points labeled 𝜉1j∗ are on the wrong side of their margin by an amount 𝜉j∗ = M𝜉j; 

points on the correct side have 𝜉1∗ = 0. The margin is maximized subject to a total budget 

𝜉𝑖 ≤ constant. Hence, 𝜉j∗ is the total distance of points on the wrong side of their margin. 
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Figure 11. | Explanatory image of the theory behind the Support Vector Machine method in a linear case. 

 

Consider a 𝑝-dimensional real-valued space (e.g., ℝ𝑝). An optimal separating hyperplane is 

essentially an 𝑝-1 dimensional affine space residing within the larger 𝑝-dimensional space. 

For 𝑝=2, this affine space is simply a one-dimensional line, while for 𝑝=3, it is a two- 

dimensional plane. For higher dimensions, this affine space is known as a hyperplane. This is 

certainly challenging (if not impossible) to visualize, but it can be conceptually grasped. Note 

that "affine" refers to a hyperplane that doesn't necessarily pass through the origin (or the zero 

element) of the larger space. If we consider elements in the 𝑝-dimensional space, that is, 𝑥 = 

(𝑋1, … , 𝑋2)∈ ℝ𝑝, such an affine hyperplane 𝑝-1 dimensional is defined by the following 

equation: 

                𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 = 0              or     

 

We can construct a maximum-margin hyperplane (MMH), which is the separation hyperplane 

that is farthest from any training observations. First, you compute the perpendicular distance 

from each training observation 𝑥𝑖 to a given separation hyperplane. The closest perpendicular 

distance from a training observation to the hyperplane is known as the margin. MMH is the 

separation hyperplane where the margin is the largest. This ensures that it is the farthest 

minimum distance from any training observation. The classification procedure is then simply 

a matter of determining which side a test observation falls on. Such a classifier is known as a 

maximum-margin classifier (MMC). We hope that a wide margin on the training observations 

also leads to a wide margin on test observations and therefore provides a good classification 

rate. However, note that we must be cautious to avoid overfitting when the number of feature 

dimensions is high. In this case, overfitting means that the MMH fits the training data very 

well but can perform quite poorly when exposed to test data. One of the key features of MMC 

(and subsequently of SVM) is that the position of the MMH depends solely on the support 
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𝑖 

vectors, which are the training observations that lie directly on the margin boundary, but not 

on the hyperplane. Another example in Figure 12. 

 

 

 

 

 

Figure 12. | Image related to explaining the search for the best hyperplane. 

 

This means that the position of the MMH does NOT depend on other training observations. 

The MMH is the solution to the following optimization procedure: 

max 𝑀 

𝛽, 𝛽0 

𝑠𝑢𝑏j𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑥𝑇𝛽 + 𝛽0) ≥ 𝑀, 𝑖 = 1, … , 𝑁 

 
Where: 

 

• 𝛽 is a weight vector that determines the orientation of the hyperplane. 

• 𝛽0 is the bias term that regulates the position of the hyperplane relative to the origin. 

• (𝑥𝑖, 𝑦𝑖) are the training points, with 𝑥𝑖 representing the input vector and 𝑦𝑖 the class label 

(+1 or -1). 

 

The analysis with Support Vector Machine was conducted using specific MATLAB functions. 

Specifically, the classification problem was solved, and the output variable to be predicted is 

always of binary logical type, with only values 0 and 1. The "ClassName" is defined and used 

to name the output classes, which helps the algorithm understand that it is a classification. By 

defining this parameter as "[False True]", it helps the algorithm understand that the variable 

to be predicted is binary, and therefore the expected outputs will be "False" for patients who 

do not relapse and "True" for patients who relapse. Another parameter defined was the 
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"BoxConstraint", which is a positive number determining the "stiffness" of the margin. Larger 

"BoxConstraint" values correspond to tighter margins, making the model more sensitive to 

misclassification errors on training data. Conversely, smaller "BoxConstraint" values lead to 

wider margins, making the model more tolerant to misclassification of training data but 

potentially at the expense of lower generalization ability. The "Solver" parameter is another 

parameter that was defined, specifying the algorithm used to solve the optimization problem 

associated with training the SVM. The solver determines how the optimization problem 

underlying the search for support vectors and associated weights is solved. The two main 

values are: "SMO" (Sequential Minimal Optimization), that is the default algorithm. It is 

based on sequential minimal optimization and is particularly effective for moderate-sized 

problems. The sequential minimal approach divides the optimization problem into smaller 

subproblems, iteratively optimizing the weights associated with pairs of training examples. 

"ISDA" (Iterative Single Data Algorithm): this solver focuses on one training example at a 

time. It is useful when working with very large datasets where storing the complete kernel 

matrix could be prohibitive. The "KernelFunction" parameter specifies the type of function to 

be used, while the "KernelScale" parameter optimizes the predictors for the specific 

"KernelFunction". To perform a linear analysis, the "ClassName" was specified, the 

"KernelFunction" was defined as "Linear" to indicate linear analysis, "BoxConstraint" was set 

to 100 to strongly penalize classification errors, aiming to obtain a separation hyperplane that 

separates the classes more rigorously. The "Solver" was left at its default value. 
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4. RESULTS 

Below are reported all the results obtained from the various analysis performed. In particular, four 

different tables are reported for the linear regression analysis. The first two tables refer to the 

variables extracted from CARTO. In the first table, the different indices used to evaluate the 

performance of the created model are listed, while in the second table, the various coefficients 

associated with each variable and the intercept are reported. Indeed, being a linear method, for 

each model, there are values indicating how the variables related to that model influence the 

predictability of the output, i.e., how they are correlated with it and whether they are positively 

or negatively correlated. The other two tables refer to the variables from the medical records. 

Specifically, they report the performance of the models created with all the variables and with the 

variables after feature selection. The same results are reported for the second technique used. 

Linear support vector machine to also assess which method produces better results. 

 

4.1 LINEAR LOGISTIC REGRESSION 

In the following table 7, the best performance values of the model are reported. 

Table 7. | The performance parameters of the best model resulting from the analyses conducted with logistic 

regression are reported. The performances are expressed in terms of AUC, Accuracy, Precision, Sensitivity, and 

Specificity. 

AUC Train 0,805 

AUC Test 0,830 

Accuracy 0,770 

Precision 0,588 

Sensibility 0,344 

Specificity 0,623 

 

Table 8, instead, shows the parameters of the equation resulting from the logistic regression 

analysis. In the first row, we find the intercept value, while in the other rows, the variables 

and their associated coefficients are listed. Table 9 and 10 shows the performance of the 
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analysis on the medical records. 

 

Table 8. | Coefficients of the polynomial resulting from logistic regression analysis. 

  
Intercept -0,637 

GR1 0,114 

GR2 0,016 

GR3 0,011 

GR4 0,02 

GR5 0,135 

GR6 -0,066 

GR7 0,222 

GR8 0,009 

VLT1 -1,587 

VLT2 1,056 

VLT3 0,882 

VLT4 -10,58 

VLT5 -0,523 

VLT6 -1,902 

VLT7 -1,018 

VLT8 4,195 

IMP1 -0,007 

IMP2 -0,008 

IMP3 -0,547 

IMP4 -0,009 

IMP5 -0,393 

IMP6 0,014 

IMP7 0,001 

IMP8 -0,009 
 

  Table 9. | Performance of the model with 57 feature                     Table 10. | Performance of the model with 24 feature 

 

 

 

 

 

 

AUC Train 0,705 

AUC Test 0,720 

Accuracy 0,650 

Precision 0,528 

Sensibility 0,324 

Specificity 0,542 

AUC Train 0,745 

AUC Test 0,760 

Accuracy 0,670 

Precision 0,541 

Sensibility 0,366 

Specificity 0,592 
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4.2 LINEAR SUPPORT VECTOR MACHINE 

The best performance values of the model are reported in the following Table 11. 

 

Table 11. | The performance parameters of the best model resulting from the analyses conducted with linear 

support vector machine are reported. The performances are expressed in terms of AUC, Accuracy, Precision, 

Sensitivity, and Specificity. 

 

 

 

 

 

 

 

For the purpose of interpreting the models, i.e., the equations related to each model, Table 12 

reports the intercepts and coefficients of each equation corresponding to the model. 

 

Table 12. | Coefficients of the polynomial resulting from linear support vector machine analysis. 

AUC Train 0,803 

AUC Test 0,828 

Accuracy 0,768 

Precision 0,528 

Sensibility 0,374 

Specificity 0,602 

Incercept -1,052 

GR1 0,810 

GR2 0,071 

GR3 -0,010 

GR4 0,040 

GR5 0,807 

GR6 -0,313 

GR7 -0,780 

GR8 0,247 

VLT1 -1,006 

VLT2 -0,057 

VLT3 0,049 

VLT4 -0,225 
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Table 13 and 14 report the performance of the model with the feature of the medical record. 

 

 Table 13. | Performance of the model with 57 feature                  Table 14. | Performance of the model with 24 feature 

 

 

 

 

 

 

 

 

 

 

 

VLT5 0,339 

VLT6 -0,145 

VLT7 -0,431 

VLT8 1,137 

IMP1 0,017 

IMP2 -0,127 

IMP3 -0,508 

IMP4 -0,567 

IMP5 -0,528 

IMP6 0,594 

IMP7 -0,175 

IMP8 -0,647 

AUC Train 0,703 

AUC Test 0,738 

Accuracy 0,642 

Precision 0,548 

Sensibility 0,344 

Specificity 0,572 

AUC Train 0,732 

AUC Test 0,75 

Accuracy 0,68 

Precision 0,533 

Sensibility 0,372 

Specificity 0,584 
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5. DISCUSSION 

To evaluate the performance of the different methods used and to assess the differences between 

the two sets of variables employed, we used various metrics including the AREA UNDER THE 

CURVE (AUC), Accuracy, Precision, Sensitivity, and Specificity. Each metric holds a specific 

meaning that allows us to understand if the algorithm is functioning correctly and yielding good 

results. From Table 7, we can observe the performance obtained using logistic regression in the 

database composed of variables extracted from electroanatomic mapping. In the first two 

columns, we have the AUC values for the test and training sets respectively. Significant values 

are achieved with an AUC greater than 0.75, indicating that the model's performance can be 

considered good and thus yielding important correlations. Regarding Accuracy, it measures the 

percentage of correct predictions out of the total predictions made by the model, with higher 

values indicating that the model is correctly capturing all predictions. In the case of logistic 

regression, we observe a value of 75%, indicating that the model can correctly predict a good 

portion of the database. Precision, on the other hand, measures the percentage of predictions 

identified as positive and are actually positive. In our case, we have a value close to 60%, 

indicating good correctness in predicting positive instances. Sensitivity values, however, are 

lower, around 35%, indicating that the model is missing many true positive instances, resulting 

in a high number of false negatives. Finally, the Specificity value rises to around 60%, indicating 

that the model mostly succeeds in minimizing false positives, i.e., in not erroneously classifying 

negative instances as positive. This scenario of low sensitivity can occur when the model, as in 

our case, does not have enough data to learn and thus is unable to effectively discriminate between 

classes. In conclusion, we can say that with linear regressions, we obtain simple and easily 

interpretable models with excellent performance. 

In Table 11, instead, we can check the same performance obtained with the same database but 

using another machine learning method, the linear support vector machine, to compare the 

performance and results. Again, as we can see from Table 12, we obtain very similar values 

compared to the linear logistic regression method. In fact, almost all the metrics assume the same 

values. Therefore, we can say that both trained models already offer good performance which can 

be increased by increasing the number of patients. 

 



49 
 

In the tables 9 and 10, 13 and 14, we can observe the performance obtained from linear logistic 

regression models and support vector machine models using only clinical records. The difference 

between the two tables in each technique used is that in the first table, analyses were performed 

using all 57 variables present in the database, while in the second table, the same analyses were 

performed after careful feature selection as previously described. The values in the first table are 

low mainly due to having many features but few patients. Therefore, the model is not fully able 

to find correlations between the variables and the output of our interest. For this reason, we 

decided to reduce the number of features to 24, considering only those that according to the p-

value could be more correlated to the output. In this case, we can notice that we obtain higher 

AUC values, indicating that the model is more likely to provide interesting correlations. However, 

from the obtained values of Precision, Sensitivity, and Specificity, we can say that the model 

manages to discretely classify true negatives but has many shortcomings in classifying true 

positives. This again indicates the presence of few cases compared to the number of variables. 

As for Tables 8 and 12, they show the coefficients associated with variables extracted from 

electroanatomic mapping. In particular, we have the Gradient (GR), which represents the 

difference value between the zone with the greatest delay and the zone with the greatest advance 

relative to their distance. The Voltage (VLT) represents the point-to-point difference of the 

bipolar potential with the unipolar potential. The Impedance (IMP) represents the voltage 

difference between two points of the electrical circuit, a voltage difference influenced by the 

resistance of the cardiac tissues. All these variables have their values expressed in each quadrant 

into which we have divided the sphere, representing our ventricular reconstruction. In this way, 

we can evaluate not only which of the three variables has more influence, but we can also assess 

if a certain position is more influential than another. 

From Table 8, we can make a comparison between the variables. The coefficients are almost all 

comparable to each other because when multiplied by the assigned variable, they have 

approximately the same order of magnitude. This is important because sometimes coefficients 

may be larger than others, but when multiplied by the values of their variable, it turns out they 

have a lower impact. However, we must make some specific considerations for each variable. 

Considering the Gradient values along the eight faces we have selected, we can notice that along 

faces 1, 5, and 7, we have more significant coefficients and thus more correlated to the output of 

our interest. Regarding the Voltage values, we notice greater weight in quadrant 1, 4, 7, and 8. 

Finally, concerning the Impedance values distributed in the different quadrants, we can certainly 

notice that in quadrants 1, 3, and 5, we obtain more significant coefficients. After this analysis, 
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we can say that the quadrants that appear most frequently are the first, which is present for all 

three variables, and the seventh quadrant, which is significant in two out of the three variables. 

In Table 12, we can make a similar consideration but based on the second machine learning 

method used. Again, concerning the Gradient values, we can notice that we obtain greater 

coefficients in the 1, 5, 6, and 7 quadrants. The most significant Voltage values, on the other hand, 

are found in quadrants 1, 5, 7, and 8. While the most correlated Impedance coefficients are present 

in quadrants 1, 3, 5, and 7. Therefore, we can say that the 1, 5, and 7 quadrants are the most 

recurrent in all three variables. 

 

6. CONCLUSIONS 

The present thesis aimed to investigate significant variables that could support clinical decision-

making to reduce or predict the risk of recurrence of cardiovascular diseases after an initial 

treatment or intervention. In particular, an algorithm was created to extract new parameters that 

are not directly calculated by the electroanatomic mapping system, and their correlation with 

recurrence was evaluated. In a previous study, predictive models based on a database including 

variables related to patients' clinical records and variables extracted from the electroanatomic 

mapping system were created, revealing high correlations that can be taken into consideration. In 

addition, in this work, we aimed not only to give weight to the new variables extracted from the 

electroanatomic mapping system but also to find correlations, where present, related to the 

position of the variable itself. A specific algorithm was created to divide the sphere in which all 

points mapped by catheters within the cardiac cavity are projected into eight different quadrants. 

Each of these quadrants is linked to a specific position. Two different machine learning methods 

were implemented to evaluate the performance and results obtained. From the various analyses, 

it emerged that the use of these new parameters, such as Gradient, representing the difference 

between the area with the greatest delay and the area with the greatest advance relative to their 

distance; Voltage, the point-to-point difference of the bipolar potential with unipolar potential 

with possible identification of more organized regions, where more points with high differences 

are grouped in the same area; and Impedance, are extremely correlated to Recurrence. 

Additionally, it emerged that different specific zones of the cardiac chamber have a greater impact 

than others. Therefore, targeted treatment in those specific zones, which are more relevant, can 

be considered. 
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The main problem is that we do not have a sufficient number of data, so the analyses can be 

considered preliminary. However, with an increase in the number of patients and therefore the 

number of observations, more interesting results will be possible. Nevertheless, it remains a 

promising prototype for the future that can lead to more truthful and accurate results. Another 

consideration is that these new parameters, despite high correlation, provide additional support 

but are not a substitute for clinical records, which must always be considered by physicians. We 

are confident that further parameters can be found to add to the recurrence prediction analyses, 

and many of these will be closely correlated with them, as already demonstrated in this work. 
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