
Facoltà di Ingegneria
Corso di Laurea in Ingegneria Informatica e dell’Automazione

Progettazione e sviluppo
dell’interoperabilità e del linting in

relazione a GeoJSON nel
framework Qt

Design and development in Qt framework of GeoJSON
interoperability and linting

Relatore:
Prof. Adriano Mancini

Tesi di Laurea di:
Juljan Sherollari

Anno Accademico 2018-2019

Università Politecnica delle Marche
Facoltà di Ingegneria

Corso di Laurea in Ingegneria Informatica e dell’Automazione
Via Brecce Bianche – 60131 Ancona (AN), Italy

Non si può mai attraversare l’oceano se non si ha il coraggio di perdere di vista
la riva.

You can never cross the ocean if you’re not brave enough to lose sight of the
shore.

Cristoforo Colombo

Abstract

Il presente elaborato è basato sul progetto presentato per il Google Summer
of Code 2018, relativo alle librerie geospaziali del framework Qt. L’obiettivo
del progetto è stato quello di rendere la libreria Qt Location del framework
interoperabile con lo standard GeoJSON.

Il modulo Qt Location è un componente del framework Qt che offre funzion-
alità che riguardano la rappresentazione di luoghi geografici su una mappa. I
dati sulla posizione di questi luoghi, espressi in coordinate geografiche, vengono
memorizzati in classi che rappresentano specifiche forme geometriche.

GeoJSON è uno standard aperto, che utilizza il sistema di riferimento di coor-
dinate geografiche WGS84, per rappresentare geometrie spaziali i cui attributi
sono descritti attraverso JavaScript Object Notation. Secondo il documento
che lo definisce, RFC 7946[27], le geometrie rappresentabili sono punti, linee
spezzate, poligoni, o collezioni multiple di queste tipologie. Per riuscire a
importare ed esportare correttamente file GeoJSON in Qt e rendere i due
sistemi interoperabili è stato necessario rendere rappresentabili biunivocamente
le geometrie dello standard con quelle del framework. Per il conseguimento
della equivalenza tra le caratteristiche supportate dalle geometrie GeoJSON e
da quelle presenti nella libreria Qt Location sono state svolte 3 azioni principali:

1. Feature parity: Sono stati modificati i file sorgenti di Qt Location, dal
momento che esso supporta solo parzialmente lo standard GeoJSON, in
particolare è stato aggiunto il supporto ai buchi nelle geometrie poligono.

2. Importing: È stata realizzata una funzione importer che permette di
leggere e rappresentare un documento GeoJSON in una struttura dati op-
portunamente modellata, contenente le geometrie Qt Location equivalenti
a quelle presenti nel documento GeoJSON di partenza.

3. Exporting: È stata realizzata una funzione exporter che permette di
leggere la struttura dati generata dell’importer ed estrarre un documento
GeoJSON valido.

Operativamente è stata sviluppata una nuova classe QGeoJson[31] dotata di
due metodi che implementano le funzioni esposte nei punti 2 e 3.

vii

Nella documentazione realizzata a dotazione della classe, è stata ampiemente
illustrata l’organizzazione dalla struttura dati contenente le geometrie importate
(nel caso dell’importer) o le geometrie da esportare (nel caso dell’exporter);
inoltre sono stati sviluppati due ulteriori metodi, uno per validare il file da
importare e uno per per visualizzare la struttura dati importata (scopo di
debug).

Per prima cosa sono state analizzate le strutture Qt più adatte all’equivalenza
con gli oggetti GeoJSON. In particolare, il lavoro sul codice già esistente, è
consistito nell’aggiunta del supporto ai buchi per le geometrie di tipo poligono,
al fine di ottenere l’equivalenza con gli oggetti Polygon e MultiPolygon di
GeoJSON.

Corrispondenze tra Qt Location e GeoJSON
Oggetti GeoJSON Classi Geometrie Qt
1 Point QGeoCircle
2 LineString QGeoPath
3 Polygon QGeoPolygon
4 MultiPoint QVariantList(QGeoCircle)
5 MultiLineString QVariantList(QGeoPath)
6 MultiPolygon QVariantList(QGeoPolygon)
7 GeometryCollection QVariantList(Varie Geometrie)
8 Feature Geometria + attributo "properties"
9 FeatureCollection QVariantList(Feature)

Sviluppo della classe QGeoJson

La classe QGeoJson ha 4 metodi:

1. Un importer che accetta un QJsonDocument e restituisce una QVri-
antList.

2. Un exporter che accetta la QVarianList di cui sopra e restituisce un
QJsonDocument.

3. Un linter per la validazione del QJsonDocument, secondo lo standard
GeoJSON.

4. Un metodo per la visualizzazione della QVariantList a scopi di debug.

viii

Prototipi di funzione

// This method importe a GeoJSON file to QVariantList:
static QVariantList importGeoJson(const QJsonDocument &doc);

// This method exporte a GeoJSON file from a QVariantList:
static QJsonDocument exportGeoJson(const QVariantList &list);

// This method performs validation on the input:
static bool isValidGeoJson(const QJsonDocument &geojson,
QJsonParseError *err = nullptr);

// This method prints the content of the imported QVariantList:
static QString toString(const QVariantList &importedGeoJson);

Importer del GeoJSON

L’importer accetta un QJsonDocument dal quale viene estratto un singolo
oggetto, poichè secondo l’RFC[27] un documento GeoJSON è sempre costituito
da un singolo oggetto JSON, e restituisce una QVariantList per mantenere
la compatibilità con il QML. La QVariantList contiene sempre una singola
QVariantMap, quest’ultima è la vera geometria importata. La map contiene
sempre almeno due coppie (chiave, valore), la prima avente come chiave una
QString "type" e come corrispondente valore una QString identificante gli
oggetti GeoJSON definiti nell’RFC (vedi tabella), la seconda coppia ha come
chiave una QString "data" e contiene il valore delle geometrie Qt ottenute
dall’importazione, e strutturate in un modo ben specifico per garantire la
visualizzazione delle geometrie in una mappa in modo semplice. Per le singole
geometrie (Point, LineString, Polygon) il valore corrispondente alla chiave
"data" è un QGeoShape. Per le geometrie multiple omogenee (MultiPoint,
MultiLineString, MultiPolygon) il valore corrispondente alla chiave "data" è
una QVariantList. Ogni elemento della QVariantList è una QVariantMap
delle singole geometrie, tutte dello stesso tipo. La "GeometryCollection" è una
composizione eterogenea di gemetrie. Il valore corrispondente alla chiave "data"
è una QVariantList popolata da QVariantMaps delle precedenti geometrie
e anche di GeometryCollection stessa. L’oggetto di tipo "Feature" include
una delle precedenti entità più il membro "properties". Il valore di questo
membro è una QVariantMap. L’unico modo per distinguere una Feature da una
geometria è controllare se è presente il nodo "properties" nella QVariantMap.
Infatti la presenza del membro properties, anche se vuoto, è obbligatorio in un
oggetto Feature GeoJSON. La FeatureCollection è una composizione di Feature.

ix

Il valore corrispondente alla chiave "data" è una QVariantList popolata da
QVariantMaps.

Exporter del GeoJSON

L’exporter accetta in ingresso una QVariantList strutturata come spiegato
sopra, e restituisce un QJsonDocument. Come è facile comprendere, nel
caso in cui venisse processata attraverso l’exporter la QVariantList prodotta
dall’importazione di un dato documento GeoJSON, il medesimo exporter
restituirebbe un documento equivalente all’originale dal punto di vista dei dati
contenuti, ma non necessariamente della forma con cui questi vengono esposti.

Validazione del GeoJSON

Il linter è un metodo che prende in ingresso un QJsonDocument e restituisce un
valore booleano "true", nel caso di un documento GeoJSON corretto, e "false"
nel caso di un documento invalido. Qt offre la possibilità di validare un file
JSON e di segnalare l’eventuale errore mediante l’utilizzo di una enum, lo stesso
modello è stato adottato in fase di progettazione del metodo di validazione.

Debug della struttura dati

Il metodo toString consiste in un secondo exporter creato a scopo di debug.
Esso restituisce una rappresentazione conforme allo standard JSON, della
QVariantList generata dall’importer. Questa funzione ci consente di avere una
rappresentazione leggibile della struttura dati costituita da QVariantList e
QVariantMap nidificate molteplici volte. Nella rappresentazione JSON ad ogni
QVariantList corrisponde un "array" e a ogni QVariantMap un "object".

Tutti i metodi illustrati, tranne il metodo che si occupa della validazione del
GeoJSON, sono stati pubblicati in una nuova classe inserita all’interno della
libreria QtLocation, e inclusi nel framework con qualifica di classe sperimen-
tale dalla verione 5.13. Oltre allo sviluppo della Classe di importazione ed
esportazione, e alla modifica della classe QGeoPolygon esistente, sono stati
realizzati gli opportuni autotest per la verifica del funzionamento, ed è stata
scritta una app di test in QML per visualizzazione di elementi GeoJSON su
una mappa in QtLocation.

x

Test di esempio

È stata creata un app di esempio, allo scopo di illustrare il corretto funziona-
mento della classe sviluppata. L’applicazione permette di visualizzare su una
mappa le geometrie importate da un file GeoJSON, utilizzando la funzione di
importer ed una funzione che, partendo da una visualizzazione di geometrie
su una mappa generata utilizzando il framework Qt, utilizzando l’exporter
restituisca la stessa struttura dati.

xi

Contents

1 Introduction 3
1.1 Google Summer of Code . 3
1.2 Mentor Organization . 4

2 Reference Framework 7
2.1 Qt framework . 7
2.2 Architecture . 11
2.3 Qt Quick . 14
2.4 Qt QML Module . 15
2.5 Qt Meta-Object Language . 15
2.6 Model/View Programming . 17

3 Qt Geographical APIs 21
3.1 Qt Location API . 22

3.1.1 Maps and Navigation API 22
3.1.2 Places API . 24

3.2 Qt Positioning API . 25

4 Geographic JSON (GeoJSON) 29
4.1 JavaScript Object Notation (JSON) 29
4.2 GeoJSON . 31

4.2.1 Single Geometry objects 32
4.2.2 Homogeneously multipart Geometries 35
4.2.3 Heterogeneous composition of Geometries 35
4.2.4 Spatially bounded entities with properties 35

5 Design of Qt Location Interoperability 37
5.1 QGeoJson class . 41

5.1.1 Importing GeoJSON . 41
5.1.2 Exporting GeoJSON . 42
5.1.3 Validation of the GeoJSON data 42

1

Contents

6 Development of feature parity and QGeoJSON class 43
6.1 Adding holes support to Geographic Polygons 45

6.1.1 C++ Private API development 46
6.1.2 C++ Public API development 49
6.1.3 QML API Development 51

6.2 QGeoJson class . 52
6.2.1 Importing GeoJSON . 53
6.2.2 Exporting GeoJSON . 61
6.2.3 Linting GeoJSON . 62
6.2.4 Debug tool for QGeoJson class 63

6.3 Test and Example . 64
6.3.1 Online resources about the project 65

7 Conclusion 67

2

Chapter 1

Introduction

The project of this thesis had its start with the Google program called Google

Summer of Code. While looking for an opportunity to improve my skills as a

developer I enrolled the Google Summer of Code program for the year 2018.

1.1 Google Summer of Code

Google Summer of Code, often abbreviated to GSoC [21], is an international

annual program, first held from May to August 2005[22]. The program is open

to university students and it is focused on bringing more students into open

source software development. Students work on a three month programming

project with an open source organization.

The project follows a very specific timeline which contemplates open source

projects to apply to be mentor organizations. Once accepted, organizations

discuss possible ideas with students and then decide on the proposals they

wish to mentor for the summer. They provide mentors to support each student

through the program. Existing contributors with the organizations can choose

to mentor a student project. Mentors and students work together to determine

appropriate milestones and requirements for the summer. Students contact

the open source organizations they want to work with and write up a project

proposal for the summer. If accepted, students spend a month integrating

with their organizations prior to the start of coding. Students then have three

months to code while meeting the deadlines agreed upon with their mentors.

3

Chapter 1 Introduction

1.2 Mentor Organization

Among other organization, Qt[20] has been chosen. The Qt Company is a global

software company focused on the development of a cross-platform framework,

compatible with a large set of operating systems and hardware which enables a

single software code across many operating systems, platforms and screen types,

from desktops and embedded systems. Qt is present in more than 70 industries

and its technology is used by approximately one million developers worldwide.

The company’s net sales in year 2018 totaled 45.6 MEUR[2] and it achieves this

through its cross-platform software framework for the development of apps and

devices, under both commercial and open source licenses. The Qt framework,

and Qt toolset is being developed with the aim to allow software teams to

develop faster, by supporting the full cycle of Prototyping – Development –

Testing – Deployment. Qt also supports regulatory and compliance efforts

through its internal resources or its industry-leading partner network. The

choice of Qt offered many more benefits, from the opportunity to engage with

the use of powerful version control and collaboration tools, in fact the whole

development process of the framework is managed through git and Gerrit

Code Review tools. On top of all this Qt offered the chance to deal with

the development of commercial grade APIs. Between many different ideas

proposed by Qt for the GSoC project, my choice fell on the one which required

to work on Qt Location, the Qt Framework geographic library. The goal of

the project was to make Qt Location interoperable with GeoJSON by adding

support for loading geometries from GeoJSON into Qt Location and exporting

geometries from QtLocation to GeoJSON. Before doing this, required features

should have been added to Qt Location, to reach feature parity with GeoJSON.

By supporting GeoJSON import/export it would have become much easier to

distribute feature files to end users, and to backup user-defined items. After

the Project with google was completed, emerged the usefulness of a tool for

GeoJSON validation, thus a linter was designed beyond the scope of the Google

Summer of Code. The structure of this work begins in chapter 2 with a detailed

illustration of what Qt Framework is and of its architecture, with a special

4

1.2 Mentor Organization

focus on the Qt geographical modules in chapter 3. Then, in chapter 4, I will

summarily discuss about JSON and GeoJSON. Chapter 5 will present the design

of the feature parity between GeoJSON and the discussed Qt geographical

libraries, while chapter 6 will get across the development phase of the project.

Chapter 7 is a brief conclusion to this work.

5

Chapter 2

Reference Framework

Qt (pronounced as "cute", not "cu-tee") is a cross-platform application develop-

ment framework for desktop, embedded and mobile. Qt is not a programming

language on its own. It is a framework written in C++. Development of

Qt was started in 1990 by the Norwegian programmers Eirik Chambe-Eng

and Haavard Nord [15]. Their company, Trolltech, that sold Qt licenses and

provided support, went through several acquisitions over the years. Today

former Trolltech is named The Qt Company and is a wholly owned subsidiary

of Digia Plc., Finland. Although The Qt Company is the main driver behind

Qt, Qt is now developed by a bigger alliance: The Qt Project[20]. It consists of

many companies and individuals around the globe and follows a meritocratic

governance model. Everyone who wants to, individuals and companies, can

join the effort. There are many ways one can contribute to the Qt Project, e.g.

by writing code or documentation for the framework, reporting bugs, helping

other users on the forum or maintaining pages on the wiki. Qt is available

under various licenses: The Qt Company sells commercial licenses, but Qt is

also available as free software under several versions of the GPL.

2.1 Qt framework

Qt framework is usually used as a graphical toolkit, although it is also possible to

create command line applications. The framework[12] is structured in modules.

The base modules are called "Qt Essentials" and define the foundation of Qt

7

Chapter 2 Reference Framework

on all platforms. They are available on all supported development platforms

and on the tested target platforms. The following table lists the most relevant

Qt essentials modules[11]:

Qt Essentials Modules

Module Description

Qt Core Core non-graphical classes used by other modules

Qt GUI Base classes for graphical user interface (GUI) com-

ponents. Includes OpenGL

Qt Multimedia Classes for audio, video, radio and camera func-

tionality

Qt Widgets Widget-based classes for implementing multimedia

functionality

Qt Network Classes to make network programming easier and

more portable

Qt QML Classes for QML and JavaScript languages.

Qt Quick A declarative framework for building highly dy-

namic applications with custom user interfaces

Qt Quick Controls Provides lightweight QML types for creating per-

formant user interfaces for desktop, embedded, and

mobile devices. These types employ a simple styling

architecture and are very efficient

Qt Quick Dialogs Types for creating and interacting with system

dialogs from a Qt Quick application

Qt Quick Layouts Layouts are items that are used to arrange Qt Quick

2 based items in the user interface

Qt Quick Test A unit test framework for QML applications, where

the test cases are written as JavaScript functions

Qt SQL Classes for database integration using SQL

Qt Test Classes for unit testing Qt applications and libraries

Qt Widgets Classes to extend Qt GUI with C++ widgets

8

2.1 Qt framework

Essential modules are general and useful for a majority of Qt applications. A

module that is used for a special purpose is considered an add-on module even if

it is available on all supported platforms. Qt Add-On modules bring additional

value for specific purposes. These modules may only be available on some

development platform. Many add-on modules are either feature-complete and

exist for backwards compatibility, or are only applicable to certain platforms.

Each add-on module specifies its compatibility promise separately.

The following table lists some of the Qt add-ons:

Add-On Modules

Module Description

Qt Location Displays map, navigation, and place content in a

QML application

Qt Positioning Provides access to position, satellite and area mon-

itoring classes

Qt 3D Functionality for near-real-time simulation systems

with support for 2D and 3D rendering

Qt Bluetooth Provides access to Bluetooth hardware

Qt Concurrent Classes for writing multi-threaded programs with-

out using low-level threading primitives

Qt Purchasing Enables in-app purchase of products in Qt applica-

tions

Qt NFC Provides access to Near-Field communication

(NFC) hardware

Qt OpenGL Deprecated in favor of the QOpenGL* classes in

the Qt GUI module

Qt Sensors Provides access to sensor hardware and motion

gesture recognition

Qt WebSockets Provides WebSocket communication compliant

with RFC 6455

9

Chapter 2 Reference Framework

Qt XML C++ implementations of SAX and DOM

Qt Help Classes for integrating documentation into applica-

tions, similar to Qt Assistant

In addition to the modules released as part of Qt 5, the following modules and

tooling build on top of the Qt libraries to provide additional value. They have

their own release schedule, and are available under the commercial license.

Value-Add Modules

Feature Description

Qt Automotive Suite A collection of software components and

tools to enable development of In-Vehicle-

Infotainment systems

Qt for Automation Libraries and tools for automation related

domains, such as KNX, OPC UA, and MQTT

Qt for Device Creation Tools for fast, easy, and fully-integrated em-

bedded device application development. In-

cluded in most other value-add solutions

To facilitate the development and design of application on all the supported

development platforms, Qt offers a rich set of development tools called Qt Tools.

The most important of these tools is the Qt Creator Integrated Development

Environment (IDE). Qt Creator provides tools for accomplishing tasks through-

out the whole application development life-cycle, from creating a project to

deploying the application on the target platforms. Some interesting tools are

integrated into Qt Creator, Qt Designer for designing and building graphical

user interfaces (GUIs) from Qt widgets in a visual editor; qmake for building ap-

plications for different target platforms; Qt Linguist for localizing applications,

which contains tools for the roles typically involved in localizing applications:

developers, translators; Qt Assistant for viewing Qt documentation. You can

also view documentation in Qt Creator.

10

2.2 Architecture

2.2 Architecture

The architecture of Qt class library is based on a custom Object Model. The

standard C++ object model provides very efficient runtime support for the

object paradigm. But its static nature is inflexible in certain problem domains.

Graphical user interface programming is a domain that requires both runtime

efficiency and a high level of flexibility. The Qt Object Model has been developed

to achieve this flexibility without giving up the speed of C++.

11

Chapter 2 Reference Framework

Qt adds these features to C++:

• a very powerful mechanism for seamless object communication called

signals and slots;

• queryable and designable object properties;

• powerful events and event filters;

• contextual string translation for internationalization;

• interval driven timers that make it possible to elegantly integrate many

tasks in an event-driven GUI;

• hierarchical and queryable object trees that organize object ownership;

• guarded pointers (QPointer) that are automatically set to 0 when the

referenced object is destroyed, unlike normal C++ pointers which become

dangling pointers when their objects are destroyed;

• a dynamic cast that works across library boundaries.

Many of these Qt features are implemented using standard C++ techniques,

based on inheritance from QObject. Others, like the object communication

mechanism (like signals and slots) and the dynamic property system, require

the Meta-Object System provided by Qt’s own Meta-Object Compiler (MOC).

The MOC (Meta-Object Compiler), is a preprocessor, used to extend the C++

language with features. Before the compilation step, the MOC parses the

source files written in Qt-extended C++ and generates standard compliant

C++ sources from them. Thus the framework itself and applications/libraries

using it can be compiled by any standard C++ compiler like Clang, GCC,

ICC, MinGW and MSVC[3]. Some of the added features listed above for

the Qt Object Model, ground on the idea that Qt Objects are meant to be

thought as identities, not values. Values are copied or assigned; identities are

cloned. Cloning means to create a new identity, not an exact copy of the old

one. Since a Qt Object might have a unique QObject::objectName(), we

can have problems if we try to copy a Qt Object. A Qt Object has a specific

location in an object hierarchy, plus it can be connected to other Qt Objects

12

2.2 Architecture

to emit signals to them or to receive signals emitted by them. It can have

new properties added to it at runtime that are not declared in the C++ class.

For these reasons, Qt Objects should be treated as identities, not as values.

Identities are cloned, not copied or assigned, and cloning an identity is a more

complex operation than copying or assigning a value. Therefore, QObject and

all subclasses of QObject (direct or indirect) have their copy constructor and

assignment operator disabled.

The meta-object system is a C++ extension that makes the language better

suited to true component GUI programming. Although templates can be used

to extend C++, the meta-object system provides benefits using standard C++

that cannot be achieved with templates.

The meta-object system is based on three things:

• the QObject class provides a base class for objects that can take advantage

of the meta-object system;

• the Q_OBJECT macro inside the private section of the class declaration

is used to enable meta-object features, such as dynamic properties, signals

and slots;

• the Meta-Object Compiler supplies each QObject subclass with the nec-

essary code to implement meta-object features.

The MOC tool reads a C++ source file. If it finds one or more class

declarations that contain the Q_OBJECT macro, it produces another C++

source file which contains the meta-object code for each of those classes. This

generated source file is either #include’d into the class’s source file or, more

usually, compiled and linked with the class’s implementation.

Qt’s meta-object system provides the signals and slots mechanism for inter-

object communication, run-time type information, and the dynamic property

system. Signals and slots are used for communication between objects. The

signals and slots mechanism is a central feature of Qt and probably the part

that differs most from the features provided by other frameworks. Signals and

slots are made possible by Qt’s meta-object system.

13

Chapter 2 Reference Framework

In GUI programming, when one widget changes, is often required another

widget to be notified. More generally, it would be useful for objects of any kind

to be able to communicate with one another. For example, if a user clicks a

close button, we probably want the window’s close() function to be called.

Other toolkits achieve this kind of communication using callbacks. A callback

is a pointer to a function, so if you want a processing function to notify

you about some event you pass a pointer to another function (the callback)

to the processing function. The processing function then calls the callback

when appropriate. While successful frameworks using this method do exist,

callbacks can be not-intuitive and may suffer from problems in ensuring the

type-correctness of callback arguments.

In Qt, there is an alternative to the callback technique: the use of signals and

slots. A signal is emitted when a particular event occurs. Qt’s widgets have

many predefined signals, but we can always subclass widgets to add our own

signals to them. A slot is a function that is called in response to a particular

signal. Qt’s widgets have many pre-defined slots, but it is common practice to

subclass widgets and add your own slots so that you can handle the signals

that you are interested in.

Qt also provides a sophisticated internal property system similar to the ones

supplied by some compiler vendors. However, as a compiler and platform

independent library, Qt does not rely on non-standard compiler features like

__property or [property][8]. The Qt solution works with any standard C++

compiler on every platform Qt supports. It is based on the Meta-Object System

that, like said, also provides inter-object communication via signals and slots.

To declare a property, use the Q_PROPERTY() macro in a class that inherits

QObject.

2.3 Qt Quick

One of the most recent and most important Qt modules is Qt Quick. First

introduced in Qt 4.7 and in Qt Creator 2.1, is a high-level UI technology

14

2.4 Qt QML Module

that allows developers and UI designers to work together to create animated,

touch-enabled UIs and lightweight applications. It includes new tools in the Qt

Creator IDE, including a visual editor that allows UI designers and developers

to cooperate, working on the same code in an iterative approach. It also

includes QtDeclarative, a new module in the Qt library that enables a new

declarative programming approach, and it includes QML, Qt Meta-Object

Language, an easy to use, declarative language. No C++ programming skills

are needed to use Qt Quick, yet it is totally based on Qt and can be extended

from C++.

2.4 Qt QML Module

The Qt QML module provides a framework for developing applications and

libraries with the QML language. It defines and implements the language and

engine infrastructure, and provides an API to enable application developers to

extend the QML language with custom types and integrate QML code with

JavaScript and C++. The Qt QML module provides both a QML API and a

C++ API. Note that while the Qt QML module provides the language and

infrastructure for QML applications, the Qt Quick module provides many visual

components, model-view support, an animation framework, and much more for

building user interfaces.

2.5 Qt Meta-Object Language

QML is a multi-paradigm language based on JavaScript, built to create highly

dynamic applications. With QML, application building blocks such as UI

components are declared and various properties set to define the application

behavior. Application behavior can be further scripted through JavaScript,

which is a subset of the language. In addition, QML heavily uses Qt, which

allows types and other Qt features to be accessible directly from QML appli-

cations. As multi-paradigm language, QML enables objects to be defined in

terms of their attributes and how they relate and respond to changes in other

15

Chapter 2 Reference Framework

objects. In contrast to purely imperative code, where changes in attributes and

behavior are expressed through a series of statements that are processed step

by step, QML’s declarative syntax integrates attribute and behavioral changes

directly into the definitions of individual objects. These attribute definitions

can then include imperative code, in the case where complex custom application

behavior is needed.

import QtQuick 2.3

Rectangle {
width: 300
height: 100
color: "red"

Text {
anchors.centerIn: parent
text: "Hello,␣World!"

}
}

Listing 2.1: Example of QML code

QML Object Types

A QML object type is a type from which a QML object can be instantiated.

In syntactic terms, a QML object type is one which can be used to declare

an object by specifying the type name followed by a set of curly braces that

encompasses the attributes of that object. This differs from basic types, which

cannot be used in the same way. For example, Rectangle is a QML object type:

it can be used to create Rectangle type objects. This cannot be done with

primitive types such as int and bool, which are used to hold simple data types

rather than objects. Custom QML object types can be defined by creating

a .qml file that defines the type, or by defining a QML type from C++ and

registering the type with the QML engine. Note that in both cases, the type

name must begin with an uppercase letter in order to be declared as a QML

object type in a QML file.

The QML module contains types for defining data models in QML.

16

2.6 Model/View Programming

QML Types

Types Description

DelegateModel Encapsulates a model and delegate

DelegateModelGroup Encapsulates a filtered set of visual data items

Instantiator Dynamically creates objects

ItemSelectionModel Instantiates a QItemSelectionModel to be used

in conjunction with a QAbstractItemModel and

any view supporting it

ListElement Defines a data item in a ListModel

ListModel Defines a free-form list data source

ObjectModel Defines a set of items to be used as a model

Package Specifies a collection of named items

Experimental QML Types

Types Description

DelegateChoice Encapsulates a delegate and when to use it

DelegateChooser Allows a view to use different delegates for dif-

ferent types of items in the model

TableModel Encapsulates a simple table model

TableModelColumn Represents a column in a model

2.6 Model/View Programming

Qt contains a set of item view classes that use a model/view architecture to

manage the relationship between data and the way it is presented to the user.

The separation of functionality introduced by this architecture gives developers

greater flexibility to customize the presentation of items, and provides a standard

model interface to allow a wide range of data sources to be used with existing

item views.

17

Chapter 2 Reference Framework

The Model/View architecture

Model-View-Controller (MVC) is a design pattern originating from Smalltalk[34]

that is often used when building user interfaces. MVC consists of three kinds of

objects. The Model is the application object, the View is its screen presentation,

and the Controller defines the way the user interface reacts to user input.

Before MVC, user interface designs tended to lump these objects together.

MVC decouples them to increase flexibility and reuse. If the view and the

controller objects are combined, the result is the Model/View architecture. This

still separates the way that data is stored from the way that it is presented to

the user, but provides a simpler framework based on the same principles. This

separation makes it possible to display the same data in several different views,

and to implement new types of views, without changing the underlying data

structures. To allow flexible handling of user input, Qt introduces the concept

of the delegate. The main advantage of using a delegate is the possibility to

customize data rendering and editing. The model communicates with a source

of data, providing an interface for the other components in the architecture.

The nature of the communication depends on the type of data source, and the

way the model is implemented. The view obtains indexes from the model; these

are references to items of data. By supplying indexes to the model, the view

can retrieve items of data from the data source. In standard views, a delegate

18

2.6 Model/View Programming

renders the items of data. When an item is edited, the delegate communicates

with the model directly using model indexes.

Generally, the model/view classes can be separated into the three groups:

models, views, and delegates. Each of these components is defined by abstract

classes that provide common interfaces and, in some cases, default features

implementations. Abstract classes are meant to be sub-classed in order to

provide the full set of functionality expected by other components and also

allows specialized components to be written.

Figure 2.1: Basic concepts surrounding models.

19

Chapter 3

Qt Geographical APIs

Essential Qt modules are general and useful for a majority of Qt applications. A

module that is used for a special purpose is considered an add-on module even

if it is available on all supported platforms. Qt Location and Qt Positioning ,

are the geographical add-on modules of the Qt framework[11].

1. Location API provides a library for mapping, navigation and place infor-

mation.

2. Positioning module provides positioning information via QML and C++

interfaces.

Qt Loction API is split into sub-modules, which provide QML and C++

interfaces for specific purposes. The required position data can be retrieved

using the Qt Positioning module.

21

Chapter 3 Qt Geographical APIs

3.1 Qt Location API

The Qt Location API offers the classes needed to create mapping solutions

using the data available from some of the most popular location services[13].

It allows access to map data and presenting it, Qt Location allows the user to

add additional geometric layers to the map, query for a specific geographical

location and route[13]. The API is split into sub-modules, which focus mainly

on Map and Place information:

Location APIs

Maps and Navigation Displaying maps and finding routes

Places Searching for and managing points of interest

Geoservices Plugin Implement geoservices and positioning plugins

Currently it is not possible to handle user interaction with maps data via

C++, the only available interface is the Maps and Navigation (QML) API.

3.1.1 Maps and Navigation API

The module provides the QML and C++ alternatives for maps and navigation.

The C++ alternative provides utility classes to get geocoding (finding a geo-

graphic coordinate from a street address) and navigation (including driving

and walking directions) information, whereas its QML counterpart provides UI

components to render the information.

Maps and Navigation (QML)

Maps and Navigation provides Qt Quick user interface types for displaying

geographic information on a map, as well as allowing user interaction with map

overlay objects and the display itself. It also contains utilities for geocoding

and navigation. Maps can also contain map overlay objects, which are used

to display information on its surface. There is a set of basic pre-defined map

overlay objects, as well as the ability to implement custom map overlay objects

using the MapQuickItem type, which can contain any standard Qt Quick item.

To automatically generate map overlay objects based on the contents of a

22

3.1 Qt Location API

Qt Quick model (for example a ListModel item), the MapItemView type is

available. It accepts any map overlay object as its delegate, and can only be

created within a Map.

Displaying Maps

Displaying a map is done using the Map QML types. The Map type supports

user interaction through the MapGestureArea QML type. The Map object

draws the map on-screen using OpenGL, allowing for hardware-accelerated

rendering where available. Provided that a position has been obtained, the Qt

Location module can add a Map with Places of Interest (POI) and Places. The

user can be made aware of nearby features and related information, displayed

on the map. These features can be places of business, entertainment, and so

on. They may include paths, roads, or forms of transport, enabling navigation

optimization and assistance. The Map QML types enable the information

contained in Place objects to be displayed, panned, zoomed, and so on. In the

following table are listed the relevant Map QML Types

QML Types

MapItemView Populates a Map with map overlay objects based

on the data provided by a model

MapCircle Define a geographic circle (all points at a set dis-

tance from a center), optionally with a border

MapPolyline Define a polyline made of an arbitrary list of coor-

dinates

MapPolygon Define a polygon made of an arbitrary list of coor-

dinates

MapRectangle Define a rectangle whose top left and bottom right

points are specified as coordinate types, optionally

with a border

MapQuickItem Turns any arbitrary Qt Quick Item into a map

overlay object

23

Chapter 3 Qt Geographical APIs

3.1.2 Places API

This API allows users to discover places/points of interest and view details

about them such as address and contact information; some places may even

have rich content such as images and reviews. The Places API also facilitates

management of places and categories, allowing users to save and remove them. A

QPlace object represents a place by acting as a container for various information

about that place. Besides the source information, the API provides information

about the location, size, and other related information. The Places API can

also retrieve images, reviews, and other content related to a place[14]. To access

data from REST servers or places from a local database Plugins are used. A

Plugin is an abstraction for a backend. In the following table there is a list of

the Qt Location Map plugins.

Qt Location Plugin

Esri Uses Esri for location services

HERE Uses the relevant services provided by HERE

Items Overlay Provides an empty map intended to be used as

background for an overlay layers for map items

Mapbox GL Uses Mapbox GL for location services

Mapbox Uses Mapbox for location services

Open Street Map Uses Open Street Map and related services

The QML Places API is built around the notion of models, views and delegates

as illustrated in the Chapter 2. The Model holds data items and maintains

their structure. It is also responsible for retrieving the items from a data source.

The View is a visual container that displays the data and manages how visual

items are shown such as in a list or a grid. It may also be responsible for

navigating the data, for example, scrolling through the visual items during a

flicking motion[17]. The Delegate defines how individual data elements should

appear as visual items in the view. The models expose a set of data roles and

the delegate uses them to construct a visual item. It may also define behaviour

such as an operation to invoke when a visual item is clicked.

24

3.2 Qt Positioning API

3.2 Qt Positioning API

The Positioning module is the natural complement to the Places submodule

of Qt Location. This API gives developers the ability to determine a position

by using a variety of possible sources, including satellite, or wifi, or text file,

and so on. That information can then be used to for example determine a

position on a map. In addition satellite information can be retrieved and area

based monitoring can be performed. Positioning includes all the functionality

necessary to find and work with geographic coordinates. It can use a variety

of external sources of information, including GPS. This provides us with a

coordinate and altitude for the device with additional features such as speed

and direction. This provides the fundamental location information used in the

API[18].

C++ Positioning API

QGeoShape class defines a geographic area. This class was introduced in Qt 5.2.

and its part of Positiong API. For the sake of consistency, subclasses should

describe the specific details of the associated areas in terms of QGeoCoordinate

instances and distances in meters. It can be directly used from C++ and

QML[5].

C++ Positioning Classes

QGeoLocation Represents basic information about a location

QGeoCoordinate Defines a position on the surface of the Earth

QGeoCircle Defines a circular geographic area

QGeoPath Defines a geographic path

QGeoPolygon Defines a geographic polygon

QGeoRectangle Defines a rectangular geographic area

QGeoShape Defines a geographic area

25

Chapter 3 Qt Geographical APIs

QML Positioning API

The QML position is stored in a coordinate which contains the latitude, lon-

gitude and altitude of the device. The Location contains this coordinate and

adds an address, and also has a bounding box which defines the recommended

viewing region when displaying the location. A geoShapetype represents an

abstract geographic area. This type is a QML representation of QGeoShape

which is an abstract geographic area. It includes attributes and methods

common to all geographic areas[6].

The geoCircle type is a geoShape that represents a circular geographic area.

It is a direct representation of a QGeoCircle and is defined in terms of a

coordinate which specifies the center of the circle and a qreal which specifies

the radius of the circle in meters.

The geopath type is a geoshape that represents a geographic path. It is a

direct representation of a QGeoPath and is defined in terms of a path which

holds the list of geo coordinates in the path.

The geopolygon type is a geoshape that represents a geographic polygon. It is

a direct representation of QGeoPolygon and is defined in terms of a path which

holds a list of geo coordinates in the polygon. When integrating with C++, any

QGeoCircle, QGeoPath and QGeoPolygon values passed into QML are auto-

matically converted into the corrispectives geoCircle, geoPath, geoPolygon,

and vice versa[6].

QML Positioning Types

geoLocation Represents basic information about a location

geoCoordinate Defines a position on the surface of the Earth

geoShape Defines a geographic area

geoCircle Defines a circular geographic area

geoPath Defines a geographic path

geoPolygon Defines a geographic polygon

geoRectangle Defines a rectangular geographic area

26

3.2 Qt Positioning API

The Qt Location QML module depends on the Qt Positioning QML module.

Therefore every QML application that imports the Qt Location QML module

must always import the Qt Positioning module as well, since MapPolygon,

MapPolyline and MapCircle type displays polygons, lines and circles on a

Map, specified in terms of an ordered list of coordinates, list of cordinates and

cordinates.

C++ Classes and QML Basic Types

Positioning (C++) Positioning (QML) Location (QML)

QGeoShape::QGeoCircle geoShape::geoCircle MapCircle

QGeoShape::QGeoPath geoShape::geoPath MapPolyline

QGeoShape::QGeoPolygon geoShape::geoPolygon MapPolygon

QGeoShape::QGeoRectangle geoShape::geoRectangle MapRectangle

This Basic Types can find direct correspondence to the GeoJSON geometries

that will be illustrated in the following chapter. To be noted here, till Qt 5.12,

neither QGeoPolygon, geoPolygon nor MapPolygon types supported holes.

27

Chapter 4

Geographic JSON (GeoJSON)

GeoJSON is a format for encoding data about geographic features using

JavaScript Object Notation (JSON)[]. Geographic features need not be physical

things; any thing with properties that are bounded in space may be considered

a feature. GeoJSON provides a means of representing both the properties and

spatial extent of features[28].

4.1 JavaScript Object Notation (JSON)

According json.org[23] and JSON RFC[25]’s paper. JSON is a data interchange

format derived from JavaScript, widely used as a data exchange format on

the internet. JSON is easy for humans to read and write, plus it is easy for

machines to parse and generate. It is a text format that is completely language

independent but uses conventions that are familiar to programmers of the C-

family of languages, including C, C++ and C#. These properties make JSON

an ideal data-interchange language. JSON objects are written in key/value

pairs. Keys must be strings, and values must be a valid JSON data type. A

boolean value is represented by the strings true or false in JSON; a value can

have any of the types in the figure 4.1. A string can be any valid unicode

string; an array is a list of values. An object is a collection of key/value pairs,

all keys in an object are strings, and an object cannot contain any duplicate

keys. In various languages, a collection of name/value pairs, defines an object

(or record, struct, dictionary, hash table, keyed list, associative array), while

29

Chapter 4 Geographic JSON (GeoJSON)

Figure 4.1: valid JSON data type

Figure 4.2: representation of JSON encloses arrays in square brackets ([...]) and
objects in curly brackets ({ ... }). Entries in arrays and objects are
separated by commas and separator between keys and values in an object
is a colon.

an ordered list of values defines an array (or vector, list, or sequence). These

are universal data structures. Virtually all modern programming languages

support them in one form or another. It makes sense that a data format that is

interchangeable with programming languages also be based on these structures.

30

4.2 GeoJSON

4.2 GeoJSON

GeoJSON is a geospatial data interchange format based on JSON. The GeoJ-

SON format specification was published in 2008 and It defines several types of

JSON objects, and the manner in which they can be combined to represent

geographic features, their properties, and their spatial extents[27]. GeoJSON

uses the geographic coordinate reference system WGS84 and today, it plays an

important and growing role in many spatial databases, web APIs, and open

data platforms. Consequently the implementers increasingly demand formal

standardization, improvements in the specification, guidance on extensibility,

and the means to utilize larger GeoJSON datasets.

GeoJSON objects represent geographic features only, and do not specify asso-

ciations between geographic features and particular devices, users, or facilities.

When a GeoJSON object is used in a context where it identifies the location

of a device, user, or facility, it becomes subject to the architectural, security,

and privacy considerations in RFC 6280[24]. The GeoJSON Working Group

worked on a format for a streamable sequence of GeoJSON texts based on

RFC 7464[26] (JSON Text Sequences) to address the difficulties in serializing

very large sequences of features or feature sequences of indeterminate length.

Note that GeoJSON does not provide privacy or integrity services. If sensitive

data requires privacy or integrity protection, those must be provided by the

transport – for example, Transport Layer Security (TLS) or HTTPS. There

will be cases in which stored data need protection, which is out of scope.

GeoJSON can be used to represent a geometry, or collection of geometries, a

feature, or a collection of features. The geometry types supported in GeoJSON

are Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon and

GeometryCollection. Features are geometries with additional properties, and

FeatureCollection are sets of features[33]. A GeoJSON text is a JSON text and

consists of a single GeoJSON object. The object has a member with the name

"type", the value of the member must be one of the GeoJSON types:

31

Chapter 4 Geographic JSON (GeoJSON)

GeoJSON Types

1 Point

2 LineString

3 Polygon

4 MultiPoint

5 MultiLineString

6 MultiPolygon

7 GeometryCollection

8 Feature

9 FeatureCollection

A Position is a fundamental geometric construct. It’s an array of 2 or 3 numbers.

The first two elements are longitude and latitude, precisely in that order and

using decimal numbers. And the third (optional) number represents altitude

or elevation. So, a position is basically the array [longitude, latitude, altitude].

GeoJSON Geometry object (to be noted: Feature and FeatureCollection are not

geometry types) of any type other than "GeometryCollection" has a member

with the name "coordinates" and value member is an array. The structure of

the elements in this array is determined by the type of geometry:

• one position in the case of a "Point" geometry;

• an array of positions in the case of a "LineString" or "MultiPoint" geometry;

• an array of "LineString" coordinates in the case of a "Polygon" or "Multi-

LineString" geometry;

• an array of "Polygon" coordinates in the case of a "MultiPolygon" geometry.

4.2.1 Single Geometry objects

Point, LineString and Polygon shapes are single type Geometry objects. And

their structures are illustrated in the following examples.

32

4.2 GeoJSON

{
"type": "Point",
"coordinates": [11,60]

}

Listing 4.1: Example of a GeoJSON Point

{
"type": "LineString",
"coordinates": [

[12.33, 45.42],
[13.75, 45.59],
[13.49, 43.59]

]
}

Listing 4.2: Example of a GeoJSON LineString

33

Chapter 4 Geographic JSON (GeoJSON)

Polygons in GeoJSON are built around the concept of "linear ring": a linear ring

is a closed LineString with four or more positions, the first and last positions

contain identical values. A linear ring is the boundary of a surface or the

boundary of a hole in a surface. It follows the right-hand rule with respect to

the area it bounds: exterior rings are counterclockwise, and holes are clockwise.

For backwards compatibility reasons to the 2008 GeoJSON standard, parsers

should not reject Polygons that do not follow the right-hand rule. For type

"Polygon", the "coordinates" member has to be an array of linear ring coordinate

arrays. For Polygons with more than one of these rings, the first has to be

intended as the exterior perimeter, and any others are interior rings. The

exterior ring bounds the surface, and the interior rings bound holes within the

surface.

{
"type": "Polygon",
"coordinates": [
[

[11.55,48.13],
[11.32,44.48],
[15.44,47.06],
[11.55,48.13]

]
]

}

34

4.2 GeoJSON

Listing 4.3: Example of a GeoJSON Polygon

{
"type": "Polygon",
"coordinates": [

[[35, 10], [45, 45], [15, 40], [10, 20], [35, 10]],
[[20, 30], [35, 35], [30, 20], [20, 30]]

]
}

Listing 4.4: Example of a GeoJSON Polygon with holes

4.2.2 Homogeneously multipart Geometries

MultiPoint, MultiLineString, and MultiPolygon are multipart Geometry objects.

They are defined as compositions of single type geometry objects (Point,

LineString and Polygon).

4.2.3 Heterogeneous composition of Geometries

A GeoJSON object with type "GeometryCollection" has a member with the

name "geometries". The value of "geometries" is an array, each element of

this array is a GeoJSON Geometry object. Although a GeometryCollection

object has no "coordinates" member, it does have coordinates: the coordi-

nates of all its parts belong to the collection. The "geometries" member of

a GeometryCollection describes the parts of this composition. To maximize

interoperability, implementations should avoid nested GeometryCollections.

Furthermore, according to the GeoJSON RFC, GeometryCollections composed

of a single part or a number of parts of a single type should be avoided.

4.2.4 Spatially bounded entities with properties

A Feature object represents a spatially bounded thing. Every Feature object

is a GeoJSON object no matter where it occurs in a GeoJSON text. It has a

"type" member with the value "Feature"[1]. A Feature object has a member

with the name "geometry", the value of this member shall be either a Geometry

object as defined above or, in the case that the Feature is unlocated, a JSON

35

Chapter 4 Geographic JSON (GeoJSON)

null value. The main difference between the heterogeneous composition is that

a Feature object has a member with the name "properties" with an object as a

value. It can have an identifier, this identifier should be included as a member

of the Feature object with the name "id", and the value of this member is either

a JSON string or number.

{
"type":"Feature",
"id":"Poly",
"properties": {

"text":"This␣is␣a␣Feature␣with␣a␣Polygon"
},
"geometry": {

"type": "Polygon",
"coordinates": [

[
[17.13, 51.11],
[30.54, 50.42],
[26.70, 58.36],
[17.13, 51.11]

],
[

[23.46, 54.36],
[20.52, 51.91],
[26.80, 54.36],
[23.46, 54.36]

]
]

}
}

Listing 4.5: Example of a GeoJSON Feature

The last GeoJSON object type is "FeatureCollection". It is defined as a sets of

features. FeatureCollection has a member "features", and its value is a JSON

array. Each element of the array is a Feature object as defined above.

36

Chapter 5

Design of Qt Location Interoperability

Aim of the project was to make Qt Location interoperable with GeoJSON[32].

This translates into adding support for loading geometries from GeoJSON and

exporting geometries to GeoJSON. The fist step to achieve this result was

to verify whether Qt geometries were already suited to represent all of the

GeoJSON objects and to contain all the informations these objects can carry.

To define the 3 basic GeoJSON objects it has been decided to use 3 child classes

of the QGeoShape class, (as seen in chapter 3), QGeoCircle has been used to

represent the Point geometry, QGeoPath for the LineString and QGeoPolygon

for Polygon geometry. QGeoRectangle has not been used since rectangles are

classified as Polygons in GeoJSON.

GeoJSON Point

To define a Point GeoJSON object, the QGeoCircle class has been used. This

class defines a circular geographic area. Since The GeoJSON Point only needs

a single position, and given that Qt Location does not implements a single

position geospatial class, it has been decided to use the center of a QgeoCircle

as reference for the coordinates of a GeoJSON Point. Visually a point would

be reppresented by a small cricle.

GeoJSON LineString

To define a LineString it has been used the QGeoPath class without any changes.

This class already supported all of the features needed to describe a GeoJSON

37

Chapter 5 Design of Qt Location Interoperability

LineString. The path is defined by an ordered list of QGeoCoordinates. Each

two adjacent elements in the path are intended to be connected together by

the shortest line segment of constant bearing passing through both elements.

GeoJSON Polygon

To define a Polygon the QGeoPolygon class has been used. This class de-

fines a geographic polygon. The Polygon is defined by an ordered list of

QGeoCoordinates representing its perimeter. Each two adjacent elements in

this list are intended to be connected together by the shortest line segment of

constant bearing passing through both elements. The QGeoPolygon class does

not support holes, thus, the first step to achieve feature parity was to upgrade

the Qt Location and Qt Positiong APIs to add holes support in polygons.

The Container Class: QVariant

Because C++ forbids unions from including types that have non-default con-

structors or destructors, most interesting Qt classes cannot be used in unions.

For this reason it has been decided to use QVariant class to store the data of

all GeoJSON objetcs. A QVariant object holds a single value of a single type()

at a time. (Some types are multi-valued, for example a string list.) You can

find out what type, T, the variant holds, convert it to a different type using con-

vert(), get its value using one of the toT() functions (e.g., toSize()) and check

whether the type can be converted to a particular type using canConvert()[9].

Here is some example code to demonstrate the use of QVariant:
QDataStream out(...);
QVariant v(123); // The variant now contains an int
int x = v.toInt(); // x = 123
out << v; // Writes a type tag and an int to out
v = QVariant("hello"); // The variant now contains a QByteArray
v = QVariant(tr("hello")); // The variant now contains a QString
int y = v.toInt(); // y = 0, v cannot be converted to an int
QString s = v.toString(); // s = tr("hello") (see QObject::tr())
out << v; // Writes a type tag and a QString to out
...
QDataStream in(...); // (opening the previously written stream)
in >> v; // Reads an Int variant

38

int z = v.toInt(); // z = 123
qDebug("Type␣is␣%s", // prints "Type is int"

v.typeName());
v = v.toInt() + 100; // The variant now hold the value 223
v = QVariant(QStringList());

Qt provides the following sequential containers: QList, QLinkedList, QVector,

QStack, and QQueue. For most applications. QList<T> is one of Qt’s generic

container classes. It stores items in a list that provides fast index-based access

and index-based insertions and removals. Qt also provides these associative

containers: QMap, QMultiMap, QHash and QSet. The containers conveniently

support values associated with a single key. QMap<Key, T> is one of Qt’s generic

container classes. It stores (key, value) pairs and provides fast lookup of the

value associated with a key. The QMap class is a template class that provides a

red-black-tree-based dictionary[7].

It is possible to use the QVariant container class with both QList and QMap:

QVariantMap is a synonym for:
QMap<QString, QVariant>

and QVariantList is a synonym for:
QList<QVariant>.

The QML engine provides automatic type conversion between QVariantList

and JavaScript arrays, and between QVariantMap and JavaScript objects.

Without QVariant, this would have been a problem.

To design the new interoperability class, QVariantMap and QVariantList

have been extensively used to store the geometries imported from GeoJSON data.

In this way it has been possible, by nesting QVariantLists and QVariantMaps

at various levels, to build arbitrarily complex data structures of arbitrary types.

This approach was very powerful and versatile, and allowed to maintain very

simple compatibility with both QML and C++ applications.

39

Chapter 5 Design of Qt Location Interoperability

GeoJSON homogeneous and Heterogeneous multiple geometries

Given its simple interoperability between C++ and QML, QVariantList has

been chosen To represent GeoJSON homogeneously typed (MultiPoint, Multi-

LineString, MultiPolygon) and heterogeneously typed (GeometryCollection)

multiple geometries.

GeoJSON objects including geometries and properties

GeoJSON Feature and FeatureCollection Objects represents a geometry of any

of the above lists types, equipped with a properties member. The best Qt data

structure to represent these objects is the QVariantMap. A QVariantMap with

2 memebers allows to port any Feature object in Qt. The FeatureCollection

Object has been represented with a QVariantList of many QVariantMap. In

the following table it is possible to see the comparison between GeoJSON

objects and Qt Location classes.

Feature-Parity Check

GeoJSON Objects Qt Classes Parity

Point QGeoCircle Partial (1)

LineString QGeoPath Yes

Polygon QGeoPolygon No (2)

MultiPoint QVariantList(QGeoCircle) Yes

MultiLineString QVariantList(QGeoPath) Yes

MultiPolygon QVariantList(QGeoPolygon) Yes

GeometryCollection QVariantList(QGeoShape) Yes

Feature QVariantMap Yes

FeatureCollection QVariantList(QVatiantMap) Yes

(1) Need to store point coordinates in QGeoCircle center property.

(2) Need to implement holes support in QGeoPolygon.

40

5.1 QGeoJson class

5.1 QGeoJson class

To achieve the interoperability, a new class named QGeoJson was designed. The

QGeoJson class had been used to convert GeoJSON document and a proper

Qt data structures to be used both in C++ and QML. The class would have

featured an importer method and an exporter method. To ease the development

and debugging a third member function was designed to print in a readable

format the imported data structure.

// This method imports a GeoJSON file to QVariantList:

static QVariantList importGeoJson(const QJsonDocument &doc);

// This method exports a GeoJSON file from a QVariantList:

static QJsonDocument exportGeoJson(const QVariantList &list);

// This method prints the content of the imported QVariantList:

static QString toString(const QVariantList &importedGeoJson);

After the GSoC project was completed one more member function was

designed to operate the linting of a GeoJSON document.

// This method performs validation on the input

static bool isValidGeoJson(const QJsonDocument &geojson,
QJsonParseError *error = nullptr);

5.1.1 Importing GeoJSON

The method importGeoJson() accepts a QJsonDocument from which it extracts

a single JSON object, since the GeoJSON RFC expects that a valid GeoJSON

Document has in its root a single JSON object. The importer returns a

QVariantList containing a single QVariantMap. This map has always at least

2 (key, value) pairs. The first one has type as key, and the corresponding

value is a string identifying the GeoJSON type. This value can be one of

41

Chapter 5 Design of Qt Location Interoperability

the GeoJSON object types: Point, MultiPoint, LineString, MultiLineString,

Polygon, MultiPolygon, GeometryCollection, FeatureCollection. The second

pair has data as key, and the corresponding value can be either a QGeoShape

or a QVariantList, depending on the GeoJSON type. The Feature type is

converted into the type of the geometry contained within, with an additional

(key, value) pair, where the key is properties and the value is a QVariantMap.

Thus, a feature Map is distinguishable from the corresponding geometry, by

looking for a properties member.

5.1.2 Exporting GeoJSON

The exporter accepts the QVariantList returned by the importer, and returns

a JSON document. The exporter is complementary to the importer because it

executes the inverse action.

5.1.3 Validation of the GeoJSON data

As JSON data is often output without line breaks to save space, it can be

extremely difficult to spot errors, Qt provides support for dealing and validating

JSON data (in particular it makes easy to use C++ API to parse, modify and

save this data in a binary format that is directly "mapp"-able and very fast

to access). Since GeoJSON is a subset of JSON and since Qt offers JSON

linting, in order to ensure the correct parse of GeoJSON before importing,

it has been extended the validation also to GeoJSON file. The design of

toValidGeoJson member function, which it works as GeoJSON syntax checker

and flag programming errors according to the description set out geojson.org

and its RFC[27].

42

Chapter 6

Development of feature parity and

QGeoJSON class

The process of patching and upgrading Qt Library follows a very specific path

which contemplates the use of the Gerrit Codereview platform. There is a

very active community around the development of the Qt libraries, Qt related

tools, and add-ons, called the Qt Project. Contributors have to follow strict

guidelines. The version control tool Git is integrated with Gerrit, a web based

code review tool. The patches, coded following very strict guidelines[10] whose

rules extend from indentation to coding style, once published on Qt code review

platform, have to pass the automated check of a bot and the review of multiple

Qt developers to become candidate for merging to the Qt Project code.

The GSoC Project produced 3 patches to the Qt code, which went trough

the review process before being accepted and merged. Two of these patches

attained the support of holes in polygon geometries, while the third patch

contained the importer/exporter class.

1 Add QGeoPolygon holes support to LocationSingleton[29]
2 Add hole support in QGeoPolygon[30]
3 Add QGeoJson: a GeoJSON parser[31]

Table 6.1: The 3 patches merged into Qt framework

43

Chapter 6 Development of feature parity and QGeoJSON class

Figure 6.1: The Qt open source contribution process

44

6.1 Adding holes support to Geographic Polygons

6.1 Adding holes support to Geographic Polygons

Like already mentioned there was only partial compatibility between the

GeoJSON Polygon object and the QtLocation QGeoPolygon class. The Qt

class was unable to offer the setting of holes inside the surface of the defined

polygon. Thus, the first step to obtain feature parity, it has been to support

holes in QGeoPolygon class. To achieve this results it has been necessary to

modify the following source files in 2 different patches:

1 qgeopath_p.h

2 qgeopath.cpp

3 qgeopolygon.h

4 qgeopolygon.cpp

5 locationsingleton.h

6 locationsingleton.cpp

File 5 and 6 contain the implementation of Qt Poisitioning QML geoPolygon

class. Header files with the "_p" suffix contain private class members prototypes

and private properties. Implementation of C++ QGeoPolygon class spans on

both QGeoPath class source files (1 and 2 on the above list) and QGeoPolygon

class source files (3 and 4). Infact QGeoPolygon Private functions, are included

in QGeoPath source files, while QGeoPolygon public APIs are included in specific

class files.

45

Chapter 6 Development of feature parity and QGeoJSON class

Filename Description

qgeopath_p.h Includes private member functions prototype for

both QGeoPath and QGeoPolygon classes

qgeopath.h Includes public API member functions prototype

for QGeoPath class. Not modified

qgeopath.cpp Includes public API implementation for

QGeoPath class and private implementation for

both QGeoPath and QGeoPolygon classes

qgeopolygon.h Includes public API member functions prototype

file for QGeoPolygon class

qgeopolygon.cpp Includes public API implementation for

QGeoPolygon

6.1.1 C++ Private API development

Private member functions prototypes were added to the qgeopath_p.h header

file to add and "remove" holes, "read" a hole, and a function to "count" holes

number in the polygon. An attribute was also added to store coordinates of

holes perimeters.

src/positioning/qgeopath_p.h:

// Sets the holePath for a hole inside the polygon.
// The hole is a QVariant containing a QList<QGeoCoordinate>
void addHole(const QList<QGeoCoordinate> &holePath);

// Returns the holePath at a given index
const QList<QGeoCoordinate> holePath(int index) const;

// Removes a single hole from the polygon
void removeHole(int index);

// Returns the number of holes
int holesCount() const;

// Stores coordinates of holes perimeters
QList<QList<QGeoCoordinate>> m_holesList;

46

6.1 Adding holes support to Geographic Polygons

In the following source file are included both public and private function

members for both QGeoPath and QGeoPolygon classes. Here was added the code

for the private functions whose prototypes were included in the qgeopath_p.h

header file. The polygonContains() function is used to render a polygon

surface on a map and makes use of the clipper library[4]. It has been modiefied

too to support holes.

src/positioning/qgeopath.cpp

// Modified version of polygonContains with holes support

bool QGeoPathPrivate::polygonContains(const QGeoCoordinate &coordinate)
const

{
if (m_clipperDirty)

const_cast<QGeoPathPrivate *>(this)->updateClipperPath();

/*
Iterates the holes list checking whether the point
is contained inside the holes

*/

for (const QVariant &hole : m_holesList) {

QList<QGeoCoordinate> holePath = hole.value<QList<QGeoCoordinate>>()
;

QGeoPolygon holePolygon;
holePolygon.setPath(holePath);
QGeoPath holeBoundary;
holeBoundary.setPath(holePath);

if (holePolygon.containsCoordinate(coordinate) && !(holeBoundary.
containsCoordinate(coordinate)))

return false;
}
QDoubleVector2D coord = QWebMercator::coordToMercator(coordinate);
double tlx = QWebMercator::coordToMercator(m_bbox.topLeft()).x();

if (coord.x() < tlx)
coord.setX(coord.x() + 1.0);

IntPoint intCoord = QClipperUtils::toIntPoint(coord);

return c2t::clip2tri::pointInPolygon(intCoord, m_clipperPath) != 0;
}

47

Chapter 6 Development of feature parity and QGeoJSON class

/*
Sets the path for an Hole inside the polygon.
The hole has to be provided in QList <QGeoCoordinate> type

*/

void QGeoPathPrivate::addHole(const QVariant &holePath)
{

m_holesList.append(holePath);
}

/*!
Return a QVariant containing a QList<QGeoCoordinate>
containing the hole at index, have to find a way to return the QVariant.

*/

const QVariant &QGeoPathPrivate::holePath(int index) const
{

return m_holesList.value(index);
}

// Removes element at position \a index from the holes QList
void QGeoPathPrivate::removeHole(int index)
{

if (index < 0 || index >= m_holesList.size())
return;

m_holesList.removeAt(index);
}

48

6.1 Adding holes support to Geographic Polygons

6.1.2 C++ Public API development

The qgeopolygon.h header file contains the prototypes for the public API

member functions. The Q_INVOKABLE macro applied to declarations of member

functions allows them to be invoked via the meta-object system in QML code.

src/positioning/qgeopolygon.h:

Q_INVOKABLE void addHole(const QVariant &holePath);
void addHole(const QList<QGeoCoordinate> &holePath);

Q_INVOKABLE const QVariantList hole(int index) const;
const QList<QGeoCoordinate> holePath(int index) const;

Q_INVOKABLE void removeHole(int index);
Q_INVOKABLE int holesCount() const;

The qgeopolygon.cpp file includes the implementations of the public API

member functions. The addHole() method is overloaded and accepts both

QGeoCoordinate and QVariant parameter, to maximize the compatibility with

QML applications. For the same reason, there are 2 different functions to

"write" a new hole inside a polygon.

src/positioning/qgeopolygon.cpp:

/*
Sets the path for a hole inside the polygon.
The hole is a QVariant containing a QList<QGeoCoordinate>

*/
void QGeoPolygon::addHole(const QVariant &holePath)
{

Q_D(QGeoPolygon);
QList<QGeoCoordinate> qgcHolePath;
if (holePath.canConvert<QVariantList>()) {

const QVariantList qvlHolePath = holePath.toList();
for (const QVariant &vertex : qvlHolePath) {

if (vertex.canConvert<QGeoCoordinate>())
qgcHolePath << vertex.value<QGeoCoordinate>();

}
}
return d->addHole(qgcHolePath);

}

49

Chapter 6 Development of feature parity and QGeoJSON class

/*
Overloaded method. Sets the path for a hole inside the polygon.
The hole is a QList<QGeoCoordinate>

*/
void QGeoPolygon::addHole(const QList<QGeoCoordinate> &holePath)
{

Q_D(QGeoPolygon);
return d->addHole(holePath);

}

/*
Returns a QVariant containing a QVariant containing a
QList<QGeoCoordinate> which represents the hole at index

*/
const QVariantList QGeoPolygon::hole(int index) const
{

Q_D(const QGeoPolygon);
QVariantList holeCoordinates;
for (const QGeoCoordinate &coords: d->holePath(index))

holeCoordinates << QVariant::fromValue(coords);
return holeCoordinates;

}

// Returns a QList<QGeoCoordinate> which represents the hole at \a index
const QList<QGeoCoordinate> QGeoPolygon::holePath(int index) const
{

Q_D(const QGeoPolygon);
return d->holePath(index);

}

// Removes element at position \a index from the holes QList.
void QGeoPolygon::removeHole(int index)
{

Q_D(QGeoPolygon);
return d->removeHole(index);

}

// Returns the number of holes.
int QGeoPolygon::holesCount() const
{

Q_D(const QGeoPolygon);
return d->holesCount();

}

50

6.1 Adding holes support to Geographic Polygons

6.1.3 QML API Development

The locationsingleton.h file contains the prototypes for the member func-

tions needed to extend the C++ QGeoPolygon class to QML.

src/imports/positioning/locationsingleton.h:

Q_INVOKABLE QGeoPolygon polygon(const QVariantList &perimeter, const
QVariantList &holes) const;

The locationsingleton.cpp file contains the function implementation for

methods to be used in QML.

src/imports/positioning/locationsingleton.cpp:

// Constructs a polygon from coordinates for perimeter and inner holes

QGeoPolygon LocationSingleton::polygon(const QVariantList &perimeter, const
QVariantList &holes) const

{
QList<QGeoCoordinate> internalCoordinates;
for (int i = 0; i < perimeter.size(); i++) {

if (perimeter.at(i).canConvert<QGeoCoordinate>())
internalCoordinates << perimeter.at(i).value<QGeoCoordinate>();

}
QGeoPolygon poly(internalCoordinates);

for (int i = 0; i < holes.size(); i++) {
if (holes.at(i).type() == QVariant::List) {

QList<QGeoCoordinate> hole;
const QVariantList &holeData = holes.at(i).toList();

for (int j = 0; j < holeData.size(); j++) {
if (holeData.at(j).canConvert<QGeoCoordinate>())

hole << holeData.at(j).value<QGeoCoordinate>();
}

if (hole.size())
poly.addHole(hole);

}
}
return poly;

}

51

Chapter 6 Development of feature parity and QGeoJSON class

6.2 QGeoJson class

Once achieved the full feature parity between Qt Location and GeoJSON, it

has been possible to move forward to the development of the importer and the

exporter. Both of them have been created as methods of the new QGeoJson class.

The QGeoJson class can be used to convert between a GeoJSON document

and a data structure built as a QVariantList of QVariantMaps. The elements

in this list are ready to be used as model in a MapItemView.

The following list includes all the methods developed in QGeoJson class. The

class has no private API.

src/location/labs/qgeojson.h:

// This method importe a GeoJSON file to QVariantList:

static QVariantList importGeoJson(const QJsonDocument &doc);

// This method exporte a GeoJSON file from a QVariantList:

static QJsonDocument exportGeoJson(const QVariantList &list);

// This method prints the content of the imported QVariantList:

static QString toString(const QVariantList &importedGeoJson);

After the GSoC project was completed one more member function was

designed to operate the linting of a GeoJSON document.

// This method performs validation on the input:

static bool isValidGeoJson(const QJsonDocument &geojson,
QJsonParseError *err = nullptr);

52

6.2 QGeoJson class

6.2.1 Importing GeoJSON

The importGeoJson() method accepts a QJsonDocument from which it ex-

tracts a single JSON object, since the GeoJSON RFC expects that a valid

GeoJSON Document has in its root a single JSON object. This method doesn’t

perform any validation on the input. The importer returns a QVariantList

containing a single QVariantMap. This map has always at least 2 (key, value)

pairs. The first one has type as key, and the corresponding value is a string

identifying the GeoJSON type. This value can be one of the GeoJSON object

types: Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon,

GeometryCollection, FeatureCollection. The second pair has data as key, and

the corresponding value can be either a QGeoShape or a list, depending on

the GeoJSON type. The next section provides details about this node. The

Feature type is converted into the type of the geometry contained within, with

an additional (key, value) pair, where the key is properties and the value is a

QVariantMap. Thus, a feature Map is distinguishable from the corresponding

geometry, by looking for a properties member.

53

Chapter 6 Development of feature parity and QGeoJSON class

Structure of the "data" node

For the single type geometry objects (Point, LineString, and Polygon), the value

corresponding to the data key is a QGeoShape. When the type is Point, the

data is a QGeoCircle with the point coordinates stored in the center property.

For example, the following GeoJSON document contains a Point geometry:

{
"type" : "Point",
"data" : [50.0, 11.0]

}

Listing 6.1: GeoJSON Point Geometry

It is converted to a QVariantMap with the following structure:

{
type : Point
data : QGeoCircle({50.000, 11.000}, -1)

}

Listing 6.2: Example

When the type is LineString the data is a QGeoPath. For example, the

following GeoJSON document contains a LineString geometry:

{
"type" : "LineString",
"coordinates" : [[13.5, 43],[10.73, 48.92]]

}

Listing 6.3: Example of a GeoJSON LineString Geometry

It is converted to a QVariantMap with the following structure:

{

type : LineString,
data : QGeoPath([{43.000, 13.500}, {48.920, 10.730}])

}

54

6.2 QGeoJson class

When the type is Polygon, the data is a QGeoPolygon (holes are supported).

For example, the following GeoJSON document contains a Polygon geometry:

{
"type" : "Polygon",
"coordinates" : [

[[17.13, 41.11],
[10.54, 40.42],
[16.70, 48.36],
[17.13, 41.11]]

],
}

Listing 6.4: GeoJSON Polygon Geometry

It is converted to a QVariantMap with the following structure:

{
type : Polygon
data : QGeoPolygon([{41.110, 17.130}, {40.420,10.540}, {48.360, 16.700},
{41.110, 17.130}])

}

For the homogeneously typed multipart geometry objects (MultiPoint, Mul-

tiLineString, MultiPolygon) the value corresponding to the data key is a

QVariantList. Each element of the list is a QVariantMap of one of the above

listed types. The elements in this list will be all of the same GeoJSON type:

For example, When the type is MultiPoint, the data is a List of Points.

The following GeoJSON document contains a MultiPoint geometry:

{
"type" : "MultiPoint",
"coordinates" : [

[11,50],
[5.5,40.3],
[5.7,48.90]

]
}

Listing 6.5: GeoJSON MultiPoint Geometry

55

Chapter 6 Development of feature parity and QGeoJSON class

It is converted to a QVariantMap with the following structure:

{
type : MultiPoint
data : [

{
type : Point
data : QGeoCircle({50.000, 11.000}, -1)
},
{
type : Point
data : QGeoCircle({40.300, 5.500}, -1)
},
{
type : Point
data : QGeoCircle({48.900, 5.700}, -1)
}

]
}

The MultiLineString and MultiPolygon cases follow the same structure, where

the data member is respectively a list of LineStrings or a list of Polygons.

56

6.2 QGeoJson class

The GeometryCollection is a heterogeneous composition of other geometry

types. In the resulting QVariantMap, the value of the data member is a

QVariantList populated by QVariantMap of various geometries, including the

GeometryCollection itself.

{
"type" : "GeometryCollection",
"geometries" : [

{
"type" : "MultiPoint",
"coordinates" : [

[11,60], [5.5,60.3], [5.7,58.90]
]

},
{

"type" : "MultiLineString",
"coordinates": [
[[13.5, 43], [10.73, 59.92]],
[[9.15, 45], [-3.15, 58.90]]

]
},
{

"type" : "MultiPolygon",
"coordinates" : [

[
[
[19.84, 41.33],
[30.45, 39.26],
[17.07, 30.10],
[19.84, 41.33]

]
]

]
}

]
}

Listing 6.6: GeoJSON GeometryCollection

57

Chapter 6 Development of feature parity and QGeoJSON class

It is converted to a QVariantMap with the following structure:

{
type : GeometryCollection
data : [
{

type : MultiPolygon
data : [
{
type : Polygon
data : QGeoPolygon({41.330, 19.840, -1}, {39.260, 30.450, -1},

{30.100, 17.070, -1}, {41.330, 19.840, -1},)
}

]
}
{

type : MultiLineString
data : [
{
type : LineString
data : QGeoPath({45.000, 9.150, -1}, {58.900, -3.150, -1},)

}
{
type : LineString
data : QGeoPath({43.000, 13.500, -1}, {59.920, 10.730, -1},)

}
]

}
{

type : MultiPoint
data : [
{
type : Point
data : QGeoCircle({58.900, 5.700, -1}, 20000)

}
{
type : Point
data : QGeoCircle({60.300, 5.500, -1}, 20000)

}
{
type : Point
data : QGeoCircle({60.000, 11.000, -1}, 20000)

}
]

}
]

}

The Feature object, which consists of one of the previous geometries together

with related attributes, is structured like one of the 7 above mentioned geometry

58

6.2 QGeoJson class

types, plus a properties member. The value of this member is a QVariantMap.

The only way to distinguish a Feature from the included geometry is to check

if a properties node is present in the QVariantMap.

For example, the following Feature:

{
"type" : "Feature",
"id" : "Poly",
"properties" : {

"name" : "Poly",
"text" : "This␣is␣a␣Feature␣with␣a␣Polygon",
"color" : "limegreen"

},
"geometry" : {

"type" : "Polygon",
"coordinates" : [

[
[11.55, 48.13],
[11.32, 44.48],
[15.44, 47.06],
[11.55, 48.13]

],
[

[12.46, 47.36],
[12.52, 46.19],
[13.25, 47.10],
[12.46, 47.36]

],
[

[13.75, 46.99],
[12.76, 46.13],
[14.25, 46.51],
[13.75, 46.99]

]
]

}
}

Listing 6.7: GeoJSON Feature Object

{
type : Polygon
data : QGeoPolygon({48.130, 11.550, -1}, {44.480, 11.320, -1}, {47.060,
15.440, -1}, {48.130, 11.550, -1},)

properties : {
color : limegreen
name : Poly
text : This is a Feature with a Polygon

}
}

59

Chapter 6 Development of feature parity and QGeoJSON class

The FeatureCollection is a composition of Feature objects. The value of the

data member in a FeatureCollection is a QVariantList populated by Feature.

For example, the following FeatureCollection:
{

"type" : "FeatureCollection",
"properties" : {

"color" : "crimson"
},
"features" : [

{
"type" : "Feature",
"id" : "Poly",
"properties" : {

"text" : "This␣is␣a␣Feature␣with␣a␣Polygon"
},
"geometry" : {

"type" : "Polygon",
"coordinates" : [

[
[9.13, 41.11],
[20.54, 40.42],
[16.70, 48.36],
[9.13, 41.11]

],
[

[13.46, 41.36],
[10.52, 41.91],
[16.80, 43.36],
[13.46, 41.36]

]
]

}
},
{

"type" : "Feature",
"id" : "MultiLine",
"properties" : {

"text" : "This␣is␣a␣Feature␣with␣a␣MultiLineString",
"color" : "deepskyblue"

},
"geometry" : {

"type" : "MultiLineString",
"coordinates" : [
[[2.5, 43], [10.73, 39.92]],
[[9.15, 45], [-3.15, 45.90]]

]
}

}
]

}

Listing 6.8: GeoJSON FeatureCollection Object

60

6.2 QGeoJson class

It is converted to a QVariantMap with the following structure:

{
type : FeatureCollection
data : [
{
type : MultiLineString
data : [
{
type : LineString
data : QGeoPath({45.000, 9.150, -1}, {45.900, -3.150, -1},)

}
{
type : LineString
data : QGeoPath({43.000, 2.500, -1}, {39.920, 10.730, -1},)

}
]
properties : {
color : deepskyblue
text : This is a Feature with a MultiLineString

}
}
{
type : Polygon
data : QGeoPolygon({41.110, 9.130, -1}, {40.420, 20.540, -1}, {48.360,

16.700, -1}, {41.110, 9.130, -1},)
properties : {
text : This is a Feature with a Polygon

}
}

]
}

6.2.2 Exporting GeoJSON

The exporter accepts the QVariantList returned by the importer, and returns

a JSON document. The exporter is complementary to the importer because it

executes the inverse action.

61

Chapter 6 Development of feature parity and QGeoJSON class

6.2.3 Linting GeoJSON

This method performs validation on the input.

// Method to validate GeoJSON file

/*
* The QGeoJsonParseError class is used to report errors during GeoJSON

parsing.
* WARNING! This member function is part of Qt, thus not stable API, it is

part
* of the experimental components of Qt Location.
* Until it is promoted to public API, it may be subject to
* source and binary-breaking changes.
*
*/

bool isValidGeoJson(const QJsonDocument &geojson, QJsonParseError *error =
nullptr)

{
// Load the JSON file using Qt’s API
QJsonParseError err;
QJsonDocument loadDoc(QJsonDocument::fromJson(loadFile.readAll(), &err))
;
if (err.error) {

qWarning() << "[1]:␣Error␣parsing␣the␣JSON␣document:␣" << err.
errorString();

return false;
}

// Checking whether the GeoJSON has only a JSON object
if (!loadDoc.isObject()) {

qWarning() << "[2]:␣Error␣parsing␣not␣a␣GeoJSON␣object␣";
return false;

}
// Extract the JSON object
QJsonObject loadObject = loadDoc.object();
// Extract the map using Qt’s API
QVariantMap root = loadObject.toVariantMap();

// Checking whether the JSON object has a "type" member
QVariant keyMap = root.value(QStringLiteral("type"));
if (keyMap == QVariant::Invalid) {

qWarning() << "[3]:␣Error␣parsing␣\"type\"␣check␣failed␣";
return false;

}
QString valueMap = keyMap.value<QString>();

62

6.2 QGeoJson class

// This is an array of string with all GeoJSON objects (RFC)
QString geojsonObject[] = {

QStringLiteral("Point"),
QStringLiteral("MultiPoint"),
QStringLiteral("LineString"),
QStringLiteral("MultiLineString"),
QStringLiteral("Polygon"),
QStringLiteral("MultiPolygon"),
QStringLiteral("GeometryCollection"),
QStringLiteral("Feature"),
QStringLiteral("FeatureCollection")

};

// Checking whether the "type" member has a GeoJSON admitted value
for (int i = 0; i < geoObject.size(); ++i) {

if (valueMap == geoObject[i]) {
break;

} else if (i == geoObject.size()) {
qWarning() << "[4]:␣Error␣parsing␣invalid␣value␣\"type\"␣";
return false;
}

}
// Checking if the GeoJSON geometries has a "coordinates" member
QVariant keyCrd = root.value(QStringLiteral("coordinate");
for (int i = 0; i < geoObject[5]; ++i) {

if (keyCrd == QVariant::Invalid) {
qWarning() << "[5]:␣Error␣parsing␣no␣coordinates␣key␣to␣

Geoometry␣Objects␣";
return false;

}
}

6.2.4 Debug tool for QGeoJson class

To make debug easier, the member function toString has been developed.

It accepts the QVariantList structured like described in section Importing

GeoJSON, and returns a string containing the same data in a readable form.

The toString outputs, for debugging purposes, the content of a QVariantList

structured like importGeoJson() does, to a QString using a prettyfied format.

63

Chapter 6 Development of feature parity and QGeoJSON class

6.3 Test and Example

Together with the class, a very simple test and example app has been developed

and published,[31] with the goal of illustrating how to apply the model/view

paradigm using QGeoJson class in QML.

The app can import a GeoJSON file using the "open" menu entry, and

displays the geometries on a map using a Delegate and a MapItemView[16].

After opening a file the app can export it to a new GeoJSON file extracting the

geometries from the view. A Debug Menu allows to print in a readable format

the imported data structure, using the QGeoJson::toString() method.

The example features a ready to use delegate, which is meant to operate recur-

sively on a QVariantList. This is why the importer returns a QVariantList

with a single element. When the element is a single geometry, the delegate

passes it to the MapItemVIew to be displayed, when it is a multiple geometry,

acts recursively on the data member of the QVariantMap.

The app also features a C++ function to extract the geometries from the

QML MapItemView. This extractor is used in combination with the exporter

member function of QGeoJson::exportGeojson().

In the patch are also included the files to run the proper autotests[19].

64

6.3 Test and Example

6.3.1 Online resources about the project

Add hole support in QGeoPolygon:

Add QGeoPolygon holes support to LocationSingleton:

Add QGeoJson: a GeoJSON parser:

GitHub:

65

Chapter 7

Conclusion

Research in the field of geographic notation is, without any doubt, one of

the most promising sector of Information Technology in terms of possible

applications. These applications can span from improving the daily life to

military use, from Artificial Intelligence to environmental studies. Like often

happens in the Information Technology, most likely the best perspectives have

yet to be thought. It becomes then clear the importance of having flexible

yet scalable and complete standards, and powerful tools to work with this

standards. GeoJSON and the open source Qt framework is a good example of

a potential successful synergy. Without any doubt there is still wide margins

for improving the tools available to developers, to work with Qt and GeoJSON

data, yet in the design and development described in this work, together

and before the most obvious objectives, there was a single perspective point:

enabling developers to realize their "Geographic" projects in the most efficient

and straightforward way. It happens very often that a good idea is crippled by

difficulties in implementation. This is why I thought that putting together an

open standard like GeoJSON with a powerful Open Source framework I could

have paved the way for a number of ideas to get realized, and maybe, for one

of them, to be decisive for a step towards a better world.

67

Bibliography

[1] S. Chamberlain. GeoJSON Specification. Available at https:

//cran.r-project.org/web/packages/geojsonio/vignettes/

geojson_spec.html.

[2] T. Q. Company. About Qt. Available at https://www.qt.io/company.

[3] T. Q. Company. Adding Compilers. Available at https://doc.qt.io/

qtcreator/creator-tool-chains.html.

[4] T. Q. Company. Clipper Polygon Clipping Library. Available at https:

//doc.qt.io/qt-5/qtlocation-attribution-clipper.html.

[5] T. Q. Company. Geographic shape class (C++). https://doc.qt.io/qt-

5/qgeoshape.html.

[6] T. Q. Company. Geographic shape class (QML). https://doc.qt.io/qt-

5/qml-geoshape.html.

[7] T. Q. Company. Introduction to Qt’s container classes. Available at

https://doc.qt.io/qt-5/containers.html.

[8] T. Q. Company. Properties. Available at https://doc.qt.io/qt-5.12/

properties.html.

[9] T. Q. Company. Qt Container class. Available at https://doc.qt.io/

qt-5/qvariant.html.

[10] T. Q. Company. Qt Contribution Guidelines. Available at https://wiki.

qt.io/Qt_Contribution_Guidelines.

69

https://cran.r-project.org/web/packages/geojsonio/vignettes/geojson_spec.html
https://cran.r-project.org/web/packages/geojsonio/vignettes/geojson_spec.html
https://cran.r-project.org/web/packages/geojsonio/vignettes/geojson_spec.html
https://www.qt.io/company
https://doc.qt.io/qtcreator/creator-tool-chains.html
https://doc.qt.io/qtcreator/creator-tool-chains.html
https://doc.qt.io/qt-5/qtlocation-attribution-clipper.html
https://doc.qt.io/qt-5/qtlocation-attribution-clipper.html
https://doc.qt.io/qt-5/containers.html
https://doc.qt.io/qt-5.12/properties.html
https://doc.qt.io/qt-5.12/properties.html
https://doc.qt.io/qt-5/qvariant.html
https://doc.qt.io/qt-5/qvariant.html
https://wiki.qt.io/Qt_Contribution_Guidelines
https://wiki.qt.io/Qt_Contribution_Guidelines

Bibliography

[11] T. Q. Company. Qt Essentials Modules. Available at https://doc.qt.

io/qt-5/qtmodules.html.

[12] T. Q. Company. Qt Framework. Available at https://www.qt.io/

qt-frameworkhttps://wiki.qt.io/Qt{_}for{_}Beginners.

[13] T. Q. Company. Qt Location API. Available at https://doc.qt.io/

qt-5/qtlocation-index.html.

[14] T. Q. Company. Qt Location C++ Documentation. Available at https:

//doc.qt.io/qt-5/location-places-cpp.html.

[15] T. Q. Company. Qt Location MapItemView. Available at https://wiki.

qt.io/Qt_History.

[16] T. Q. Company. Qt Location MapItemView. Available at https://doc.

qt.io/qt-5/qml-qtlocation-mapitemview.html.

[17] T. Q. Company. Qt Location QML Documentation. Available at https:

//doc.qt.io/qt-5/qtlocation-places-example.html.

[18] T. Q. Company. Qt Posistiong API. Available at https://doc.qt.io/

qt-5/qtpositioning-index.html.

[19] T. Q. Company. Running Autotests. Available at https://doc.qt.io/

qtcreator/creator-autotest.html.

[20] T. Q. Company. The Qt Company. Available at https://www.qt.io/

company.

[21] T. Q. Company. How does Google Summer of Code it works?, 2018.

Available at https://wiki.qt.io/Google_Summer_of_Code/Processes.

[22] Google. History of Google Summer of Code. 2005. Available at https:

//google.github.io/gsocguides/student/history-of-gsoc.

[23] Internet Engineering Task Force (IETF). Available at https://www.json.

org/json-en.html.

70

https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://www.qt.io/qt-framework https://wiki.qt.io/Qt{_}for{_}Beginners
https://www.qt.io/qt-framework https://wiki.qt.io/Qt{_}for{_}Beginners
https://doc.qt.io/qt-5/qtlocation-index.html
https://doc.qt.io/qt-5/qtlocation-index.html
https://doc.qt.io/qt-5/location-places-cpp.html
https://doc.qt.io/qt-5/location-places-cpp.html
https://wiki.qt.io/Qt_History
https://wiki.qt.io/Qt_History
https://doc.qt.io/qt-5/qml-qtlocation-mapitemview.html
https://doc.qt.io/qt-5/qml-qtlocation-mapitemview.html
https://doc.qt.io/qt-5/qtlocation-places-example.html
https://doc.qt.io/qt-5/qtlocation-places-example.html
https://doc.qt.io/qt-5/qtpositioning-index.html
https://doc.qt.io/qt-5/qtpositioning-index.html
https://doc.qt.io/qtcreator/creator-autotest.html
https://doc.qt.io/qtcreator/creator-autotest.html
https://www.qt.io/company
https://www.qt.io/company
https://wiki.qt.io/Google_Summer_of_Code/Processes
https://google.github.io/gsocguides/student/history-of-gsoc
https://google.github.io/gsocguides/student/history-of-gsoc
https://www.json.org/json-en.html
https://www.json.org/json-en.html

Bibliography

[24] Internet Engineering Task Force (IETF). An Architecture for Location and

Location Privacy in Internet Applications. Available at https://tools.

ietf.org/html/rfc6280.

[25] Internet Engineering Task Force (IETF). JavaScript Object Notation.

Available at url{https://www.json.org/json-en.html}.

[26] Internet Engineering Task Force (IETF). Rfc7464: Javascript object

notation (json) text sequences, 2015. Available at https://tools.ietf.

org/html/rfc7464.

[27] Internet Engineering Task Force (IETF). RFC 7946: The GeoJSON

Format, 2016. Available at https://tools.ietf.org/html/rfc7946.

[28] Internet Engineering Task Force (IETF). The GeoJSON Working

Group, 2016. Available at https://datatracker.ietf.org/wg/geojson/

charter.

[29] J. Sherollari. Add QGeoPolygon holes support to LocationSingleton.

https://codereview.qt-project.org/c/qt/qtlocation/+/237321.

[30] J. Sherollari. Add hole support in QGeoPolygon, 2018. Available at

https://codereview.qt-project.org/c/qt/qtlocation/+/232285.

[31] J. Sherollari. Add QGeoJson: a GeoJSON parser, 2018. Available at

https://codereview.qt-project.org/c/qt/qtlocation/+/236253.

[32] J. Sherollari. Google Summer of Code 2018, 2018. Available

at https://summerofcode.withgoogle.com/archive/2018/projects/

5180918117433344/.

[33] Tim Schaub, Allan Doyle, Martin Daly, Sean Gillies and Andrew Turner.

GeoJSON definitions and examples. Available at http://wiki.geojson.

org/GeoJSON_draft_version_6.

[34] Wikipedia.org. Smalltalk Object-Oriented Programming Language. Avail-

able at https://en.wikipedia.org/wiki/Smalltalk.

71

https://tools.ietf.org/html/rfc6280
https://tools.ietf.org/html/rfc6280
url{https://www.json.org/json-en.html}
https://tools.ietf.org/html/rfc7464
https://tools.ietf.org/html/rfc7464
https://tools.ietf.org/html/rfc7946
https://datatracker.ietf.org/wg/geojson/charter
https://datatracker.ietf.org/wg/geojson/charter
https://codereview.qt-project.org/c/qt/qtlocation/+/232285
https://codereview.qt-project.org/c/qt/qtlocation/+/236253
https://summerofcode.withgoogle.com/archive/2018/projects/5180918117433344/
https://summerofcode.withgoogle.com/archive/2018/projects/5180918117433344/
http://wiki.geojson.org/GeoJSON_draft_version_6
http://wiki.geojson.org/GeoJSON_draft_version_6
https://en.wikipedia.org/wiki/Smalltalk

	Hardcover
	Dedication
	Abstract
	Introduction
	Google Summer of Code
	Mentor Organization

	Reference Framework
	Qt framework
	Architecture
	Qt Quick
	Qt QML Module
	Qt Meta-Object Language
	Model/View Programming

	Qt Geographical APIs
	Qt Location API
	Maps and Navigation API
	Places API

	Qt Positioning API

	Geographic JSON (GeoJSON)
	JavaScript Object Notation (JSON)
	GeoJSON
	Single Geometry objects
	Homogeneously multipart Geometries
	Heterogeneous composition of Geometries
	Spatially bounded entities with properties

	Design of Qt Location Interoperability
	QGeoJson class
	Importing GeoJSON
	Exporting GeoJSON
	Validation of the GeoJSON data

	Development of feature parity and QGeoJSON class
	Adding holes support to Geographic Polygons
	C++ Private API development
	C++ Public API development
	QML API Development

	QGeoJson class
	Importing GeoJSON
	Exporting GeoJSON
	Linting GeoJSON
	Debug tool for QGeoJson class

	Test and Example
	Online resources about the project

	Conclusion

