

UNIVERSITÀ POLITECNICA DELLA MARCHE FACOLTÀ DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Civile

ANALISI DEI VALORI DI PRECIPITAZIONE E STUDIO DEGLI INDICATORI DI SICCITÀ APPLICAZIONE ALLA REGIONE REGIONE MARCHE

ANALYSIS OF PRECIPITATION VALUES AND STUDY OF DROUGHT INDICATORS APPLICATION TO THE MARCHE REGION

Relatore: Studente:

Prof. Ing. Alessandro Mancinelli Luca Gironella

Correlatori:

Dott. Ing. Luciano Soldini

Dott. Ing. Giovanna Darvini

SOMMARIO

)	
INTRODUZ	IONE	4
1 STUDIC	E MONITORAGGIO DELLA SICCITÀ	6
1.1	CLASSIFICAZIONE DEI CLIMI	8
2 METOD	OLOGIA	10
2.1	STANDARD PRECIPITATION INDEX (SPI)	11
2.2	RECONNAISSANCE DROUGHT INDEX (RDI)	14
2.3	TREND DETECTION	16
2.3.1	MANN - KENDALL TEST	16
2.3.2	SPEARMAN RHO TEST	18
2.3.3	COX STUART TEST	20
3 AREA D	N STUDIO	21
3.1	GEOGRAFIA FISICA	21
3.2	CLIMA	22
3.2.1	TEMPERATURE	22
3.2.2	VENTI	22
3.2.3	PRECIPITAZIONI	23
3.3	QUADRO IDROLOGICO REGIONALE	23
3.4	AFFLUSSI	24
3.5	SISTEMA IDRICO DELLE MARCHE	25
4 DATASE	ET	27
4.1	METODI DI MISURA DEI DATI	27
4.1.1	MISURA DELLE PRECIPITAZIONI	27
4.1.2	MISURA DELLE TEMPERATURE	32
4.1.2.3	TERMOGRAFI MECCANICI	36
4.1.2.4	TERMOMETRI	37
4.2	METODI DI RACCOLTA DEI DATI	38
4.2.1	CENNI STORICI	38
4.2.2	BOLLETTINI IDROGRAFICI	40
4.2.3	ANNALI IDROLOGICI	40
4.2.4	SERIE STORICHE IDROLOGICHE	48
4.2.5	DATI DEL PROGRAMMA EUROPEO COPERNICUS	54

CAPITOLO 1 - SOMMARIO

4	.3	STAZIONI DELLA REGIONE MARCHE	57
	4.3.1	STAZIONI PLUVIOMERICHE	57
	4.3.2	STAZIONI TERMOMETRICHE	60
4	.4	CREAZIONE DEL DATABASE	62
	4.4.1	COMPLETAMENTO DELLA SERIE DI DATI DI PRECIPITAZIONE	65
5	CALCOL	O E APPLICAZIONE AL CASO STUDIO	73
5	.1	DATI	73
5	.2	SPI	73
	5.2.1	FOGLIO ANABASI	73
	5.2.2	CALCOLO INDICE SPI	80
	5.2.3	TREND DETECTION	82
	5.2.4	ANOMALIE	90
	5.2.5	MESI ED EVENTI SICCITOSI	93
5	.3	RDI	100
	5.3.1	SOFTWARE DRINC	100
	5.3.2	CALCOLO INDICE RDI	102
	5.3.3	TREND DETECTION	104
	5.3.4	ANOMALIE	110
	5.3.5	MESI ED EVENTI SICCITOSI	112
5	.4	PRECIPITAZIONE MEDIA ANNUALE	114
	5.4.1	ANALISI DELLA PRECIPITAZIONE MEDIA ANNUALE SU 30 ANNI	116
BIF	I IOGRAI	FIA	118

INTRODUZIONE

Il cambiamento climatico è un argomento di particolare rilevanza nei dibattiti degli ultimi tempi, soprattutto all'interno della comunità scientifica che sta cercando di capire quanto la componente antropica possa aver influenzato le naturali evoluzioni climatiche.

La climatologia si occupa di studiare il clima nel suo insieme, le sue variazioni, gli estremi e la sua influenza su varie attività, quali le risorse d'acqua, la salute, la sicurezza e il benessere umano. Il clima può essere descritto in termini statistici come tendenza centrale e variabilità di elementi rilevanti come la temperatura, le precipitazioni, la pressione atmosferica, l'umidità e il vento.

I climatologi considerano sia la variabilità climatica che i cambiamenti climatici. La variabilità climatica si riferisce a mutamenti nelle condizioni da periodo a periodo (variazioni stagionali, annuali, decadali). In generale questi ultimi sono correlati alla circolazione atmosferica e oceanica e alle proprietà superficiali dei terreni. Al contrario, i cambiamenti climatici si attribuiscono a oscillazioni sistematiche nelle proprietà statistiche del clima (ad esempio media e varianza) in un periodo prolungato di tempo, che si manifestano in un aumento o diminuzione di trend, come ad esempio nei valori estremi di temperatura. È quindi indispensabile riuscire a valutare e quantificare queste variazioni così incisive.

Lo studio dei trend climatici porta a risultati significativamente diversi in funzione della regione analizzata. Infatti, anche in pubblicazioni recenti come "Evidence for increasing rainfall extremes remains elusive at lange spatial scales: the case of Italy" di Libertino, Ganora e Claps, si sottolinea come le indagini svolte a scale geografiche diverse portino anche ad evidenziare trend diversi. Nello specifico considerando l'Italia intera, i trend risultano molto appiattiti a causa dell'estensione territoriale, invece andando a studiare zone meno estese e rappresentative di una geografia diversa, si verificano trend negli estremi di precipitazione anche molto significativi. Infatti, la quantità e le diverse conseguenze correlate ai cambiamenti climatici in corso sono strettamente dipendenti dagli ecosistemi individuali e differiscono fortemente nella scala spaziale, in relazione alla posizione geografica dell'area considerata, e le sue condizioni socioeconomiche.

I cambiamenti di temperatura e precipitazione nella penisola italiana sono stati investigati da parecchi studi, che dimostrano una riduzione significativa nelle precipitazioni annuali e stagionali. Durante il ventesimo secolo, le precipitazioni sono diminuite del 5% nel Nord Italia e del 15% circa nel Sud (*Buffoni et al. 1999*). Inoltre, *Brunetti et al. (2006*) rivela che l'area con il più marcato trend in diminuzione della precipitazione annuale è nel Centro Sud dell'Italia. In aggiunta, la stagione caratterizzata da una più forte riduzione risulta essere l'inverno in tutta la penisola, specialmente al Nord (*Brunetti et al. 2000*).

L'obiettivo di questo lavoro è quello di valutare l'esistenza o meno di trend negli indici climatici riconosciuti a livello mondiale, SPI (Standardized Precipitation Index) (*McKee, Doesken e Kleist, 1993*) e RDI (Reconnaissance Drought Index) (*Tsakiris e Vangelis (2005*), nelle serie di dati della Regione Marche.

La conoscenza dell'evoluzione nel tempo dei cambiamenti può divenire uno strumento di supporto nella definizione di possibili scenari futuri nella pianificazione e nella gestione delle risorse idriche del territorio, inoltre, la conoscenza di eventuali trend permetterebbe di migliorare la qualità dei modelli previsionali.

Si cerca di fornire una valida descrizione di possibili scenari futuri per la Regione

All'inizio di questo studio si descrivono le caratteristiche principali del clima e i suoi cambiamenti. Si prosegue con la descrizione dei diversi strumenti di misura esistenti, e della storia passata e recente degli Annali Idrologici, con un occhio sui nuovi strumenti moderni che permettono di raccogliere dati sempre più di qualità, come il programma europeo COPERNICUS. Una novità sarà infatti quella di attingere da tale banca dati per sopperire alla mancanza di alcuni dati nelle serie di precipitazione a causa di mal funzionamenti o altre motivazioni. Vengono poi introdotte le serie storiche idrologiche con le loro caratteristiche principali.

Successivamente ci si sofferma sull'organizzazione della rete pluviometrica delle Marche, sui cambiamenti che ha subito negli anni, soprattutto quelli recenti, e su quanto questo influenzi l'omogeneità delle serie storiche idrologiche.

Si passa quindi allo studio vero e proprio degli indici, valutandone la presenza di un trend significativo che può darci indicazioni sugli sviluppi futuri del clima.

Nella fase finale ci si sofferma sull'analisi più generale della precipitazione totale annua nelle stazioni della Regione Marche, per valutare un'eventuale affinità con i risultati ottenuti dall'analisi critica dei trend negli indici di siccità.

CAPITOLO 1

1 STUDIO E MONITORAGGIO DELLA SICCITÀ

Il sistema climatico ,illustrato in Fig. 1.1, è un complicato e interattivo sistema costituito da atmosfera, superficie terrestre, neve e ghiaccio, oceani, altri corpi d'acqua e organismi viventi.

L'atmosfera è l'involucro gassoso che circonda la Terra. Quella secca consiste quasi interamente di azoto e ossigeno, ma contiene anche quantità modeste di argon, elio, diossido di carbonio, ozono, metano e altre tracce di gas. L'atmosfera contiene anche vapore acqueo, goccioline d'acqua condensata sotto forma di nuvole e aerosol.

L'idrosfera è quella parte del sistema climatico della Terra che comprende l'acqua liquida distribuita sopra e sotto la superficie terrestre in oceani, mari, fiumi, laghi, riserve sotterranee e altri corpi d'acqua.

La criosfera descrive collettivamente gli elementi che contengono acqua allo stato solido, che include neve e ghiaccio.

La litosfera di superficie è lo strato superiore che comprende sia la crosta continentale che la crosta oceanica.

La biosfera comprende tutti gli ecosistemi e gli organismi viventi nell'atmosfera, sulla terra e negli oceani, inclusa la materia organica morta, come quella del suolo e i detriti oceanici.

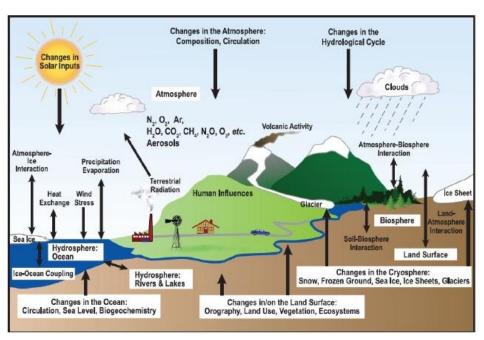


Fig. 1.1 – Il sistema climatico

Influenzato dalle radiazioni solari e dalle proprietà della superficie terrestre, il clima sulla Terra è determinato come interconnessione tra diverse componenti. L'interazione dell'atmosfera con le altre componenti gioca un ruolo dominante in questa formazione. L'atmosfera ottiene energia in maniera diretta dalla radiazione solare incidente o indirettamente con processi che coinvolgono la superficie terrestre.

Questa energia viene continuamente ridistribuita verticalmente o orizzontalmente tramite processi termodinamici o movimenti a grande scala con l'obiettivo di arrivare ad un sistema stabile. Il vapore acqueo gioca un ruolo fondamentale nella ridistribuzione verticale del calore attraverso la condensazione e il trasporto di calore latente. L'oceano, con la sua vasta capacità termica, limita la velocità nei cambiamenti di temperatura dell'atmosfera fornendogli vapore e calore. La distribuzione dei continenti influenza le correnti oceaniche e le montagne reindirizzano i movimenti atmosferici. Il ghiaccio polare, montano e marittimo riflettono la radiazione solare nello spazio. Alle alte latitudini i ghiacci marini agiscono come isolanti e proteggono l'oceano da una perdita rapida di energia in un'atmosfera molto più fredda. Le attività umane cambiano l'umidità superficiale e l'albedo e immettono diossido di carbonio in atmosfera.

Le interazioni tra le componenti si verificano a tutte le scale. Spazialmente, la microscala comprende le caratteristiche climatiche su piccole aree come edifici singoli, piante o campi. Un cambiamento nel microclima può avere più importanza quando cambiano le caratteristiche fisiche di un'area. Ad esempio, i nuovi edifici potrebbero condizionare la ventosità, creare un deflusso eccessivo di acqua piovana e incrementare l'inquinamento e il calore. Le variazioni naturali nel microclima, come quelle legate al riparo o all'esposizione, alla luce e all'ombra, sono anche importanti ad esempio nella determinazione di quali piante potrebbero prosperare in un particolare luogo o nella necessità di garantire attività operative sicure e attività ricreative.

La mesoscala comprende il clima di una regione con estensione limitata, come il bacino di un fiume, una valle, una foresta. Le variazioni a questa scala sono importanti per l'agricoltura, l'irrigazione e gli argini fluviali.

La macroscala riguarda il clima di aree geografiche ampie, continenti e del globo intero. Determina le risorse nazionali e i vincoli nelle produzioni agricole e nella gestione delle risorse d'acqua, ed è quindi collegato alla natura, al benessere e alla salute umana. Inoltre, definisce e determina l'impatto dei principali fenomeni dovuti alla circolazione globale come i monsoni e la North Atlantic Oscillation.

La scala temporale può variare da minuti o ore a decenni, centenni o più. Le caratteristiche orarie sono importanti ad esempio per l'uso di pesticidi in agricoltura e per il monitoraggio energetico di riscaldamenti e raffreddamenti. Quelle giornaliere potrebbero determinare le attività da perseguire , mentre mensilmente o annualmente le colture da far crescere e la possibilità di bere acqua e avere cibo. Scale temporali più lunghe sono importanti per gli studi di variazione climatica causata da fenomeni naturali come i cambiamenti nella circolazione atmosferica e oceanica e dalle attività umane.

1.1 CLASSIFICAZIONE DEI CLIMI

Vista la complessità del sistema climatico, non è facile arrivare ad una classificazione univoca. Il primo tentativo fu compiuto nel 1918 da W. Köppen che schematizzò tutti i climi della Terra mediante una formula climatica che offre una sintetica descrizione del clima locale mediante un'indicazione delle caratteristiche della temperatura e delle precipitazioni. Köppen suddivide il clima in cinque classi, distribuite secondo latitudini crescenti dall'equatore ai poli e le indica con le lettere maiuscole dalla A alla E:

A = *climi megatermici umidi della zona intertropicale* (tutti i mesi con temperatura > + 18°). Le foreste pluviali, a cavallo dell'equatore, hanno pioggia tutto l'anno. Le savane, praterie di arbusti e alberi resistenti alla siccità, hanno una stagione secca e una piovosa, condizionate dai monsoni tropicali.

B = *climi aridi* (con varie condizioni). Le regioni aride includono i deserti: la vegetazione si è adattata a sopravvivere a lunghi periodi di siccità. Una situazione simile si ha nelle steppe, grandi pianure erbose, che limitano i deserti e dove le precipitazioni sono più abbondanti.

C = *climi mesotermici umidi* (temperatura del mese più freddo compresa tra +18° e -3°). Questa categoria include i climi subtropicali umidi, con aria umida e temperatura elevata per gran parte dell'anno. Si sviluppa la foresta decidua e di conifere. Sono tipici di questa zona i climi mediterranei, con precipitazioni soprattutto invernali, estati calde e vegetazione a macchia, e i climi marini delle coste occidentali, dove il mare tempera il clima e può permettere lo sviluppo delle foreste pluviali costiere temperate.

D = *climi micro termici boreali* (temperatura di gennaio inferiore a -3°, ma quella di luglio > +10°). Questi climi temperati di latitudine più elevata di hanno solo nell'emisfero settentrionale e interessano le regioni continentali umide con estati lunghe (come nel centro degli Stati Uniti) con foresta decidua; le regioni continentali umide con estati brevi, caratterizzate da foresta mista o foresta di conifere; le regioni subartiche con estati fresche e molto brevi, e con foreste di conifere (taiga) che diventano sempre più basse e arbustive andando verso latitudini più alte.

E = *climi polari* (anche il mese più caldo con temperature <+10°). Questi climi freddi sono caratterizzati dalla tundra e interessano regioni quasi prive di estate, con inverni lunghi e freddi, abitate solo da piante basse e resistenti al freddo intenso, come muschi e licheni. Il suolo è quasi completamente costituito da permafrost. Nelle regioni delle calotte glaciali, vicino ai poli, il clima è ghiacciato tutto l'anno; in Antartide le rare aree non coperte da ghiacci sono quasi del tutto prive di vegetazione , a parte alcune specie di licheni e alghe. Gli altopiani di trovano invece in regioni non polari e quindi a latitudini più basse, ma qui è la quota che determina una situazione quasi analoga a quella polare, con una progressiva scomparsa della vegetazione al di sopra di quella che viene detta la linea della vegetazione.

La rappresentazione in Figura 1.1.1 riporta la classificazione dei climi secondo Köppen.

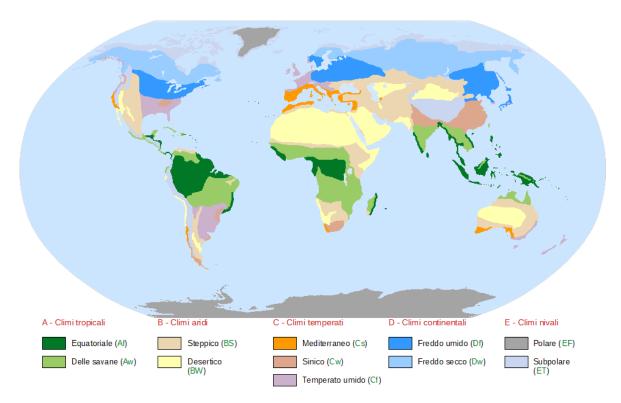


Fig. 1.1.1 – Classificazione dei climi secondo Köppen

CAPITOLO 2

2 METODOLOGIA

Nel corso degli ultimi anni, in seguito alla crescente attenzione sui fenomeni della scarsità idrica e delle sue conseguenze, sono stati sviluppati diversi indici per valutare e monitorare la siccità.

Poiché non vi è una definizione unitaria di siccità, è difficile determinare l'inizio e la fine del fenomeno. Possiamo comunque definire vari indicatori di siccità, e seguire le informazioni che questi indicatori ci forniscono come un monitoraggio della siccità.

Gli indici di siccità assimilano numerosi dati di pioggia, manto nevoso, flusso, e altri indicatori di approvvigionamento definendo un valore numerico che descrive la deviazione della variabile di interesse per un dato periodo di tempo dal valore "normale" ottenuto da una lunga serie storica.

Sebbene nessuno dei maggiori indici sia perfettamente adattabile a tutte le circostanze, alcuni indici sono migliori di altri per certi usi.

Per assolvere bene al suo compito un indicatore di siccità deve:

- sintetizzare un insieme di informazioni in un singolo parametro e facile da interpretare;
- non essere eccessivamente semplificato se ciò fa perdere caratteristiche essenziali alla comprensione del fenomeno;
- consentire di valutare la gravità della situazione corrente con riferimento ad una serie storica che risulta stazionaria nel tempo;
- essere normalizzato, se possibile, in modo da consentire il confronto tra zone diverse;
- essere formulato, se possibile, in termini probabilistici in modo da facilitare la comprensione della pericolosità dell'evento.

In sintesi, la scelta di un indicatore di siccità è strettamente connessa:

- all'approccio disciplinare secondo il quale si studia il fenomeno (meteorologico, idrologico, agrario, ecc.);
- al tipo di risorsa idrica di prevalente interesse nel territorio considerato;
- alla disponibilità di osservazioni sulle grandezze necessarie.

Nelle pagine seguenti, viene fornita una panoramica di due indici di siccità scelti per analizzare le serie di dati disponibili, SPI e RDI. Vengono poi definiti i test non parametrici di Mann-Kendall, Spearman e Cox-Stuart utilizzati per la valutazione dell'esistenza di tendenze negli indici di siccità.

2.1 STANDARD PRECIPITATION INDEX (SPI)

L'indice SPI (Standardized Precipitation Index) è un indice semplice, facile da calcolare, e statisticamente rilevante e significativo. Inoltre, l'aver capito che i deficit di precipitazione hanno diversi impatti per le acque sotterranee, i diversi immagazzinamenti, l'umidità del suolo, il manto nevoso, e i deflussi , ha portato i ricercatori McKee, Doesken e Kleist allo sviluppo dell'indice SPI nel 1993.

Lo SPI è un potente e flessibile indice facile da calcolare. Infatti, la precipitazione è l'unico parametro richiesto in input e l'indice risulta efficace sia nell'analizzare periodi o cicli umidi che periodi o cicli siccitosi.

Le serie in input sono composte da valori mensili e secondo le indicazioni del WMO, si ha bisogno di almeno 20-30 anni di valori, con un valore ottimale di 50-60 anni (Guttaman,1994). Sono da preferire serie di valori complete, ma si possono avere data set con il 10, al massimo il 15% di dati mancanti. Questo perché in generale, una climatologia più robusta porta a una conseguente maggiore robustezza statistica dell'indicatore, e quindi a una minore incertezza nella valutazione della condizione di siccità o di surplus di acqua.

L'indice SPI è basato sul confronto tra la precipitazione registrata in un determinato periodo di t mesi (dove t = 1, 2, ...,24 mesi) con la distribuzione a lungo termine della precipitazione aggregata per lo stesso periodo di tempo. In altre parole, se si vuole calcolare lo SPI a 1 mese per il mese di giugno, si dovrà considerare la serie delle precipitazioni registrate nel mese di giugno per gli anni passati, mentre se si vuole calcolare lo SPI a 6 mesi alla fine di giugno si metterà a confronto la pioggia registrata nel periodo gennaio-giugno con la serie a lungo termine della pioggia gennaio – giugno registrata negli anni passati, e così via.

A seconda della durata del periodo t considerato, l'indice SPI potrà fornire informazioni utili per valutare i potenziali impatti della siccità meteorologica:

- SPI riferito a periodi brevi di aggregazione temporale (da 1 a 3 mesi) fornisce indicazioni sugli impatti immediati, quali quelli relativi alla riduzione di umidità del suolo, del manto nevoso e della portata nei piccoli torrenti;
- SPI riferito a periodi medi di aggregazione temporale (da 3 a 12 mesi) fornisce indicazioni sulla riduzione delle portate fluviali e delle capacità negli invasi;
- SPI riferito a più lunghi periodi di aggregazione temporale (oltre i 12 mesi) fornisce indicazioni sulla ridotta ricarica degli invasi sulla disponibilità di acqua nelle falde.

Nel calcolo dello SPI, andare oltre i 24 mesi può essere statisticamente poco significativo, a meno che non si abbiano a disposizione serie molto lunghe di dati dell'ordine degli 80-100 anni.

Per ciascun punto analizzato, la serie storica di precipitazione aggregata è interpolata mediante una distribuzione di probabilità teorica. Il WMO ha evidenziato come la distribuzione gamma sia quella che meglio interpola tale serie.

La procedura da applicare per il calcolo dell'indice è la seguente. Sia X la serie temporale di precipitazione costituita da n osservazioni aggregate al passo temporale t (dove t può

assumere i valori 1,2, 3,...,24 mesi). Per ogni x > 0 la distribuzione gamma g(x) è così definita:

$$g(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$

Dove α (>0) è il parametro di forma, β (>0) è il parametro di scala e $\Gamma(\alpha)$ è la funzione gamma. L'interpolazione si ottiene mediante una stima (indicata con ^) dei parametri α e β mediante il metodo della massima verosimiglianza:

$$\hat{\alpha} = \frac{1}{4A} (1 + \sqrt{1 + \frac{4A}{3}})$$

$$\hat{\beta} = \frac{\bar{x}}{\hat{\alpha}}$$

Dove $A = \ln(\bar{x}) - \frac{1}{n} \sum_n \ln(x)$ e \bar{x} è la media delle osservazioni. Tanto più lunga sarà la serie utilizzata per il calcolo dello SPI, tanto maggiore sarà la robustezza statistica delle stime che si otterranno per i parametri della distribuzione g(x).

La distribuzione cumulativa di probabilità è quindi data da:

$$G(x) = \int_0^x g(x) dx$$

che può essere facilmente stimata utilizzando le approssimazioni numeriche note in letteratura. Tuttavia, dato che la distribuzione gamma non è definita per i valori di *x* uguale a zero e la serie delle precipitazioni cumulate può contenere degli zeri, la distribuzione cumulativa è ridefinita come segue:

$$H(x) = a + (1 - a) G(x)$$
.

dove q è la probabilità di precipitazione nulla, che può essere stimata come il rapporto tra il numero m di zeri nella serie temporale delle precipitazioni e il numero totale di osservazioni di precipitazione, ossia q = m/n.

La distribuzione cumulativa H(x) è poi trasformata in una distribuzione normale (Panofsky e Brier, 1958), pertanto il valor medio dello SPI per un determinato luogo e periodo di aggregazione considerato è uguale a zero (Edwards e McKee, 1997). La trasformazione conserva la probabilità cumulativa, nel senso che la probabilità della variabile di trovarsi al di sotto di un certo valore nella distribuzione gamma è uguale alla probabilità della variabile trasformata normalmente distribuita di trovarsi al di sotto della trasformata di quel valore.

Da un punto di vista computazionale, il valore di SPI può essere ottenuto utilizzando l'approssimazione proposta in *Abramowitz* e *Stegun* (1965) che converte la distribuzione cumulativa H(x) a una variabile aleatoria normale Z:

$$Z = \mathrm{SPI} = \begin{cases} -\left(h - \frac{c_0 + c_1 h + c_2 h^2}{1 + d_1 h + d_2 h^2 + d_3 h^3}\right) & per \ 0 < H(x) \le 0.5 \\ +\left(h - \frac{c_0 + c_1 h + c_2 h^2}{1 + d_1 h + d_2 h^2 + d_3 h^3}\right) & per \ 0.5 < H(x) < 1 \end{cases}$$

Dove si ha che:

$$h = \begin{cases} \sqrt{\ln\left(\frac{1}{\left(H(x)\right)^{2}}\right)} & per \ 0 < H(x) \le 0.5\\ \sqrt{\ln\left(\frac{1}{\left(1 - H(x)\right)^{2}}\right)} & per \ 0.5 < H(x) < 1 \end{cases}$$

е

$$c_0 = 2.515517$$
, $c_1 = 0.802853$, $c_2 = 0.010328$, $d_1 = 1.432788$, $d_2 = 0.189269$, $d_3 = 0.001308$

Lo SPI fornisce un'indicazione sulla relazione tra la quantità di precipitazione caduta in un determinato intervallo di tempo e la sua climatologia, portando così a definire se la stazione o l'area monitorata è affetta da condizioni di siccità oppure no. Dal momento che lo SPI è distribuito secondo una funzione di probabilità normale, è possibile monitorare sia periodi secchi che periodi umidi. Valori negativi di SPI corrispondono a periodi più secchi rispetto alla climatologia, ossia indicano un deficit di precipitazione (siccità), mentre valori positivi di SPI corrispondono a periodi più umidi, ossia indicano un surplus di precipitazione. Maggiore è la distanza dalla norma (climatologia), maggiore è la severità dell'evento. La normalizzazione che è alla base di questo indice permette di rappresentare nello stesso modo (e di riportare quindi su una stessa mappa) aree soggette a climatologie differenti. Si riportano in *Tabella 13.3.1.1* i valori dell'indice suddivisi in funzione della severità.

Tabella 2.1 - Severità degli eventi di umidità e di siccità in termini di SPI

Valori SPI	Classe	
$SPI \ge 2$	umidità estrema	
$1.5 \le \text{SPI} < 2.0$	umidità severa	
$1.0 \le SPI < 1.5$	umidità moderata	
-1.0 < SPI < 1.0	nella norma	
$-1.5 < \text{SPI} \le -1.0$ siccità moderat		
$-2.0 < \text{SPI} \le -1.5$	siccità severa	
SPI ≤ - 2.0	siccità estrema	

L'applicazione dello SPI può seguire diverse possibili alternative di calcolo e rappresentazione. È possibile calcolare lo SPI a livello di singola stazione e poi procedere a una spazializzazione sull'area in esame; si può preferire di spazializzare le piogge su un grigliato di interesse e poi calcolare lo SPI su ciascun punto del grigliato; oppure si può preferire di aggregare la precipitazioni su aree di interesse (ad es., bacini idrografici) e poi calcolare lo SPI per singole aree.

2.2 RECONNAISSANCE DROUGHT INDEX (RDI)

È stato dimostrato che il deficit idrico non può essere stimato solo sulla variabile in ingresso (es. precipitazione) ma anche sulla variabile in uscita (consumo di acqua). Sulla base di questa logica è stato proposto un nuovo indice RDI (Reconnaissance Drought Index) da *Tsakiris e Vangelis (2005)*, come un indice universale e completo per la valutazione della siccità meteorologica. Tale indice utilizza due parametri, la precipitazione e l'evapotraspirazione potenziale (PET), per periodi di riferimento specificati.

L'indice RDI è semplice, universale e più completo di SPI, infatti presenta diversi vantaggi:

- ha una base fisica, poiché calcola il deficit aggregato tra l'evapotraspirazione richiesta dall'atmosfera e le precipitazioni;
- può essere calcolato per qualsiasi periodo di tempo, anche se i periodi di 3, 6, 9 e 12 mesi sono i più utili per confronti tra diverse situazioni e posizioni;
- può essere più efficacemente associato alla siccità idrologica e agricola;
- è un indice ideale per studiare gli effetti delle condizioni di instabilità climatica.

Grazie alla sua facilità di calcolo, l'RDI può essere utilizzato per scopi di monitoraggio e in una certa misura per le previsioni di siccità a breve termine. In molti casi del bacino del Mediterraneo, in cui esiste una distribuzione stagionale ben definita delle precipitazioni, sembra molto utile ai gestori dell'acqua conoscere come si sviluppa la situazione 3 o 6 mesi dopo ottobre. L'anno idrologico per la regione mediterranea inizia infatti nel mese di ottobre e per questo viene utilizzato come mese iniziale. Questo dà loro l'opportunità di adeguare i piani di gestione per la tarda primavera e l'estate durante i quali la richiesta idrica è normalmente molto elevata e si prevede che le precipitazioni non contribuiscano ad incrementare le quantità disponibili.

Per stimare l'indice RDI, il valore α_k^i dell'anno i per un periodo di riferimento di k mesi è calcolato come:

$$a_k^{(i)} = \frac{\sum_{j=1}^k P_{ij}}{\sum_{j=1}^k PET_{ij}}$$
 $i = 1, ..., N$

dove P_{ij} è la precipitazione e PET_{ij} è l'evapotraspirazione potenziale per il mese j dell'anno i, a partire dall'anno idrologico (ottobre per il Mediterraneo) ed N è il numero totale di anni disponibili.

L'evapotraspirazione potenziale (PET) è definita come la quantità di acqua che si trasferisce in atmosfera per i fenomeni di evaporazione diretta dagli specchi d'acqua, dal terreno e dalla vegetazione e di traspirazione della vegetazione. Il contenuto d'acqua nel terreno non costituisce un fattore limitante ed essa dipende solo dalle caratteristiche climatiche (temperatura, vento, umidità relativa, ecc.). Pertanto, l'evapotraspirazione potenziale rappresenta la massima quantità di acqua che può essere trasformata in vapore dal complesso dei fattori atmosferici e dalla vegetazione.

La PET può essere calcolata con diversi metodi e seguendo l'approccio proposto da Thornthwaite-Mather (1955), si ha:

$$(PET_{Thornthwaite})_{mese=j} = 16 \times b_j \times \left[10 \times \frac{(Tm_{med})_j}{I}\right]^a [mm/mese]$$

Si utilizzano perciò le sole informazioni relative alla temperatura media mensile Tm_{med} e al numero medio mensile di ore di insolazione giornaliera, funzione della latitudine e del mese dell'anno. Il calcolo dell'indicatore è effettuato a partire dalla valutazione dell'evapotraspirazione potenziale su una griglia regolare di risoluzione 1 km che ricopre l'intero territorio nazionale, a sua volta calcolata sulla base della distribuzione della temperatura media mensile sulla medesima griglia.

L'espressione normalizzata dell'indice RDI (RDIn), è calcolata dalla seguente equazione:

$$RDI_n^{(i)} = \frac{a_k^{(i)}}{\bar{a}_k} - 1$$

in cui \bar{a}_k è la media a lungo termine di α_k^i .

Supponendo che i valori di α_k^i seguano la distribuzione log-normale, la forma standardizzata dell'indice RDI è calcolata come:

$$RDI_{st}^{(i)} = \frac{y_k^{(i)} - \bar{y}_k}{\sigma_{y_k}}$$

in cui y_k è $\ln\!\left(a_k^{(i)}\right)$ mentre \bar{y}_k è la media e σ_{y_k} è la deviazione standard di y_k .

 $RDI \leq -2.0$

L'indice standardizzato RDIst, si comporta in un modo generalmente simile allo SPI e quindi l'interpretazione dei risultati è simile e si seguono le stesse classi utilizzate per l'indice SPI.

Valori RDI	Classe	
$RDI \ge 2$	umidità estrema	
$1.5 \le RDI \le 2.0$	umidità severa	
$1.0 \le RDI < 1.5$	umidità moderata	
-1.0 < RDI < 1.0	nella norma	
$-1.5 < RDI \le -1.0$	siccità moderata	
$-2.0 < RDI \le -1.5$	siccità severa	

Tabella 2.2 - Severità degli eventi di umidità e di siccità in termini di RDI

siccità estrema

2.3 TREND DETECTION

In questo capitolo vengono descritti gli strumenti analitici utilizzati per la stima delle tendenze delle variabili climatiche considerate per il presente studio.

In termini generali la serie temporale di una variabile climatica x(t) può essere espressa come la somma di due componenti:

$$x(t) = f(t) + e(t)$$

dove f(t) è il valore aspettato di x(t), mentre e(t) rappresenta la componente *random* o casuale che è legata principalmente alla variabilità climatica naturale.

Secondo la precedente formula una serie storica non rappresenta solo una sequenza di valori casuali indipendenti fra loro; piuttosto, essi possono essere descritti attraverso una funzione o un modello matematico con i quali vengono messi in relazione i valori attuali con quelli passati. La modellizzazione di una serie storica consiste allora nella scelta del modello analitico più opportuno per descriverne le componenti f(t) ed e(t). Qualunque sia il modello prescelto per la componente f(t), l'analisi delle tendenze (trend) ha come obiettivo quello di valutare se essa rimanga costante nel tempo oppure no e in quest'ultimo caso, quello di quantificare l'entità di tale variazione. Ricorrendo alla terminologia statistica della verifica delle ipotesi, l'analisi dei trend mette a confronto le ipotesi:

- H0: *f*(*t*) costante (invariante nel tempo);
- H1: f(t) non costante.

Un approccio di analisi è quello che viene detto "parametrico", in quanto basato sull'assunzione che i dati osservati seguano una determinata funzione di distribuzione; alternativamente esistono test non parametrici, impiegati spesso nello studio delle tendenze climatiche.

Al fine di valutare l'esistenza di una tendenza di crescita o decrescita degli indici di siccità e quindi determinare, data la serie di dati calcolati, se effettivamente si può definire un peggioramento o meno delle condizioni climatiche, sono stati utilizzati i test non parametrici di Mann - Kendall, Spearman e Cox - Stuart.

2.3.1 MANN - KENDALL TEST

Il test di Mann-Kendall (Mann 1945; Kendall 1975), è applicato per valutare l'esistenza di tendenze nelle serie degli indici di siccità. Questo test non necessita di particolari forme di distribuzione dei dati, ed è anche caratterizzato dall'essere poco suscettibile alle interruzioni improvvise della serie. Data questa sua robustezza, grazie anche alla facilità di impiego, viene spesso utilizzato come test per la verifica delle tendenze nelle serie idrologiche. L'ipotesi nulla sulla quale si fonda è quella di "no trend" (nessuna tendenza).

La procedura di applicazione del test, su un campione di dimensione N, prevede l'estrazione di due sottoinsiemi, l'uno formato dagli elementi di posto $i = \{1, 2, ..., N-1\}$ e l'altro da quelli di posto $j = \{i+1, i+2, ..., N\}$. Questi seguono l'ordinamento temporale. Allora, operando il confronto fra due valori successivi, se il valore collezionato all'istante i (precedente), è

minore di quello collezionato all'istante appena successivo *j*, allora la statistica S del test è incrementata di uno, viceversa altrimenti. In particolare, la statistica è definita nel seguente modo:

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sign(y_j - y_i)$$

$$sign(y_j - y_i) = \begin{bmatrix} 1 & if(y_j - y_i) > 0 \\ 0 & if(y_j - y_i) = 0 \\ -1 & if(y_j - y_i) < 0 \end{bmatrix}$$

Per dimensioni del campione maggiori ai dieci elementi, la statistica S ben approssima la distribuzione normale, con media nulla e varianza definita da:

$$\sigma^2 = \frac{N(N-1)(2n+5) + \sum t_i(i)(i-1)(2i+5)}{18}$$

Nella definizione sopra, con il termine t_i viene identificato il numero di osservazioni uguali nel campione, dunque la sommatoria presente a secondo membro si computa esclusivamente nel caso di dati appaiati.

Il valore della statistica del test, Z_S, è calcolata come:

$$Z_{S} \begin{cases} \frac{S-1}{\sigma} & \text{if } S > 0\\ 0 & \text{if } S = 0\\ \frac{S+1}{\sigma} & \text{if } S < 0 \end{cases}$$

Valori positivi della statistica indicano una possibile tendenza crescente nelle osservazioni (trend positivo), contrariamente, valori negativi ne delineano una possibile tendenza decrescente. Si ricorda comunque che, trattandosi di un test, la validità della stima fatta è subordinata al superamento del test stesso, il che si traduce a verificare che la statistica ricada all'interno della zona di accettazione, dato il livello di significatività α . In altri termini se $|Z_S| > Z_{1-\alpha/2}$, l'ipotesi nulla H_0 di "no trend" è rifiutata, di conseguenza esiste una qualche tendenza nei dati osservati.

Se vi è la necessità di stimare l'ampiezza della tendenza, si impiega lo stimatore di Sen (Sen's slope estimator), determinato dall'equazione:

$$\beta = Median\left(\frac{y_j - y_l}{j - l}\right) \qquad \forall l > j$$

Dove con l'elemento y_l si denota la l-esima osservazione antecedente alla j-esima osservazione y_j .

2.3.2 SPFARMAN RHO TEST

L'indice per ranghi di Spearman è una misura statistica non parametrica di correlazione che misura il grado di relazione tra due variabili e l'unica ipotesi richiesta è che siano ordinabili, e, se possibile, continue.

Questo indice di correlazione non parametrico permette di valutare la forza del rapporto tra due variabili quando le assunzioni per il modello di correlazione parametrica, coefficiente r Pearson, non sono soddisfatte.

In particolare, quando la distribuzione delle variabili X e Y non risulta normale (caso piuttosto frequente per popolazioni di dati ad elevato numero di casi) o quando le sottopopolazioni dei valori di Y o X non risultino avere la stessa varianza, la correlazione parametrica non viene utilizzata e si ricorre a questo indice che ha inoltre modalità di calcolo piuttosto semplice.

Le assunzioni di applicabilità di questa procedura risultano:

- il campione da cui sono estratti i valori di X e Y è casuale e semplice;
- i valori di X e Y sono misurati ad un livello almeno ordinale.

Il coefficiente di correlazione di Spearman assume i valori tra -1 e +1 indicando nel segno e nel valore il tipo e la forza della correlazione. Il segno + indica una correlazione direttamente proporzionale, il segno - indica una correlazione inversamente proporzionale; valori di ρ vicini ad 1 indicano una correlazione perfette, il valore ρ molto vicino a 0 indica una correlazione nulla.

Per il calcolo:

- si ordinano i valori di X (che corrispondono alla colonna X nella coppia dei valori X e
 Y) da 1 ad n e si assegnano i ranghi tenendo conto anche dei valori uguali, ties che assumono la media del rango.
- si ordinano i valori di Y (che corrispondono alla colonna Y nella coppia dei valori X e
 Y) da 1 ad n e si assegnano i ranghi tenendo conto anche dei valori uguali, ties che assumono la media del rango.
- per ogni coppia si calcola la differenza d_i del rango di Y il rango di X, si eleva d_i al quadrato;
- si calcola la somma dei d_i al quadrato $\sum d_i^{-2}$

Viene quindi utilizzata la formula:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Per valutare se il coefficiente determinato risulta significativo rispetto ai valori di α fissati viene confrontato il valore ottenuto con i valori critici della tabella 2.3 per il rispettivo n ed il valore α di significatività.

Tabella.2.3 – coefficienti di Spearman

n	0.900	0.950	0.975	0.990	0.995	0.999
4	0.8000	0.8000	_		_	_
5	0.7000	0.8000	0.9000	0.9000	_	_
6	0.6000	0.7714	0.8286	0.8857	0.9429	_
7	0.5357	0.6789	0.7450	0.8571	0.8929	0.9643
8	0.5000	0.6190	0.7143	0.8095	0.8571	0.8929
9	0.4667	0.5833	0.6833	0.7667	0.5167	0.9000
10	0.4424	0.5515	0.6364	0.7333	0.7818	0.8667
11	0.4182	0.5273	0.6091	0.7000	0.7455	0.8364
12	0.3986	0.4965	0.5804	0.6713	0.7273	0.8182
13	0.3791	0.4780	0.5549	0.6429	0.6978	0.7912
14	0.3626	0.4593	0.5341	0.6220	0.6747	0.7670
15	0.3500	0.4429	0.5179	0.6000	0.6536	0.7464
16	0.3382	0.4265	0.5000	0.5824	0.6324	0.7265
17	0.3260	0.4118	0.4853	0.5637	0.6152	0.7083
18	0.3148	0.3994	0.4716	0.5480	0.5975	0.6904
19	0.3070	0.3895	0.4579	0.5333	0.5825	0.6737
20	0.2977	0.3789	0.4451	0.5203	0.5684	0.6586
21	0.2909	0.3688	0.4351	0.5078	0.5545	0.6455
22	0.2829	0.3597	0.4241	0.4963	0.5426	0.6318
23	0.2767	0.3518	0.4150	0.4852	0.5306	0.6186
24	0.2704	0.3435	0.4061	0.4748	0.5200	0.6070
25	0.2646	0.3362	0.3977	0.4654	0.5100	0.5962
26	0.2588	0.3299	0.3894	0.4564	0.5002	0.5856
27	0.2540	0.3236	0.3822	0.4481	0.4915	0.5757
28	0.2490	0.3175	0.3749	0.4401	0.4828	0.5660
29	0.2443	0.3113	0.3685	0.4320	0.4744	0.5567
30	0.2400	0.3059	0.3620	0.4251	0.4665	0.5479

In particolare:

- se viene formulata preliminarmente una ipotesi di correlazione diretta positiva (al variare positivo di X corrisponde un variare positivo di Y, test monodirezionale coda di destra) il valore ρ è significativo se supera il valore critico indicato nella tabella per α e n dati;
- se viene formulata preliminarmente una ipotesi di correlazione inversa negativa (al variare positivo di X corrisponde un variare negativo di Y, test monodirezionale coda di sinistra) il valore ρ è significativo se supera il valore critico preceduto da - indicato nella tabella per α e n dati;
- se viene formulata preliminarmente solo un'ipotesi di correlazione, ovvero di non indipendenza senza specificare il segno (corrispondente ad un test bidirezionale, a 2 code) il valore di ρ è significativo se supera in valore assoluto il valore critico riportato nella Tabella 2.3 per $\alpha/2$ (se α = 0.05 allora $\alpha/2$ = 0.025) ed n dati.

Se n è maggiore di 30 per la verifica della significatività si può usare la distribuzione z dei valori della normale standardizzata previa la trasformazione

$$z = \rho \sqrt{n-1}$$

I pacchetti statistici inoltre permettono di applicare in automatico anche una correzione dovuta ad un possibile numero di osservazioni con uguale valore (ties) che comunque quando non sono molto numerose comportano variazioni minime nel valore di ρ .

2.3.3 COX STUART TEST

Con un campione di dati, non importa se raccolti con regolarità costante oppure in modo variabile, ma in successione temporale oppure disposti lungo un gradiente spaziale, il test di Cox e Stuart (Cox-Stuart trend test) permette di verificare, per la variabile considerata e con due metodi distinti, se esiste una tendenza monotona all'aumento oppure alla diminuzione della tendenza centrale e della variabilità.

In termini più espliciti il test può essere utilizzato per verificare separatamente

- sia ipotesi sulla tendenza centrale o posizione (location);
- sia ipotesi sulla variabilità o dispersione (dispersion).

Per quanta riguarda la tendenza centrale, la metodologia più semplice di Cox e Stuart è del tutto simile al test dei segni per due campioni dipendenti, sia nel caso di piccoli che di grandi campioni. Il metodo, anche in questo caso, permette di valutare se nel complesso dei dati, tra i valori iniziali e quelli finali, esiste un incremento oppure una diminuzione significativi, pure in presenza di ampie irregolarità casuali o cicliche e di un allontanamento rilevante dalla linearità.

Il test non risulta significativo se i dati hanno una fase d'incremento lunga e una fase altrettanto lunga di decremento o viceversa; è significativo solamente se una delle due è statisticamente prevalente. La verifica verte sulla esistenza di una regressione monotonica, cioè una variazione sistematica in aumento oppure in diminuzione che non è necessariamente lineare.

Spesso è collocato tra i test per un campione come sviluppo della distribuzione binomiale, sulla quale è fondato. Con tale impostazione, il parametro tempo o spazio non assumono alcuna importanza, purché i singoli dati siano riportati in serie, secondo l'ordine della rilevazione.

Con N osservazioni indipendenti $X_1, X_2, ..., X_N$ in serie ordinata rispetto a un'origine, si presentano diverse ipotesi:

- H₀: la tendenza centrale delle osservazioni da 1 a N è costante, ipotesi nulla;
- H₁: la serie di osservazioni ha una tendenza centrale non costante (ipotesi bilaterale);
- H₂: le osservazioni hanno una tendenza centrale in crescita (ipotesi unilaterale crescente);
- H₃: le osservazioni hanno una tendenza centrale in diminuzione (ipotesi unilaterale decrescente).

Il metodo è estremamente semplice e fondato sulla distribuzione binomiale, richiede alcuni semplici passaggi logici.

Nel caso di campioni grandi per la rapidità del calcolo è conveniente utilizzare:

$$Z = \frac{|X - N \cdot p| - 0.5}{\sqrt{N \cdot p \cdot q}}$$

la distribuzione normale, con la correzione per la continuità (tra 30 e 100 dati almeno).

CAPITOLO 3

3 AREA DI STUDIO

Il presente studio si sofferma sull'analisi delle serie di dati presenti all'interno della regione Marche, pertanto si descrivono le peculiarità fisiche, climatiche e idrologiche dell'area di studio.

3.1 GEOGRAFIA FISICA

Le Marche sono una regione dell'Italia centrale, compresa fra il 42° ed il 44° parallelo Nord e fra il 12° ed il 14° meridiano Est, la cui superficie è pari a 9.694 km².

Affacciata sul Mare Adriatico, è limitata superiormente (a nord) dal fiume Conca ed inferiormente (a sud) dal fiume Tronto. Essa si delinea come una regione montuoso-collinare, propriamente appenninica per il 54% del suo territorio, ossia caratterizzata da vere e proprie zone montuose (pari a circa il 31% del totale) ed alto-collinari, mentre nel restante territorio sono presenti modesti rilievi collinari che, salvo rare eccezioni, degradano fino al mare. Entro i suoi confini vi è la completa assenza di pianure di estensione apprezzabile, inoltre quelle presenti sono limitate ad esili zone alluvionali nelle vallate maggiori, prossime alla foce dei fiumi o alle zone di fascia costiera. Come già riportato, le zone collinari ed alto-collinari rappresentano la tipologia orografica più consistente, con una superficie di circa 6.500 km², ovvero il 69% del totale.

La Regione ammette entro i propri confini settentrionali le propaggini terminali dell'Appennino tosco-emiliano, la cui cima di maggior rilievo è il monte Carpegna, di 1415m, mentre entro i suoi confini meridionali è presente una propaggine dell'Appennino abruzzese, la cui cima maggiore è la Macera della Morte, di 2073m. Lungo l'intero confine occidentale, la Regione abbraccia la totalità del versante orientale della dorsale appenninica umbromarchigiana, costituita da catene montuose sub parallele e ravvicinate, decorrenti in direzione NNW-SSE, con tendenza moderata all'incurvamento lungo la direttrice N-S verso il meridione. Queste serie di catene sono il frutto di cinque differenti pieghe tettoniche che interessano l'intero entroterra regionale, di cui la piega più occidentale ne delinea il confine territoriale. Le altitudini maggiori di questa catena assiale (ai confini con l'Umbria) non eccedono i 1701 del monte Catria. Le altitudini più elevate della regione sono invece concentrate lungo una catena situata più ad est, che ha inizio nel territorio del Montefeltro, con modeste altitudini (1485m del monte San Vicino), e prosegue sino a diventare una vera e propria dorsale verso meridione, con il massiccio dei monti Sibillini, di cui i monti Priore (2232m), Porche (2235m) e Vettore (2476m) costituiscono le vette maggiori. Una terza catena montuosa ancora più ad est di quelle già citate, si ha nella porzione meridionale della regione, nei pressi di Ascoli Piceno e culmina col monte dell'Ascensione, di 1103m.

Al termine delle zone montuose si estendono ampi territori collinari, anche essi caratterizzati da una struttura geologica praticamente parallela all'Appennino ed alla linea di costa, salvo che, essi risultano essere fortemente modellati dai propri corsi d'acqua, originando vallate ortogonali all'ordinamento anzidetto. Tale conformazione conferisce alla regione la tipica morfologia a "pettine". Le colline mantengono elevazioni modeste, difficilmente eccedenti i 500 m, e degradano dolcemente fino alla costa, fatta eccezione per i promontori del monte San Bartolo, lungo il confine nord nei pressi di Pesaro, e del Conero, in prossimità di Ancona, capoluogo regionale.

Gli insediamenti abitativi sono concentrati soprattutto sulla fascia costiera, come pure le attività industriali e quelle orto frutticole a conduzione intensiva. L'attività agricola tradizionale, quella di allevamento intensivo di bestiame (suinicolo, bovino e avicolo) e quella agrituristica, si sviluppano prevalentemente nella fascia collinare del territorio.

3.2 CLIMA

Il clima nelle Marche presenta caratteri mediterranei lungo le coste e progressivamente continentali verso le zone Appenniniche. Tuttavia, anche sulle coste l'influenza del mare si riduce procedendo verso Nord in quanto la scarsa profondità dell'Adriatico centro-settentrionale, unita all'esposizione del territorio chiuso rispetto ai venti Occidentali e Meridionali ed aperto invece a quelli da Est o da Nord, conferisce al litorale delle Marche settentrionali caratteristiche climatiche affini a quelle della Valpadana.

3.2.1 TEMPERATURE

Le temperature presentano escursioni stagionali e giornaliere maggiori rispetto alle coste Tirreniche e a quelle Meridionali Adriatiche. A sud di Ancona il comportamento è simile a quello delle regioni mediterranee: inverni non troppo freddi ed estati calde, ma ventilate per la presenza delle brezze. A nord di Ancona l'influenza dell'Adriatico si riduce ed il comportamento termico è più simile a quello del comparto Padano con Estati calde e afose anche se con più temporali ed Inverni freddi e nebbiosi con periodi di freddo intenso in grado di causare gelate anche sulle coste. Le zone interne presentano caratteristiche tipiche del clima continentale con estati calde in cui spesso si superano i 30°C ed inverni in cui spesso si scende sotto alla soglia dello 0°C. Le temperature si abbassano progressivamente con l'altitudine tanto che sulle montagne appenniniche gli inverni sono molto rigidi con temperature che possono scendere anche a -20°C durante le irruzioni Artiche e valori freschi anche in Estate. I venti di Garbino possono provocare improvvisi rialzi termici in qualsiasi periodo dell'anno con fasi di disgelo anche in pieno inverno.

3.2.2 **VENTI**

I venti che soffiano più frequentemente provengono dai quadranti occidentali e meridionali e ciò spiega la modesta piovosità annua nella Regione. I venti occidentali causano ombra pluviometrica sulle aree litoranee, unite ad improvvisi rialzi termici conosciuti come Garbino (meccanismo analogo a quello del Fohn in Nord Italia). I venti da Est o da Nord possono causare ondate di maltempo e freddo ma in genere si tratta di situazioni brevi e transitorie.

Inoltre, anche le correnti di origine continentale non hanno un elevato tasso di umidità in grado di dispensare abbondanti precipitazioni; in compenso sono le principali responsabili delle grandi ondate di freddo. In Estate i venti di libeccio, associati alla presenza dell'alta pressione africana provoca consistenti rialzi termici sul litorale Adriatico con picchi di caldo molto intenso, mentre nelle altre stagioni tende a mitigare le temperature con ondate di tepore anche in pieno inverno.

3.2.3 PRECIPITAZIONI

Le piogge sulle Marche sono condizionate dalla disposizione dei rilievi Appenninici rispetto alla circolazione occidentale prevalente nell'area Mediterranea; in genere le precipitazioni non sono abbondanti in quanto le perturbazioni Atlantiche tendono a rilasciare il loro contenuto di umidità sotto forma di precipitazioni sul versante occidentale Appenninico e giungendo secche sul litorale.

3.3 QUADRO IDROLOGICO REGIONALE

Il quadro idrologico vede la quasi totalità dei propri corsi d'acqua tributari dell'Adriatico, ad eccezione delle sorgenti del fiume Nera, nel versante occidentale dei monti Sibillini che, confluendo nel fiume Tevere, sfociano nel Mar Tirreno. Il regime fluviale è di tipo torrentizio, in virtù di quello pluviometrico regionale, con trasporto solido abbastanza elevato. Ad eccezione dei tratti prossimi alle proprie sorgenti, le aste fluviali, lungo il loro decorso, si dispongono con direzione N-E, dando origine a strette e profonde gole di origine erosiva al momento del loro transito attraverso gli Appennini, allargandosi poi, giunte nei territori subappenninici e collinari, in ampie valli alluvionali.

I principali corsi d'acqua della regione sono, partendo da nord: il Marecchia ed il Conca sfocianti in Romagna; il Foglia; il Metauro, il cui affluente destro dà origine alla gola del Furlo; il Cesano; il Misa; l'Esino, che dà origine alla gola della Rossa; il Musone; il Potenza, con le forre di San Severino; il Chienti, con le gole di Valcimana; il Tenna; l'Aso; il Tronto.

A corredo della descrizione idrologica si deve menzionare che, seppur siano presenti diffusamente ampi invasi artificiali, i maggiori dei quali si trovano sui fiumi Tronto, Castellano (suo affluente di destra), sul fiume Fiastra e sul Chienti, all'interno del territorio non sono pressoché presenti laghi naturali consistenti; l'unico lago di formazione naturale è il piccolo lago di Pilato, a 1949 m di quota, lungo le pendici del monte Vettore. Data la natura carsica delle proprie aree montane, sono invece numerose le risorse e le sorgenti idriche sotterranee, che talvolta danno luogo a sorgenti termali solfuree.

Figura 3.1 – Mappa idro-orografica della regione Marche

3.4 AFFLUSSI

Da uno studio fatto nella tesi "Analisi degli eventi estremi di precipitazione sulle Marche - Chiara Ciocconofri, 2006", in collaborazione con l'Osservatorio Geofisico Sperimentale di Macerata (OGSM) e l'Università di Camerino sulle precipitazioni medie e massime annuali, è risultato che le quantità di precipitazione nella Regione Marche si distribuiscono secondo tre differenti fasce pluviometriche peculiari.

In via generale, queste possono essere discriminate in:

- zona costiera, dove cadono mediamente dai 600 agli 800 mm d'acqua all'anno;
- zona medio e basso collinare, in cui le precipitazioni si attestano sui 850÷1100 mm;
- zona montuosa ed alto collinare, in cui si hanno dai 1100 mm ai 1700 mm di precipitazione annui.

3.5 SISTEMA IDRICO DELLE MARCHE

Il territorio della Regione Marche è suddiviso in cinque AmbitiTerritoriali Ottimali (ATO) e sono precisamente:

 ATO 1 	Marche Nord	Provincia Pesaro Urbino (PU)
 ATO 2 	Marche Centro	Provincia Ancona (AN)
 ATO 3 	Marche Centro	Provincia Macerata (MC)
 ATO 4 	Marche Sud	Alto Piceno - Maceratese
 ATO 5 	Marche Sud	Provincia Ascoli Piceno (AP)

La Regione Marche è suddivisa in quattro province come riportato nella Tabella 3.1, dove sono elencate da Nord verso Sud:

Tabella 3.1 – Suddivisione amministrativa e disponibilità idrica regione Marche
province Numero Comuni abitanti Disponibilità idrica

province	Numero Comuni	abitanti	Disponibilità idrica
Pesaro Urbino	67	347.000	260 sorgenti e acque
			superficiali
Ancona	49	440.000	2-3 sorgenti e acque
			superficiali
Macerata	57	304.400	Sorgenti e subalveo
Ascoli Piceno	73	370.000	4 sorgenti
	246	1.461.000	

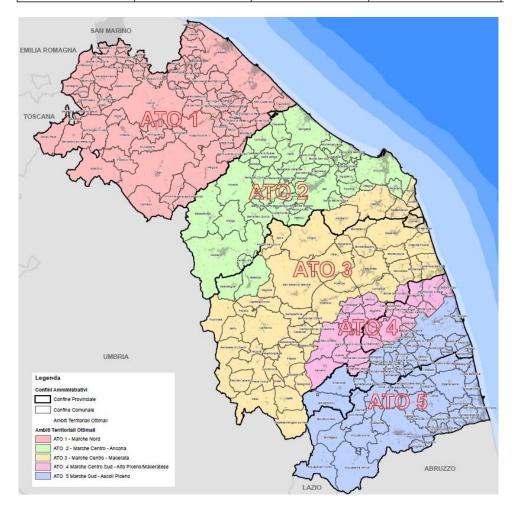


Figura 3.2 – Ambiti Territoriali Ottimali della regione Marche

Le acque della regione Marche provengono sia da sorgenti, che da pozzi di subalveo che da acque superficiali trattate. La situazione non è uniforme e si hanno differenze nelle singole province.

In particolare:

- Nell'ATO 1 l'approvvigionamento di acqua è sostenuto principalmente dall'acquedotto del Metauro e diversi impianti di presa, e serve la provincia di Pesaro e Urbino;
- Nell'ATO 2 c'è il gruppo sorgentizio Gorgovivo, che fornisce acqua principalmente alla provincia di Ancona;
- Nell'ATO 3 c'è l'acquedotto del Nera che è ancora in fase di costruzione nella sua parte terminale prossima al mare. Dovrebbe servire gran parte dei Comuni della Provincia di Macerata a Nord del Chienti e ad Ovest del Fiastra fino ai territori dei Comuni di Osimo Castelfidardo, Numana e Sirolo. Non essendo l'acquedotto nel suo pieno esercizio, poiché attualmente serve solo la zona montana e pedemontana, i soggetti gestori si approvvigionano da fonti alternative per lo più fluviali, con un apporto significativo fornito dall'invaso di Castreccioni a valle del quale si dirama un acquedotto che convoglia l'acqua potabile nei Comuni di Cingoli, Filottrano, Osimo, Castelfidardo, Sirolo, Numana;
- Nell'ATO 4 c'è l'acquedotto del Tennacola che serve il territorio compreso tra il mare, i Sibillini ed il bacino del Fiastra nella direzione Est-Ovest e tra il Chienti ed il Tenna nella direzione Nord-Sud;
- Nell'ATO 5 ci sono due acquedotti principali, quello del Pescara e quello dei Sibillini, che sono interconnessi tra loro e servono il territorio compreso tra il mare ed i Monti Sibillini, nella direzione Est-Ovest e tra i fiumi Tenna e Tronto nella direzione Nord-Sud.

Talvolta nelle quattro province si ricorre a integrazioni dell'acqua di montagna con quella del subalveo e con quelle superficiali, soprattutto nei periodi e nelle zone di scarsa dotazione idrica (durante la stagione estiva e nelle zone di maggiore affluenza di turisti). Nella regione Marche, il quantitativo di acqua immessa in rete per abitante per giorno è mediamente di 320 litri, mentre quella effettivamente erogata è di 260 litri.

I tre sistemi idrici principali sono tra loro distinti, non c'è collegamento e al momento non ci può essere scambio di risorsa idrica. La caratteristica comune, tuttavia, è che attingono tutti da sorgenti montane alimentate dal grande bacino del massiccio orientale dei Monti Sibillini.

CAPITOLO 4

4 DATASET

4.1 METODI DI MISURA DEI DATI

4.1.1 MISURA DELLE PRECIPITAZIONI

Le precipitazioni sono, per definizione, i prodotti solidi o liquidi, che derivano dalla condensazione del vapor d'acqua e che cadono dalle nubi o passano direttamente dall'aria al suolo, sul quale si depositano. Esse comprendono la pioggia (in forma liquida), la neve e la grandine (in forma solida), nonché la rugiada, la brina, la galaverna e la bruma (definite precipitazioni occulte, poiché non danno luogo alla caduta di gocce o cristalli di ghiaccio). La quantità totale di precipitazione che perviene al suolo è rappresentata dallo spessore che avrebbe se coprisse, sotto forma liquida, la proiezione orizzontale dello stesso terreno su cui si è depositata. La neve viene anche rappresentata dallo spessore di neve fresca che copre una superficie orizzontale.

Tutte le misure di precipitazione devono tendere ad individuare un campione rappresentativo della quantità globale che cade nella zona ove si effettua la misura. La scelta del sito di misura, così come l'errore sistematico della misura, sono pertanto particolarmente importanti.

Gli strumenti di misura devono presentare caratteristiche essenziali:

- Affidabilità di funzionamento, in modo da conservare, per un lungo periodo di funzionamento, buone caratteristiche di precisione, piuttosto che avere una precisione ottima, ma che degrada nel tempo.;
- Precisione della misura;
- Semplicità costruttiva, comodità d'impiego e facilità di taratura e manutenzione, che rendono più facili le operazioni di campagna e rendono possibile, a volte, il diretto intervento dell'osservatore per riparare i guasti meno gravi;
- Robustezza, perché tali strumenti sono esposti per lungo tempo alle intemperie.

4.1.1.1 PIOGGIA

La pioggia è definita come la precipitazione di acqua liquida in gocce di diametro maggiore di 0,5 mm. La pioggia può essere considerata la fase finale di un complicato processo in cui si combinano numerosi elementi meteorologici quali la temperatura, l'umidita, l'evaporazione e il vento.

La quantità di acqua precipitata viene misurata come altezza di precipitazione (h) e si esprime in [mm]. È necessario specificare l'intervallo di tempo in cui la pioggia è caduta; un

millimetro di pioggia indica che un metro quadrato di superficie viene ricoperto da uno strato d'acqua spesso un millimetro per un volume complessivo di un litro.

Facendo il rapporto tra l'altezza di precipitazione e la durata d della stessa si ottiene un'altra grandezza fondamentale che è l'*intensità di precipitazione (i):*

$$i = \frac{h}{d} \left[mm/h \right]$$

Si può definire un altro tipo di *intensità* che è quella *istantanea*, data dalla tangente in ogni punto alla curva integrale delle precipitazioni h=f(t).

Gli strumenti tradizionalmente utilizzati per la misura delle precipitazioni raccolgono ovviamente soltanto l'acqua caduta su una superficie molto ridotta. La principale caratteristica delle misure di precipitazione tradizionali è quindi quella di essere misure puntuali. Per avere dunque un'idea della pioggia caduta su una regione più ampia, è necessario un database più ampio, costituito da strumentazioni installate in posizioni geografiche adeguatamente scelte. La posizione dello strumento è molto importante per via dell'influenza che l'ambiente ad esso circostante può avere nella misura, come è fondamentale la scelta dello strumento, le cui caratteristiche potrebbero influenzare la quantità di pioggia misurata.

Lo strumento atto alla misurazione dell'acqua meteorica è il pluviometro. Esso è generalmente costituito da un recipiente con bocca orizzontale di forma circolare, di dimensioni standardizzate, avente una superficie di 0.1 m², per un diametro di circa 35,7 centimetri.

Vengono posti in zone lontane da edifici, alberi ed altre opere naturali o artificiali capaci di esercitare un'azione di disturbo sulle operazioni di rilevazione e quindi sul corretto funzionamento dello stesso. Altra azione di disturbo è quella esercitata dal vento, tramite il cosiddetto "effetto splash", secondo il quale le traiettorie delle particelle d'acqua più leggere vengono pesantemente deviate dal flusso d'aria o da eventuali turbolenze, determinando una sottostima della precipitazione raccolta in quota, rispetto a quella che verrebbe raccolta al suolo. Le riduzioni sono variabili fra il 15% e l'80% del totale delle precipitazioni in relazione al tipo di evento. Nello specifico si hanno sottostime nulle per velocità del vento nulle, mentre si hanno sottostime del 50% circa, per velocità del vento prossime agli 80 km/h. la velocità anemometrica raggiunta alla bocca è quindi funzione dell'altezza del pluviometro rispetto al suolo su cui è posizionato: tanto più questa è elevata rispetto alla linea di terra, tanto più è elevata la sua velocità. Al fine di neutralizzare questo disturbo possono essere impiegate apposite barriere paravento.

Un'ulteriore causa di errore nella misura delle precipitazioni è dovuta all'effetto "wetting", questo è stato stimato da *Niemczynowicz* (1986) ed è causato dall'adesione dell'acqua sulle pareti interne dell'imbuto raccoglitore o del serbatoio di raccolta; queste perdite sono quantificate nell'ordine di 0.05 mm di precipitazione per ogni evento. Inoltre, tra le cause di errore si devono citare anche gli scarsi interventi di manutenzione, in assenza dei quali occlusioni o rotture possono comportare riduzioni, se non la perdita completa, delle misurazioni.

I pluviometri non sono il solo sistema di misurazione disponibile, ma ne esistono diversi che possono essere differenziati in funzione del meccanismo tramite cui le registrazioni avvengono.

4.1.1.1.1 PLUVIOMETRI

Qualunque recipiente aperto potrebbe, in linea di principio, servire come pluviometro. In realtà, però, la quantità di precipitazione raccolta dipende in misura non trascurabile dalle caratteristiche del recipiente e dall'ambiente circostante. Particolarmente importante è l'effetto della turbolenza dell'aria, a causa della quale le traiettorie delle gocce tendono ad aggirare l'ostacolo costituito dallo strumento. Di qui la necessità di normalizzare il più possibile le caratteristiche dei pluviometri e di scegliere con cura il luogo in cui collocarli, riparandoli il più possibile dalla turbolenza, ma senza andare a diminuire il quantitativo di acqua raccolta.

Un pluviometro è un recipiente cilindrico, nella cui bocca, disposta orizzontalmente è sistemato un imbuto raccoglitore, come rappresentato in Fig. 5.1. L'acqua si raccoglie sul fondo del pluviometro, quando questo è di dimensioni tali da poter essere agevolmente maneggiato, oppure in un secondo recipiente, più piccolo, posto al suo interno. Lo scopo dell'imbuto raccoglitore è di limitare il più possibile le perdite per evaporazione. A questo scopo il foro, che è protetto da una sottile rete metallica, deve essere il più piccolo possibile.

L'altezza di precipitazione misurata è uguale al rapporto tra il volume dell'acqua raccolta e l'area della bocca. Nel caso di neve il volume dell'acqua raccolta si misura facendo sciogliere la neve in un volume noto di acqua. Le altezze di pioggia ai pluviometri sono misurate con la precisione di 0,2 mm.

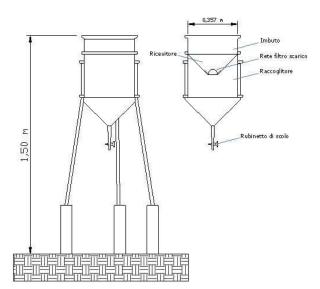


Figura 4.1 - Pluviometro

Per evitare l'influenza degli ostacoli posti nelle vicinanze, come alberi ed edifici, il pluviometro si colloca a una distanza da questi uguale ad almeno il doppio della loro altezza. Si evitano anche, per quanto possibile, le posizioni in cui il vento dà luogo a una turbolenza particolarmente violenta.

La quantità d'acqua raccolta dal pluviometro diminuisce al crescere dell'altezza della bocca sul suolo, a causa del crescere della velocità del vento, e quindi della turbolenza. Lo scarto tra le altezze di precipitazione misurate da due strumenti con bocche poste ad altezza diversa è sensibile, dell'ordine dell'1 % tra un pluviometro con la bocca al livello del suolo e uno con la bocca all'altezza di 1,5 m. per questo motivo è bene evitare, per quanto possibile, di collocare il pluviometro su un tetto. In pratica però la scelta del punto in cui collocare un pluviometro, che dipende da molti fattori, tra i quali essenziali sono la disponibilità dello spazio e la protezione dello strumento da possibili danni, risulta spesso obbligata.

La dimensione della bocca del pluviometro ha qualche effetto sulla misura dell'altezza di precipitazione: se il diametro della bocca scende al di sotto di una decina di centimetri l'altezza di precipitazione misurata si riduce con il diametro (si riduce di circa il 9% per un diametro di 2,5 cm). Se la bocca del pluviometro non risulta disposta secondo un piano orizzontale, ma secondo un piano inclinato, la quantità di acqua raccolta risulterà maggiore o minore a seconda della direzione del vento. Si precisa che l'errore risulta sensibile solo se la pioggia è accompagnata da un vento dominante, se essa avviene senza vento, oppure la direzione cambia in modo da dar luogo ad una buona compensazione, l'errore percentuale risulta uguale alla riduzione percentuale della proiezione orizzontale della bocca, quindi sempre in meno ma molto piccolo (1,5 % per un'inclinazione di 10°).

4.1.1.1.2 PLUVIOMETRI TOTALIZZATORI

I pluviometri totalizzatori sono strumenti generalmente non registratori, destinati a raccogliere e conservare le precipitazioni di un periodo molto lungo, di diversi mesi o addirittura di un anno.

Sono molto utilizzati nelle regioni di montagna o comunque in zone dove la difficoltà di accesso può essere molto elevata durante determinate stagioni. Uno strumento totalizzatore deve essere munito di una protezione efficace contro l'evaporazione: a questo scopo si pone nel recipiente di raccolta una certa quantità di olio, che forma sull'acqua uno strato che ne impedisce l'evaporazione. Quando la temperatura può scendere al di sotto dello zero, come succede nelle zone temperate in inverno, si adopera un olio antigelo e si pone nel recipiente di raccolta una certa quantità di liquido antigelo, con temperatura di solidificazione molto bassa. Per motivi economici generalmente si adopera una soluzione di cloruro di calcio. Il titolo iniziale della soluzione deve essere abbastanza alto perché anche dopo la diluizione dovuta alle precipitazioni la temperatura di solidificazione resti sufficientemente bassa. La soluzione salina ha anche l'effetto di sciogliere le precipitazioni nevose.

4.1.1.1.3 PLUVIOGRAFI

Per numerosi scopi pratici è necessario conoscere l'intensità di precipitazione o di pioggia. Questa può essere ricavata dalla corrispondente misura di precipitazione. Tuttavia poiché le letture dei pluviometri non si possono effettuare più di una volta al giorno per questioni di praticità, diventa necessario ottenere una registrazione continua, che fornisca a ogni istante il valore della precipitazione totale, misurata a partire da un certo istante. Una registrazione di questo tipo permette di calcolare le intensità di pioggia medie relative a intervalli di tempo di qualsiasi durata, anche tanto brevi da poter considerare l'intensità di pioggia corrispondente come istantanea.

La registrazione dell'altezza di pioggia era effettuata in passato in forma di un grafico su un diagramma. di qui il nome di pluviografi con cui questi strumenti sono generalmente conosciuti. Un pluviografo è in sostanza costituito da un sensore, che rileva istante per istante il valore dell'altezza di precipitazione totale, e da un apparato di registrazione. L'apparato di registrazione può essere di diverso tipo. Il supporto sul quale si registrano i dati può essere un foglio di carta, oppure un nastro magnetico, oppure ancora una memoria solida. Si descrivono brevemente due tipi di pluviografi quello a sifone e quello a bascula.

Nel pluviografo a sifone, Fig. 4.3.1, l'acqua proveniente dall'imbuto raccoglitore finisce in un recipiente, nel quale è posto un galleggiante che sostiene una punta scrivente. Quando il recipiente è pieno l'acqua trabocca da un sifone che, una volta adescato, svuota il recipiente in un tempo brevissimo. La punta scrivente lascia una traccia su una carta avvolta su un tamburo, tenuto in lenta rotazione da un meccanismo a orologeria. Lo strumento si predispone in modo che il sifone entri in funzione non appena la punta scrivente ha raggiunto il bordo del foglio. Il diagramma risultante, che generalmente ha una durata settimanale, si presenta come quello riportato in Fig. 5.2.

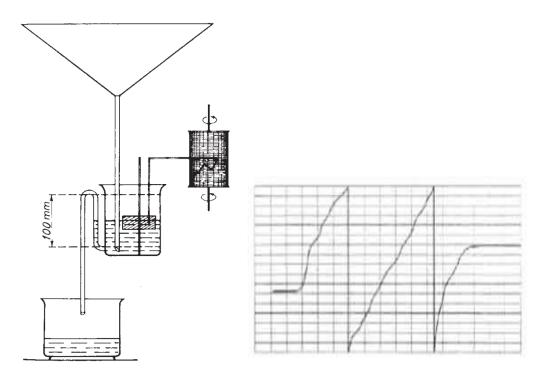


Figura 4.2 - Pluviografo a sifone e relativo pluviogramma

Nel pluviografo a bascula invece, l'acqua proveniente dall'imbuto finisce ora nell'uno ora nell'altro di una coppia di piccoli recipienti, solidali a una base basculante intorno a un perno, Fig. 5.2. Man mano che un recipiente si riempie il baricentro dell'intero sistema si sposta. Una volta raggiunto un certo grado di riempimento il sistema si ribalta: sotto il tubo collegato all'imbuto si presenta il recipiente vuoto, mentre quello pieno si vuota rapidamente. Durante il moto alternato si ha una piccola perdita d'acqua, che in occasione di precipitazioni molto intense può raggiungere il 5 %. A ogni oscillazione del sistema, la quale segna il passaggio di un assegnato volume d'acqua attraverso lo strumento, corrisponde la trasmissione si un impulso a un meccanismo, che muove una punta scrivente. Quando la punta ha raggiunto il margine superiore del foglio la direzione in cui i singoli impulsi muovono

la punta si inverte. In generale l'acqua proveniente da uno strumento registratore si raccoglie in un recipiente, che permette di verificare la precipitazione totale misurata, in un intervallo di tempo più o meno lungo, dallo strumento registratore.

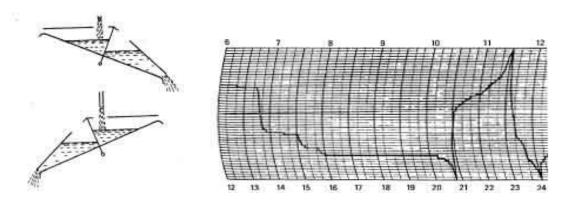


Figura 4.3 - Pluviografo a bascula e relativo pluviogramma

I pluviografi più recenti sfruttano supporto di registrazione digitali o informatici, anziché cartacei. Si parla di radiopluviografi o radiopluviometri, quando la trasmissione dei dati avviene via etere, ovvero quando l'apparato di registrazione viene sostituito da un sistema di trasmissione in sito che invia il segnale ad una stazione ricevente deputata alla registrazione. Ciascuna stazione di registrazione può processare i segnali provenienti da più stazioni di misura, viene a costituirsi così una rete pluviografica (o pluviometrica) in telemetria. Talvolta i pluviografi sono muniti di adeguate resistenze termiche in prossimità del raccoglitore, in modo da poter captare e misurare le qualità d'acqua meteorica in caso di precipitazioni nevose.

4.1.2 MISURA DELLE TEMPERATURE

La temperatura di un corpo è la condizione che determina la sua attitudine a trasmettere calore ad un altro corpo o a riceverne. Considerato un sistema costituito da due corpi, si dice che il corpo che cede calore all'altro ha temperatura più alta.

La temperatura termodinamica (θ), espressa in gradi Kelvin (K), è la temperatura di base. Per la maggior parte delle utilizzazioni meteorologiche la temperatura è, tuttavia, misurata secondo la scala Celsius, in cui la temperatura (t) e definita dalla seguente equazione:

$$t = \theta - 275.15$$

Elemento importantissimo nel campo della meteorologia a fini idrologici è la misura della temperatura dell'aria, da cui dipendono in grandissima parte i fenomeni meteorologici. Questo comporta che vengano effettuate misure istantanee o, più spesso, continue, della temperatura:

- dell'aria, in prossimità della superficie del terreno;
- del suolo, a differenti profondità;
- dell'acqua, alla superficie dei mari e dei laghi;
- dell'aria in quota.

In dettaglio, si tratterà la misura di temperatura dell'aria in prossimità della superficie del suolo.

4.1.2.1 TERMOMETRI

Gli strumenti utilizzati per la misura della temperatura e delle sue variazioni, sono i termometri. Si basano su alcune proprietà fisiche di una generica sostanza, che siano funzione della temperatura, le quali più utilizzate sono la dilatazione termica e la variazione di resistenza elettrica.

Esistono due categorie principali di termometri:

- termometri che vengono denominati "ordinari", che indicano la temperatura ambiente;
- termometri "a massima" o "a minima", che indicano le temperature estreme raggiunte in un intervallo di tempo sono denominati.

4.1.2.1.1 IL PROBLEMA DELL'IRRAGGIAMENTO

La temperatura dell'aria dipende da varie circostanze, fra le quali in primo luogo la stagione e l'ora del giorno in cui si effettuano le misure. La radiazione emessa dal sole, dalle nuvole, dal suolo e da altri oggetti prossimi al termometro attraversa l'atmosfera senza farne variare, in misura apprezzabile, la temperatura, sebbene un termometro esposto all'aria aperta possa assorbire una notevole quantità di queste radiazioni. La temperatura misurata da un termometro in tali condizioni può differire dalla vera temperatura dell'aria, per effetto della intensità dell'irraggiamento e del rapporto tra la quantità di radiazione assorbita e la quantità di calore dissipata. Un mezzo per eliminare questi inconvenienti è quello di proteggere il termometro dall'irraggiamento, ponendolo in una capannina meteorologica, che serva anche come supporto e come protezione dalle precipitazioni e dagli urti, assicurando allo stesso tempo una temperatura pressoché uguale a quella dell'aria, anche mediante la ventilazione forzata dello strumento.

La maggior parte delle capannine, pur con numerose varianti, ha pareti costituite da persiane che consentono la ventilazione naturale. Una capannina dovrebbe, nei limiti in cui ciò sia possibile, essere realizzata in modo da delimitare un ambiente in cui la temperatura sia uniforme e identica a quella dell'aria esterna, e dovrebbe circondare interamente il termometro impedendo l'irraggiamento e la penetrazione di precipitazioni. Le sue pareti dovrebbero essere preferibilmente costituite da una doppia persiana ed il pavimento dovrebbe essere costruito con listelli sfalsati e non congiunti. Il tetto dovrebbe essere realizzato mediante due strati separati, così da consentire una buona circolazione d'aria tra i due strati. Le dimensioni e le caratteristiche della capannina meteorologica devono essere tali da limitarne al massimo la capacità termica e da lasciare all'interno spazio sufficiente tra gli strumenti e le pareti e, in modo particolare, tra gli elementi sensibili degli strumenti e le pareti stesse. Ciò è particolarmente importante nelle regioni più calde ove il sole, riscaldando notevolmente le pareti della capannina, può causare la formazione di un apprezzabile gradiente termico all'interno della capannina stessa. Bisogna anche evitare il

contatto diretto tra l'elemento sensibile e il supporto del termometro. La libera circolazione dell'aria nell'interno della capannina facilita l'equiparazione della temperatura delle pareti interne a quella dell'aria circostante, riducendo l'influenza delle pareti sulla lettura del termometro; viene anche facilitato lo scambio termico tra esterno ed interno della capannina affinché il termometro sia messo in condizioni di adattarsi con maggiore rapidità ai cambiamenti di temperatura. L'aria che penetra all'interno della capannina, tuttavia, lambisce prima le pareti esterne e la sua temperatura può esserne modificata. Di conseguenza, la temperatura misurata all'interno di una capannina meteorologica tende ad essere superiore a quella vera dell'aria circostante, quando vi sia intensa insolazione e, di contro, lievemente inferiore a quella vera nelle notti con cielo terso e prive di vento. Ulteriore causa d'errore nella misura può verificarsi quando la capannina è bagnata dalla pioggia.

Per le ordinarie necessità della meteorologia, la temperatura misurata dovrà essere rappresentativa della temperatura dell'aria circostante alla stazione di osservazione, ad un'altezza compresa tra 1,25 e 2,00 m dal suolo. È necessario che tali limiti di altezza siano esattamente rispettati perché nello strato d'aria, anche molto sottile, a contatto con il suolo, possono instaurarsi forti gradienti termici.

L'ubicazione di una capannina meteorologica che contenga un termometro deve ricadere in una zona in cui il terreno circostante deve essere pianeggiante, esposto a normali condizioni di insolazione e di ventosità; lontana da alberi, edifici o altri ostacoli.

Le capannine, generalmente in legno, devono essere realizzate con materiali resistenti, assemblati con particolare cura, in modo che gli errori di misura dei termometri a massima e minima, che possono essere determinati da vibrazioni causate dal vento, siano ridotti al minimo.

Figura 4.4 – Capannina metereologica.

Quando si richiede una maggiore esattezza nelle misurazioni, la soluzione alternativa alla ventilazione naturale delle capannine consiste nel proteggere il bulbo del termometro contro

l'irraggiamento, sistemandolo nell'asse di due schermi cilindrici concentrici ed inducendo una circolazione d'aria artificiale tra i due cilindri.

4.1.2.2 TERMOMETRI DI VETRO CON ELEMENTO SENSIBILE LIQUIDO

Per le normali osservazioni della temperatura dell'aria vengono ancora correntemente utilizzati i termometri di vetro a liquido. La dilatazione del liquido puro contenuto nel termometro consente di misurare la temperatura. L'asta del termometro è collegata ad un rigonfiamento (bulbo) che contiene il liquido, per il tramite di un condotto strozzato; il volume del liquido è determinato in modo che il bulbo sia completamente pieno, ma il capillare lo sia soltanto in parte, in tutto l'intervallo di temperatura da misurare. Le variazioni di volume del liquido si trasformano in una corrispondente variazione del livello del liquido nell'asta del termometro; quest'ultima viene tarata segnando su di essa, o su un indice fissato saldamente all'asta e ad essa solidale, i valori della temperatura corrispondente a diversi livelli. Il tipo di liquido impiegato dipende dall'intervallo delle temperature da misurare, può essere il mercurio, impiegato normalmente per temperature superiori a -38,8 °C; mentre per temperature ancora inferiori si utilizzano l'alcol etilico od altri liquidi organici puri. Il vetro di cui è costituito lo strumento deve essere di qualità adatta alla realizzazione di termometri. La parete del bulbo deve essere la più sottile possibile, pur offrendo le necessarie garanzie di solidità, per facilitare la conduzione del calore. L'innalzamento del liquido nel capillare graduato avviene per effetto della dilatazione termica.

4.1.2.2.1 TERMOMETRI A MASSIMA

Il tipo più idoneo è il termometro a mercurio sottovetro, in cui il capillare sia strozzato tra il bulbo e l'inizio della scala. La strozzatura impedisce la discesa della colonnina di mercurio al diminuire della temperatura. È, tuttavia, possibile riportare la colonnina al punto di partenza afferrando saldamente il termometro col bulbo verso il basso e scuotendolo dall'alto in basso con energia. Il termometro a massima dovrebbe essere disposto inclinato con pendenza di circa 2 gradi sull'orizzontale, col bulbo più in basso, affinché la colonnina di mercurio non possa, per effetto della forza di gravita, superare la strozzatura e rientrare nel bulbo.

4.1.2.2.2 TERMOMETRI A MINIMA

Il termometro più usato è il termometro ad alcol, il cui tubo contiene un indice di vetro scuro, lungo circa 2 cm, immerso nell'alcol. Poiché nei termometri ad alcol lo spazio superiore al liquido e occupato da aria, il capillare dovrà avere, alla sua estremità superiore, un'ampolla di sicurezza di capacità sufficiente a consentire, senza rischi di rotture, la misura di temperature fino a 50 °C. Il termometro a minima, così come quello a massima, deve essere installato in posizione quasi orizzontale.

I difetti principali di un termometro a minima sono quelli comuni a tutti i termometri a liquido organico; i più frequenti sono la frammentazione della colonnina di liquido, soprattutto durante il trasporto, e l'aderenza del liquido al vetro. Possono, inoltre, formarsi delle gocce di liquido alla sommità del capillare per distillazione.

Figura 4.5 – Termometri a massima e a minima.

4.1.2.3 TERMOGRAFI MECCANICI

Gli strumenti che vengono ancora frequentemente utilizzati sono i termografi a lamina bimetallica o quelli a tubo di Bourdon, poiché sono sicuri, portatili e relativamente poco costosi. Essi, tuttavia, non sono facilmente adattabili alla registrazione elettronica a distanza. Questi strumenti sono sempre dotati di un tamburo ruotante, meccanismo comune a tutti i classici dispositivi registratori. In genere l'errore massimo di un termografo non supera 1 °C. In questo strumento il movimento del pennino è determinato dal cambiamento di curvatura di una lamina bimetallica, piana o elicoidale, di cui una delle estremità è rigidamente fissata ad un braccio solidale col corpo dello strumento. I pregi dei termografi meccanici possono sintetizzarsi nella loro affidabilità e nel loro basso costo di acquisto e di esercizio.

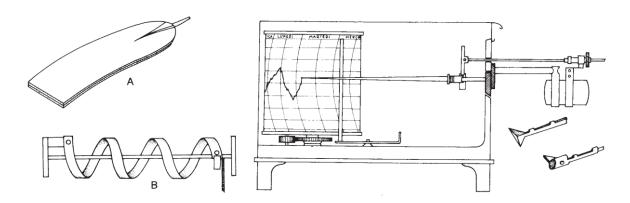


Figura 4.6 – Tipi di lamine bimetalliche A e B; esempio di termografo a tubo di Bourdon.

Il termografo a tubo di Bourdon assomiglia molto a quello a lamina bimetallica, ma il suo sensore di temperatura ha la forma di un tubo metallico curvo con sezione ellissoidale molto appiattita, riempito di alcol.

4.1.2.4 TERMOMETRI ELETTRICI

Gli strumenti elettrici sono sempre più usati in meteorologia per la misura delle temperature. Essi offrono il vantaggio di emettere un segnale elettrico, adatto ad essere registrato o trasmesso a distanza. I sensori più diffusi sono le resistenze elettriche, le termistenze e le termocoppie. Infatti, per rappresentare la temperatura si può misurare la resistenza elettrica di un materiale di cui sia nota la legge di variazione della resistenza con la temperatura. Mentre la termistenza è un semiconduttore caratterizzato da un coefficiente termico di resistenza relativamente elevato.

4.1.2.5 LA REGISTRAZIONE DEI DATI

La registrazione dei dati rilevati dai termometri è sempre digitale, con notazione manuale, e con intervallo di registrazione determinato dall'operatore. Del pari digitale, con notazione manuale, è la registrazione dei dati rilevati con un termometro a massima e minima: in tal caso non è rilevabile l'intervallo di registrazione ma solo l'intervallo di tempo (di solito 24 ore) nel quale gli estremi di temperatura si sono verificati. Questo sistema di rilevazione, attualmente poco praticato, assume notevole importanza in quanto fù il più comune alle origini del Servizio Idrografico. Ne consegue che la temperatura media giornaliera poteva solo essere definita come valor medio tra le temperature massima e minima giornaliere.

I termografi più recenti consentono, invece, la registrazione continua della temperatura dell'aria, analogica (termografi meccanici) o digitale (termografi elettronici), ma con intervalli di tempo tra le misure.

Le registrazioni analogiche si presentano in forma di diagramma continuo su una striscia di carta diagrammata da avvolgere sul tamburo ruotante dello strumento rilevatore. L'operatore legge, solitamente, i valori massimo e minimo di ciascun giorno e costruisce i tabulati relativi. È possibile, con l'uso di tali strumenti, individuare l'ora esatta del verificarsi di una temperatura estrema nonché il verificarsi di condizioni anomale, quali rapide variazioni di temperatura, come pure determinare, se necessario, la scansione delle temperature ad intervalli di tempo predeterminati.

I termografi elettronici, nei quali il sensore è costituito da una resistenza termosensibile o da una termistenza, determinano la registrazione dei dati, in forma digitale, su supporti magnetici (nastri, dischi ecc.) o su memorie allo stato solido. La registrazione può avvenire nello stesso strumento rilevatore, dotato di un registratore di dati, o presso un centro remoto in caso di trasmissione dei dati a mezzo di onde radio. Gli strumenti con teletrasmissione dei dati ad un centro di ricezione remoto possono far ricorso a registrazione su dischi o nastri magnetici sia per le condizioni ambientali, sia per la facilità di manutenzione, sia per la possibilità di disporre di registratori di riserva in caso di guasti. A causa della relativa insicurezza, sotto il profilo della continuità, dei sistemi di trasmissione, è opportuno che i termografi ed, in genere, tutti gli strumenti disposti per la teletrasmissione dispongano anche di un registratore locale di dati.

4.2 METODI DI RACCOLTA DEI DATI

4.2.1 CENNI STORICI

Già dalla seconda metà del XIX secolo prese corpo la necessità di definire ed istituire un ente di carattere nazionale cui affidare il monitoraggio dei corsi d'acqua, ma fu solo grazie all'ingegner Gaudenzio Fantoli, ed al Consiglio Superiore delle Acque, che ebbe realmente origine un primo Servizio statale deputato alle ricerche ed allo studio dell'intero patrimonio idrico italiano.

Il "Servizio Idrografico italiano per l'Italia peninsulare e per le grandi isole di Sicilia e Sardegna" prevedeva la suddivisione del territorio italiano in otto compartimenti, definiti in base a criteri idrografici, ovvero ogni dominio territoriale veniva determinato in ragione del bacino idrico sotteso da uno specifico litorale (ivi sfociante). Ogni compartimento faceva riferimento alla propria Sezione autonoma, presso gli uffici del Genio Civile, cosicché si ebbero le sedi di:

- Pisa, per il territorio del litorale ligure toscano;
- Roma, per il bacino sotteso lungo il litorale del Lazio;
- Napoli, per il litorale della Campania;
- Catanzaro, per il territorio dei litorali calabresi e lucani;
- Chieti, per il dominio del litorale di Abruzzo, Molise e Puglia;
- Bologna, per il dominio dei litorali di Marche e Romagna;
- Palermo, per il dominio delle coste siciliane;
- Cagliari per il dominio del litorale della Sardegna.

Figura 4.7 – Compartimenti idrografici all'epoca del SIMN

Nel corso del tempo alcune sezioni vennero soppresse e trasferite, definendo altri nuovi domini territoriali.

A livello amministrativo centrale il Servizio Idrografico era inizialmente posto sotto la vigilanza del Consiglio Superiore delle Acque, successivamente venne accorpato al Servizio Mareografico, dando origine al Servizio Idrografico e Mareografico Nazionale (SIMN). Dal

1991, tramite il D.P.R. 85/1991, vennero ampliati i campi di azione del Servizio, al quale venne riconosciuto il compito di "provvedere al rilevamento, validazione, archiviazione e pubblicazione delle grandezze climatiche, idrologiche e idrografiche interessanti il reticolo idrografico superficiale e sotterraneo, le lagune, il clima marittimo, i livelli marini ed i litorali". Infine, dopo essere passato sotto il controllo di diverse altre agenzie, nel 2008 venne posto sotto la vigilanza dell'ISPRA, l'Istituto Superiore per la Protezione e la Ricerca Ambientale.

A livello amministrativo nei riguardi delle sezioni periferiche, invece, tramite il *D.lgs. numero* 112 del 31 marzo 1998, venne disposto che le competenze degli uffici periferici del Dipartimento dei Servizi Tecnici Nazionali venissero affidate alle regioni, trovando definitivamente attuazione tramite il *Decreto della Presidenza del Consiglio dei Ministri del* 24 luglio 2002.

La raccolta ed il campionamento dei dati idrometrici è affidata, dal 2002, alla Protezione Civile della Regione Marche.

La rete di monitoraggio nel territorio regionale nasce nel 1916 ad opera del Servizio Idrografico e Mareografico Nazionale; esso era responsabile della collocazione delle strumentazioni, delle rilevazioni, dei computi e della divulgazione dei dati raccolti. La divulgazione avveniva tramite pubblicazione, con cadenza annua, degli Annali Idrologici.

L'intero territorio della Regione Marche ricadeva all'interno del compartimento territoriale di Bologna, che raggruppava tutti i bacini idrografici compresi fra i fiumi Reno (a nord) e Tronto (a sud).

In seguito, come detto precedentemente, le competenze affidate agli uffici periferici passarono alle amministrazioni regionali che demandarono a loro volta tali oneri o alle proprie Agenzie Regionali per la Protezione Ambientale (ARPA), oppure alle rispettive sezioni regionali della Protezione Civile, come nel caso della Regione Marche. Nello specifico il compito relativo alla redazione ed alla pubblicazione degli Annali Idrologici è ad oggi affidato al Centro Funzionale per la Meteorologia, Idrologia e la Sismologia.

Anche le reti delle stazioni di rilevamento e monitoraggio hanno subito modificazioni e potenziamenti nel corso del tempo; in particolare la Regione Marche ha predisposto un piano di ammodernamento della propria rete, in virtù del quale si è dotata di un sistema di monitoraggio in telemisura (rete MIR), ed ha predisposto il potenziamento e la riorganizzazione dell'intero sistema di rilevazione, al fine di ottenere una copertura migliore e più omogenea del territorio regionale. Questa operazione ha comportato la progressiva disattivazione, o conversione in stazioni in telemetria, delle precedenti stazioni appartenenti alla rete meccanica installate dal SIMN. A partire dal 2008 tale sistema è entrato in funzione ufficialmente, sostituendo quando possibile, col procedere dell'implementazione della rete MIR (quindi con lo smantellamento della vecchia rete), nella redazione degli Annali Idrologici le rilevazioni della precedente rete meccanica. Questa opera di ammodernamento è terminata nei 2014, infatti a partire dall'Annale Idrologico dell'anno 2015 tutte le stazioni risultano avere apparecchiatura di tipo "PP", cioè avente sistema di rilevazione telerimetrico.

4.2.2 BOLLETTINI IDROGRAFICI

La pubblicazione dei risultati, delle osservazioni e delle elaborazioni fatte, nonché la redazione di opportune carte tematiche, risultavano essere i compiti principali assegnati all'allora Servizio Idrografico. I primi documenti prodotti e pubblicati periodicamente furono i Bollettini Idrografici, già a partire dal 1918. In questi venivano riportati i dati relativi alle osservazioni pluviometriche e idrometriche, dapprima in semplici tabelle mensili, poi dal 1921, a causa di un crescente numero di stazioni poste in essere, secondo una formattazione del tutto simile agli odierni Annuali Idrologici, ovvero in dei veri e propri fascicoli organizzati in due parti: PARTE I e PARTE II.

Nella parte prima venivano riportati i valori giornalieri delle osservazioni pluviometriche ed idrometriche. Le precipitazioni giornaliere venivano espresse millimetri di altezza di pioggia caduta dalle ore 9:00am del giorno di lettura alle ore 9:00am della giornata precedente, coprendo così le 24 ore.

Nella parte seconda, divisa in due sezioni, trovavano spazio le altre informazioni pluviometriche ed idrometriche. Nella fattispecie, nella sezione A, dedicata alla pluviometria veniva riportata l'anagrafica delle stazioni pluviometriche, ovvero l'insieme di quelle informazioni quali: le coordinate geografiche ed altimetriche delle varie stazioni; la tipologia dello strumento di misura impiegato; l'anno di inizio e (eventualmente) l'anno di fine registrazione; l'ente gestore o proprietario della stazione; i dati dell'osservatore. Sempre in questa prima sezione venivano riportati anche i totali annui e mensili di precipitazione, inoltre venivano riportati i massimi di precipitazione dei giorni piovosi, dove, con giorno piovoso, si intende quel giorno di precipitazione in cui la l'altezza di pioggia registrata allo strumento uguaglia o maggiora il valore soglia di 1 mm di precipitazione. Ancora in questa prima sezione erano riportati: la carta delle isoiete, i volumi di afflusso meteorico relativi ad ogni bacino imbrifero, i valori massimi di precipitazione giornaliera riferiti a ciascun mese, i valori estremi di precipitazione osservati e le indicazioni sullo spessore e sull'altezza equivalente in millimetri d'acqua delle precipitazioni nevose. La sezione B era dedicata all'idrometria. In questa venivano riportati: l'anagrafica delle stazioni idrometriche; i valori medi annuali e mensili delle altezze idrometriche e le relative frequenze (solo per le stazioni aventi una registrazione annuale completa); i risultati delle misure di portata eseguite nel corso dell'anno; i valori delle portate giornaliere per quelle stazioni in cui gli elementi raccolti consentivano il tracciamento di una scala di deflusso; tutte le considerazioni generali inerenti i "caratteri idrologici dell'anno".

Da questa loro prima versione e dal 1927, anno in cui assunsero il nome di Annali Idrologici, subirono varie modifiche ed integrazioni, sino ad arrivare ad una loro versione definitiva ed omogenea ai diversi compartimenti, definita versione consolidata, nel 1951.

4.2.3 ANNALI IDROLOGICI

Gli Annali Idrologici consistono in pubblicazioni annuali contenenti l'insieme dei dati necessari alla descrizione di un esaustivo quadro meteorologico.

Ad oggi le vecchie pubblicazioni sono consultabili tramite rete Internet presso il sito dell'ISPRA (www.acq.isprambiente.it/annalipdf/)(Fig.4.6), mentre quelle più recenti presso il

sito della Protezione Civile regionale (<u>www.regione.marche.it/Regione-Utile/Protezione-Civile/Progetti-e-Pubblicazioni/</u>). I dati sono fruibili anche attraverso il sistema SOL (SIRMIP on-line) previa registrazione da parte dell'utente (<u>http://app.protezionecivile.marche.it/sol</u>) (Fig.4.5).

Figura 4.8 - Pagina di accesso alle serie storiche di precipitazione, temperatura e idrometria e altro.

Figura 4.9 - Pagina di accesso agli annali idrologici Parte I e Parte II in formato pdf.

Analogamente alla versione precedente il 1951, sono strutturati in una prima ed in una seconda parte. Nella PARTE I vengono riportate le osservazioni termometriche e pluviometriche, mentre nella PARTE II vengono trattate altre grandezze di interesse (afflussi meteorici, idrometria, ecc..).

4.2.3.1 INDICE DEI SIMBOLI IMPIEGATI

Gli Annali utilizzano una serie di simboli e di notazioni al fine di chiarire, nella maniera più esaustiva ed immediata possibile, la tipologia ed il significato di ogni dato inserito. Di seguito si riporta un elenco dei simboli comunemente impiegati:

- ? Dato incerto
- « Dato mancante
- Può avere un duplice significato: posto prima di un'altezza idrometrica ne indica il valore negativo (al di sotto dello zero idrometrico); posto in sostituzione di un valore di precipitazione ne indica l'assenza
- * Si tratta di una precipitazione nevosa
- [] Simbolo di dato interpolato
- TA Termometro in telemisura
- Pr Pluviometro registratore (dismessi totalmente dal 2015)
- PP Pluviometro in telemisura

4.2.3.2 PARTE PRIMA

La PARTE I degli Annali si suddivide in due distinte sezioni: la sezione A, trattante la termometria e la sezione B, trattante la pluviometria.

La sezione A (termometria) contiene un indice delle abbreviazioni e dei segni convenzionali ivi impiegati ed una tabella informativa, inerente alla consistenza della rete termometrica, ovvero il numero di strumenti in opera, suddivisi in funzione alla tipologia ed alla fascia altimetrica di installazione. Viene precisato che i dati sono trasmessi da stazioni termo pluviometriche automatiche che rilevano la temperatura ogni mezz'ora. I valori massimo e minimo giornalieri sono calcolati nelle 24 ore (riferite all'ora solare) e vengono assegnati al giorno del rilevamento. Infine, presenta un elenco delle caratteristiche delle stazioni termometriche, che hanno funzionato nell'anno, ordinate secondo la rispettiva posizione idrografica, stralcio in Fig. 4.7.

Inoltre, contiene la "Tabella I", in Fig. 4.8, in cui vengono riportati i valori massimi e minimi rilevati giornalmente, e le rispettive medie mensili, unitamente alla temperatura media del mese e dell'anno cui si riferiscono le osservazioni e le corrispondenti medie del periodo.

La sezione riporta ancora un'altra tabella, denominata *"Tabella II"*, in Fig. 4.9, in cui, per le stazioni della tabella precedente sono riportate:

- Le medie mensili ed annue delle massime e delle minime temperature osservate giornalmente e le medie mensili ed annue delle temperature diurne. Come temperatura diurna è assunto il valore della semisomma delle temperature massime e minime osservate in uno stesso giorno;
- Le temperature estreme (massima e minima) osservate in ogni mese e nell'anno, ed il giorno nel quale sono state osservate. Tutte le temperature riportate sono espresse

in gradi centigradi e corrispondono alle letture effettivamente eseguite, non essendosi effettuata la riduzione al livello del mare.

Elenco e caratteristiche delle stazioni termometriche

Anno 2018

BACINO E STAZIONE	Tipo dell'apparecchio	Quota sul mare	Altezza dell'apparecchio sul suolo	Anno di inizio delle osservazioni	BACINO E STAZIONE	Tipo dell'apparecchio	Quota sul mare	Altezza dell'apparecchio sul suolo	Anno di inizio delle osservazioni
Foglia	Ĭ		Ü		Rostighello Svarchi	TA TA	28 6	2 2	2009 2010
Monte Carpegna Carpegna Frontino Bronzo Gallo Villa Fastiggi Metauro	TA TA TA TA TA TA	1415 715 610 173 122 22	2 2 2 2 2 2 2 2	2018 2014 2015 2010 2009 2003	Esino Scheggia Campodiegoli Sassoferrato Fabriano Centro Colleponi Esanatoglia convento	TA TA TA TA TA TA TA	688 532 386 354 254 608	2 2 2 2 2 2 2	2003 2003 2014 2009 2007 2003
Bocca Serriola S. Angelo in Vado Apecchio Piobbico Urbania Pianello di Cagli Urbino	TA TA TA TA TA TA TA TA TA	730 352 465 331 245 400 471	2 2 2 2 2 2 2 2 2	2014 2009 2003 2016 2014 2014 2003	Camponocecchio San Giovanni Poggio San Vicino Moie Jesi Fiumarella Bellaluce	TA TA TA TA TA	189 625 580 104 100	2 2 2 2 2 2	2015 2009 2009 2014 2009
Cantiano Acqualagna Monte Pagamuccio Cesane Foresta Fossombrone Lucrezia Piagge Metaurilia	TA	396 193 889 633 96 36 189 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2014 2007 2009 2010 2006 2009 2014 2006	Loreto Potenza Spindoli Sorti Sefro Pioraco Camerino	TA TA TA TA TA TA TA TA	484 660 469 445 581	2 2 2 2 2 2 2	2009 2009 2009 2009 2014 2003

Figura 4.10 - Stralcio 'Elenco e caratteristiche delle stazioni termometriche, Anno 2018'

Tabella I - Osservazioni termometriche giornaliere

Anno 2018

$\overline{}$	_	G		T2		N.F				M	_	G		т —		Λ.		0	_	_		NT.	_	D
Giorno		lmin	L.,	lmin	L	IVI Li	L	min			max	-	L.,	Li Line i no	max	A.	L	lmin	L	L:	L	IN Lautas		-
l——	max	min	max	min	max	min	max	min	max		FRON			min	max	min	max	min	max	min	max	min	max	min
(TA)											F ROF Bacino											,	610m	o 1)
(1A)	h 0	F 0	b 0	le 4	Ti o	~ /	h a ×	4 *	h ()	7.9	25.0		_	19.6	00.0	00.0	25.4	10.0	00.0	100	h o .m	10.0		
16	$9.0 \\ 7.8$	5.2 3.5	8.3 9.2	6.4 0.0	$\frac{-1.0}{5.2}$	-5.4 -1.2	$14.5 \\ 16.5$	$\frac{4.5}{3.1}$	$14.4 \\ 15.9$	9.6	25.0 25.5	$\frac{13.6}{14.4}$	29.5 29.6	18.0	32.2 29.1	$\frac{22.9}{22.1}$	20.4 20.0	13.3 13.2	$\frac{20.2}{11.3}$	10.2 8.9	$\frac{13.7}{13.6}$	12.1	4.3 9.3	1.9 1.9
5	9.7	4.8	0.6	-0.5	5.9	1.5	16.0	7.1	14.1	11.2	26.9	15.7	27.4	18.8	25.8	21.5	22.2	12.7	17.1	8.6	14.6	11.3	14.7	7.8
I G	12.0	6.7	4.9	-1.5	10.3	0.9	14.9	8.9	14.4	10.6	25.8	17.0	28.1	18.9	28.8	20.7	23.5	15.7	18.4	10.4	13.8	12.3	14.8	5.5
E .	12.7	9.5	7.4	-0.8	4.1	2.2	15.8	7.6	18.4	10.3	24.1	15.4	30.0	18.2	29.3	20.7	26.1	14.8	16.4	11.7	17.3	10.3	12.3	5.5
6	11.7	7.5	3.6	2.1	8.8	2.3		6.6	18.4	13.0	23.9	14.7	24.5	16.6	31.2	21.3	27.2	16.2	14.7	12.4	17.0	11.4	10.0	5.7
7	11.4	5.6	3.8	1.7	8.5	4.4		6.8	20.6	12.3	25.1	16.6	24.9	16.8	31.6	20.2	23.6	15.7	16.3	12.5	14.4	9.6	13.5	5.0
R	8.9	5.3	8.8	1.6	12.7	4.8		7.4	21.6	13.4	18.9	13.4	24.8	17.3	31.6	17.4	22.4	15.6	17.6	12.2	17.3	7.8	10.7	4.7
9	11.6	6.6	9.6	0.4	13.9	3.9		7.5	19.9	10.8	23.7	15.2	26.1	16.2	31.1	19.7	24.7	15.4	19.7	12.0	16.8	8.2	11.5	5.6
10	11.0	3.2	5.0	1.5	10.8	4.1	14.5	9.0	20.9	11.8	27.0	13.6	29.0	16.5	30.4	19.8	25.5	16.5	20.9	12.5	15.8	8.0	10.7	5.6
11	7.4	4.8	5.4	-0.1	13.0	7.1	12.8	7.5	20.8	12.2	29.5	17.1	27.7	16.5	30.5	20.3	27.0	18.0	20.4	13.6	17.8	8.8	7.5	1.0
12	5.5	4.3	5.7	-0.4	10.9	6.8	14.7	9.0	22.1	13.0	25.9	17.7	28.5	18.2	31.4	18.3	27.4	18.7	19.0	11.9	17.2	9.9	7.4	0.1
13	4.7	3.3	1.4	-1.7	11.2	7.5	15.5	8.2	21.1	11.4	21.6	15.6	28.1	17.1	29.7	18.3	24.8	19.5	20.8	11.2	18.1	9.4	2.7	-0.4
14	4.8	2.8	3.3	-3.4	14.9	6.6	16.4	8.0	16.2	6.7	19.2	15.0	30.7	18.3	24.9	17.5	26.7	18.2	18.2	11.0	12.0	8.2	2.0	-0.5
15	6.0	1.3	5.5	-1.2	9.1	6.0	16.1	9.2	14.8	6.1	19.0	14.0	27.8	17.9	22.8	16.5	25.1	17.5	15.7	11.2	12.3	6.2	1.2	-1.7
16	10.2	5.4	11.7	0.0	14.0	8.3		9.0	17.6	8.7	22.0	14.5	27.7	16.7	25.3	16.8	25.5	16.9	15.6	13.8	8.5	6.4	6.5	-2.4
17	10.8	3.9	7.1	2.8	10.9	5.3		11.2	17.3	8.0	24.4	17.1	24.7	15.0	28.4	17.0	25.0	16.4	15.6	14.2	6.3	4.5	3.4	-0.4
18	8.2	4.4	7.0	1.6	6.6	3.9	16.3	10.7	18.0	9.8	23.5	17.2	29.0	18.8	27.8	18.8	26.8	15.7	18.0	12.5	4.9	1.9	5.1	0.1
19	10.5	5.0	1.9	0.0	5.5	0.4	19.1	11.5	20.4	9.9	23.7	17.8	30.4	19.0	27.5	19.7	23.2	16.0	20.1	12.1	5.1	-0.1	6.6	-0.1
20	10.7	1.4	0.8	-0.8	3.7	0.2	21.5	13.3	20.0	11.2	24.9	17.9	30.5	18.0	28.3	20.7	23.2	16.6	19.0	11.3	5.4	3.3	5.4	1.4
21	11.1	2.9	1.2	-0.5	0.1	-2.3	22.5	11.7	22.0	13.0	28.5	17.0	28.1	19.1	29.1	20.7	25.6	17.1	16.4	5.9	11.5	3.7	9.4	0.1
22	8.2	1.1	2.8	-0.6	2.1	-1.3	24.5	12.0	21.1	12.0	21.8	14.2	27.1	17.7	29.1	20.6	26.4	16.1	10.0	7.2	9.4	4.6	12.2	8.8
23	9.7	1.9	5.4	0.1	4.0	-0.4	25.6	12.9	17.9	12.2	20.6	11.9	22.7	14.2	31.0	20.3	27.0	17.1	13.7	8.1	11.8	5.9	14.7	8.3
24	11.1	2.3	4.9	1.7	8.2	0.4	22.9	12.9	21.8	13.0	23.2	11.4	25.7	19.0	31.6	19.5	23.5	12.3	24.2	11.1	14.1	9.7	13.2	5.2
25	11.1 10.0	$\frac{4.4}{3.4}$	1.7	-6.3 -8.2	7.3 10.0	$0.2 \\ 1.5$	23.7 23.5	$\frac{12.8}{11.2}$	23.8 24.8	15.7 15.7	$\frac{20.6}{18.5}$	$\frac{13.2}{13.8}$	28.4 28.4	19.6 19.5	$\frac{28.7}{18.5}$	18.0	14.3	9.8 5.9	$\frac{22.5}{16.2}$	11.8 13.1	$\frac{10.8}{9.4}$	7.2 4.6	8.3 12.4	1.4 1.6
26	11.3	3.1	-5.8	-9.9	12.2	3.7	21.8	12.4	25.3	15.7	20.8	15.4	28.5	18.0	20.1	12.4 13.0	$\frac{12.1}{18.5}$	5.7	19.4	14.5		4.8	9.8	2.0
20 21 22 23 24 25 26 27 28	13.3	2.1	-3.8		3 1 5.1	3.1	23.8	$\frac{12.4}{11.5}$	26.9	16.9	22.3	$\frac{15.4}{14.5}$	29.4	19.4	24.8	14.5	$\frac{18.5}{23.4}$	12.8	16.8	12.4	$\frac{7.4}{6.5}$	2.4	9.8 8.8	2.3
29	14.9	4.5	1.7	-10.3	13.7	8.3	25.1	14.7	26.1	17.3	24.6	15.1	28.9	19.4	28.0	17.6	20.1	10.9	19.5	10.0	6.6	0.4	10.7	3.3
30	12.8	3.7			17.0	9.3		10.1	23.3	16.6		19.3	29.4	21.5	29.2	17.7	18.0	9.7	12.4	7.6	7.4	0.2	11.4	2.8
81	7.6	5.9			10.5	6.1	10.0	10.1	26.4	16.7	00.0	15.5	30.8	22.0	26.1	17.1	10.0	0.1	16.5	8.0	11	0.2	10.4	3.2
MEDIE	9.9	4.2	4.0	-0.9	9.0	3.2	18.6	9.6	20.2	12.0	23.7	15.3	27.9	18.1	28.2	18.8	23.5	14.7	17.5	-	11.9	6.8	9.1	2.8
Med. mens		.0		.6		3.1	14			6.1		9.5		3.0		3.5		9.1		4.3		9.3	1.	.0
Med. norm.		.7		5.3		7.7	12			5.7	-	0.3		3.4		3.4		8.2		3.7		0.0		.9

Figura 4.11 - Stralcio Tabella I, 'Osservazioni termometriche giornaliere, Anno 2018, stazione di Frontino'

Tabella II -	Valori	medi ed	estremi	delle :	temperature
--------------	--------	---------	---------	---------	-------------

Anno 2018

		edia d		Т	emperat	ure est	reme		edia d		Т	'emperati	ure est	reme		dia d		Т	'emperati	ıre est	reme
Mese		nperat						_	nperat			_			-	perat	_				
	max				giorno		giorno	max	min			giorno	min	giorno	max	min	diur.		giorno	min	giorno
		1	MON	TE C	ARPE	GNA				(CARF	PEGNA					1	FRO	ONITI		
	(TA)					(1415)	m s.l.m.)	(TA)					(715)	im s.l.m.)	(TA)					(610	m s.1.m.)
G	«	*	«	«	≪	«	«	9.3	4.0	6.7	13.7	29	0.9	20	9.9	4.2	7.0	14.9	29	1.1	22
F	≪	≪	«	«	≪	«	«	3.7	-1.2	1.2	9.6	16	-12.0	28	4.0	-0.9	1.6	11.7	16	-10.3	28
М	«	*	«	«	«	*	«	8.5	3.0	5.8	16.4	30	-5.5	1	9.0	3.2	6.1	17.0	30	-5.4	1
A	≪	*	«	«	«	«	«	17.6	9.8	13.7	24.0	23	4.1	1	18.6	9.6	14.1	25.6	23	3.1	2
М	«	*	«	«	«K	«	«	19.5	11.6	15.6	25.9	31	6.2	15	20.2	12.0	16.1	26.9	28	6.1	15
G	«	≪	«	22.1	30	9.3	29	23.4	15.2	19.3	29.4	30	10.9	24	23.7	15.3	19.5	30.3	30	11.4	24
L	20.5	14.5	17.5	23.4	31	11.1	17	27.5	17.8	22.6	30.3	31	14.5	17	27.9	18.1	23.0	30.8	31	14.2	23
A	20.5	14.7	17.6	24.3	1	7.0	27	27.7	17.8	1	31.1	1	12.9	26	28.2	18.8	23.5	32.2	1	12.4	26
S	16.7	11.3	14.0	21.0	12	0.7	26	22.6	13.8	18.2	26.9	23	5.2	26	23.5	14.7	19.1	27.4	12	5.7	27
0	11.6	7.1	9.4	17.3	24	0.7	21	17.0	10.3	13.7	24.2	24	5.9	21	17.5	11.1	14.3	24.2	24	5.9	21
N	6.5	3.0	4.8	12.0	12	4.6	29	11.7	6.4	9.0	17.6	13	-0.8	19	11.9	6.8	9.3	18.1	13	-0.1	19
D	3.6	-0.5	1.5	10.4	23	-7.4	15	8.8	2.4	5.6	14.8	23	-3.4	16	9.1	2.8	6.0	14.8	4	-2.4	16
						1															
Anno	«	«	«	«	«	«	«	16.4	9.2	12.8	31.1	1_VIII	-12.0	28_II	17.0	9.6	13.3	32.2	1_VIII	-10.3	28_II

Figura 4.12 - Stralcio Tabella II, 'Valori medi ed estremi delle temperature, Anno 2018'

La sezione B riporta le caratteristiche e le grandezze pluviometriche osservate. Anche in questo secondo caso la sezione si apre con un'indicazione della terminologia impiegata tramite un indice delle abbreviazioni e dei segni convenzionali adottati durante la sua redazione, lasciando poi spazio ad una descrizione delle stazioni operanti e di cui si riportano le osservazioni (tipologia e fascia altimetrica di installazione). Viene precisato che i valori delle precipitazioni riportati sono espressi in millimetri di acqua e comprendono pioggia e neve fusa. Differentemente dal caso precedente, in questa sezione si trovano cinque tabelle.

Nella "Tabella I", in Fig. 4.11, sono riportate, per ogni stazione, la quantità di pioggia caduta giornalmente ed il totale mensile ed annuale della precipitazione e del numero di giorni piovosi. Con il carattere grassetto è stampato il massimo quantitativo giornaliero misurato per ogni mese.

A partire dal 2015: "le misurazioni vengono trasmesse automaticamente ogni 15 minuti e per ogni giorno viene calcolata la cumulata di precipitazione. Il valore segnato rappresenta quindi la quantità di precipitazione caduta nelle 24 ore (riferite all'ora solare) del giorno indicato."

Negli annali precedenti quello del 2015 veniva invece riportato: "per le stazioni dotate di apparecchiatura a lettura diretta (pluviometri e pluvio nivometro) le osservazioni vengono eseguite ogni giorno, generalmente, alle ore 9 ed il risultato viene attribuito al giorno stesso della misura: il valore segnato rappresenta quindi la quantità di precipitazione caduta nelle 24 ore che hanno preceduto la misura. Per le stazioni dotate di pluviografo, si riporta, per ogni giorno, la quantità di pioggia che dal diagramma risulta caduta nelle 24 ore comprese fra le 9 del giorno precedente e le ore 9 del giorno di cui si tratta. Sono considerate le precipitazioni iniziate dopo le ore 0 del primo gennaio e quelle eventualmente terminate dopo le ore 24 del 31 dicembre."

All'interno della "Tabella II", in Fig. 4.12, si trovano i totali annui ed un riassunto dei totali mensili, evidenziando in grassetto i valori massimi delle quantità di pioggia, ed in corsivo il più basso.

Nella tabella successiva, la "Tabella III", in Fig. 4.13, si riportano le precipitazioni di massima intensità rilevate nell'anno di cui, per le stazioni capaci di una rilevazione in continuo del dato (pluviografi), è prevista la discriminazione per le fasce orarie di 1, 3, 6, 12 e 24 ore, riportandone anche indicazione del giorno e del mese a cui fanno riferimento.

La "Tabella IV", in Fig. 4.14, contiene le massime precipitazioni avutesi nell'anno per più giorni consecutivi, in cui, per ogni stazione, sono riportati i valori massimi di precipitazione registrati nell'anno per periodi di tempo compresi dagli 1 ai 5 giorni consecutivi, anche non appartenenti al medesimo mese, o anno.

La "Tabella V", in Fig. 4.15, riporta le precipitazioni di forte intensità e di breve durata.

Negli annali antecedenti il 2004 era presente anche una "Tabella VI", nella quale vengono riportate caratteristiche riguardanti le precipitazioni nevose per i mesi da gennaio a maggio e da ottobre a dicembre. Nello specifico venivano riportate le altezze, in centimetri, dello strato nevoso sul suolo presente nell'ultimo giorno del mese, la quantità di neve, in cm, caduta nel mese e il numero complessivo dei giorni di permanenza della neve al suolo.

Inoltre, viene specificato che per le stazioni pluviometriche in telemisura:

- Una stazione pluviometrica non compare nell'annale se ha registrato meno del 50% dei dati previsti nell'anno in base alla sua frequenza di campionamento;
- La cumulata mensile ed il numero di giorni piovosi nel mese non sono presenti se sono stati registrati meno del 95% dei dati previsti nel mese in base alla frequenza di campionamento;
- La cumulata di precipitazione giornaliera non viene calcolata se sono stati rilevati meno del 97% dei dati nella giornata previsti in base alla frequenza di campionamento;
- Per il calcolo della precipitazione annuale è richiesto il 100 % dei dati.

Elenco e caratteristiche delle stazioni pluviometriche

BACINO E STAZIONE	Tipo dell'apparecchio	Quota sul mare	Altezza dell'apparecchio sul suolo	Anno di inizio delle osservazioni	9 0 9 V	osservazioni
Foglia					Colle	٠
Monte Carpegna Carpegna Frontino Bronzo Tavoleto	PP PP PP PP	1415 715 610 173 405	2 2 2 2 2	2018 2014 2015 2003 2009	Fosso Rubiano Marina di Montemarcia- no PP 5 2 2015	
Ca' Mazzasette Gallo Montecchio Montelabbate	PP PP PP	112 122 40 43	2 2 2 2	2003 2007 2009 2003	Esino Scheggia PP 688 2 2001	
Villa Fastiggi Pesaro Ferrovia	PP PP	22 9	2 2	2003 2003	Campodiegoli PP 532 2 2001 Sassoferrato PP 386 2 2014 Fabriano Centro PP 354 2 2009	

Figura 4.13- Stralcio 'Elenco e caratteristiche delle stazioni pluviometriche, Anno 2018'

Tabella I - Osservazioni pluviometriche giornaliere

Anno 2018

					CAVO												CA'				3			
PP)				. E	Bacino	Fogli	ia		. (4	05m s	s.l.m.)	Giorno	(PP)				E	Bacino	: Fog	lia		(112m	s.l.m
j	F	M	А	М	G	L	А	S	0	N	D	I	G	F	M	А	M	G	L	А	S	0	N	D
1.0			0.2	0.6	-	-	-			20.4	-	1	0.4	-	*5.6	3.2	1.2	-	-	-	22.6	14.2	19.4	-
		8.8	-	-	-	-	ŀ		4.8	3.0	-	2		29.8	17.8	-	1.0	ŀ	ŀ	ŀ	2.0	7.6	1.8	ŀ
	17.8	3.6	-	11.6	-	-	ŀ	22.0	-	ŀ	ŀ	3	-	22.0	21.6	-	13.8	0.2	0.6	ŀ	3.8	0.2	ŀ	+
	.		5.4	5.0	-	-	ŀ	-	-	11.8	-	4	-	-	2.0	8.6	9.4	ŀ	0.8	ŀ	0.2	0.2	12.4	ŀ
	.	8	«	-	3.6	-	ŀ	-	-	0.2	ŀ	5	-	0.2	23.4	9.0	ŀ	10.8	-	-	-	-	0.2	0.2
	0.4	8	-	1.2	-	32.6	ŀ	0.8	1.4	-	0.2	6	-	0.4	1.4	0.2	ŀ	0.2	20.0	ŀ	0.6	2.2	0.2	0.4
	.	K	-	-	-	-	ŀ	48.0	-	-	-	7	0.2	0.2	4.6	ŀ	0.2	ŀ	ŀ	ŀ	14.4	ŀ	ŀ	ŀ
	.	,	-	-	4.8	-	ŀ	0.4	-	ŀ	4.8	8	-	-	-	-	ŀ	9.2	-	ŀ	1.0	ŀ	ŀ	2.4
3.4	.	,	2.0	-	-	-	ŀ	-	-	-	-	9	2.4	0.2	-	9.0	2.2	ŀ	ŀ	ŀ	0.2	0.2	0.2	ŀ
	0.4	,	-	2.4	-	0.2	ŀ	-	-	0.2	ŀ	10	-	1.0	ŀ	ŀ	8.0	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	0.2
	.	L.4	-	-	-	-	ŀ	-	-	ŀ	ŀ	11	0.4	-	8.0	0.6	0.2	ŀ	-	ŀ	0.2	0.2	ŀ	ŀ
			7.6	-	0.2	-	ŀ	ŀ	-	ŀ	ŀ	12		4.8	1.8	8.4	5.8	ŀ	ŀ	ŀ	0.2	ŀ	0.2	0.2
	2.8	,	1.2	-	-	-	ŀ	-	-	0.4		13		4.2	ŀ	2.0	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	0.2	1.6
).2	.		-	-	1.6	-	ŀ	-	-	ŀ	6.2	14		0.2	ŀ	0.2	0.4	6.8	ŀ	ŀ	ŀ	ŀ	ŀ	7.8
	.	8	-	-	-	0.2	ŀ	-		0.2		15	0.2	ŀ	1.8	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	*0.6
	.	8	-	ŀ	-	30.0	ŀ	ŀ	1.2	ŀ		16	-	ŀ	1.0	ŀ	ŀ	ŀ	43.2	ŀ	0.2	2.2	0.4	*7.0
		0.2	-	3.8	-	-	ŀ			2.6		17	1.8	1.0	0.6	ŀ	2.6	ŀ	0.2	ŀ	1.4	1.2	6.6	*14.
	9.6	8	-	-	-	-	ŀ	1.8	ŀ	3.4	15.0	18	-	14.4	4.0	ŀ	ŀ	ŀ	0.2	ŀ	1.8	ŀ	2.2	4.6
	1.4	8	-	-	-	-	ŀ	ŀ	-	1.0		19	-	3.6	11.0	-	0.2	ŀ	ŀ	ŀ	0.2	0.2	1.2	1.2
		K	-	ŀ	ŀ	-	ŀ	ŀ		35.6	4.8	20	-	2.4		0.2	ŀ	ŀ	ŀ	ŀ	ŀ	0.2	32.6	1.4
	9.6	8	-	-	-	-	ŀ		15.2	ŀ	ŀ	21	0.2	31.6	23.0	ŀ	1.4	ł	ŀ	ŀ	0.2	25.6	0.4	ŀ
	16.2	,	-		5.0	-	ŀ	ŀ	2.2		ŀ	22	-	13.4	ŀ	<u> </u>	33.0	4.0	L .	ŀ	ŀ	2.4	t .	Ł .
	25.6		-	2.4	-	8.0	ŀ	ŀ	1	1.2	ŀ	23	0.2	34.8	t .	0.2	2.4	0.2	8.4	l l	t	ŀ	0.6	0.2
	0.6	,	-	l l	1	h	t.	ŀ	i i	L		24	-	*1.4	0.2	ŀ	0.2	Ł.	t .	t .	1.0	ŀ	t	ŀ
	0.2	,	-	ŀ	-		5.6	ŀ	1	20.0		25	0.2	*6.6	ŀ	ŀ	ŀ	0.2	0.2	2.0	0.2	ŀ	15.0	-
	.	,	-	ŀ	-	h	9.6	ŀ	i .	1.0		26	0.2		ŀ	ŀ		ŀ	l l	6.2	t	†	1.0	0.2
			1		1	1	ľ	i i		4.2	i i	27	-	*1.0	t.	ŀ	0.2	t	r	0.2	l		$^{2.4}$	0.2
	5.6	,	1	2.8	1	h	l l		33.6	i i	t	28	-	*4.6	8	l l	9.4	t	r	l l	r	22.0	1	0.2
	- 1	,	1	8.6	1	1		i i	9.2	Ì	i i	29	0.2		t	ŀ	2.4	t	r	t.	r	7.4	0.2	0.2
	- 1		 	l	l l	h	1.2	i i	ec.	l l	t	30	0.2			ŀ	t	t	l l	1.4	l l	0.6	0.2	0.2
		1.2		-	4 5 0			1050		105.0		0.4	-		0.8				-	0.2		0.2	L .	0.2
11.2	123.0				15.2	71.0	16.4	125.6	76.6	105.2	14.0	Totali mensili	11.6		140.0	41.6	94.0	31.6	73.6	10.0	50.2	86.8	97.4	46.4
2	10		4	9	4	3	3	D	S.	<u>μ</u> .	Γ.	N giorni	4	16	15	6	13	1	3	3	8	9	To.	Β
otale	annu	0: ≪							Giorn	i piov	⁄osi: ∢	piovosi	Total	e anni	io: 86	1.0						Giorn	i piov	osi: f

Figura 4.14- Stralcio Tabella I, 'Osservazioni pluviometriche giornaliere, Anno 2018'

Tabella Π - Totali annui e riassunti dei totali mensili delle quantità delle precipitazioni

Anno 2018

BACINO E STAZIONE	G mm	F mm	M mm	A mm	M mm	G mm	L mm	A mm	S mm	O	N mm	D mm	Anno mm
Foglia													
Monte Carpegna Carpegna Frontino Bronzo	« 30.2 19.8 «	« 174.6 141.0 «	* 190.6 138.6 70.8	49.6 44.8 28.0	« 141.8 123.2 57.8	43.8 32.2 27.8	* 70.4 53.4 59.6	35.0 23.6 27.0 13.8	84.6 114.8 28.0 74.0	144.6 129.8 141.0 47.4	129.6 117.6 113.2 84.8	29.8 68.6 55.0 19.2	« 1155.4 917.2 «

Figura 4.15 - Stralcio Tabella II, 'Totali annui e riassunti dei totali mensili delle quantità delle precipitazioni, Anno 2018'

Tabella III - Precipitazioni di massima intensitá registrate ai pluviografi

Anno 2018

DACINO							INTER	VALLO :	DI ORE	i					
BACINO		1			. 3			. 6			12			24	
STAZIONE	mm	Ini	izio	mm	Ini	zio	mm	Ini	izio	mm	Ini	zio	mm	In	izio
STAZIONE	718718	giorno	mese	778778	giorno	mese	778778	giorno	mese	778778	giorno	mese	778778	giorno	mese
Foglia															
Monte Carpegna	17.6	6	Lug	29.4	28	Ott	36.2	28	Ott	46.4	28	Ott	70.8	28	Ott
Carpegna	31.0	18	Set	40.0	12	Mag	42.2	12	Mag	53.2	28	Ott	67.8	28	Ott
Frontino	37.6	12	Mag	37.8	12	Mag	37.8	12	Mag	50.6	28	Ott	66.4	28	Ott
Bronzo	30.8	6	Lug	40.0	6	Lug	40.0	6	Lug	40.0	6	Lug	40.0	6	Lug
Tavoleto	36.4	7	Set	42.8	1	Set	46.8	1	Set	48.2	7	Set	48.4	7	Set
Ca [†] Mazzasette	33.6	16	Lug	41.8	16	Lug	43.0	16	Lug	43.2	16	Lug	47.0	2	Feb
Gallo	44.8	16	Lug	59.2	16	Lug	60.4	16	Lug	60.4	16	Lug	60.4	16	Lug
Montecchio	27.6	1	Set	34.4	1	Set	35.8	1	Set	53.2	23	Feb	78.8	22	Feb
Montelabbate	34.4	1	Set	53.6	1	Set	54.2	1	Set	54.4	1	Set	72.0	22	Feb
Villa Fastiggi	31.6	22	Mag	35.0	16	Lug	43.6	23	Feb	59.6	23	Feb	77.2	22	Feb
Pesaro Ferrovia	39.6	22	Giu	50.8	22	Giu	61.4	22	Giu	61.6	22	Giu	69.6	22	Feb

Figura 4.16 - Stralcio Tabella III, 'Precipitazioni di massima intensità registrate ai pluviografi, Anno 2018'

Tabella IV - Massime precipitazioni dell'anno per periodi di più giorni consecutivi

Anno 2018

BACINO						NUMER	O DI GIOI	RNI NEL	PERIOD	0				
E		1		2			3			4		I	5	
STAZIONE	mm	data	mm	dal	al	mm	dal	al	mm	dal	al	mm	dal	al
Foglia														
Monte Carpegna	70.8	28 Ott.	93.8	28 Ott.	29 Ott	97.2	28 Ott.	30 Ott	99.6	28 Ott.	31 Ott	121.2	28 Ott.	01 Nov
Carpegna	67.8	28 Ott.	84.6	28 Ott.	29 Ott	87.8	28 Ott.	30 Ott	88.6	28 Ott.	31 Ott	109.8	28 Ott.	01 Nov
Frontino	66.4	28 Ott.	81.8	28 Ott.	29 Ott	83.8	28 Ott.	30 Ott	84.4	28 Ott.	31 Ott	102.8	28 Ott.	01 Nov
Bronzo	40.0	06 Lug	41.0	19 Mar.	20 Mar	47.0	18 Mar.	20 Mar	49.8	17 Mar.	20 Mar	55.6	16 Mar.	20 Mar
Tavoleto	48.4	07 Set.	68.8	01 Set.	02 Set	71.2	01 Set.	03 Set	72.4	30 Ago.	02 Set	72.4	30 Ago.	03 Set
Ca' Mazzasette	47.0	02 Feb.	52.0	21 Feb.	22 Feb	80.4	21 Feb.	23 Feb	84.0	21 Feb.	24 Feb	90.2	20 Feb.	24 Feb
Gallo	60.4	16 Lug	66.0	21 Feb.	22 Feb	105.4	21 Feb.	23 Feb	107.8	20 Feb.	23 Feb	114.6	20 Feb.	24 Feb
Montecchio	78.8	22 Feb.	101.6	21 Feb.	22 Feb	134.2	21 Feb.	23 Feb	137.6	20 Feb.	23 Feb	146.0	19 Feb.	23 Feb
Montelabbate	72.0	22 Feb.	93.4	21 Feb.	22 Feb	112.6	21 Feb.	23 Feb	115.2	20 Feb.	23 Feb	122.2	18 Feb.	22 Feb
Villa Fastiggi	77.2	22 Feb.	99.8	21 Feb.	22 Feb	124.8	21 Feb.	23 Feb	126.2	20 Feb.	23 Feb	131.4	18 Feb.	22 Feb
Pesaro Ferrovia	69.6	22 Feb.	94.2	21 Feb.	22 Feb	115.2	21 Feb.	23 Feb	117.0	20 Feb.	23 Feb	123.2	18 Feb.	22 Feb
												1		

Figura 4.17 - Stralcio Tabella IV, 'Massime precipitazioni dell'anno per periodi di più giorni consecutivi, Anno 2018'

Tabella V Precipitazione di notevole intensitá e breve durata registrate ai pluviografi

Anno 2018

BACINO E STAZIONE	Giorno e mese	Durata ore e minuti	Quantitá di precipita- zione mm	BACINO E STAZIONE	Giorno e mese	Durata ore e minuti	Quantitá di precipita- zione mm
Foglia				Acqualagna Acqualagna Monte Paganuccio	07 Set. 07 Set. 22 Mag.	15 30 15	17.4 24.2 20.0
Monte Carpegna	06 Lug.	15	13.0	Monte Paganuccio	22 Mag.	30	32.4
Monte Carpegna	06 Lug.	30	16.2	Cesane Foresta	01 Set.	15	20.7
Carpegna Carpegna	02 Set. 12 Mag.	15 30	15.2 20.2	Cesane Foresta Lucrezia	01 Set. 23 Lug.	30 15	27.2 34.2
Frontino Frontino	01 Set. 12 Mag.	15 30	17.6 26.2	Lucrezia Piagge	23 Lug. 16 Lug.	30 15	45.4 24.2
Bronzo Bronzo	07 Set. 06 Lug.	15 30	12.8 19.6	Piagge Metaurilia	16 Lug. 22 Giu.	30 15	39.8 16.4
Tavoleto Tavoleto	07 Set.	15	29.2	Metaurilia	22 Giu.	30	32.6

Figura 4.18- Stralcio Tabella V, 'Precipitazione di notevole intensità e breve durata registrate ai pluviografi, Anno 2018'

4.2.3.3 PARTE SECONDA

La sezione A della PARTE II è dedicata agli afflussi meteorici, di cui vengono riportati i valori mensili ed annui del contributo medio ed i valori medi mensili ed annuali dell'altezza di afflusso meteorico. Anche in questo caso la sezione è corredata da un'opportuna tabella terminologica.

La sezione B è dedicata all'analisi dell'idrometria. Unitamente alla tabella terminologica in cui vengono riportate tutte le abbreviazioni ed i segni convenzionali ivi utilizzati, è presente l'elenco delle stazioni idrometriche, raggruppate secondo i bacini principali, con le loro caratteristiche principali, quali: la tipologia della strumentazione; la quota dello zero idrometrico, espressa in metri sul livello medio dei mari; l'area, espressa in chilometri quadrati, del bacino sotteso dalla stazione stessa; le altezze massime e minime di piena e di secca, con relative date di osservazione; l'anno di inizio di registrazione; l'elenco note di tutte le variazioni subite nel tempo dalla entrata in funzione della stazione. La sezione si conclude con una tabella, denominata "Tabella l", in cui sono presenti tutte le altezze idrometriche giornaliere, misurate in centimetri.

La sezione C è dedicata alle portate ed ai bilanci idrologici. In aggiunta all'elenco della terminologia adottata, è presente la carta delle stazioni di misura, per le quali sono riportate anche le seguenti informazioni: l'ampiezza del bacino sotteso, in km²; l'altitudine massima e l'altitudine media del bacino; lo zero idrometrico; la distanza della stazione dalla foce; la data di inizio delle registrazioni; i valori massimi e minimi della altezza idrometrica; il valore delle portate medie giornaliere, espresse in metri cubi al secondo (m³/s), con relativa data di campionamento. Vengono anche riportate le grandezze e gli elementi caratteristici mensili ed annui, riferiti all'anno in esame ed al precedente periodo di osservazione, come le portate massime, minime e medie, i deflussi e gli afflussi (in mm) ed infine i rapporti fra i deflussi ed i corrispondenti afflussi, ossia i coefficienti di deflusso. Si trovano anche le portate medie giornaliere corrispondenti a valori caratteristici delle durate espressi in giorni e la scala di deflusso, o scala numerica delle portate, definita come relazione tra le portate e le relative altezze idrometriche.

La parte seconda degli annali idrologici risulta essere in corso di aggiornamento, gli ultimi dati disponibili sono quelli relativi al 2007.

4.2.4 SERIE STORICHE IDROLOGICHE

4.2.4.1 INTRODUZIONE

L'analisi statistica delle serie temporali è di fondamentale importanza in molti aspetti dell'ambito idrologico, infatti essa permette la costruzione di modelli matematici tramite cui poter prevedere e stimare le quantità idrologiche associate a specifici eventi, nonché consente la stima degli andamenti espressi dalla serie.

In generale un qualsiasi evento idrologico (deflusso, precipitazione o quant'altro), è un fenomeno continuo, ossia agisce su una scala temporale ininterrotta. Per contro, tutte le

operazioni rilevamento che possono compiersi, sono spesso il frutto di campionamenti puntuali, pertanto si parla di serie temporale discreta (oraria, giornaliera, settimanale, mensile, ecc ...).

4.2.4.2 DESCRIZIONE DELLE SERIE STORICHE

Una sequenza temporale ordinata di osservazioni, collezionate in istanti temporali successivi, relative ad un determinato fenomeno idrologico, costituisce una "serie storica" o "temporale". Generalmente esse si presentano come successioni ordinate ed equispaziate, ossia per intervalli di tempo aventi stessa ampiezza, anche se tale condizione non ne costituisce una regola ferrea. L'entità dell'ampiezza di misurazione risulta fondamentale nella determinazione della tipologia di informazione che si vuole andare a dedurre dai dati, ad esempio, sarà difficile, se non impossibile, riuscire ad estrarre un'informazione corretta ed attendibile rispetto eventi rapidi, di breve durata, magari estremi, da delle serie temporali giornaliere o di ampiezza maggiore.

Come già accennato, per alcune tipologie di dati, la mancata condizione di intervalli di tempo regolari nel campionamento non rappresenta un vincolo per lo svolgimento di analisi statistiche efficaci, come ad esempio per l'analisi dei valori estremi. In questo caso tutte le osservazioni si riferiscono al medesimo istante (o periodo) e si parla di "cross-sectional data".

Riguardo l'estensione della serie, volgendo l'attenzione verso la tematica della quantità di informazione trasportata, sono ovviamente di maggior interesse le serie lunghe di dati (*long time series*), ovvero quelle sequenze di registrazione che si sviluppano su un arco temporale almeno pari o maggiore ai 30–50 anni. Tuttavia, in virtù di questa loro maggiore estensione temporale, rispetto ad altre serie più corte, sono più soggette ad ospitare problematiche peculiari, quali le disomogeneità. Le disomogeneità determinano variazioni innaturali nelle misurazioni, le quali, consequentemente, falsano l'informazione contenuta.

4.2.4.3 SERIE STORICHE DI PRECIPITAZIONE

La grandezza idrologica di interesse primario per il seguente studio è la precipitazione atmosferica. Essa viene misurata secondo le procedure standardizzate dal "World Meteorological Organization", nel seguito abbreviato con l'acronimo WMO, recepita in Italia nel 1998 dal SIMN nel quaderno "Norme Tecniche per la Raccolta e l'Elaborazione dei Dati Idrometrici – parte I".

Secondo tali norme la strumentazione di rilevamento deve essere posta ad un'altezza dal suolo compresa fra 0,5 e 1,5 m, inoltre deve essere posta ad una distanza minima di 10 metri lineari da ostacoli verticali, come edifici ed alberi, che impediscono il corretto accumulo della precipitazione trasversale. Le serie storiche di precipitazione comunemente reperibili, si costituiscono dei valori:

•	precipitazione cumulata annuale	P_{a}
•	precipitazione cumulata mensile	P_{m}
•	precipitazione cumulata giornaliera	P_{g}
•	precipitazione cumulata oraria	P_h

precipitazione cumulata su intervalli di "x" minuti

La possibilità di registrare la precipitazione oraria, o di durata inferiore, è abbastanza recente, resa possibile dall'impiego di pluviometri a registrazione elettronica. Si deve far notare che le letture della precipitazione oraria o sub-oraria, erano già possibili anche su alcune strumentazioni meccaniche precedenti, però l'impossibilità di leggere il tamburo di registrazione in maniera automatica ed oggettiva, allo scopo di digitalizzare l'informazione raccolta, ne ha decretato l'inutilizzo.

Per quanto riguarda, invece, le precipitazioni sub-orarie riguardanti i massimi annuali di precipitazione per alcune fasce orarie predefinite, esse iniziarono ad essere collezionate già a partire dall'avvento dei pluviografi registratori su tamburo rotante, dunque in letteratura sono disponibili le seguenti serie:

•	precipitazione di durata 1 ora massima annuale	$P_{1h,max}$
•	precipitazione di durata 3 ore massima annuale	P _{3h,max}
•	precipitazione di durata 6 ore massima annuale	$P_{6h,max}$
•	precipitazione di durata 12 ore massima annuale	$P_{12h,max}$
•	precipitazione di durata 24 ore massima annuale	P _{24h max}

Passando ora alle serie temporali di precipitazione giornaliera, da esse possono essere derivate le seguenti serie temporali di:

- numero mensile dei giorni piovosi;
- numero annuo dei giorni piovosi;
- numero di giorni non piovosi consecutivi;
- numero massimo di giorni piovosi consecutivi nell'anno;
- numero massimo di giorni non piovosi consecutivi nell'anno.

Inoltre, possono essere derivate alcune serie temporali, in cui la precipitazione raccolta eccede o uguaglia un determinato valore soglia, ovvero le cosiddette "serie POT", (*Peak Over Threshold*):

•	precipitazione giornaliera sopra la soglia X	$P_{g,X}$
•	precipitazione mensile sopra la soglia X	$P_{m,X}$

4.2.4.4 SERIE STORICHE DI TEMPERATURA

La grandezza idrologica di interesse primario per il seguente studio è la temperatura, massima e minima del suolo, misurata ad un'altezza di circa 2 m. Essa viene misurata secondo le procedure standardizzate dal "World Meteorological Organization", nel seguito abbreviato con l'acronimo WMO, recepita in Italia nel 1998 dal SIMN nel quaderno "Norme Tecniche per la Raccolta e l'Elaborazione dei Dati Idrometrici – parte l".

Le serie storiche di temperatura comunemente reperibili, si costituiscono dei valori:

•	Temperatura massima giornaliera	TX
•	Temperatura minima giornaliera	TN
•	Temperatura media giornaliera	TG

4.2.4.5 CLASSIFICAZIONE

La classificazione delle serie temporali idrologiche si basa sulla definizione di più fattori discriminanti, quali la correlazione, la stazionarietà, la presenza cadenzata di valori nulli (intermittenza) e la regolarità temporale della serie stessa.

Si parla di serie temporali *autocorrelate* quando il valore assunto da una qualsiasi grandezza idrologica "y(t)", al generico tempo "t", condiziona i valori assunti dalla serie in istanti successivi. Per contro, se non vi sono tali evidenze, si parla di serie *non-correlate*. Se la correlazione riguarda due distinte serie temporali fra loro dipendenti (in qualche misura), ossia una tende ad assumere certi valori in istanti successivi, in funzione di quelli assunti dell'altra in istanti precedenti, si parla di serie *cross-correlate*.

Una serie idrologica si definisce *stazionaria* quando le grandezze statistiche desumibili da essa, come la media e la varianza, non subiscono variazioni nel tempo. Questo implica che non siano presenti trend, discontinuità (salti), scostamenti o particolari comportamenti ricorsivi nel tempo (ciclicità).

Ovviamente nel caso contrario si parla di serie *non-stazionaria*, di cui un esempio è rappresentato dalle serie idrologiche di precipitazione di durata inferiore all'anno, le quali risentono delle variazioni di osservazione dovute alla stagionalità. In *Fig. 4.13 (a)* è riportato l'andamento temporale di una serie di precipitazione non stazionaria a causa della presenza di un salto, mentre in *Fig. 4.13 (b)* viene schematizzato l'andamento di una serie in cui vi è la presenza di trend.

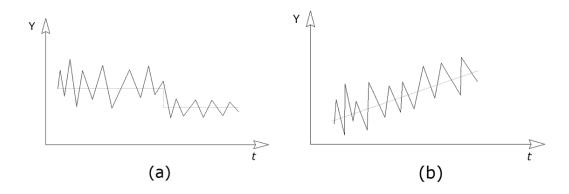


Figura 4.19 – (a) Rappresentazione serie temporale con salto (Y è la grandezza fisica in osservazione; "t" è il tempo), (b) Rappresentazione serie temporale con trend (Y è la grandezza fisica in osservazione; "t" è il tempo).

Si parla di serie intermittente quando la variabile osservata assume nel tempo, alternativamente, valori nulli e valori non nulli. Per esempio, si pensi ad una serie di precipitazione giornaliera, in cui si alternano giorni di mancata precipitazione, quindi valori nulli della variabile, a giorni di pioggia, dunque non nulli.

Quando il campionamento di una qualsiasi grandezza idrologica è subordinato alla condizione che la stessa ecceda un determinato valore soglia (serie POT), la serie risulta spaziata irregolarmente. Sono altresì serie irregolari quelle che prevedono raffittimenti nelle osservazioni in particolari condizioni di esercizio, ad esempio per i deflussi durate gli eventi di piena.

Inoltre, le serie possono essere definite (quindi discriminate) come:

- serie temporali *univariate*, le quali consistono in semplici serie temporali che campionano una singola grandezza idrologica;
- serie temporali multivariate (o multiple), in cui vengono riportate più grandezze fisiche diverse fra loro, quali, ad esempio, la precipitazione, la temperatura massima, quella minima, l'umidità e l'evaporazione; si parla sempre di serie multivariata se questa, pur riportando una sola grandezza fisica, è riferita a più stazioni.

4.2.4.5.1 CLASSIFICAZIONE DELLE SERIE IDROLOGICHE NON STAZIONARIE

L'esperienza in ambito sperimentale ha ampiamente dimostrato che le serie temporali sono soggette a fluttuazioni e movimenti dei propri valori, che possono essere legati alla stagionalità o ad altri fattori. Questi rivestono un ruolo fondamentale nell'ambito delle previsioni idrologiche.

Essi possono essere identificati in alcuni movimenti caratteristici, nello specifico se ne hanno:

- di lungo termine (o secolari), si riferiscono all'andamento tendenziale che la serie storica mostra in un periodo di tempo abbastanza lungo, in concreto, rappresentando la serie su un piano cartesiano, il suo andamento viene ben approssimato da una linea retta che, appunto, ne descrive la tendenza generale nel tempo;
- ciclici, in questo caso i valori della serie tendono ad oscillare, per lungi periodi di tempo, attorno ad un andamento medio, tendenzialmente lineare;
- stagionali, sono concettualmente analoghi ai movimenti ciclici, tuttavia fanno riferimento a periodi di tempo più limitati e circoscritti rispetto ai precedenti (quasi sempre inferiori all'anno);
- irregolari (o casuali), si riferiscono a perturbazioni che in condizioni ordinarie non affliggono una serie, poiché in genere si hanno solamente in conseguenza di eventi straordinari.

In Fig. 4.14 sono rappresentati i primi tre movimenti descritti nell'elenco.

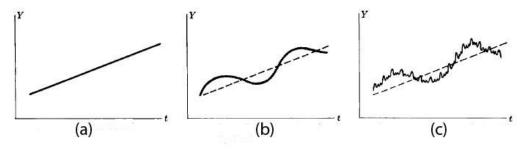


Figura 4.20 - Rappresentazione dei movimenti caratteristici delle serie temporali: (a) movimenti secolari o andamenti di lungo periodo, (b) andamenti di lungo periodo con movimenti ciclici, (c) andamenti di lungo periodo in cui sono presenti sia movimenti ciclici che stagionali.

Le serie temporali idrologiche evidenziano alcune caratteristiche definite "componenti", quali: trend, salti, stagionalità, autocorrelazione, ciclicità delle perturbazioni e non normalità nella distribuzione della frequenza. Molte di queste agiscono come veri e propri elementi di disturbo, con la possibilità di influire negativamente, falsando o annullando, una qualsiasi

operazione statistica prevista, volta all'estrazione dell'informazione contenuta nella serie. Un esempio è la condizione di normalità, spesso alla base di molti modelli e test statistici, che nella realtà non viene praticamente mai verificata per le serie idrologiche. Da qui nasce l'esigenza di eliminare questi fattori fuorvianti già prima dell'inizio della modellazione, cosa che può essere fatta tramite operazioni di partizionamento o decomposizione delle serie nelle loro singole componenti.

4.2.4.6 CARATTERIZZAZIONE STATISTICA DI UNA SERIE STORICA IDROI OGICA

Nell'improntare una corretta descrizione statistica delle serie temporali, è fondamentale fornire alcune caratteristiche intrinseche delle serie stesse. Nello specifico i parametri individuati necessari sono:

- il numero massimo di anni;
- il numero totale di dati;
- la frequenza, cioè il numero massimo di dati/anno;
- il numero di anni;
- l'istante di primo dato;
- l'istante di ultimo dato;
- gli intervalli di dati mancanti.

Le definizioni di questi elementi risultano particolarmente utili ai fini di studio, poiché sono necessarie per impostare e definire, nel seguito, una congrua procedura di controllo qualità cui sottoporre le serie in analisi.

4.2.4.6.1 LUNGHEZZA DELLA SERIE

La lunghezza di una serie storica viene misurata in anni ed è definita come la differenza fra l'anno relativo all'ultimo campionamento e quello relativo al primo, il tutto aumentato di un'unità, ossia:

 $lunghezza = (anno\ ultimo\ rilevamento - anno\ primo\ rilevamento) + 1$

La frequenza di campionamento è un parametro che non influisce nella determinazione della lunghezza, ad esempio, per poter considerare come "valido" un anno per una serie giornaliera, non è indispensabile avere almeno 365 registrazioni; in aggiunta, un anno viene comunque computato anche qualora la serie inizi nei periodi terminali dell'anno stesso. Si ricorda ancora una volta che la lunghezza assume importanza primaria nella possibilità di estrazione di informazioni idrologiche affidabili dalla serie.

4.2.4.6.2 FREQUENZA

La frequenza di una serie storica viene definita su base annua ed indica, appunto, il numero delle registrazioni effettuate nell'anno. Di seguito si riporta, in funzione del campionamento, la frequenza massima possibile:

- orario 8760triorario 2920giornaliero 365settimanale 52
- decadale 36

mensile 12

annuale 1

Si precisa che nelle serie con campionamento giornaliero, o maggiore, normalmente viene trascurata la presenza dell'anno bisestile, omettendo il 29 febbraio. Tuttavia, alcuni autori, al fine di considerare tale aspetto, talvolta pongono la frequenza della serie giornaliere pari a 365,25.

4.2.4.6.3 NUMERO MASSIMO DI DATI

Esso rappresenta il numero massimo di dati presenti entro gli estremi di inizio e di fine campionamento; viene indicato con il termine N_m . Tuttavia, per una serie può anche essere riportato il numero totale delle sole osservazioni fatte, ovvero le sole registrazioni presenti, indicandolo con il termine N.

Ovviamente fra i due sussiste la relazione per cui $N \leq N_m$.

4.2.5 DATI DEL PROGRAMMA EUROPEO COPERNICUS

COPERNICUS, precedentemente conosciuto come GMES (Global Monitoring for Environment and Security), è un complesso programma di osservazione satellitare della Terra, lanciato nel 1998 dalla Commissione Europea e da un pool di agenzie spaziali. Si inserisce, in veste di contributo del "Vecchio Continente", nel più vasto progetto europeo, che mira allo sviluppo di un Sistema dei sistemi per l'osservazione globale della Terra. Come principale obiettivo ha quello di garantire all'Europa una sostanziale indipendenza nel rilevamento e nella gestione dei dati sullo stato di salute del pianeta, supportando le necessità delle politiche pubbliche europee attraverso la fornitura di servizi precisi e affidabili sugli aspetti ambientali e di sicurezza.

Tra le applicazioni dichiarate "Prioritarie" all'interno del programma, ci sono la gestione dei disastri naturali e il monitoraggio degli oceani, della vegetazione e dell'atmosfera. Lo sviluppo del progetto, inoltre, prevede che COPERNICUS ricopra un ruolo importantissimo anche in altri ambiti: da quelli relativi ai cambiamenti climatici, alla protezione civile e allo sviluppo sostenibile. Senza tralasciare l'impatto nelle politiche comunitarie sociali e di sicurezza: il sistema garantirà infatti la possibilità di gestire dati precisi e aggiornati su più campi.

COPERNICUS si basa su una serie di sei tipologie di satelliti, chiamati Sentinelle, specializzati in precise applicazioni; le coppie 1, 2 e 3 sono state già lanciate. I Sentinel-1 sono utilizzati per produrre dati radar interferometrici; i Sentinel-2, satelliti ottici, sono stati progettati per l'osservazione multi-spettrale; i Sentinel-3 sono stati ideati per effettuare osservazioni oceanografiche e terrestri; i Sentinel-4, di tipo geostazionario, saranno destinati a monitorare le componenti atmosferiche; i Sentinel-5, satelliti a bassa orbita, monitoreranno la composizione chimica dell'atmosfera; i Sentinel-6, infine, il cui lancio è previsto per il 2020, studieranno le superfici dei mari e degli oceani a fini climatologici.

In particolare, il sistema Sentinel-3, è destinato ad osservazioni di oceanografia e al monitoraggio della vegetazione ed è in grado di osservare la topografia dei mari, la temperatura superficiale delle acque e delle terre emerse fornendo un contributo

determinante per le previsioni delle condizioni del mare, fondamentale per la navigazione sicura, ma anche del clima terrestre.

L'obiettivo è razionalizzare l'utilizzo delle innumerevoli informazioni che vengono raccolte dai satelliti messi in orbita dall'Agenzia Spaziale Europea al fine di utilizzare solo i dati di miglior qualità e più aggiornati.

I servizi Copernicus trasformano quindi questa ricchezza di dati, raccolti da satelliti e in situ, in informazioni a valore aggiunto: analizzandoli ed elaborandoli, integrando gli stessi con altre fonti e infine convalidando i risultati ottenuti. Le serie di dati acquisiti nel corso di anni e decenni sono indicizzate e rese comparabili garantendo così il monitoraggio dei cambiamenti; i modelli strutturali sono esaminati e utilizzati per aumentare la capacità di previsione, ad esempio, nell'analisi degli oceani e dell'atmosfera. Dalle immagini satellitari vengono create mappe, identificate caratteristiche ed anomalie ed estrapolate informazioni statistiche.

I dati e le informazioni di Copernicus sono disponibili in modo completo, gratuito e aperto, attraverso diverse piattaforme web dedicate.

4.2.5.1 PIATTAFORMA WEB E-OBS

E-OBS (https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php) è la pagina di download per il set di dati osservativi a griglia giornaliero per precipitazioni, temperatura, pressione a livello del mare e radiazione globale in Europa.

Il set di dati completo copre il periodo dal 01/01/1950 ad oggi. È stato originariamente sviluppato e aggiornato come parte dei progetti ENSEMBLES (EU-FP6), EURO4M (EU-FP7) e UERRA (EU-FP7). Attualmente è mantenuto ed elaborato come parte del programma COPERNICUS.

Tali set di dati "ensemble" sono formati dall'interpolazione dei valori noti delle stazioni, e nella loro creazione vengono coinvolti nell'algoritmo di grigliatura diverse scelte che potrebbero includere:

- il raggio di ricerca per l'inclusione di stazioni che influenzano un riquadro della griglia;
- la qualità dei dati della stazione di input e omogeneità;
- l'impatto di possibili co-variate utilizzate nella griglia (ad esempio latitudine, longitudine, elevazione e distanza dalla costa o dal corpo idrico interno);
- la presenza di stazioni in cui il periodo di riferimento (ad esempio 1961-90 o 1981-2010) è noto in modo meno preciso.

L'approccio usuale nella produzione di un set di dati a griglia consiste nel determinare i valori migliori o più probabili dei parametri chiave, per interpolare i valori della stazione con i valori su una griglia regolare.

E-OBS si presenta come un set di dati di insieme (ensemble data) ed è disponibile su una griglia regolare di 0,1 e 0,25 gradi che copre l'area: $25N-71,5N \times 25W-45E$. I dati presenti sono in formato NetCDF-4, e comprendono:

• temperatura media giornaliera

TG;

temperatura minima giornaliera
 temperatura massima giornaliera
 somma delle precipitazioni giornaliere
 pressione giornaliera media a livello del mare
 umidità relativa media giornaliera
 radiazione globale media giornaliera
 QQ.

Version 23.1e	Ensemble mean	Ensemble spread	Elevation
0.1 deg. regular grid	TG TN TX RR PP HU QQ	TG TN TX RR PP HU QQ	all elements
0.25 deg. regular grid	TG TN TX RR PP HU QQ	TG TN TX RR PP HU QQ	all elements
Version 22.0e	Ensemble mean	Ensemble spread	Elevation
0.1 deg. regular grid	TG TN TX RR PP HU QQ	TG TN TX RR PP HU QQ	all elements
0.25 deg. regular grid	TG TN TX RR PP HU QQ	TG TN TX RR PP HU QQ	all elements
Version pre1950	Ensemble mean	Ensemble spread	Elevation
0.1 deg. regular grid	TG TN TX RR	TG TN TX RR	all elements
0.25 deg. regular grid	TG TN TX RR	TG TN TX RR	all elements
Version 21.0e	Ensemble mean	Ensemble spread	Elevation
0.1 deg. regular grid	TG TN TX RR PP QQ	TG TN TX RR PP QQ	all elements
0.25 deg. regular grid	TG TN TX RR PP QQ	TG TN TX RR PP QQ	all elements
Version 20.0e	Ensemble mean	Ensemble spread	Elevation
0.1 deg. regular grid	TG TN TX RR PP QQ	TG TN TX RR PP QQ	all elements
0.25 deg. regular grid	TG TN TX RR PP QQ	TG TN TX RR PP QQ	all elements

Figura 4.21 – schermata di accesso per il download dei file E-OBS in formato NetCDF-4

Il set di dati dell'insieme E-OBS è costruito tramite una procedura di simulazione condizionale, tramite interpolazioni giornaliere di temperatura (valori giornalieri massimi, medi e minimi), precipitazioni e pressione media a livello del mare.

Il metodo utilizzato per generare l'insieme dei dati per E-OBS si basa sul lavoro di *Hutchinson & Gessler (1994)* e si riferisce all'incertezza del modello, legata principalmente alla densità delle stazioni.

Per ciascuno dei membri dell'insieme viene prodotto un campo casuale correlato spazialmente utilizzando una funzione di correlazione spaziale precalcolata. La media tra i membri viene calcolata e fornita come i campi "migliore ipotesi". Lo spread è calcolato come la differenza tra il 5° e il 95° percentile sull'insieme per fornire una misura che indica l'intervallo di incertezza del 90%. Il set di dati sulla radiazione globale ha un insieme di 10 membri, mentre gli altri elementi hanno un insieme di 100 membri.

Il set di dati E-OBSpre1950 si basa su una rete di dati notevolmente più scarsa rispetto ai set di dati che coprono il periodo successivo al 1950, nonostante alcuni sforzi di salvataggio dei dati nel progetto ERA4CS INDECIS e una query presso gli NMHS europei. La combinazione di un set di dati sparsi e possibili valori anomali nei dati fa sì che si possano prevedere valori non realistici al limite esterno del dominio e nelle aree in cui un valore

anomalo si trova in un'area povera di dati all'interno. Il set di dati sulle precipitazioni soffre di questo problema più del set di dati sulla temperatura.

4.3 STAZIONI DELLA REGIONE MARCHE

L'analisi degli indici che si propone nel presente lavoro, necessita di basi dati di qualità, prelevati dalle serie storiche di precipitazione e di temperatura, collezionate alle stazioni situate nei bacini idrografici del territorio regionale marchigiano.

Vi è l'assoluta necessità di poter disporre di una platea di stazioni sufficientemente grande, possibilmente distribuita in modo omogeneo sul territorio e, tale che, le serie temporali da esse collezionate, rispondano ai requisiti di qualità, completezza e continuità. Il soddisfacimento di questi prerequisiti, consegna dati sufficientemente affidabili, idonei per una corretta stima delle variazioni nel tempo delle grandezze osservate, ovvero delle tendenze di precipitazione.

Precipitazioni e temperature sono ricavate da differenti stazioni, infatti riportano codici del sensore differenti, seppur il più delle volte hanno stesse coordinate.

4.3.1 STAZIONI PLUVIOMERICHE

Le stazioni che erano e sono oggi presenti sul territorio regionale:

- 29 stazioni dismesse dal 1951 al 2018, di cui 17 dismissioni avvenute dal 2007;
- 127 stazioni attive, di cui 55 aggiunte dopo il 2000 dalla Protezione Civile regionale e 72 stazioni aventi inizio con la vecchia gestione, ma sottoposte al processo di ammodernamento;

Di queste 72, a causa del cambio e/o dello spostamento degli strumenti di misura è necessario riuscire a definire la possibile omogeneità della serie storica, cioè se le sue variazioni sono dovute unicamente alle modificazioni del tempo meteorologico e/o del clima. Infatti, la Protezione Civile dopo aver eseguito degli studi dichiara:

- 62 stazioni omogenee
- 10 stazioni non omogenee

Nel seguito si riporta la *Tabella 4.1* contenente tutte le stazioni presenti nel territorio regionale, con suddivisione di stazioni in rete meccanica e di rete in telemisura, con il codice dei diversi sensori, l'anno di inizio e fine registrazioni, e la dichiarazione di omogeneità o meno da parte della Protezione Civile.

Tabella 4.1 - Stazioni pluviometriche della Regione Marche

BACINO	STAZIONE RM	CODICE SENSORE RM	INIZIO	FINE	STAZIONE RT	CODICE SENSORE RT	INIZIO	FINE	OSSERVAZIONE
ALBULA RAGNOLA		2094		10/09/1992 04/08/1997					
ARZILLA	CANDELARA	2000	01/01/1951	04/08/1997	S.MARIA IN ARZILLA	2636	07/12/2006	occi	
	DIGA DI CARASSAI	2011	01/01/1951	01/01/2008		2976	14/03/2014		OMOGENEA
	MONTEMONACO	2004			MONTEMONACO	1586	26/06/2003		OMOGENEA
ASO	MONTERUBBIANO	2012		01/01/2008					011100211211
	FONTE AVELLANA	2014	01/01/1951	04/01/2005	FORCE FONTE AVELLANA	1594 1206	26/06/2003 10/12/2003	OGGI	OMOGENEA
	MONDOLFO	2021	01/01/1951	03/03/2008	MAROTTA CESANO	2645	12/06/2007	OGGI	
CECANO			,,		MONTE ACUTO	3068	18/05/2015	OGGI	
CESANO	PERGOLA	2016	01/01/1951	07/01/2008	PERGOLA	1198	06/06/2003	OGGI	OMOGENEA
	PIAGGE	2020	01/01/1951	14/07/2014	PIAGGE	3010	17/07/2014	OGGI	OMOGENEA
	SAN LORENZO IN CAMPO	2018	01/01/1951	01/07/2009	SAN LORENZO IN CAMPO	2847	30/11/2009	OGGI	OMOGENEA
					SAN MICHELE AL FIUME	1908	28/05/2015		
	BOLOGNOLA	2034	01/01/1951	03/12/2007	PINTURA DI BOLOGNOLA	1659	27/05/2002		OMOGENEA
					CIVITANOVA MARCHE	2679	03/05/2006		
	FIUME DI FIASTRA	2035			FIASTRA TREBBIO	2831	30/11/2009		OMOGENEA
	GELAGNA ALTA	2048			GELAGNA ALTA	3046	13/05/2015		OMOGENEA
	LORNANO LORO PICENO	1302 2024			MACERATA MONTALBANO LORO PICENO	2742 1302	17/03/2009 19/06/2003		OMOGENEA OMOGENEA
	MORROVALLE	2024			VILLA SAN FILIPPO	3055	20/05/2015		OMOGENEA
CHIENTI	PETRIOLO	2025		01/01/2013	VILLA SAIVITEITIO	3033	20/03/2013	oddi	OWOGENEA
	PIE' DEL SASSO	2050			MONTE CAVALLO	1345	10/10/2003	OGGI	OMOGENEA
	PIEVE BOVIGLIANA	2041			PIEVE BOVIGLIANA	3042	14/03/2015		OMOGENEA
	SANTA MARIA DI PIECA	2031			PIAN DI PIECA	2834	30/11/2009		OMOGENEA
	SANT'ANGELO IN PONTANO	2028			SANT'ANGELO IN PONTANO	3038	14/03/2015		OMOGENEA
	SERRAVALLE DI CHIENTI	2047	01/01/1951	06/07/2009	SERRAVALLE DI CHIENTI	2843	30/11/2009		NON OMOGENEA
	TOLENTINO	2038	01/01/1951	01/07/2009	TOLENTINO	2857	30/11/2009	OGGI	OMOGENEA
CONCA					MONTE GRIMANO TERME	1132	13/11/2002	OGGI	
CONCA					SASSOFELTRIO	1140	12/11/2002	OGGI	
					AGUGLIANO	1220	13/06/2003		
	APIRO	2066			POGGIO SAN VICINO	2848	30/11/2009		OMOGENEA
	CAMPODIEGOLI	2069	01/01/1951	01/01/2008	CAMPODIEGOLI	1397	02/02/2001		OMOGENEA
					CAMPONECCHIO	3050	30/04/2015		
					CAPANNINA POGGIO SAN VICINO	2960		17/07/2014	
	CURRANGNITANIA	2052	04 /04 /4054	04 /04 /2000	COLLEPONI	2654	23/05/2007		NON ONOCENEA
	CUPRAMONTANA	2062	01/01/1951	01/01/2008	CUPRAMONTANA ESANATOCHA CONVENTO	1263	17/10/2003		NON OMOGENEA
ESINO	FABRIANO	2068	01/01/1051	06/07/2000	ESANATOGLIA CONVENTO FABRIANO CENTRO	1405 2739	01/02/2001 18/03/2009		OMOGENEA
	PADRIANO	2008	01/01/1931	00/07/2009	FIUMESINO	3032	18/03/2005		OWOGLINEA
	JESI	2063	01/01/1951	01/01/2008		1213	11/06/2003		OMOGENEA
	MOIE	2067		03/11/2014		3021	25/09/2014		OMOGENEA
	POGGIO SAN ROMUALDO	2064		03/12/2007			., ,		
			, ,	, ,	SAN GIOVANNI	1413	01/02/2001	OGGI	
	SASSOFERRATO	2073	01/01/1951	03/03/2014	SASSOFERRATO	2992	14/03/2014	OGGI	OMOGENEA
					SCHEGGIA	1389	02/02/2001	OGGI	
ETE VIVO	FERMO	2080	01/01/1951	01/01/2009	FERMO	1631	20/06/2003	OGGI	OMOGENEA
LIL VIVO					GROTTAZZOLINA	1623	25/06/2003		
					CA' MAZZASETTE	1056	· ·	18/06/2019	
	CARPEGNA	2091	01/01/1951	24/02/2014		2952	27/02/2014		OMOGENEA
		-			FRONTINO	3087	24/11/2015		
					MONTE CARPEGNA	3230	28/06/2018		
EOGLIA					MONTECCHIO MONTEL APPATE	2820	30/11/2009 05/06/2003		
FOGLIA	PESARO	2088	01/01/1051	07/01/2002	MONTELABBATE PESARO FERROVIA	1064 1124	24/03/2003		OMOGENEA
	PETRIANO	2088		01/01/2002		2639	12/06/2007		OMOGENEA
	SASSOCORVARO	2086		07/01/2008		1156	04/06/2007		NON OMOGENEA
	TAVOLETO	2085		01/07/2009		2846	30/11/2009		OMOGENEA
		2363	01/01/1931	31/0//2003	VILLA FASTIGGI	1227	25/11/2003		S.FIOGLIVEA
FOSSO RUBIANO					MARINA DI MONTEMARCIANO	3035	18/03/2015		
LITORALE TRA					ANGONA RECIONE	1638	47/00/	000:	
ESINO E MUSONE	ANCONA TORRET		04/02/:	04/04/07	ANCONA REGIONE		17/09/2003		01100=
	ANCONA TORRETTE	2099			ANCONA TORRETTE	2944	14/10/2013	UGGI	OMOGENEA
MARANO	SAN MARINO	2728		02/08/1999					
	BADIA TEDALDA	2107		03/01/2005					
MARECCHIA	NOVAFELTRIA	2110		04/02/2008					
	PENNABILI RIMINI	2109 2729		01/01/2007 19/07/1999					
VENTENA	SALUDECIO	2729		01/01/1998					
			, 0-, 1551	,, 1556					
ZONA DI PIANURA									
ZONA DI PIANURA TRA ASO E MENOCCHIA	PEDASO	2096	02/01/1990	01/01/1998					

	ACQUALAGNA	2123	01/01/1951	02/12/2008	ACQUALAGNA	2640	12/06/2007		OMOGENEA
	BARCHI	2138	01/01/1051	01/01/2008	APECCHIO	1189	06/06/2003	UGGI	
	BARGNI	2138		01/01/2008			+		
	BOCCA SERRIOLA	2120			BOCCA SERRIOLA	3030	03/10/2014	OGGI	NON OMOGEN
	CAGLI	2126		01/01/2015		3030	00/10/2011	000.	ittoit oilioozi
					CAGLI CIVITA	3250	12/11/2018	OGGI	
	CALCINELLI	2139	01/01/1951	01/01/2015	LUCREZIA	1072	05/06/2003	OGGI	OMOGENEA
	CANTIANO	2124	01/01/1951	01/04/2014	CANTIANO	2972	13/03/2014	OGGI	OMOGENEA
	FANO	2095	01/01/1951	01/01/2008	METAURILIA	2670	28/11/2006	OGGI	OMOGENEA
	FORESTA DELLA CESANA	2116	01/01/1951	30/04/2007	CESANE FORESTA	2886	23/05/2010	OGGI	OMOGENEA
METAURO	FOSSOMBRONE	2117			FOSSOMBRONE	2667	21/04/2006	22/06/2018	OMOGENEA
	LAMOLI	2130		04/02/2008					
	MERCATELLO	2131	01/01/1951	03/01/2011					
					MONTE NERONE	3270	06/06/2019		
					MONTE PAGANUCCIO	2822	04/06/2009		
		2122			MONTE PETRANO	3262	06/11/2018		
	PIANELLO	2128			PIANELLO DI CAGLI	2984	13/03/2014		OMOGENEA
	PIOBBICO	2119 2132		01/01/2015		3091	19/02/2016		OMOGENEA
	SANT'ANGELO IN VADO	2132	01/01/1951	01/01/2008	S. ANGELO IN VADO	1148 3258	05/06/2003 20/12/2018		OMOGENEA
	URBANIA	2133	01/01/1951	01/04/2014	SERRAVALLE DI CARDA	2968	13/03/2014		OMOGENEA
	URBINO	2135		01/04/2014		1168	25/11/2003		OMOGENEA
	ARCEVIA	2143		31/12/2007		1295	10/06/2003		NON OMOGE
	BARBARA	2145		06/07/2009		2858	30/11/2009		OMOGENEA
	CORINALDO	2144			CORINALDO	2964	13/03/2014		OMOGENEA
MISA	MONTECAROTTO	2141		01/01/2008		1270	17/10/2003		OMOGENEA
	OSTRA	2142	_	01/01/2008					
	OSTRA	2727		01/01/2000					
	SENIGALLIA	2105		06/07/2009		2736	01/07/2008	OGGI	OMOGENEA
	BARACCOLA	2153	01/01/1951	01/01/2008	BARACCOLA	2854	30/11/2009	OGGI	OMOGENEA
	CINGOLI	2149	01/01/1951	01/07/2009	CINGOLI	2837	30/11/2009	OGGI	OMOGENEA
	FILOTTRANO	2147	01/01/1951	01/01/2008	FILOTTRANO	1256	16/10/2003	OGGI	NON OMOGE
	LORETO	2152	01/01/1951	06/07/2009	LORETO	2851	30/11/2009	OGGI	OMOGENEA
MUSONE					MONTEPOLESCO	2730	29/01/2009	OGGI	
	OSIMO	2148	01/01/1951	05/05/2014	PASSATEMPO	3018	24/09/2014	OGGI	NON OMOGE
					OSIMO MONTERAGOLO	2690	01/06/2007		
					ROSTIGHELLO	2814	30/11/2009		
			_		SVARCHI	2817	18/02/2010		
			_		ENDESA	2695	07/12/2006		
					GUALDO	3150	18/07/2017		
NERA			+		MONTE BOVE SUD	1851	01/08/2002		
			+		MONTE PRATA	1816	05/08/2002		
					PONTE TAVOLA USSITA	2698 1651	11/12/2006 28/11/2003		
			+		APPIGNANO	1894	29/06/2001		
	CAMERINO	2167	01/01/1951	01/01/1997		1332	27/11/2003		OMOGENEA
	CANERING	2107	01/01/1551	01/01/1337	METEOMARINA CADSEALAND	2683		03/04/2014	OWOGENEA
	MONTECASSIANO	2162	01/01/1951	01/01/2008		2003	10,10,2000	00/01/2021	
					MONTEFANO	1886	03/07/2001	OGGI	
	PIORACO	2157	01/01/1951	01/01/2014		2988	14/03/2014		OMOGENEA
	RECANATI	2165		01/01/2008		1321			OMOGENEA
POTENZA	SAN SEVERINO MARCHE	2158		31/12/1963			1		
					SAN SEVERINO MARCHE	2633	08/06/2007	OGGI	
					SEFRO	2825	30/11/2009		
	SERRALTA	2159		02/04/2001		1369	03/07/2001	OGGI	OMOGENEA
	SORTI	2166	01/01/1951	06/07/2009	SORTI	2840	30/11/2009	OGGI	OMOGENEA
					SPINDOLI	2828	30/11/2009		
					VILLA POTENZA	2651	07/12/2006	OGGI	
	VILLE SANTA LUCIA	2156		01/01/2008					
	AMANDOLA	2173			AMANDOLA	3083	23/11/2015		NON OMOGE
TENNA	PORTO SANT'ELPIDIO	2098			PORTO SANT'ELPIDIO	1609	16/10/2003		OMOGENEA
	SARNANO	2176			SASSOTETTO	1752	21/05/2002		OMOGENEA
	SERVIGLIANO	2177			SERVIGLIANO	3014	22/09/2014		OMOGENEA
	ACQUASANTA	2203	01/01/1951	01/01/2008	ACQUASANTA TERME PISCINA	2980	03/12/2013		NON OMOGE
					ACQUASANTA TERME	2883		13/12/2013	
	AMATRICE	2186		01/07/2013		2956	02/10/2013		OMOGENEA
	ARQUATA DEL TRONTO	2202			ARQUATA DEL TRONTO	3075	23/11/2015		OMOGENEA
	ASCOLI PICENO	2198			BRECCIAROLO	3017	23/09/2014	OGGI	OMOGENEA
	CAPO DI COLLE	2208		01/01/2008					
	CAPODACQUA	2188			CAPODACQUA	1364	14/04/2006		NON OMOGE
	CROCE DI CASALE	2207		01/01/2015		3079	23/11/2015	OGGI	OMOGENEA
TRONTO	DIGA DI TALVACCHIA	2194	01/01/1967	29/10/2007					
					MOZZANO	1541	15/10/2003	OGGI	
	OFFIDA	2191	01/01/1951	01/01/2003					
	POGGIO CANCELLI	2185	01/01/1951	02/06/2014	POGGIO CANCELLI	2996	03/06/2014	OGGI	OMOGENEA
	POGGIO CANCELLI	2184	02/01/1991	01/01/1998					
					SAN BENEDETTO	1569	15/10/2003	OGGI	
	SAN MARTINO	2210	18/04/1952	03/02/2003					
	SAN VITO	2195		01/01/2008					
						+			
	SPINETOLI	2192	01/01/1951	01/01/2009	SPINETOLI	2650	31/05/2007	loggi	OMOGENEA

4.3.2 STAZIONI TERMOMETRICHE

Nel caso delle stazioni termometriche, a differenza delle precipitazioni, solo in anni più recenti (dopo il 2000) si ha un maggior numero di stazioni attive. Infatti, solo 24 stazioni termometriche hanno iniziato la raccolta dati prima del 2000, con inizio delle rilevazioni dal 1957. Successivamente si sono aggiunte altre stazioni per un totale di 108 stazioni attive.

Di queste la Protezione Civile dopo aver eseguito degli studi, dichiara solo 20 stazioni omogenee, e 2 stazioni non omogenee.

Nel seguito si riporta la *Tabella 4.2* contenente tutte le stazioni presenti nel territorio regionale, in ordine alfabetico di bacino, con suddivisione di stazioni in rete meccanica e di rete in telemisura, con il codice dei diversi sensori, l'anno di inizio e fine registrazioni, e la dichiarazione di omogeneità o meno da parte della Protezione Civile.

Tabella 4.2 - Stazioni termometriche della Regione Marche

BACINO	STAZIONE RM	CODICE SENSORE RM	INIZIO	FINE	STAZIONE RT	CODICE SENSORE RT	INIZIO	FINE	OSSERVAZIONE
					CARASSAI	2978	14/03/2014	OGGI	
ASO					FORCE	2910	01/01/2010	OGGI	
A30	MONTEMONACO	2721	01/01/1957	31/12/2007	MONTEMONACO	1588	26/06/2003	OGGI	OMOGENEA
					SIBILLA	1694	23/07/2002	OGGI	
	FONTE AVELLANA	2710	01/01/1957	31/12/2004	FONTE AVELLANA	2643	24/05/2007	OGGI	OMOGENEA
					MONTE ACUTO	3070	18/09/2015	23/10/2019	
CESANO					MONTE ACUTO	3296	25/10/2019	OGGI	
	PERGOLA	2711	01/01/1957	07/01/2008	PERGOLA	2906	01/01/2010	OGGI	OMOGENEA
					SAN MICHELE AL FIUME	3061	28/05/2015	OGGI	
					CIVITANOVA MARCHE	2681	03/05/2006	OGGI	
					FIASTRA TREBBIO	2832	30/11/2009	OGGI	
ſ					GELAGNA ALTA	3048	13/05/2015	OGGI	
Ī	LORNANO	2719	01/01/1957	30/06/2009	MACERATA MONTALBANO	2743	17/03/2009	OGGI	OMOGENEA
					LORO PICENO	2908	01/01/2010	OGGI	
					MONTE CAVALLO	2648	06/06/2007	OGGI	
CHIENTI					MONTE VALVASSETO	3164	27/10/2017	03/04/2019	
İ					PIAN DI PIECA	2835	30/11/2009	OGGI	
İ					PIEVEBOVIGLIANA	3044	14/03/2015	OGGI	
ľ					PINTURA DI BOLOGNOLA	1661	27/05/2002	OGGI	
ľ					SANT'ANGELO IN PONTANO	3040	14/03/2015	OGGI	
İ					SERRAVALLE DI CHIENTI	2844	30/11/2009	OGGI	
ľ					VILLA SAN FILIPPO	3057	20/05/2015	OGGI	
	APIRO	2714	13/04/1995	02/02/2009					
					CAMPODIEGOLI	1399	10/06/2003	OGGI	
					CAMPONOCECCHIO	3052	30/04/2015	OGGI	
					CAPANNINA POGGIO SAN VICINO	2962	09/05/2013	17/07/2014	
ŀ					COLLEPONI	2655	23/05/2007	OGGI	
ŀ					ESANATOGLIA CONVENTO	1407	19/06/2003	OGGI	
ESINO	FABRIANO	2713	01/01/1957	06/07/2009	FABRIANO CENTRO	2740	18/03/2009	OGGI	OMOGENEA
	JESI	2715	01/01/1957	07/01/2008	JESI	2892	01/01/2010	OGGI	OMOGENEA
i	3231	2,15	01/01/1557	07/01/2000	MOIE	3022	25/09/2014	OGGI	O I I I O CE I I E I
ŀ					MONTE SAN VICINO	3280	08/11/2019	OGGI	
ŀ					SAN GIOVANNI	2894	01/01/2010	OGGI	
ŀ					SASSOFERRATO	2994	14/03/2014	OGGI	
ŀ					SCHEGGIA	1391	10/06/2003	OGGI	
					ETE CALDARETTE	2898	01/01/2010	OGGI	
ETE VIVO		1			FERMO	2940	18/04/2013	OGGI	
·-···-		1			GROTTAZZOLINA	1625	25/06/2003	OGGI	
FIUMARELLA		1			LORETO	2852	30/11/2009	OGGI	
TIOWANLLA		1			BRONZO	2902	04/01/2010	OGGI	
ŀ	CARPEGNA	2702	01/01/1963	24/02/2014	CARPEGNA	2954	27/02/2014	OGGI	NON OMOGENEA
ŀ	CAIN EGIVA	2702	01/01/1505	27/02/2014	FRONTINO	3089	24/11/2015	OGGI	
FOGLIA		†			GALLO	2904	01/01/2010	OGGI	
ŀ		1			MONTE CARPEGNA	3232	28/06/2018	OGGI	
ŀ	PESARO	2703	01/01/1957	31/12/2001	VILLA FASTIGGI	1229	25/11/2003	OGGI	OMOGENEA
LITORALETRA	PESAKU	2/03	01/01/1957	31/12/2001					DIVIOGENEA
LITORALE TRA	ANICONA TORRETTE	2716	0/01/1057	21/12/2012	ANCONA REGIONE	1640	17/09/2003	OGGI	ONACCENEA
ESINO E	ANCONA TORRETTE	2716	0/01/1957	31/12/2013	ANCONA TORRETTE	2948	14/10/2013	OGGI	OMOGENEA
MARECCHIA	NOVAFELTRIA	2701	01/01/1959	04/02/2008		<u> </u>			<u> </u>

					ACQUALAGNA	2741	12/06/2007	OGGI	
					APECCHIO	1191	06/06/2003	OGGI	
	BARGNI	2709	01/01/1957	31/12/2007	PIAGGE	3012	17/07/2014	OGGI	OMOGENEA
					BOCCA SERRIOLA	3028	29/09/2014	OGGI	
					CAGLI CIVITA	3252	12/11/2018	OGGI	
					CANTIANO	2974	13/03/2014	OGGI	
					CESANE FORESTA	2887	20/05/2010	OGGI	
	FANO	2704	01/01/1957	31/12/2007	METAURILIA	2671	28/11/2006	OGGI	OMOGENE
	FOSSOMBRONE	2708	01/01/1968	01/01/2008	FOSSOMBRONE	2668	28/11/2006	OGGI	OMOGENE
METAURO					LUCREZIA	2896	01/01/2010	OGGI	
	MERCATELLO	2705	01/01/1957	03/01/2011	A AGNITE NIEDONIE	2272	05/05/2010	0.00	OMOGENE
					MONTE NERONE	3272	06/06/2019	OGGI	-
					MONTE PAGANUCCIO MONTE PETRANO	2823 3264	04/06/2009	OGGI OGGI	+
					PIANELLO DI CAGLI	2986	06/11/2018 13/03/2014	OGGI	
					PIOBBICO	3093	19/02/2016	OGGI	
	SANT'ANGELO IN VADO	2706	01/01/1968	31/12/2007	S. ANGELO IN VADO	2900	01/01/2010	OGGI	OMOGENE
	SAINT ANGLES IN VADO	2700	01/01/1300	31/12/2007	SERRAVALLE DI CARDA	3260	07/11/2018	OGGI	OWOGENE
					URBANIA	2970	13/03/2014	OGGI	
	URBINO	2707	01/01/1957	31/12/2007	URBINO	1170	25/11/2003	OGGI	OMOGENE
	ARCEVIA	2712	01/01/1959	31/12/2007	ARCEVIA	2646	23/05/2007	OGGI	OMOGENE
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,===	BETTOLELLE	2638	11/06/2007	OGGI	
MISA					COLLE	1272	17/10/2003	OGGI	
					CORINALDO	2966	13/03/2014	OGGI	
					SENIGALLIA	2737	01/07/2008	OGGI	
					BARACCOLA	2855	30/11/2009	OGGI	
	CINGOLI	2717	01/01/1957	01/07/2009	POGGIO SAN VICINO	2849	30/11/2009	OGGI	OMOGENE
					CINGOLI	2838	30/11/2009	OGGI	
MUSONE					MONTE POLESCO	2731	10/07/2008	OGGI	
WIOSCIVE					OSIMO MONTERAGOLO	2692	01/06/2007	OGGI	
					PASSATEMPO	3019	24/09/2014	OGGI	
					ROSTIGHELLO	2815	30/11/2009	OGGI	
					SVARCHI	2818	18/02/2010	OGGI	
					GUALDO	3152	18/07/2017	OGGI	
					MONTE BOVE SUD	1853	01/08/2002	OGGI	
NERA					MONTE PRATA	1818	05/08/2002	OGGI	
					PIAN DI PAO	3167	19/10/2017	23/03/2019	
					PIZZO TRE VESCOVI	1787	07/08/2002	OGGI	
					USSITA APPIGNANO	1653	28/11/2003	OGGI	
	CAMERINO	2718	01/01/1957	31/12/1997	CAMERINO	1896 1334	29/06/2001 27/11/2003	OGGI	OMOGENE
	CAIVIERING	2/10	01/01/1937	31/12/1997	METEOMARINA CADSEALAND	2684	18/10/2006	03/04/2014	OIVIOGENE
					MONTEFANO	1888	03/07/2001	05/04/2014 OGGI	
					PIORACO	2990	14/03/2014	OGGI	
POTENZA					SAN SEVERINO MARCHE	2634	08/06/2007	OGGI	
					SEFRO	2826	30/11/2009	OGGI	
					SERRALTA	1371	03/07/2001	OGGI	
					SORTI	2841	30/11/2009	OGGI	
					SPINDOLI	2829	30/11/2009	OGGI	
					VILLA POTENZA	2652	07/12/2006	OGGI	
					AMANDOLA	3085	23/11/2015	OGGI	
					ISOLA SAN BIAGIO	1723	22/07/2002	OGGI	
TENNA					PORTO S. ELPIDIO	1611	16/10/2003	OGGI	
					SASSOTETTO	1754	24/07/2002	OGGI	
	SERVIGLIANO	2720	01/01/1957	31/12/2014	SERVIGLIANO	3015	22/09/2014	OGGI	OMOGENE
TEC. 1:0					GROTTAMMARE	2676	04/05/2006	OGGI	1
TESINO					RIPATRANSONE	3008	03/06/2014	OGGI	
					S. MARIA GORETTI	2734	30/11/2009	13/11/2017	
					ACQUASANTA TERME	2884	11/11/2011	16/12/2013	1
	ANANTRICE	2724	01/04/4057	01/07/2012	ACQUASANTA TERME PISCINA	2982	17/12/2013	OGGI	OMOCENE
	AMATRICE	2724	01/01/1957	01/07/2013	AMATRICE APOLIATA DEL TRONTO	2958	02/10/2013	OGGI	OMOGENE
	ASCOLI PICENO	2725	01/01/1957	03/11/2014	ARQUATA DEL TRONTO BRECCIAROLO	3077	23/11/2015	OGGI OGGI	OMOGENE
	ASCOLI PICENO	2/23	01/01/195/	03/11/2014	ASTORARA	2938 3284	17/04/2013 11/11/2019	OGGI	OIVIOGENE
					CAPODACQUA	†	1	OGGI	
TRONTO					ILLICE	1366 3081	14/04/2006 23/11/2015	OGGI	
					MOZZANO	1543	15/10/2003	OGGI	
			†		PALMIANO	3288	18/12/2019	OGGI	
	POGGIO CANCELLI	2722	01/01/1989	30/12/2002	POGGIO CANCELLI	2998	10/12/2013	OGGI	NON OMOGE
		2122	01/01/1303	30/12/2002	1 Oddio Chivelli	2330	10/12/2013	0001	SIVIOGE
		2723	01/01/2000	02/06/2014					
	POGGIO CANCELLI POGGIO CANCELLI	2723	01/01/2000	02/06/2014	SAN BENEDETTO	1571	15/10/2003	OGGI	

4.4 CREAZIONE DEL DATABASE

Sulle 64 stazioni pluviometriche e le 20 stazioni termometriche precedentemente illustrate, sono state individuate le stazioni che rispondevano a determinati criteri. Dalla trattazione contenuta nelle tesi "Analisi Dei Valori Estremi Delle Precipitazioni Nella Regione Marche – Veronica Calvaresi", sulle serie storiche dei dati di precipitazione, e "Analisi Dei Valori Estremi Di Temperatura E Dei Modelli Di Previsione Futura Applicazione Alla Regione Marche – Silvia Cesini", sulle serie delle temperature, sono stati applicati i seguenti criteri:

- Periodo di sovrapposizione di almeno 15 dati mensili, in modo da avere una serie statisticamente valida;
- Lunghezza minima della serie pari a 30 anni; la WMO World Meteorological Organization ha stabilito che la finestra temporale di 30 anni costituisce il periodo minimo necessario per eliminare le variazioni tra un anno ed un altro. La lunghezza minima delle serie indicata dalla WMO elimina in automatico tutte le stazioni che sono state introdotte dopo gli anni 2000 dalla Protezione Civile regionale, proprio a causa della non sufficienza di dati.
- Validità dei dati; si è scelto di seguire dei criteri anche riguardanti la validità dei dati, vista la frequente presenza nelle serie di dati mancanti o incerti sia a livello di giorni, che di mesi, che di anni interi. La serie giornaliera è stata considerata attendibile se il numero di dati mancanti era inferiore al 10% del totale della serie. Vista la lunghezza dell'anno di 365 giorni è stato scelto il valore di 36 giorni come dato limite. Quindi un anno è stato considerato valido se all'interno di esso i dati giornalieri mancanti sono stati minori di 36, con più di 36 dati mancanti in un anno, l'intero anno non è stato considerato. La stessa scelta è stata fatta per l'intera serie di N anni, andando a scartare le stazioni che hanno più del 10% di anni mancanti.

Di conseguenza, le stazioni reputate valide per la valutazione degli indici oggetto del presente studio sono:

- 14 stazioni per le serie termometriche (Tab. 4.3, Fig. 4.22), per un totale di 61 anni di osservazione (dal 1957 al 2018),
- 50 stazioni per le serie pluviometriche (Tab. 4.4, Fig. 4.23), per un totale di 68 anni di osservazione (1951-2018)

Inoltre:

- Le temperature sono state trattate in riferimento ai dati giornalieri di temperatura minima e massima, mentre per le precipitazioni il confronto è stato svolto sui totali mensili, per ovviare al fatto che il valore di precipitazione giornaliera è spesso nullo, essendo la pioggia una grandezza discontinua.
- Il file Excel con tutti i valori di cumulata mensile sono stati trovati tramite un codice di calcolo in ambiente Matlab. Tutti i dati sono stati accorpati nei confronti delle due diverse tipologie di strumentazioni di misura (RM, RT), in corrispondenza dell'anno di cambiamento nell'Annale Idrologico.
- I dati mancanti non sono stati eliminati, ma gli è stato attribuito il codice -9999.

Tabella 4.3 - Stazioni termometriche ritenute valide

	STAZIONI									
N°	BACINO	sensore RM	sensore RT							
1	ASO	MONTEMONACO	MONTEMONACO	2721	1588					
2	CESANO	FONTE AVELLANA	FONTE AVELLANA	2710	2643					
3	CESANO	PERGOLA	PERGOLA	2711	2906					
4	CHIENTI	LORNANO	MACERATA MONTALBANO	2719	2743					
5	ESINO	FABRIANO	FABRIANO CENTRO	2713	2740					
6	ESINO	JESI	JESI	2715	2892					
7	LITORALE TRA ESINO E MUSONE	ANCONA TORRETTE	ANCONA TORRETTE	2716	2948					
8	METAURO	FANO	METAURILIA	2704	2671					
9	METAURO	URBINO	URBINO	2707	1170					
10	MISA	ARCEVIA	ARCEVIA	2712	2646					
11	MUSONE	CINGOLI	POGGIO SAN VICINO	2717	2849					
12	TENNA	SERVIGLIANO	SERVIGLIANO	2720	3015					
13	TRONTO	AMATRICE	AMATRICE	2724	2958					
14	TRONTO	ASCOLI PICENO	BRECCIAROLO	2725	2938					

Tabella 4.4 - Stazioni pluviometriche ritenute valide

	STAZIONI								
Ν°	BACINO	STAZIONE RM	STAZIONE RT	sensore RM	sensore RT				
1	ASO	MONTEMONACO	MONTEMONACO	2004	1586				
2	ASO	DIGA DI CARASSAI	CARASSAI	2011	2976				
3	CESANO	FONTE AVELLANA	FONTE AVELLANA	2014	1206				
4	CESANO	PERGOLA	PERGOLA	2016	1198				
5	CESANO	SAN LORENZO IN CAMPO	SAN LORENZO IN CAMPO	2018	2847				
6	CESANO	PIAGGE	PIAGGE	2020	3010				
7	CHIENTI	LORO PICENO	LORO PICENO	2024	1302				
8	CHIENTI	BOLOGNOLA	PINTURA BOLOGNOLA	2034	1659				
9	CHIENTI	FIUME DI FIASTRA	FIASTRA TREBBIO	2035	2831				
10	CHIENTI	TOLENTINO	TOLENTINO	2038	2857				
11	CHIENTI	LORNANO	LORNANO	2039	2742				
12	CHIENTI	PIEVE BOVIGLIANA	PIEVE BOVIGLIANA	2041	3042				
13	ESINO	JESI	JESI	2063	1213				
14	ESINO	APIRO	APIRO	2066	2848				
15	ESINO	MOIE	MOIE	2067	3021				
16	ESINO	FABRIANO	FABRIANO	2068	2739				
17	ESINO	CAMPODIEGOLI	CAMPODIEGOLI	2069	1397				
18	ESINO	SASSOFERRATO	SASSOFERRATO	2073	2992				
19	ETE VIVO	FERMO	FERMO	2080	1631				
20	FOGLIA	TAVOLETO	TAVOLETO	2085	2846				
21	FOGLIA	PETRIANO	GALLO	2086	2639				
22	FOGLIA	CARPEGNA	CARPEGNA	2091	2952				
23	METAURO	FANO	METAURILIA	2095	2670				
24	TENNA	PORTO SANT'ELPIDIO	PORTO SANT'ELPIDIO	2098	1609				
25	RALE TRA ESINO E MUS	ANCONA TORRETTE	ANCONA TORRETTE	2099	2944				

26	MISA	SENIGALLIA	SENIGALLIA	2105	2736
27	METAURO	FORESTA DELLA CESANA	CESANE FORESTA	2116	2886
28	METAURO	FOSSOMBRONE	FOSSOMBRONE	2117	2667
29	METAURO	ACQUALAGNA	ACQUALAGNA	2123	2640
30	METAURO	CANTIANO	CANTIANO	2124	2972
31	METAURO	CAGLI	CAGLI	2126	3250
32	METAURO	PIANELLO	PIANELLO DI CAGLI	2128	2984
33	METAURO	SANT'ANGELO IN VADO	SANT'ANGELO IN VADO	2132	1148
34	METAURO	URBANIA	URBANIA	2133	2968
35	METAURO	URBINO	URBINO	2135	1168
36	METAURO	CALCINELLI	LUCREZIA	2139	1072
37	MISA	MONTECAROTTO	COLLE	2141	1270
38	MISA	CORINALDO	CORINALDO	2144	2964
39	MISA	BARBARA	BARBARA	2145	2858
40	MUSONE	LORETO	LORETO	2152	2851
41	MUSONE	BARACCOLA	BARACCOLA	2153	2854
42	POTENZA	PIORACO	PIORACO	2157	2988
43	POTENZA	RECANATI	RECANATI	2165	1321
44	TENNA	SARNANO	SASSOTETTO	2176	1752
45	TENNA	SERVIGLIANO	SERVIGLIANO	2177	3014
46	TESINO	RIPATRANSONE	RIPATRANSONE	2183	3006
47	TRONTO	AMATRICE	AMATRICE	2186	2956
48	TRONTO	ASCOLI PICENO	BRECCIAROLO	2198	3017
49	TRONTO	ARQUATA DEL TRONTO	ARQUATA DEL TRONTO	2202	3075
50	TRONTO	CROCE DI CASALE	ILLICE	2207	3079

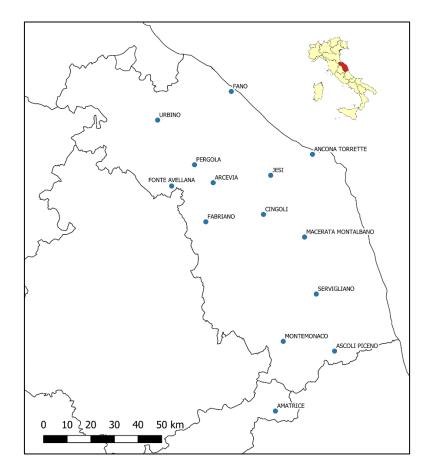


Figura 4.22 – Mappa delle 14 stazioni termometriche considerate

Figura 4.23 - Mappa delle 50 stazioni di pluviometriche considerate

Il database a disposizione per il calcolo degli indici di siccità, quindi, è composto dalle serie di dati ritenute complete e omogene.

Nella trattazione che segue si fa riferimento a tali dati.

La dimensione della serie risulta sufficientemente lunga per fornire una stima "affidabile" dei parametri relativi all'indice e la distribuzione spaziale delle stazioni consentire una copertura piuttosto omogenea della regione Marche.

Si riporta in tabella 4.5 (a) l'esempio dei dati di precipitazione cumulata mensile a disposizione per la stazione di Carpegna, e in tabella 4.6 (b) l'esempio dei dati di temperatura giornaliera a disposizione per la stazione di Montemonaco.

Tabella 4.5 – Esempio serie di dati (a) di precipitazione [mm], (b) di temperatura [°C]

(a)	BACINO	FOGLIA
	STAZIONE	CARPEGNA
	01/01/1951	231
	01/02/1951	176.8
	01/03/1951	202
	01/04/1951	92.4
	01/05/1951	102.2
	01/06/1951	39
	:	:
	01/07/2018	70.4
	01/08/2018	23.6
	01/09/2018	114.8
	01/10/2018	129.8
	01/11/2018	117.6
	01/12/2018	68.6

(b)	MONTEMONACO							
	anno	mese	giorno	t max	t min			
	1957	1	2	6.1	2.1			
	1957	1	3	12.4	5			
	1957	1	4	8.8	2.3			
	1957	1	5	9	0.9			
	1957	1	6	8	0			
	1957	1	7	7	4			
	:	:	:	:	:			
	2019	12	26	9.3	4.1			
	2019	12	27	8.9	3.5			
	2019	12	28	3.5	-0.9			
	2019	12	29	0.8	-1.7			
	2019	12	30	0.9	-1.8			
	2019	12	31	9.1	0.3			

4.4.1 COMPLETAMENTO DELLA SERIE DI DATI DI PRECIPITAZIONE

Con riferimento alle serie di precipitazioni cumulate mensili, seppure la serie venga considerata completa, sono presenti all'interno diversi anni con dati mancanti. Si riportano le stazioni valide allo studio in Tabella 4.6, che risultano essere 50, con i relativi anni non validi.

La maggior parte degli anni mancanti è nel 1989, 1990, 2008, 2009, 2014, 2015, quelli dopo il 2008 corrispondono nella maggior parte dei casi agli anni di cambiamento tra strumentazione meccanica e strumentazione automatica.

Tabella 4.6 - Elenco stazioni valide con corrispondenti anni non validi

2014 1206 FONTE AVELLANA 1980 1990 1997 2005 2006 2007 2016 2016 1198 PERGOLA 1990 1990 2003 1900 2003 2000 2	CODICE	CODICE			·					
2004 1586 MONTEMONACO 1986 1988 1989 1991 1992 1996 2011 2976 106A DI CARASSA 2008 2009 2010 2011 2012 2013 201 2014 1206 FONTE AVELLANA 1980 1990 1997 2005 2006 2007 201 2012 2013 201 2012 2013 201 2012 2013 201 2012 2013 201 2018 2847 SAN LORENZO IN CAMPO 1957 1959 1962 1966 1977 2009 2020 2020 3010 PIAGGE 1968 1970 1994 1995 1996 2014 201 2024 1302 LORO PICENO 1963 1990 2002 2003 2020 2020 2024 1302 LORO PICENO 1963 1990 2002 2003 2020 202	SENSORE	SENSORE	NOME STAZIONE	ANNI NON VALIDI						
2011 2976	RM	RT								
2016 1198 PERGOLA 1980 1990 1997 2005 2006 2007 2016 2018 2847 SAN LORENZO IN CAMPO 1957 1959 1962 1966 1977 2009 2020 20	2004	1586	MONTEMONACO	1986	1988	1989	1991	1992	1996	
2016	2011	2976	DIGA DI CARASSAI	2008	2009	2010	2011	2012	2013	2014
2018 2847 SAN LORENZO IN CAMPO 1967 1959 1962 1966 1977 2009 2002 2003 3010 PIAGGE 1969 1970 1994 1995 1996 2014 2012 2013 2014 2013 2015 2014 2015 2015 2014 2015 2015 2014 2015 2015 2016 2017 2018 2015 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2019 2010 201	2014	1206	FONTE AVELLANA	1980	1990	1997	2005	2006	2007	2012
2020 3010	2016	1198	PERGOLA	1990	2003					
2024 1302 LORO PICENO 1963 1990 2002 2003	2018	2847	SAN LORENZO IN CAMPO	1957	1959	1962	1966	1977	2009	
2034 1659 BOLOGNOLA 1981 1996 1997 2007	2020	3010	PIAGGE	1969	1970	1994	1995	1996	2014	2017
2035 2831	2024	1302	LORO PICENO	1963	1990	2002	2003			
2038 2857 TOLENTINO 1997 2009 2010 2011 2015 2020 2039 2742 LORNANO 2000 2001 2009 2010 2014 2015 2014 2015 2014 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2015 2016 2014 2015 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2018 2019	2034	1659	BOLOGNOLA	1981	1996	1997	2007			
2039 2742	2035	2831	FIUME DI FIASTRA	1990	1997	2009	2010			
2041 3042 PIEVE BOVIGLIANA 1990 1995 1996 2011 2014 2015 2016 2066 2484 APIRO 1990 2009 2010 2	2038	2857	TOLENTINO	1997	2009	2010	2011	2015		
2063 1213 JESI	2039	2742	LORNANO	2000	2001	2009				
2066 2848 APIRO 1990 2009 2010	2041	3042	PIEVE BOVIGLIANA	1990	1995	1996	2011	2014	2015	2016
2067 3021 MOIE 2014 2010 2011 2012 2013 2068 2739 FABRIANO 2009 2010 2011 2012 2013 2012 2013 2069 1397 CAMPODIEGUI 1982 1985 2073 2992 SASSOFERRATO 1986 1987 1990 2014 2018 2085 2846 TAVOLETO 1986 1998 1999 2007 2008 2009 2018 2086 2639 PETRIANO 1965 1990 2014 2014 2017 2018 2019 2	2063	1213	JESI							
2068 2739	2066	2848	APIRO	1990	2009	2010				
2069 1397 CAMPODIEGOLI 1982 1985 1990 2014 2017 2018 2020	2067	3021	MOIE	2014						
2073 2992 SASSOFERRATO 1986 1987 1990 2014	2068	2739	FABRIANO	2009	2010	2011	2012	2013		
2080	2069	1397	CAMPODIEGOLI	1982	1985					
2085 2846	2073	2992	SASSOFERRATO	1986	1987	1990	2014			
2086 2639 PETRIANO 1965 1990 2014 2055 2670 FANO 1980 2008 2015 2016 2017 2018 2098 1609 PORTO SANT'ELPIDIO 1963 1965 1966 1991 2018 2018 2015 2736 SENIGALLIA 1981 1990 1996 2008 2009 2010 2016 2017 2018 2016 2017 2018 2018 2018 2009 2014 2018 2018 2018 2009 2010 2016 2016 2017 2018	2080	1631	FERMO	1963						
2091 2952	2085	2846	TAVOLETO	1986	1998	1999	2007	2008	2009	2011
2091 2952	2086	2639	PETRIANO	1965	1990					
2095 2670		2952	CARPEGNA		1990	2014				
2098							2016	2017		
2099 2944 ANCONA TORRETTE 1952 1982			PORTO SANT'ELPIDIO					-		
2105 2736 SENIGALLIA 1981 1990 1996 2008 2009 2010										
2117 2667	2105	2736	SENIGALLIA	1981		1996	2008	2009	2010	
2117 2667	2116	2886	FORESTA DELLA CESANA	1977	1985	1990	2007	2008	2009	2010
2124 2972			FOSSOMBRONE			2018				
2124 2972	2123	2640	ACQUALAGNA	1990	1997	2006	2008			
2126 3250 CAGLI 1990 2005 2015 2016 2017 2018 2128 2984 PIANELLO 2000 2004 2005 2014 2132 1148 SANT'ANGELO IN VADO 2011 2133 2968 URBANIA 1951 1983 1990 1991 2014 2017 201 2135 1168 URBINO 1957 2139 1072 CALCINELLI 1990 2141 1270 MONTECAROTTO 1990 2008 2009 2144 2964 CORINALDO 1990 2145 2858 BARBARA 1978 1990 2009 2013 2152 2851 LORETO 1990 2009 2153 2854 BARACCOLA 1990 2009 2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2183 3006 RIPATRANSONE 1987 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014 2008 2009 2013 2004 2005 2014 2018 2019 2010		2972	CANTIANO	2014						
2128 2984 PIANELLO 2000 2004 2005 2014 2132 1148 SANT'ANGELO IN VADO 2011 2133 2968 URBANIA 1951 1983 1990 1991 2014 2017 201 2135 1168 URBINO 1957 <td></td> <td>3250</td> <td>CAGLI</td> <td>1990</td> <td>2005</td> <td>2015</td> <td>2016</td> <td>2017</td> <td>2018</td> <td></td>		3250	CAGLI	1990	2005	2015	2016	2017	2018	
2133 2968 URBANIA 1951 1983 1990 1991 2014 2017 201 2135 1168 URBINO 1957	2128	2984	PIANELLO	2000	2004	2005	2014			
2135 1168 URBINO 1957 2139 1072 CALCINELLI 1990 2141 1270 MONTECAROTTO 1990 2008 2009 2144 2964 CORINALDO 1990 2009 2013 2145 2858 BARBARA 1978 1990 2009 2013 2152 2851 LORETO 1990 2009 2009 2013 2153 2854 BARACCOLA 1990 2008 2009 2014 2157 2988 PIORACO 1951 1953 2014 2003 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2183 3006 RIPATRANSONE 1987 1990 2014 2016 2016 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991<	2132	1148	SANT'ANGELO IN VADO	2011						
2139 1072 CALCINELLI 1990 2008 2009 2141 1270 MONTECAROTTO 1990 2008 2009 2144 2964 CORINALDO 1990 2009 2013 2145 2858 BARBARA 1978 1990 2009 2013 2152 2851 LORETO 1990 2009 2009 2153 2854 BARACCOLA 1990 2008 2009 2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014	2133	2968	URBANIA	1951	1983	1990	1991	2014	2017	2018
2141 1270 MONTECAROTTO 1990 2008 2009 2144 2964 CORINALDO 1990 2009 2013 2145 2858 BARBARA 1978 1990 2009 2013 2152 2851 LORETO 1990 2009 2009 2013 2153 2854 BARACCOLA 1990 2008 2009 2014 2157 2988 PIORACO 1951 1953 2014 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004<	2135	1168	URBINO	1957						
2141 1270 MONTECAROTTO 1990 2008 2009 2144 2964 CORINALDO 1990 2009 2013 2145 2858 BARBARA 1978 1990 2009 2013 2152 2851 LORETO 1990 2009 2009 2013 2153 2854 BARACCOLA 1990 2008 2009 2014 2157 2988 PIORACO 1951 1953 2014 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004<				1990						
2145 2858 BARBARA 1978 1990 2009 2013 2152 2851 LORETO 1990 2009 2009 2153 2854 BARACCOLA 1990 2008 2009 2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 1997 2013 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014	2141	1270	MONTECAROTTO	1990	2008	2009				
2152 2851 LORETO 1990 2009 2153 2854 BARACCOLA 1990 2008 2009 2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014	2144	2964	CORINALDO	1990						
2153 2854 BARACCOLA 1990 2008 2009 2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014	2145	2858	BARBARA	1978	1990	2009	2013			
2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014	2152	2851	LORETO	1990	2009					
2157 2988 PIORACO 1951 1953 2014 2165 1321 RECANATI 1970 1978 1979 1981 1982 2003 2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014			BARACCOLA			2009				
2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014	2157	2988	PIORACO	1951	1953	2014				
2176 1752 SARNANO 1952 1974 1990 1991 1992 2008 2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014			RECANATI			1979	1981	1982	2003	
2177 3014 SERVIGLIANO 1963 1974 1997 2015 2016 2183 3006 RIPATRANSONE 1987 1990 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014				1952		1990			2008	
2183 3006 RIPATRANSONE 1987 1990 2014 2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014				1963						
2186 2956 AMATRICE 1975 1983 1990 1996 1997 2013 2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014										
2198 3017 ASCOLI PICENO 1991 2003 2004 2005 2014				-			1996	1997	2013	
								-	1990	2015
2207 3079 CROCE DI CASALE 1983 1984 1990 2015										

Nella presente trattazione è stato perciò ritenuto opportuno trovare un metodo per rimpiazzare i dati mancanti e avere quindi una serie completa, con nessun dato mensile mancante nell'intervallo temporale 1951-2018.

4.4.1.1 METODO DELLA REGRESSIONE LINEARE CON STAZIONI VICINE

In accordo con le pubblicazioni *Spatial Variability of Drought: An Analysis of the SPI in Sicily* (B.Bonaccorso et al., 2003) e *Investigating drought in Apulia region, Italy using SPI and RDI* (G. Marini et al., 2018) i dati mancanti nelle registrazioni originali sono stati stimati utilizzando la regressione lineare con i dati della stazione vicina.

4.4.1.1.1 REGRESSIONE LINEARE SEMPLICE

L'analisi di regressione lineare è una procedura statistica consolidata utilizzata per prevedere il valore di una variabile in base al valore di un'altra variabile. La variabile che si desidera prevedere viene chiamata variabile dipendente. La variabile che si utilizza per prevedere il valore dell'altra variabile si chiama variabile indipendente.

Questa forma di analisi stima i coefficienti di un'equazione lineare e implica una o più variabili indipendenti che meglio predicono il valore della variabile dipendente. La regressione lineare corrisponde a una linea retta o a una superficie che minimizza le discrepanze tra i valori di output previsti ed effettivi.

Il modello di regressione lineare è:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

dove:

i, varia tra le osservazioni $i = 1, \dots, n$;

Y_i è la variabile dipendente;

X_i è la variabile indipendente o regressore;

 $\beta_0 + \beta_1 X_i$ è la retta di regressione o funzione di regressione della popolazione;

 β_0 è l'intercetta della retta di regressione della popolazione;

 β_1 è il coefficiente angolare della retta di regressione della popolazione;

u_i è l'errore statistico.

È possibile eseguire la regressione lineare in Microsoft Excel, in quanto i modelli di regressione lineare sono relativamente semplici e forniscono una formula matematica di facile interpretazione.

Il grafico a dispersione permette di scoprire rapidamente se esiste una relazione lineare tra quelle due variabili: se i punti si distribuiscono prevalentemente attorno alla retta di regressione generata, si ha una buona relazione tra le due variabili.

Il parametro R^2 , o coefficiente di determinazione, è una misura della bontà dell'adattamento della regressione lineare stimata ai dati osservati, ed è un numero compreso tra 0 e 1. $L'R^2$ non misura se effettivamente sussiste una relazione (di qualsiasi tipo) tra le Y_i e i regressori, ma soltanto fino a che punto un modello lineare consente di approssimare la realtà dei dati osservati.

4.4.1.1.2 APPLICAZIONE

I dati mancanti nelle registrazioni di precipitazione originali sono stati stimati applicando quindi la regressione lineare ai dati mensili di precipitazione osservati in una stazione che presenta diversi dati mancanti, con una o più stazioni vicine.

La valutazione è stata fatta scegliendo 9 stazioni come rappresentative delle 50, in modo da poter poi considerare il risultato valido per tutte le altre. Le stazioni sono state scelte in modo da avere una distribuzione ripartita secondo il criterio nord, centro, sud della regione e costa, collina, montagna. Sono state quindi scelte le stazioni in tabella 4.7.

Tabella 4.7 – Stazioni di riferimento per la regressione lineare con stazione vicina

CRITERIO MONTAGNA		COLLINA	COSTA	
NORD	PIANELLO	FOSSOMBRONE	FANO	
CENTRO	FABRIANO	MOIE	LORETO	
SUD	MONTEMONACO	SERVIGLIANO	RIPATRANSONE	

La regressione è stata effettuata con le stazioni vicine indicate nella tabella 4.8.

Tabella 4.8 – Valori di R² per la regressione con stazioni vicine

VARIABILE DIPENDENTE	REGRESSORE	R²
PIANELLO	CANTIANO	0.9602
FABRIANO	CAMPODIEGOLI	0.9254
MONTEMONACO	BOLOGNOLA	0.9166
FOSSOMBRONE	FORESTA DELLA CESANA	0.9601
MOIE	JESI	0.9289
SERVIGLIANO	LORO PICENO	0.9194
FANO	SENIGALLIA	0.9110
LORETO	RECANATI	0.9259
RIPATRANSONE	DIGA DI CARASSAI	0.9363

Si riporta di seguito la regressione lineare della stazione di Fabriano con Campodiegoli.

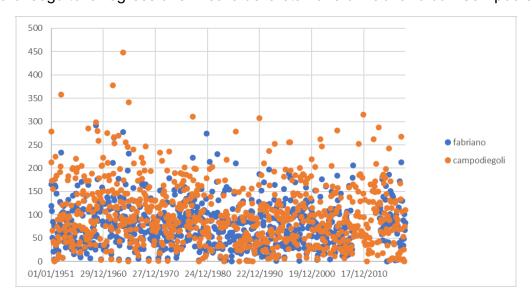


Figura 4.24 – Distribuzione dei valori di precipitazione delle due stazioni

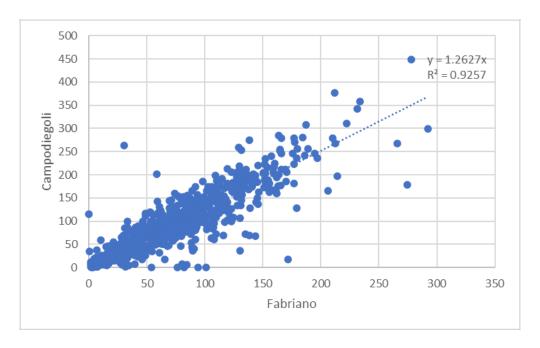


Figura 4.25 – regressione lineare di Fabriano con Campodiegoli

Quindi, se il confronto presenta un alto coefficiente di correlazione R² (vicino ad 1), i dati della stazione utilizzata come regressore, possono essere utilizzati per rimpiazzare i dati mancanti nella stazione di riferimento.

Nelle stazioni prese in esame si nota dalla tabella 4.8 che i valori di R² sono compresi tra 0.91 e 0.96, per cui le due serie sono ben assimilabili, e i dati possono essere rimpiazzati con i valori delle stazioni vicine.

4.4.1.2 METODO DELLA REGRESSIONE CON I DATI COPERNICUS

Come alternativa al metodo della regressione lineare con la stazione vicina, è stata valutata la possibilità di ricorrere ai dati di precipitazione del programma COPERNICUS, per valutare se questi fossero maggiormente affini alla serie delle registrazioni originali.

4.4.1.2.1 ESTRAZIONE DATI

Effettuando l'accesso alla piattaforma web E-OBS, è stato fatto il download dei dati di precipitazione giornaliera denominati "RR". Questi dati sono forniti in formato netCDF-4 come un set di dati di insieme (ensemble data) ed è disponibile su una griglia regolare di 0,1 e 0,25 gradi.

Per la lettura di questa tipologia di file è stato utilizzato il software Panoply sviluppato dalla NASA (National Aeronautics and Space Administration).

Una volta scaricato il programma è sufficiente aprire il file e vengono mostrate le variabili contenute (Fig. 4.26), e con un doppio click sulla variabile della precipitazione "rr" (rainfall), in funzione del tempo si apre una nuova pagina che contiene un grafico (Fig. 4.27) e una matrice di valori di precipitazione, in funzione del tempo, definito dall'asse x a partire dal 01/01/1951. È sufficiente selezionare le coordinate corrispondenti alla stazione di cui si vogliono estrarre i dati e copiare la riga dei valori.

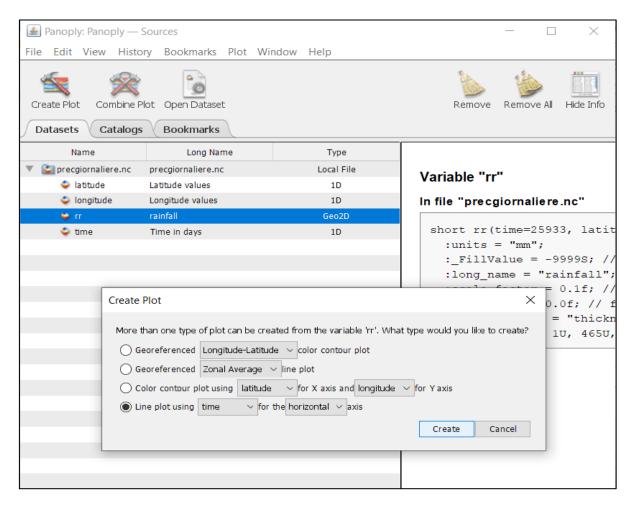


Figura 4.26 – Schermata Panoply (apertura)

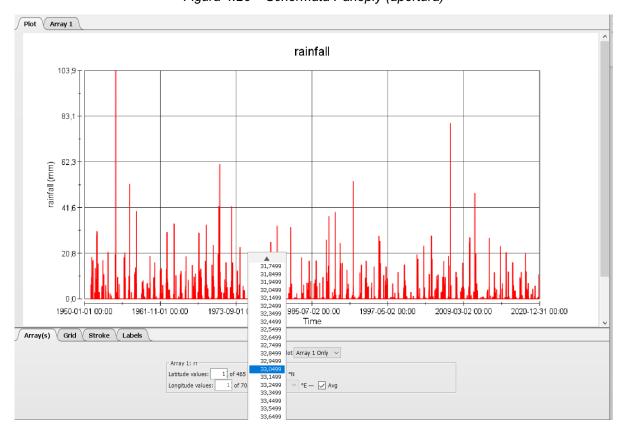


Figura 4.27 – Schermata Panoply (selezione coordinate)

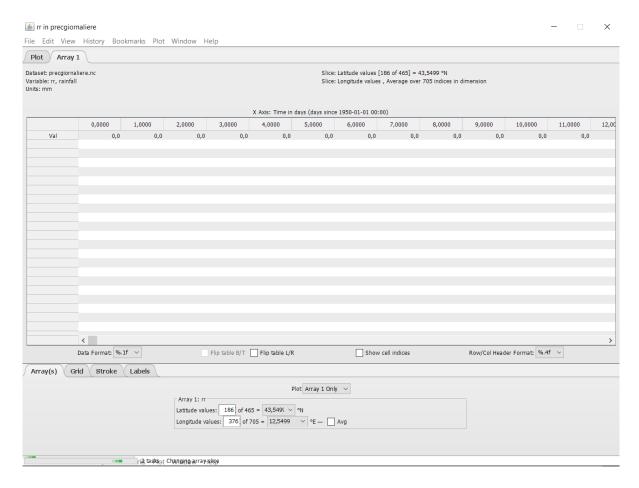


Figura 4.28 - Schermata Panoply (valori forniti con la variabile tempo)

Questi valori di precipitazione giornaliera sono stati quindi copiati in un file di testo e tramite un codice generato con il programma Matlab si sono calcolate le precipitazioni cumulate mensili.

4.4.1.2.2 APPLICAZIONE

I dati così ottenuti sono stati quindi confrontati tramite regressione lineare per le 9 stazioni precedenti, al fine di operare un confronto. In questo caso quindi il regressore è composto dai dati ensemble del programma COPERNICUS.

Tahella 49 -	Valori di R ² per la	regressione con	i dati COPERNICUS
i abciia 1 .5 -	valon and porta	104103310110 COII	I dali OOI LINNOOO

VARIABILE DIPENDENTE	R²
PIANELLO	0.9742
FABRIANO	0.9747
MONTEMONACO	0.9572
FOSSOMBRONE	0.9655
MOIE	0.9601
SERVIGLIANO	0.9645
FANO	0.9564
LORETO	0.9720
RIPATRANSONE	0.9578

I valori di R² sono riportati nella tabella 4.9, dalla quale si nota per tutte le stazioni in esame un aumento del valore di R². Ciò significa che le serie ricavate dal programma COPERNICUS sono maggiormente affini alle serie di dati registrate dalle stazioni nella regione Marche.

4.4.1.2.3 STATISTICA DELLE SERIE

Con lo scopo di confermare la scelta, è stata anche realizzata una semplice analisi statistica confrontando, sempre per le suddette nove stazioni, tra quelle ritenute omogenee e complete, i valori medi della serie dei dati registrati nella stazione e la serie dei dati estratti dal programma COPERNICUS.

STAZIONE	MEDIA DEI VALORI		DEV. STANDARD VALORI		
	DATI STAZIONE	DATI COPERNICUS	DATI STAZIONE	DATI COPERNICUS	
PIANELLO	102.736	97.609	67.940	62.710	
FABRIANO	77.541	77.894	47.959	48.609	
MONTEMONACO	98.537	86.274	60.593	54.062	
FOSSOMBRONE	77.728	73.522	50.860	47.651	
MOIE	69.012	67.305	46.225	43.671	
SERVIGLIANO	69.774	70.042	44.823	45.744	
FANO	63.060	66.361	43.502	45.202	
LORETO	62.730	60.927	44.035	42.093	
RIPATRANSONE	67.845	61.199	51.021	42.551	

Tabella 4.10 – Media e deviazione standard tra le due serie

Come si evince dalla Tabella 4.10, le differenze tra le due serie sono minime, questo conferma ulteriormente la scelta di prendere i dati mancanti dal COPERNICUS.

Si è scelto quindi di rimpiazzare i valori di precipitazione degli anni mancanti con i valori estratti dai file in formato netCDF-4 del programma COPERNICUS, per tutte le 50 stazioni pluviometriche in analisi, generando il database di partenza definitivo per il calcolo degli indici climatici di siccità SPI e RDI.

CAPITOLO 5

5 CALCOLO E APPLICAZIONE AL CASO STUDIO

5.1 DATI

Come ampiamente sviluppato nel capitolo precedente, i dati a disposizione sono:

- Serie di dati di precipitazione mensili dal 1951 al 2018, per 50 stazioni definite omogenee e complete, con i dati mancanti rimpiazzati dai dati del COPERNICUS;
- Serie di dati di temperatura minime e massime giornaliere dal 1957 al 2018, per 14 stazioni definite omogenee e complete.

5.2 SPI

5.2.1 FOGLIO ANABASI

L'ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale, rende disponibile il foglio di calcolo ANABASI, acronimo di "Analisi statistica di base delle serie storiche di dati idrologici", che costituisce lo strumento operativo sviluppato per effettuare le analisi statistiche descritte nelle "Linee Guida per l'analisi e l'elaborazione di base delle serie storiche di dati idrologici".

La procedura ANABASI utilizza una serie di 'macro' implementate nel software *Microsoft Excel 2007* mediante il linguaggio *Visual Basic for Application* (VBA), di cui lo stesso è dotato, ed è organizzata secondo la sua nota struttura a 'fogli di lavoro'.

La scelta di utilizzare fogli elettronici per implementare le procedure proposte nelle Linee Guida è stata dettata principalmente dalle seguenti ragioni di ordine pratico:

- generale facilità di utilizzo e automazione;
- familiarità degli operatori con questa tipologia di software;
- estrema diffusione del software presso gli operatori di settore;
- possibilità di sfruttare le capacità grafiche e di calcolo già presenti nel software.

5.2.1.1 STRUTTURA DI ANABASI

Il file Anabasi.xlsm è strutturato in fogli elettronici ciascuno dei quali viene indicato con un nome compreso tra i simboli <...> riportato sulla linguetta posta in basso in ciascun foglio. Per rendere più immediata la caratterizzazione e la scelta di ciascun foglio elettronico, le linguette sono colorate in maniera diversa a seconda della tipologia di foglio:

- linguetta rossa: fogli principali < Home > e < Input > ;
- linguetta verde: fogli dei risultati;

- linguetta azzurra: fogli di supporto;
- linguetta bianca: fogli dummy (o anche temporanei).

I fogli di supporto sono accessibili con il click sulla linguetta corrispondente ovvero dai tasti posti sulla sinistra nella barra dei comandi del foglio <*Input*>. I fogli dei risultati sono invece accessibili con il click sulla linguetta corrispondente.

Mediante il foglio < Input > (Fig. 5.1), si possono eseguire i seguenti comandi:

- si inseriscono i dati e l'anagrafica della serie storica che si vuole analizzare;
- si scelgono le elaborazioni da effettuare;
- si accede a tutti gli altri fogli.

Questo foglio è strutturato in 6 sezioni e una barra di strumenti:

Anagrafica e metadato, in cui vanno inserite le informazioni principali della serie storica. Il contenuto del campo "Titolo", color arancio, sarà utilizzato automaticamente come titolo in tutti i grafici delle elaborazioni e in tutti i fogli.

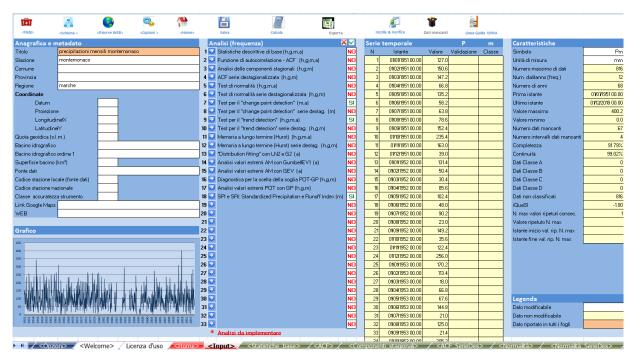


Figura 5.1 - Foglio < Input>

Analisi (frequenza), in questa sezione tramite il campo SI/NO con list box si scelgono le analisi e le elaborazioni da effettuare. Per ciascuna delle analisi è indicata in parentesi la frequenza della serie per la quale l'analisi si può effettuare:

- a = annuale:
- *m* = *mensile*:
- g = giornaliera;
- h = oraria.

Serie temporale, in questa sezione viene inserita la serie storica da analizzare. È costituita da 5 campi:

- N = numero progressivo;
- Istante = istante temporale;
- Valore = valore della grandezza idrologica;
- Validazione = codice di validazione;
- Qualità = codice di qualità.

In alto accanto al nome della sezione, è riportato il simbolo letterale della grandezza idrologica analizzata che si sceglie all'atto dell'incollaggio:

- P = precipitazione;
- Q = portata;
- T = temperatura;
- H = altezza idrometrica;
- V = vento;
- Z = generica.

Nonché la frequenza della serie (calcolata automaticamente all'atto dell'incollaggio):

- a = annuale:
- m = mensile;
- g = giornaliera;
- h = oraria.

Caratteristiche, in questa sezione sono riportate le principali caratteristiche quantitative della serie che sono calcolate automaticamente all'atto dell'incollaggio.

Grafico, in questa sezione viene riportato, all'atto dell'incollaggio, il grafico temporale della serie. Ciò permette di averne una immediata visualizzazione del corretto inserimento della serie temporale.

Legenda, qui viene riportata la legenda del foglio <*Input*>. I campi colorati in giallo non sono modificabili, mentre lo sono quelli in bianco e arancione. Il campo in arancione, come detto, è riportato in tutti i fogli dei risultati.

Barra degli strumenti, permette di accedere ai fogli di supporto, e i tasti a destra hanno la funzione di effettuare operazioni (Fig. 5.2).

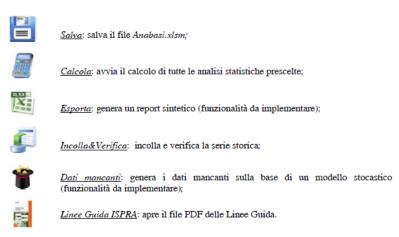


Figura 5.2 – Barra degli strumenti

Durante l'esecuzione delle elaborazioni statistiche, che può richiedere anche molto tempo in funzione della lunghezza della serie, sulla barra di stato di Excel, in basso a sinistra, è

riportato il nome dell'analisi che si sta effettuando, in maniera che si possa seguire lo svolgimento delle elaborazioni.

5.2.1.2 - FORMATO DEI DATI

Nella macro di Anabasi il dato idrologico è costituito da 4 informazioni di cui le prime 2 obbligatorie e le altre 2 opzionali:

1. Istante temporale

L'istante temporale deve essere fornito, in generale, nel formato data di Excel contenente anno, mese, giorno, ora e minuti:

gg/mm/aaaa hh.mm

Tuttavia, per i dati ad aggregazione almeno giornaliera non è necessario il formato riportante l'ora e i minuti.

In particolare, il valore del dato idrologico si attribuisce per i dati annuali al primo giorno dell'anno e all'ora 0.00, per i dai mensili al primo giorno del mese e all'ora 0.00, per i dati giornalieri all'ora 0.00 e così via.

La determinazione dell'intervallo temporale della serie dei dati idrologici è effettuata automaticamente sulla base degli istanti temporali tra i primi due dati della serie storica.

2. Valore della grandezza

Il valore della grandezza deve essere un valore numerico che esprime la grandezza nell'unità di misura opportuna. Il valore deve essere compreso nell'intervallo di convalida definito nel foglio *Opzioni>*.

Il dato mancante viene definito mediante un codice numerico da assegnare nel foglio < Opzioni>. Generalmente esso viene posto pari a -9999.

3. Qualità

La qualità del dato è un codice alfanumerico che riprende, in generale, la codifica del dato presente negli Annali Idrologici del Servizio Idrografico e in particolare per la precipitazione. Si possono indicare con:

- 0 = valido:
- M = mancante;
- I = incerto;
- X = interpolato;
- Z = cumulato;
- G = gocce;
- N = neve.

Nel foglio *Opzioni* è possibile definire i diversi codici. In questa versione di ANABASI non viene effettuata nessuna elaborazione sui codici di qualità.

4. Classe

La classe del dato è invece un codice alfanumerico che assume i valori A, B, C, e D e viene utilizzato per definire la qualità complessiva della serie. Esso è funzione della tipologia dello strumento e delle modalità di rilevamento della grandezza:

- A : dato rilevato con strumentazione di accuratezza elevata e nelle condizioni ottimali;
- B : dato rilevato con strumentazione di accuratezza media;
- C : dato rilevato con strumentazione di accuratezza bassa o dedotto indirettamente da un'altra grandezza mediante una relazione matematica;
- D: dato mancante o ricostruito mediante modellazione matematica.

5.2.1.3 INSERIMENTO DEI DATI

I dati sono inseriti mediante una semplice operazione di "Copia & Incolla" da una serie proveniente da un altro file di Excel. Qualora si dispone di una serie storica all'interno di un altro programma spreadsheet ovvero in DBMS è necessario prima incollare in un qualunque foglio di Excel la serie copiata da un'altra origine e poi copiare nuovamente la serie degli appunti e quindi effettuare il Copia&Incolla dal tasto <Incolla&Verifica> degli strumenti di ANABASI.

Le colonne contenenti la serie devono essere selezionate e copiate senza intestazione.

Devono obbligatoriamente essere copiate le prime due colonne e cioè quelle relative al campo 'Istante' e al campo 'Valore' della serie nell'ordine in cui si trovano nel foglio <Input>. Le altre due colonne, quelle relative al campo 'Qualità' e al campo 'Classe' possono essere copiate opzionalmente. La copia va fatta in un'unica selezione. Non è possibile copiare prima 2 colonne e poi aggiungere le altre due.

Dopo aver selezionato e copiato le colonne, si deve tornare direttamente al foglio <Input> di ANABASI e premere il tasto <Incolla&Verifica>. Se prima di incollare la serie si effettua un'altra operazione, Excel perde la memoria degli appunti e si deve, quindi, ricopiare la selezione. Qualora si prema il tasto <Incolla&Verifica> senza che negli appunti vi sia una serie viene generato il messaggio "Negli appunti non c'è una serie da incollare". Quando una serie presenta dati mancanti bisogna fare molta attenzione che il codice che identifica il dato mancante nella serie che si vuol analizzare sia quello definito nel foglio <Opzioni>. In caso contrario il sistema legge il valore come un dato. Il dato mancante viene visualizzato nella sezione Grafico con intervalli vuoti. Ciò significa che il dato mancante è stato inserito correttamente. Una volta incollata, la serie non è modificabile. Le modifiche vanno effettuate in un altro foglio di Excel e quindi la serie va poi copiata e incollata nuovamente con il comando <Incolla&Verifica>. In questo modo la serie è nuovamente sottoposta alle verifiche di conformità e di convalida.

5.2.1.4 TIPOLOGIA DELLA SERIE

All'atto dell'incollaggio della serie compare una finestra, come quella di Fig.5.3, dove viene richiesto di selezionare la tipologia della serie. Tale operazione è effettuata essenzialmente per definire la convalida secondo gli intervalli specifici per ciascuna tipologia di grandezza idrologica e indicati nel foglio *Opzioni*>.

Figura 5.3 - Finestra per la scelta della tipologia della grandezza idrologica da analizzare

5.2.1.5 VERIFICHE DEI DATI

All'atto dell'incollaggio la serie viene sottoposta ad alcune verifiche al fine di ridurre gli errori nell'elaborazione. Essa sarà definitivamente incollata nel foglio <Input> e pronta per essere analizzata soltanto se tutte le verifiche sono soddisfatte. Se anche solo una delle verifiche non è soddisfatta essa non sarà incollata. Le verifiche cui viene sottoposta la serie, visibili anche in Fig. 5.4 sono:

- Verifica delle date: viene verificato che il campo 'Istante' sia costituito da valori data;
- Verifica valori: viene verificato che il campo 'Valore' sia costituito da valori numerici;
- Verifica numero dei dati: viene verificato che il numero dei dati siano quello atteso
- Verifica date ripetute: viene verificato che non vi siano date ripetute;
- Verifica intervalli temporali diversi: viene verificato che i dati siano campionati ad intervalli regolari;
- Verifica valori ripetuti: viene verificato che non vi siano un numero di dati ripetuto maggiore di quello indicato nel foglio <Opzioni>;
- Convalida dei valori: viene verificato che i valori della serie ricadano all'interno dell'intervallo di convalida;
- Verifica lunghezza: viene verificato che i dati abbiano una lunghezza di almeno 5 anni di dati validi per qualunque frequenza. Si esclude la possibilità di effettuare statistiche idrologiche con un numero di dati validi corrispondenti a cinque anni.

Figura 5.4 - Verifiche cui è sottoposta la serie storica prima di essere incollata

Quando la serie non supera tutte le verifiche non viene incollata, viene mostrata una finestra con l'indicazione di quali siano le verifiche non superate, a chiusura della quale viene generato un messaggio di errore.

Superate le verifiche e prima del definitivo incollaggio della serie viene richiesto di cancellare o meno l'anagrafica della serie. Tale opzione è stata prevista tenuto conto che per una serie costituita soltanto da una diversa aggregazione del dato già presente nel foglio <Input> l'anagrafica rimane la stessa. Diversamente quando si incolla una serie relativa ad una nuova grandezza o a un'altra stazione di rilevamento, l'anagrafica va cancellata e inserita nuovamente.

5.2.1.6 SCELTA DELLE ELABORAZIONI DA ESEGUIRE

Incollata la serie, dopo aver superato tutte le verifiche, si possono modificare i dati nella sezione "Anagrafica e Metadato" del foglio <*Input*>.

Nella sezione "Analisi (frequenza)" sono invece elencate le elaborazioni che possono essere effettuate sulla serie inserita nella sezione "Serie temporale". Per ciascuna elaborazione è indicata tra parentesi l'aggregazione per la quale è possibile effettuare l'analisi. Non tutte le analisi possono essere effettuate per tutti gli intervalli di aggregazione. La scelta dell'analisi da sviluppare è effettuata mediante la "List Box" contenente SI e NO.

Se si seleziona un'elaborazione per un'aggregazione temporale non congruente, questa viene segnalata all'atto dell'elaborazione e quindi non effettuata.

5.2.2 CALCOLO INDICE SPI

Come illustrato precedentemente, vengono incollate e verificate le serie di dati di precipitazione delle 50 stazioni complete (definite nel Capitolo 4). Il foglio ANABASI utilizza i valori della precipitazione cumulata mensile e calcola i dati della portata media mensili elaborati (cumulati o mediati) su diversi periodi temporali 1, 2, 3, 6, 9, 12, 24 mesi. Le variabili da analizzare devono avere valori non negativi.

Successivamente calcola gli indici SPI – Standardized Precipitation Index, che vengono visualizzati sia sotto forma di valore numerico (Fig. 5.6) che graficati (Fig. 5.5).

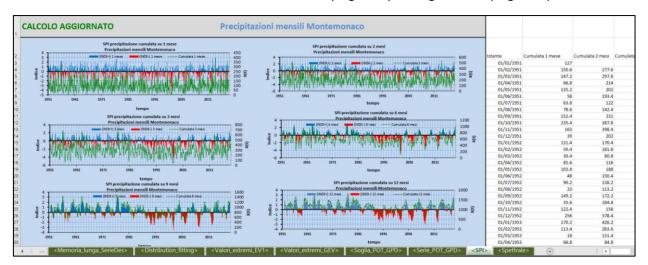


Figura 5.5 – Grafici SPI dal foglio di calcolo, stazione di Montemonaco.

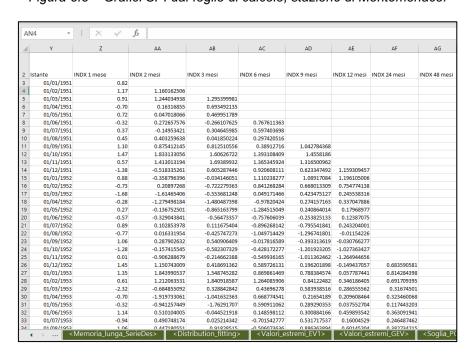


Figura 5.6 – Stralcio di calcolo indice SPI, stazione di Montemonaco.

Il foglio crea dei grafici con l'andamento degli indici nel tempo alle diverse scale temporali.

Si riporta in Fig. 5.7, quello dell'indice a 3 mesi per la stazione di Montemonaco, sebbene gli indici SPI siano stati calcolati per tutte le 50 stazioni.

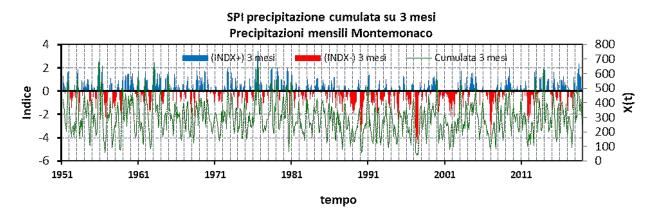


Figura 5.7 - SPI Montemonaco 3 mesi dal 1951 al 2018

Come si può notare dal grafico, l'indice a scale temporali minori, in questo caso su 3 mesi, oscilla in maniera frequente intorno allo zero, e non si riescono a definire bene gli eventi siccitosi consecutivi considerando questa scala temporale, ad esempio se si valuta l'indice di un anno intero, difficilmente esso rimane ininterrottamente minore di -1.

In figura 5.8, si nota invece l'indice SPI a 24 mesi. Come si nota, all'aumentare del periodo di riferimento, il valore cumulativo delle precipitazioni da un mese all'altro subisce variazioni sempre meno significative. In questo caso gli SPI tendono a gravitare intorno allo zero a meno che un periodo di forte umidità o siccità si verifichi, e a questi livelli, l'indice è di solito collegato ai deflussi e ai livelli delle falde.

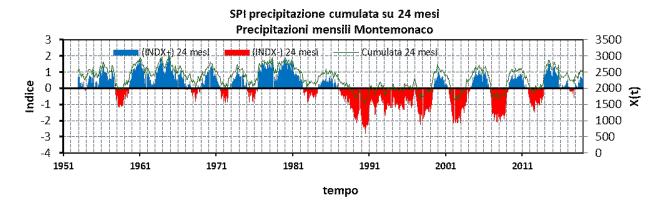


Figura 5.8 – SPI Montemonaco 24 mesi dal 1951 al 2018

5.2.3 TREND DETECTION

Per valutare la presenza di un trend di crescita o decrescita dell'indice di siccità SPI, si applicano alle diverse serie temporali di SPI (1, 3, 6, 9, 12, 24 mesi), per tutte le 50 stazioni i test di Mann-Kendall, Spearman e Cox-Stuart, le cui teorie sono state spiegate nel CAPITOLO 2 di questa trattazione.

5.2.3.1 MANN-KENDALL, SPEARMAN E COX-STUART TEST

Il test è stato svolto in ambiente Matlab contemporaneamente per i tre diversi test. Si inizia dall'inserimento dei dati, viene quindi inserito il file con estensione '.x/sx' contenente tutti i nomi delle stazioni da analizzare. Poi si deve inserire il livello di significatività α del test, scelto in questo caso pari al 5 %.

La routine va a cercare i file Excel corrispondenti ai nomi contenuti nel file appena inserito, i quali, al loro interno, hanno per ogni foglio la data, con il corrispondente indice climatico, come da figura 5.9.

	Α	В	С	D	Е	F
1	1951	1	1	0.820524		
2	1951	2	1	1.165442		
3	1951	3	1	0.905993		
4	1951	4	1	-0.69767		
5	1951	5	1	0.717485		
6	1951	6	1	-0.31779		
7	1951	7	1	0.366445		
8	1951	8	1	0.452902		
9	1951	9	1	1.100318		
10	1951	10	1	1.46953		
11	1951	11	1	0.571663		
12	1951	12	1	-1.37748		
13	1952	1	1	0.879417		
14	1952	2	1	-0.72822		
15	1952	3	1	-1.6836		
16	1952	4	1	-0.27636		
17	1952	5	1	0.271555		
18	1952	6	1	-0.57394		
19	1952	7	1	0.887566		
20	1952	8	1	-0.7728		
21	1952	9	1	1.056967		
22	1952	10	1	-1.28368		
23	1952	11	1	0.011667		
24	1952	12	1	1.450652		
25	1953	1	1	1.351161		
26	1953	2	1	0.605933		
27	1953	3	1	-2.31658		
28	1953	4	1	-0.69767		
29	1953	5	1	-0.32277		
4	· ···	SPI 1	PI 3 SP	SPI	9 SPI 12	2 SPI 24

Figura 5.9 - Esempio file Excel in input per il trend test –stazione di Montemonaco

Il computo degli indici viene eseguito su tutti gli anni dal 1951 al 2018 completi di tutti i dati e alla fine dell'esecuzione del test, per ogni stazione, il programma fornisce un file *Excel* dal nome 'TREND_nomestazione', al cui interno sono contenuti tanti fogli quanti sono gli indici SPI, al cui interno ci sono i risultati di tutti e tre i test, come da esempio in Tabella 5.1.

Tabella 5.1 - Esempio tabella Excel in output dai trend test –stazione di Montemonaco (SPI 1)

Stazione di	MONTEMONACO
Serie termometrica	SPI 1
N° dati	816
Primo dato	1951
Ultimo dato	2018
Liv. Signif.	0.05
Coeff. ang. m retta	-1.030E-05
Intercetta b retta	7.475
Kendall's tau	-0.012
Statistica S	-15421
Varianza S	60481662.33
Variabile Z	-1.983
MK p-value	0.047
Esito MK test	VERO
Theil-Sen's estimator	-0.079
Coefficiente rSRC	-0.068
Variabile Z	-1.953
SR p-value	0.051
Esito SR test	0
Variabile Z	-3.127
CS p-value	0.002
Esito CS test	VERO

Se l'esito del test è VERO, valori positivi della variabile Z indicano una possibile tendenza crescente nelle osservazioni (trend positivo), contrariamente, valori negativi ne delineano una possibile tendenza decrescente. L'esito '0' indica 'no trend'

Perciò nell'esempio di tabella 5.1, la variabile Z è:

$$Z = -1.983$$
 per il M-K, $Z = no$ trend per Spearman e $Z = -3.127$ per C-S.

Ciò indica che per la stazione di Montemonaco, il Mann-Kendall test e il Cox-Stuart hanno determinato nella serie un trend negativo, ovvero l'indice SPI è diminuito negli anni, e quindi si è avuto un carattere maggiormente siccitoso, mentre lo Spearman non ha determinato un trend.

Tale valutazione è stata fatta per tutte le stazioni e per tutti gli indici temporali SPI; i risultati finali sono riassunti nelle tabelle 5.2, 5.3, 5.4 e negli istogrammi delle figure 5.10, 5.11, 5.12, in valore percentuale. Con '0' si indica la non significatività del trend (NO TREND), i valori evidenziati in rosso sono i trend significativi ma negativi, quindi tendenti a decrescere e i valori evidenziati in verde sono i trend significativi positivi, quindi tendenti alla crescita dell'indice specifico.

Tabella 5.2 - Risultati finali Mann-Kendall test, indici SPI - 50 stazioni

	MANN-KENDALL TEST - serie temporale								
S	TAZIONE	SPI1	SPI3	SPI6	SPI9	SPI12	SPI24		
CA	ARPEGNA	-3.22875	-5.24712	-7.7334	-9.10899	-10.3933	-13.7063		
Р	ETRIANO	-1.97094	-3.54923	-5.1549	-5.91141	-6.51307	-10.4374		
T/	AVOLETO	-3.2906	-5.75664	-8.05134	-9.18128	-10.0227	-13.2641		
	FANO	0	0	0	0	0	0		
ACC	QUALAGNA	0	-2.09926	-3.07332	-3.41003	-3.70231	-5.5031		
	CAGLI	-3.54301	-5.6805	-7.81502	-8.64024	-9.5708	-11.9265		
CA	ALCINELLI	-2.69796	-4.58518	-6.24696	-7.20894	-8.37046	-11.7437		
C	ANTIANO	0	0	0	0	0	0		
FORESTA	A DELLA CESANA	0	-2.38138	-3.51871	-3.89927	-4.24179	-6.63292		
FOS	SOMBRONE	-2.33908	-3.96248	-5.70385	-6.49604	-7.22498	-10.9816		
P	IANELLO	0	-1.99343	-2.71735	-2.6889	-2.81102	-4.63808		
SANT'AN	IGELO IN VADO	0	0	0	0	0	0		
L	JRBANIA	0	-2.63305	-3.23437	-3.43104	-3.80349	-5.01133		
Ī	JRBINO	0	0	0	0	0	0		
FONT	E AVELLANA	-4.24598	-6.08303	-7.59726	-8.65929	-9.43143	-13.2917		
P	ERGOLA	0	-3.31396	-4.58974	-5.02768	-5.61351	-7.81133		
	PIAGGE	0	0	-2.5332	-2.41316	-2.87519	-4.84853		
SAN LOR	ENZO IN CAMPO	0	0	0	-1.96921	-2.59738	-5.24862		
В	SARBARA	0	-2.48231	-3.51274	-4.12581	-4.71893	-7.67899		
CC	RINALDO	-2.85599	-4.74831	-6.52364	-7.45924	-8.56035	-11.5881		
MON	TECAROTTO	-2.91578	-4.93661	-7.01483	-8.3662	-9.85963	-13.4199		
SE	NIGALLIA	0	-2.57084	-3.27149	-3.71513	-4.45464	-6.70191		
	APIRO	-2.43757	-4.44167	-6.63433	-7.77178	-9.10087	-13.0098		
CAM	1PODIEGOLI	-4.39784	-6.55345	-8.05056	-9.3277	-10.1286	-12.4542		
F/	ABRIANO	0	0	-2.22615	-2.45883	-2.94382	-4.9806		
	JESI	0	0	-2.25224	-2.76733	-3.42857	-5.5996		
	MOIE	0	-2.35854	-3.778	-4.70026	-5.93173	-9.20663		
SASS	SOFERRATO	-2.22207	-3.53749	-5.22888	-6.06226	-7.02158	-10.1171		
ANCO	NA TORRETTE	0	-2.05732	-2.38954	-2.95016	-3.38448	-5.28593		
BA	RACCOLA	0	0	0	0	0	-2.04571		
	LORETO	-3.22875	-5.24712	-7.7334	-9.10899	-10.3933	-13.7063		
Р	IORACO	-2.45339	-2.98021	-3.7353	-3.97874	-4.17473	-6.2849		
R	ECANATI	0	0	-2.11	0	-2.25147	-3.39323		
ВО	LOGNOLA	-4.36132	-6.50376	-9.0231	-10.5896	-11.6962	-15.2287		
FIUM	E DI FIASTRA	0	0	-2.79976	-3.807	-4.41934	-7.69711		
LOF	RO PICENO	0	0	0	0	-2.03586	-3.52194		
L	ORNANO	0	0	0	0	0	-3.51228		
PIEVE	BOVIGLIANA	-3.02058	-4.54156	-6.58878	-7.72206	-8.9392	-12.8236		
TC	DLENTINO	0	0	0	0	0	-4.28523		
PORTO	SANT'ELPIDIO	-2.71699	-4.3774	-6.34714	-7.50974	-8.14554	-10.2308		
S	ARNANO	0	0	0	0	0	0		
SEF	RVIGLIANO	0	0	0	2.246776	2.69672	3.171239		
	FERMO	0	-2.0226	-2.61937	-3.28436	-3.65625	-4.81001		
DIGA	DI CARASSAI	-3.19236	-4.71669	-6.75503	-7.82398	-8.77005	-10.6441		
MON	MONTEMONACO		-2.75823	-4.2265	-5.24979	-6.26728	-9.10933		
RIPA	TRANSONE	0	0	-2.53476	-2.62639	-2.65985	-3.93184		
A	0	2.822504	3.847167	4.624572	4.790713	4.632306			
ARQUAT	0	0	-2.83168	-4.01319	-5.05356	-7.82099			
ASCOLI PICENO		0	0	0	0	0	0		
CROCE DI CASALE		0	-2.97582	-4.45295	-5.17018	-5.71324	-8.12472		
ataria -: -b -	trend positivo - n. valori	0	1	1	2	2	2		
stazioni che	trend positivo - %	0.00	2.00	2.00	4.00	4.00	4.00		
rispettano requisiti di	no trend - n. valori	31	19	12	11	9	6		
completezza e	no trend - %	62.00	38.00	24.00	22.00	18.00	12.00		
omogeneità	trend negativo - n. valori	19	30	37	37	39	42		
- Oniogenetta	trend negativo - %	38.00	60.00	74.00	74.00	78.00	84.00		

Tabella 5.3 - Risultati finali Spearman test, indici SPI - 50 stazioni

	SPEARMA	N-RHO TE	ST - serie te	mporale			
S	TAZIONE	SPI1	SPI3	SPI6	SPI9	SPI12	SPI24
C	ARPEGNA	-3.2231	-5.34638	-7.98611	-9.54947	-11.0547	-15.1516
P	ETRIANO	-1.97406	-3.48098	-4.88384	-5.66615	-6.2362	-10.6749
T	AVOLETO	-3.31232	-5.81903	-8.17071	-9.30837	-10.2611	-14.2364
	FANO	0	0	0	0	0	0
ACC	QUALAGNA	0	-2.16377	-3.05565	-3.40973	-3.88178	-6.22182
	CAGLI	-3.58146	-5.84388	-8.0772	-9.08281	-10.2449	-13.8637
CA	ALCINELLI	-2.76109	-4.56333	-6.22907	-7.24708	-8.50407	-12.6709
C	ANTIANO	0	0	0	0	0	0
FOREST <i>A</i>	A DELLA CESANA	0	-2.38443	-3.39889	-3.82707	-4.12836	-6.70953
FOS	SOMBRONE	-2.34985	-3.94292	-5.64548	-6.51926	-7.36888	-11.5358
Р	IANELLO	0	-2.04354	-2.81419	-2.91218	-3.06102	-4.78134
SANT'AN	NGELO IN VADO	0	0	0	0	0	0
Ų	JRBANIA	0	-2.64751	-3.22769	-3.40076	-3.80701	-4.97258
	URBINO	0	0	0	0	0	0
FONT	E AVELLANA	-4.25695	-6.22006	-7.80899	-8.88759	-9.87415	-14.198
F	PERGOLA	0	-3.32981	-4.51737	-4.86888	-5.39602	-7.76649
	PIAGGE	0	0	-2.21929	-2.16499	-2.5458	-4.71298
SAN LOR	ENZO IN CAMPO	0	0	0	0	-2.23455	-4.8273
E	BARBARA	0	-2.39202	-3.3653	-3.88804	-4.40705	-7.32644
CC	DRINALDO	-2.9089	-4.77212	-6.53844	-7.55022	-8.82328	-12.8905
	TECAROTTO	-2.98568	-5.02679	-7.17702	-8.57015	-10.2663	-14.7803
	NIGALLIA	0	-2.39153	-2.85242	-3.17012	-3.80019	-6.33993
	APIRO	-2.48583	-4.47746	-6.73991	-8.02515	-9.56162	-14.6881
CAM	1PODIEGOLI	-4.37875	-6.56452	-8.19565	-9.71771	-10.8584	-13.7786
	ABRIANO	0	0	-2.21789	-2.38371	-2.86836	-5.00655
	JESI	0	0	-2.26206	-2.65508		-5.60171
	MOIE	0	-2.27861	-3.52367	-4.31146	-5.34879	-8.42461
SAS	SOFERRATO	-2.21856	-3.48979	-4.95132	-5.76878	-6.63554	-9.78527
	NA TORRETTE	0	-2.08372	-2.53137	-3.13645	-3.61847	-5.80287
	ARACCOLA	0	0	0	0	0	0
	LORETO	-3.2231	-5.34638	-7.98611	-9.54947	-11.0547	-15.1516
	TORACO	-2.38435	-2.91166	-3.65139	-3.83206	-3.95728	-5.89946
	ECANATI	0	0	0	0	0	-2.72575
	LOGNOLA	-4.40801	-6.70099	-9.09769	-10.97	-12.2636	-17.0055
	E DI FIASTRA	0	0	-2.74973	-3.64081	-4.08974	-7.17289
	RO PICENO	0	0	0	0	0	-2.93806
	ORNANO	0	0	0	0	0	-2.53247
	BOVIGLIANA	-3.03206	-4.56279	-6.5798	-7.81708	-9.16615	-13.6232
	DLENTINO	0	0	0	0	0	-4.24132
	SANT'ELPIDIO	-2.7736	-4.3956	-6.57054	-	-8.77764	-12.0614
	ARNANO	0	-4.3956	0	-7.89054 2.253334	2.677792	2.925932
	RVIGLIANO	0	0	2.07383	2.253334	2.964813	3.686938
	FERMO						-4.38379
	DI CARASSAI	2 10546	0 4 70421	-2.66396 -6.58827	-3.24657	-3.56124	
		-3.19546 0	-4.70431		-7.52826	-8.42854	-10.2722
	MONTEMONACO		-2.71336	-4.13893	-5.12531	-6.18648	-9.56377
	RIPATRANSONE		0	0	0	4 710690	-2.39692
AMATRICE		0	2.902518	3.927164	4.570961	4.710689	4.768589
ARQUATA DEL TRONTO		0	0	-2.72072	-3.81737	-4.75377	-7.50988
ASCOLI PICENO		0	0	0	0	0	0
CROCE DI CASALE		0	-2.81345	-4.10631	-4.86558	-5.61043	-8.44425
stazioni che	trend positivo - n. valori	0	1	2	3	3	3
rispettano	trend positivo - %	0.00	2.00	4.00	6.00	6.00	6.00
requisiti di	no trend - n. valori	32	20	13	12	11	6
completezza e	no trend - %	64.00	40.00	26.00	24.00	22.00	12.00
omogeneità	trend negativo - n. valori	18	29	35	35	36	41
	trend negativo - %	36.00	58.00	70.00	70.00	72.00	82.00

Tabella 5.4 - Risultati finali Cox-Stuart, indici SPI - 50 stazioni

	COX-ST	UART TEST	- serie tem	porale			
S	TAZIONE	SPI1	SPI3	SPI6	SPI9	SPI12	SPI24
CA	ARPEGNA	-3.62293	-4.95682	-6.36037	-8.01005	-10.424	-15.1258
P	ETRIANO	-2.0298	-5.25422	-6.16161	-7.21402	-6.63344	-11.5077
T/	AVOLETO	-2.52488	-5.74991	-7.45356	-8.10955	-8.3292	-14.2213
	FANO	0	0	0	0	0	-2.86436
ACC	QUALAGNA	-2.12882	-3.2715	-5.56532	-6.31849	-6.83294	-10.3016
	CAGLI	-4.90123	-6.44386	-9.44118	-10.1991	-10.9227	-15.1258
CA	ALCINELLI	-2.92812	-5.74991	-8.14923	-9.90062	-9.52621	-15.1258
C	ANTIANO	0	-1.98273	0	-2.23883	-3.14215	-3.66839
FORESTA	A DELLA CESANA	0	-2.87495	-3.57771	-5.62196	-5.73568	-7.28652
FOS	SOMBRONE	-2.92094	-5.05595	-7.05604	-8.40806	-10.025	-13.1157
P	IANELLO	-2.52488	-2.67668	-3.97523	-5.22395	-5.53618	-7.78904
SANT'AN	NGELO IN VADO	0	0	-2.68328	0	0	-2.26134
l	JRBANIA	0	-3.66804	-4.57152	-4.82593	-4.93767	-8.79408
Ī	URBINO	0	-2.37927	-2.28576	-3.23387	-2.2444	-2.26134
FONT	E AVELLANA	-5.1118	-6.93954	-9.14303	-10.2986	-11.7207	-14.1208
Р	PERGOLA	-3.31699	-5.84904	-7.05604	-9.00509	-9.12721	-10.0001
	PIAGGE	0	-1.98273	-3.27957	-5.72146	-4.93767	-6.583
SAN LOR	ENZO IN CAMPO	0	-2.67668	-2.98142	-4.92543	-3.94016	-6.18098
В	BARBARA	-2.42586	-2.87495	-4.6709	-5.42295	-6.73319	-7.38703
CC	ORINALDO	-4.60419	-6.14645	-8.24861	-8.90558	-10.823	-13.9198
MON	TECAROTTO	-3.91108	-4.75854	-6.06223	-7.51253	-7.33169	-8.79408
SE	NIGALLIA	0	-3.56891	-5.96285	-6.31849	-6.63344	-7.78904
	APIRO	-2.92094	-4.85768		-9.60211	-11.222	-12.4122
CAM	CAMPODIEGOLI				-9.60211		-13.1157
	ABRIANO	-4.31774 -3.12664	-5.55163 -2.87495	-4.27337	-5.92047	-6.03493	-8.99509
	JESI	0	0	0	0	0	-3.9699
	MOIE	-3.31699	-4.16373	-4.57152	-6.7165	-7.9302	-12.1107
SASS	SOFERRATO	-3.41601	-4.75854	-6.75789	-8.20906		-9.49761
	NA TORRETTE	-2.22783	-3.56891	-4.86966	-4.82593		-7.78904
BA	ARACCOLA	0	-3.37063	-4.37276	-3.9304	-4.93767	-8.59307
	LORETO	-3.62293	-4.95682	-6.36037	-8.01005	-10.424	-15.1258
	IORACO	-4.0101	-5.25422	-4.96904	-7.31352	-6.73319	-10.1006
R	ECANATI	0	-2.181	-2.48452	-2.33834	0	-2.06033
ВО	LOGNOLA	-3.71305	-5.65077	-6.75789	-8.10955	-9.22696	-10.5026
FIUM	E DI FIASTRA	0	0	-1.98762	-2.23883		-5.37695
LOF	RO PICENO	0	0	-2.5839	-3.03486		-6.38199
L	ORNANO	-3.12664	0	-3.97523		-4.43892	-6.48249
PIEVE	BOVIGLIANA	-3.61404	-3.96545	-5.1678	-5.12444	-6.83294	-8.29156
TC	DLENTINO	0	0	0	0	0	-4.37191
PORTO	SANT'ELPIDIO	-2.82886	-4.56027	-5.1678	-6.51749	-6.63344	-10.8042
	ARNANO	0	0	0	0	-2.14465	-2.66335
SEF	RVIGLIANO	0	0	0	0	0	0
	FERMO	0	0	0	0	0	-3.56788
	DI CARASSAI	-2.53109	-4.65941	-5.76409	-5.72146	-7.33169	-9.2966
MON	ITEMONACO	-3.12664	-3.96545	-5.56532	-6.816	-7.13219	-9.1961
	ATRANSONE	0	-2.77582	-3.0808	-4.32841	-4.13966	-3.36688
A	0	0	-2.48452	0	-2.04489	-2.66335	
ARQUAT	-2.52488	-2.37927	-2.98142	-3.43288	-3.74066	-6.18098	
	0	0	0	0	0	0	
ASCOLI PICENO CROCE DI CASALE		-4.10911	-4.16373	-5.1678	-6.01998	-6.63344	-9.1961
	trend positivo - n. valori	0	0	0	0	0	0
stazioni che	trend positivo - %	0.00	0.00	0.00	0.00	0.00	0.00
rispettano	no trend - n. valori	21	12	8	9	8	2
requisiti di	no trend - %	42.00	24.00	16.00	18.00	16.00	4.00
completezza e	trend negativo - n. valori	29	38	42	41	42	48
omogeneità	trend negativo - %	58.00	76.00	84.00	82.00	84.00	96.00
<u> </u>							

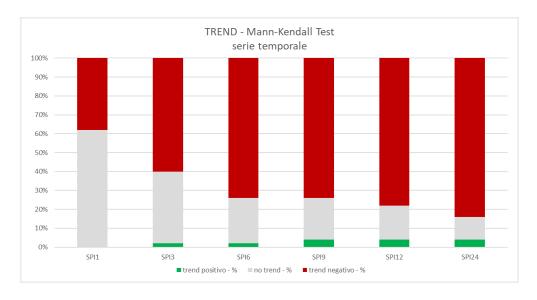


Figura 5.10 – Percentuale delle stazioni che mostrano trend positivo, negativo e no trend, M-K

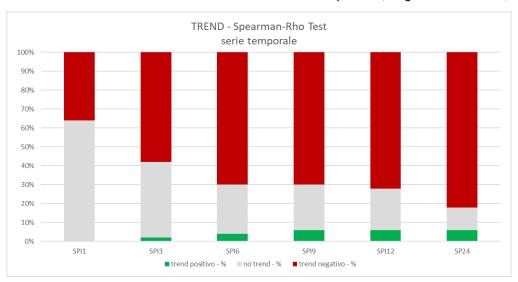


Figura 5.11 – Percentuale delle stazioni che mostrano trend positivo, negativo e no trend, Spearman

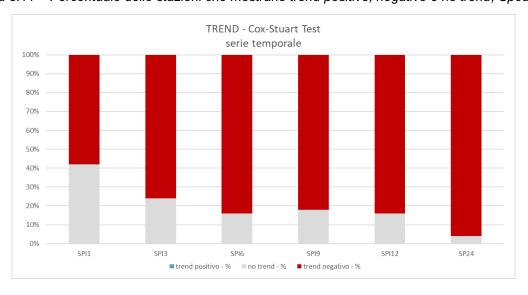


Figura 5.12 – Percentuale delle stazioni che mostrano trend positivo, negativo e no trend, C-S

Nel testo di *W. J Conover del 1999 (a pag. 323 di Practical Nonparametric Statistics, 3rd ed., John Wiley & Sons, New York, 584 p.)* si propone l'analisi della quantità di pioggia annuale, per il periodo 1950-1968: Nel testo citato si scrive che i test per il trend, basati su Spearman e sul Mann-Kendall, in generale sono considerati più potenti del test di Cox e Stuart. Quando la distribuzione dei dati è normale, l'efficienza asintotica relativa (A.R.E. da Asymptotic Relative Efficiency) del test di Spearman e di quello di Mann-Kendall è uguale a 0,98, mentre l'efficienza o potenza del test di Cox e Stuart è 0,78. In quanto utilizza i segni e non i ranghi, il test di Cox e Stuart è applicabile in condizioni molto più generali, anche in presenza di valori fortemente anomali.

Per tali ragioni nella presente analisi si ritengono maggiormente significativi i trend evidenziati dall'applicazione del Mann-Kendall test, seppure tutti e tre i test mostrino valori molto simili. Infatti, la prevalenza del trend è negativa in tutte e tre le situazioni con lievi differenze.

In figura 5.13 è riportata la distribuzione spaziale delle tendenze del Mann-Kendall test, per gli indici SPI 1, SPI 3, SPI 9, SPI 12, SPI 24.

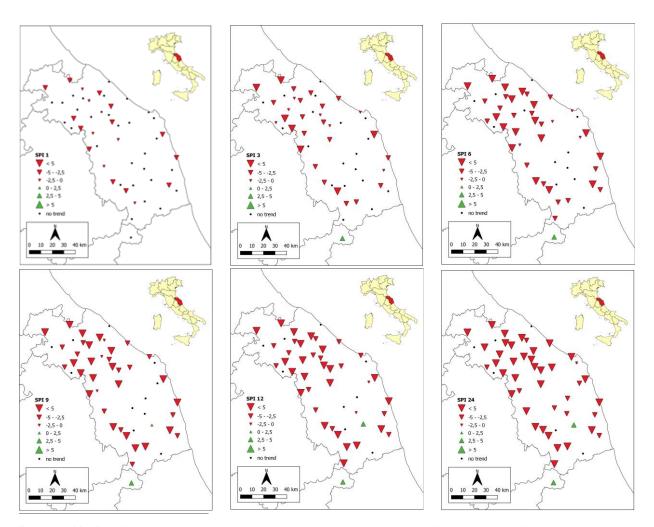


Figura 5.13 –Distribuzione spaziale dei trend e della loro grandezza nelle stazioni analizzate che mostrano una tendenza

Analizzando i trend del Mann-Kendall, nell'insieme si evidenzia che per tutti gli indici si ha prevalenza del trend negativo.

Per le stazioni di Sant'angelo in Vado, Fano, Cantiano, Urbino, Sarnano e Ascoli, si mostra l'assenza di qualunque tendenza in ogni indice. Le stazioni di Loro Piceno, Lornano e Baraccola sono invece prevalentemente senza tendenza. La stazione che presenta un trend più marcato è quella di Bolognola, anche se si nota un maggior trend negativo in tutte quelle stazioni dislocate nelle zone più montane.

Si può quindi complessivamente affermare che questi indici sono aumentati negativamente, indicando una maggiore tendenza alla siccità nelle zone più interne della Regione Marche.

Anche la distribuzione spaziale in figura 5.13 conferma come i trend siano maggiormente presenti nella zona Nord delle Marche e nella fascia alto collinare e montuosa della zona a Sud.

Tale distribuzione spaziale delle 50 stazioni analizzate, evidenzia anche che nella zona Nord siano risultate più stazioni valide all'indagine, e quindi rispondenti ai criteri visti al capitolo 4.4, rispetto a quelle del Sud e soprattutto rispetto a quelle nella fascia centrale della regione, che rimane con scarse indicazioni. Nella zona costiera si individuano solo 4 stazioni, questo non permetterà di poter definire in maniera affidabile la presenza di tendenze climatiche per fasce (costiera, basso-collinare, alto-collinare e montuosa).

Dai diagrammi di figura 5.10 si nota invece l'aumentare della percentuale di stazioni con trend negativo all'aumentare del periodo di riferimento. Questo perché come precedentemente detto l'indice SPI tende a oscillare maggiormente per periodi brevi, per cui non si nota un trend marcato a differenza dell'indice SPI a 24 mesi dove l'80% circa delle stazioni presenta un trend negativo.

5.2.4 ANOMALIE

L'anomalia annua di precipitazione è la differenza tra il valore di pioggia caduta nell'anno in un punto ed il relativo valore medio calcolato su di un periodo di riferimento.

Le anomalie in questione sono state calcolate per gli indici SPI. Si è voluta considerare la stagionalità, quindi è stato valutato l'indice a tre mesi, e si è considerato rappresentativo il mese di febbraio per l'inverno, il mese di maggio per la primavera, il mese di agosto per l'estate e il mese di novembre per l'autunno. Quindi le serie considerate sono quelle contenenti gli indici per i mesi appena citati, calcolati per ogni stazione.

Per ogni indice, è stata computata una singola serie temporale delle anomalie rappresentativa dell'intera regione Marche. La serie è stata ottenuta calcolando inizialmente il valore annuale della deviazione dell'indice rispetto alla media climatologica nel periodo di riferimento per ogni stazione, poi si è calcolata la media aritmetica delle anomalie di tutte le stazioni anno per anno (*Desiato et al. 2012*).

C'è la necessità di stabilire un periodo di riferimento per il calcolo della variabilità del clima a lungo termine e per il monitoraggio dei cambiamenti climatici. Storicamente, le normali climatologiche standard vengono calcolate di 30 anni in 30 anni (1901-1930,1931-1960,1961-1990 e così via). Per il monitoraggio a lungo termine del clima, le normali calcolate per il periodo 1° gennaio 1961 – 31 dicembre 1990 sono considerate stabili dal WMO, e dovrebbe essere mantenuto fino a quando non si presenta una ragione scientifica convincente per cambiarlo.

Per quanto riguarda invece il monitoraggio nel breve termine, data la necessità di un calcolo delle normali climatiche in un clima in continuo cambiamento, sempre il WMO il periodo 1981-2010 come trentennio di riferimento. Le normali climatologiche standard sono calcolate infatti ogni 10 anni per trentenni di riferimento all'inizio di ogni decade dall'anno che termina con uno, ad esempio fino al 2020 il trentennio di riferimento sarà il 1981-2010, a partire dal 2021 diventerà il 1991-2020.

L'ISPRA nei suoi rapporti annuali sul clima, a partire dal 2017 scrive di continuare ad utilizzare il trentennio 'principale' 1961-1990 per due principali motivazioni. La prima segue le indicazioni del WMO, relative alla stima delle variazioni climatiche nel medio e lungo periodo, e la seconda riguarda la disponibilità maggiore di dati per quel trentennio rispetto a quelli più recenti.

Quindi per il calcolo delle anomalie nel presente studio, si è lasciato come 30ennio di riferimento il 1961-1990. Per eseguire un confronto, e capire quanto la scelta del trentennio influenzi i risultati ottenuti e quindi le stime sul clima, si è scelto di calcolare le anomalie anche rispetto al periodo di riferimento più recente.

Si riporta in Tabella 5.5 un esempio di calcolo delle anomalie dell'indice SPI 3 per il mese di febbraio, rispetto al trentennio 1961-1990, i valori evidenziati in giallo sono le anomalie medie di tutte le stazioni effettuate anno per anno.

DIGA DI ARQUATA DEL STAZIONI CARPEGNA FERMO AMATRICE RIPATRANSONE ASCOLI PICENO CARASSAI TRONTO CASALE 1951 1952 0.854163083 1.025948 0.730355 0.501275139 -0.107387198 0.422800414 -0.330349823 -0.375898391 0.3165 1.729519208 0.503840344 1953 1.499595814 0.907742 0.722886 0.389329521 0.8112077 0.728441661 1.33785 1954 -0.316725466 0.933955 0.727555 0.586524656 -0.878490982 -0.1453179 -0.107792501 -0.003138335 -0.5195 -1.63862438 0.488715276 1955 -0.880618016 0.295168 0.039103 0.736274895 -1.126073634 -0.8771 0.21268386 0.586560595 -0.696182657 1956 -0.500522232 -0.1385 -1.304132298 -0.478336555 -0.3007 -0.944 -0.416300391 1957 0.476093967 2.399661 1.502833 1.376223395 -0.840232464 -0.466693483 0.340032067 0.87030 0.517061469 1958 -0.84585634 -1.225214648 -0.63981 -0.75626 -1.228127709 -0.49191529 -0.639195732 -1.111879272 -1.3387 1959 0.941997683 0.480307 1.15893 1.28739734 0.265856467 0.402568386 1.32022864 1.14827874 0.625926855 0.746809644 0.556483553 1960 1.511583387 0.914312 0.670245 0.624288066 0.687190325 0.905015485 1961 2.377329 1.947447 1.887466386 0.569764322 1.01725 1.738359923 1.415220707 1.573783065 1962 0.435365024 0.474779 1.630811 0.576392695 0.757316096 -0.038759968 1.143606865 1.35537075 0.7992 0.203748166 2.633593082 1.718254896 1963 -0.11105 0.315533 1.29178 0.879049246 0.189093262 1.096338554 -0.780103256 -0.48645778 -0.860481082 1964 -0.035222717 -0.44758 -0.335738809 -0.3415 -0.56777 -0.147962153 0.337497547 1965 0.091482 -0.862687518 -0.784927196 0.0587 0.244548588 -0.01185 0.051737036 0.399120395 1966 -0.243632454 -1.36149 -1.25172 -1.386188528 0.316076104 -0.372349435 -1.660665218 -0.517667341 -0.02493

-0.077251032

0.314472963

-0.67694452

0.597566742

-0.577232072

0.002343898

-1.497498341

-1.731016039 -1.046445493

-1.244879722 -1.701845687 -1.238705901 -0.666321667

-0.810782765

0.897268159

-0.683706039

-0.06206183

-0.774672337

0.476245688

0.853682144

-0.884308938

0.247128774

0.903809916

0.042440474

0.519535918

-0.865893607

0.91890846

-0.38724966

-0.938680148

-0.480387195

-0.02245

-0.0212

0.140041

-0.3762

-0.07456

-0.32158

-1.3746

Tabella 5.5 - Esempio di calcolo delle anomalie dell'indice SPI 3 del mese di Febbraio

Vengono di seguito riportati in Figura 5.14 i grafici delle anomalie per tutti i 4 mesi che rappresentano la stagionalità, sia con riferimento al trentennio 1961-1990 (colonna di sinistra) che 1981-2010 (colonna di destra).

0.297730951

0.633671608

0.664517537

0.953359868

-0.157477005

0.547730216

-1.823254962

-1.046746879

0.337497547

-0.253434735

-0.00554961

-0.616849735

0.323072459

1.049555616

-1.019521481

1967

1968

1969

1970

1971

1972

1973

1974

1975

0.60862877

0.391111239

0.467981333

0.930208098

-0.169611804

0.51641289

-0.02597503

-1.128924798

-1.735520593

-0.59857

0.873069

-0.32471

0.035463

-1.45456

-0.1363

0.56943

-1.35136

-1.55491 -0.76992

-0.58072

1.329856

-0.28194

0.386874

-0.88121

0.286649

0.624613

-1.05233

In linea di massima i risultati tracciati dai grafici mostrano un irregolare comportamento dei dati oscillante tra valori positivi e valori negativi, e non si nota nessuna particolare evidenza di aumento o diminuzione.

Si nota una certa differenza dovuta alla stagionalità. Le anomalie dei mesi primaverili e autunnali sembrerebbero mostrare un andamento con picchi di valori simili, tendenti all'aumento nella parte finale soprattutto per le anomalie dei mesi primaverili, e ciò indicherebbe una tendenza all'umidità.

Per la stagione estiva, considerando il trentennio 1961-1990, le anomalie hanno picchi orientati maggiormente verso valori negativi, infatti la media mobile risulta sempre negativa. Questo andamento è meno marcato considerando il trentennio 1981-2010 per il calcolo delle anomalie. Perciò nel monitoraggio nel breve termine si ha una diminuzione dell'indice SPI minore, e quindi una siccità meno marcata.

Le anomalie della stagione invernale sono quelle che mostrano i picchi più grandi soprattutto nei valori negativi.

Per gli indici di cui si sono calcolate le anomalie rispetto ai diversi periodi di riferimento c'è un piccolo cambiamento delle anomalie col cambiare del 30ennio. Nello specifico, più esso è recente, più l'anomalia tende a diventare positiva. Visto che i valori degli indici sono sempre gli stessi, il cambiamento può essere causato solo dalla media del trentennio, che è sicuramente diminuita. La diminuzione della media nel trentennio conferma l'ipotesi del periodo 1980-2010 poco piovoso. Questo spiegherebbe la 'percezione' della maggior piovosità negli anni appena trascorsi, perché essa si basa sulla memoria più recente.

Figura 5.14 – Anomalie indice SPI 3 per i mesi feb, mag, ago, nov, con trentennio 1961-1990 e 1981-2010

5.2.5 MESI ED EVENTI SICCITOSI

I valori degli indici SPI per le rispettive scale temporali (3, 6, 9, 12, 24) calcolati per ogni stazione tramite il foglio ANABASI, come illustrato nel capitolo 5.2.2, sono stati inseriti in un unico file Excel, come rappresentato dalla Figura 5.15.

4	Α	В	С	D	Е	F	G	Н	1	J
										FORESTA DELLA
1	Istante *	CARPEGNA 🔻	PETRIANO 🔻	TAVOLETO *	FANO 👻	ACQUALAGN. *	CAGLI 🔻	CALCINELLI 🔻	CANTIANO 🔻	CESANA 💌
2	01/01/1951	1.452	1.456	1.850	1.890	1.887	1.598	1.568	2.152	1.578
3	01/02/1951	0.957	0.701	0.933	1.127	1.097	1.076	0.854	2.033	0.938
4	01/03/1951	0.834	1.007	1.225	0.935	1.537	1.588	1.071	1.731	1.628
5	01/04/1951	-0.604	0.983	0.674	0.167	-0.094	0.125	0.208	1.157	0.042
6	01/05/1951	-0.311	0.747	0.453	-0.012	0.314	0.739	0.287	0.751	0.346
7	01/06/1951	-1.330	-0.901	-0.476	-0.628	-2.032	-2.283	-1.767	-1.936	-1.998
8	01/07/1951	0.597	1.314	1.156	0.691	-0.188	0.565	1.248	-0.617	0.009
9	01/08/1951	-2.169	-1.705	-1.503	-1.006	-1.360	-1.476	-1.079	-0.923	-1.682
10	01/09/1951	-0.479	0.864	1.077	1.168	0.647	0.366	0.014	0.176	1.283
11	01/10/1951	1.137	1.648	1.712	1.482	1.827	1.399	1.351	1.918	1.954
12	01/11/1951	0.388	-0.092	0.200	0.156	0.455	0.642	0.288	0.670	0.090
13	01/12/1951	-0.535	-0.389	0.049	-0.075	-0.749	-0.520	0.201	-0.593	-0.447
14	01/01/1952	1.896	0.756	0.679	0.783	1.251	1.021	0.915	0.994	0.559
15	01/02/1952	0.444	-0.191	0.224	0.624	-0.150	0.047	0.487	0.298	-0.470
16	01/03/1952	-1.894	-2.277	-1.568	-1.925	-2.380	-1.078	-2.022	-1.532	-2.197
17	01/04/1952	-1.545	-1.356	-0.584	-1.772	-0.613	-1.314	-1.188	-0.634	-1.001
18	01/05/1952	0.361	0.237	0.338	0.365	-0.531	-0.810	0.212	-0.960	0.440
19	01/06/1952	-2.968	-0.700	-0.894	-1.970	-1.646	-1.788	-1.624	-2.122	-1.956
20	01/07/1952	0.945	0.272	-0.200	-1.231	1.104	0.118	-0.810	1.257	-0.596
21	01/08/1952	-0.662	-1.578	-0.837	-0.789	-0.566	-0.362	-0.540	-0.322	-0.511
22	01/09/1952	0.594	-0.718	-0.471	-0.246	-0.087	0.286	-0.559	0.516	-0.064
23	01/10/1952	0.113	-0.729	-0.760	0.040	-0.251	0.162	-0.361	0.341	-0.544
24	01/11/1952	0.855	0.504	-0.074	0.470	0.361	0.556	0.704	0.364	0.216
25	01/12/1952	1.296	1.768	1.909	1.813	1.671	1.533	1.828	1.249	1.420
26	01/01/1953	1.135	1.716	1.243	1.563	0.959	0.800	1.680	0.798	0.862
27	01/02/1953	0.104	0.848	0.930	0.340	0.978	0.225	0.888	0.837	0.841
28	01/03/1953	-1.279	-0.679	-0.591	-1.151	-0.781	-1.359	-1.184	-1.481	-0.804

Figura 5.15 – Stralcio tabella con tutti gli SPI calcolati

Utilizzando una formattazione condizionale sono state evidenziate in giallo tutte le celle corrispondenti ai mesi che presentavano un indice SPI compreso tra -1 e -2, cioè siccità moderata, mentre le celle con SPI<-2, ovvero siccità estrema, sono state evidenziate in rosso, come si nota dalla figura 5.16.

Figura 5.16 – stralcio tabella SPI con formattazione condizionale

Come suggerito dalla pubblicazione *Investigating drought in Apulia region, Italy using SPI and RDI (G. Marini et al., 2018)*, sono stati individuati i mesi e gli eventi siccitosi.

Un evento siccitoso per una certa scala temporale è definito come quel periodo in cui l'indice SPI è continuamente negativo con valori minori di -1. Andando a studiare quindi i grafici di tutte le stazioni, in tutta la serie dal 1951 al 2018, si può capire quanto questi eventi siccitosi siano durati, qual è stato il peggiore, e quanti eventi siccitosi ci sono stati negli ultimi 68 anni. Un esempio relativo all'indice SPI 1 è presentato in Figura 5.17.

									FORESTA DELLA	
Istante 🔻	CARPEGNA 🔻	PETRIANO 💌	TAVOLETO 🔻	FANO 🔻	ACQUALAGN/ -	CAGLI -	CALCINELLI 🔻	CANTIANO 🔻	CESANA 🔻	FOSSOMBR
01/01/1951	1.452	1.456	1.850	1.890	1.887	1.598	1.568	2.152	1.578	1
01/09/2017	0.800	1.441	1.224	1.652	1.274	0.918	0.931	0.830	1.373	C
01/10/2017	-2.178	-1.391	-1.379	-0.936	-1.761	-1.589	-0.700	-1.073	-1.421	-1
01/11/2017	-1.727	1.009	0.292	0.839	0.437	0.452	0.709	1.257	0.328	d
01/12/2017	-0.071	0.184	-0.411	0.686	0.537	0.512	0.555	0.653	0.733	O
01/01/2018	-0.590	-0.969	-1.380	-0.711	-1.175	-1.393	-0.558	-0.338	-1.115	-1
01/02/2018	1.669	2.237	1.409	2.270	1.720	1.497	2.297	1.082	3.013	2
01/03/2018	0.366	1.109	-1.253	1.298	1.354	0.665	1.251	1.275	0.372	d
01/04/2018	-2.004	-1.072	-2.087	-1.484	-0.919	-1.838	-1.231	-0.527	-1.141	-1
01/05/2018	0.378	0.390	0.383	1.433	0.779	-0.178	0.452	0.671	1.422	C
01/06/2018	-0.549	-1.309	-1.617	0.813	-0.687	-0.564	-0.438	-0.636	-1.219	-0
01/07/2018	0.808	0.859	0.715	0.561	0.333	0.672	1.458	-0.308	0.735	O
01/08/2018	-0.849	-0.865	-0.757	-0.996	-0.511	-0.638	-0.416	0.147	-0.475	-0
01/09/2018	-2.655	-0.826	0.985	-0.590	-0.007	-0.758	-0.200	-0.769	-0.078	-0
01/10/2018	-0.324	0.399	0.129	0.259	0.484	0.046	0.189	0.320	0.368	O
01/11/2018	-1.890	0.003	0.255	-0.490	-0.108	-0.951	-0.527	-0.231	0.076	C
01/12/2018	-3.394	-0.427	-0.397	-0.200	-0.306	-1.182	-0.351	-0.365	-0.328	-0
mesi siccitosi	133	124	133	128	118	118	125	113	127	
mesi siccitosi										
avanti siasitasi	111	104	107	102	99	97	94	97	103	
eventi siccitosi										

Figura 5.17 – esempio conteggio mesi ed eventi siccitosi per le 50 stazioni dal 1951 al 2018

Una volta conteggiati il numero di mesi ed eventi siccitosi, sono stati riportati in Tabella 5.7, applicando per ogni serie SPI una formattazione condizionale che colora in maniera più marcata i valori più alti.

Tabella 5.6 – Riepilogo mesi ed eventi siccitosi

STAZIONE		N	UMERO DI	MESI SPI <	-1			NU	MERO DI E	VENTI SPI	< -1	•
	SPI 1	SPI 3	SPI 6	SPI 9	SPI 12	SPI 24	SPI 1	SPI 3	SPI 6	SPI 9	SPI 12	SPI 24
CARPEGNA	133	129	119	132	130	142	111	65	44	33	25	24
PETRIANO	124	127	131	120	119	140	104	63	45	37	32	20
TAVOLETO	133	130	142	136	124	121	107	59	41	36	27	22
FANO	128	124	122	125	130	143	102	54	46	36	32	21
ACQUALAGNA	118	126	136	136	138	116	99	62	37	35	28	21
CAGLI	118	135	130	129	109	136	97	68	40	33	25	21
CALCINELLI	125	134	125	120	132	127	94	57	36	31	29	11
CANTIANO	113	126	131	118	126	128	97	69	47	36	34	17
FORESTA DELLA CESANA	127	121	131	122	128	124	103	60	39	31	27	17
FOSSOMBRONE	117	127	141	124	124	133	100	65	46	36	30	19
PIANELLO	115	142	130	130	132	134	97	72	36	37	31	
SANT'ANGELO IN VADO	123	140	137	137	120	125	100	62	46	30		
URBANIA	122	149	137	123	131	117	107	68	42	38		
URBINO	117	135	137	129	127	139	106	65	44	40	36	
FONTE AVELLANA	108	121	118	125	118	120	84	51	34	26		
PERGOLA	126	131	129	145	138	142	102	64	40	33	28	
PIAGGE	131	128	140	130	136	136	104	57	44	38	36	
SAN LORENZO IN CAMPO	121	132	136	129	136	138	100	63	49	39	31	
BARBARA	119	132	135	134	121	137	101	66	45	36		
CORINALDO	121	130	146	141	143	139	98	59	48	39	30	
MONTECAROTTO	121	133	133	133	135	162	108	64	51	39	34	
	128	128	124	126	137	102	94	52	40	29	25	
SENIGALLIA APIRO	118	131	134	120	116	155	106	68	43	33	27	
CAMPODIEGOLI	124	131	131	121	136	115	98	51	38	32	20	
FABRIANO	124		131		119		101	71	47	39	29	
JESI	121	139 138	132	130 122	130	124 108	110	66	41	31	29	
								62		35		
MOIE	129	129	135	123	121	117	108	66	46	35		
SASSOFERRATO	120	136	131	120	121 117	124	101		44		27	
ANCONA TORRETTE	116	139	113	122		115	96	66	42	41	32	
BARACCOLA	127	123	125	144	136	146	103	58	49	42	33	
LORETO	133	129	119	132	130	142	110	63	44	33	24	
PIORACO	115	139	139	131	118	121	96	61	34	25	22	
RECANATI	127	136	129	136	141	142	98	58	40	30		
BOLOGNOLA	119	112	118	115	111	127	97	55	37	24	22	
FIUME DI FIASTRA	118	116	119	115	122	124	101	59	43	31	27	
LORO PICENO	127	123	133	121	114	118	109	60	41	34		
LORNANO	127	142	128	135	135	118	103	59	38	28	24	
PIEVE BOVIGLIANA	117	127	123	120	128	105	94	65	40	28		
TOLENTINO	129	130	139	134	138	126	111	63	47	34		1
PORTO SANT'ELPIDIO	117	129	122	141	127	130	92	53	36	33	33	
SARNANO	123	136	120	129	128	144	96	70	38	37	27	
SERVIGLIANO	120		125		137	147	100		39	28		
FERMO	123	132	123	131	138		105	55	39	36		
DIGA DI CARASSAI	132	123	126		150		111	58				
MONTEMONACO	116	115	108	110	118		89		39	31		
RIPATRANSONE	124	130	131	142	148	135	105	50	33	29	23	13
AMATRICE	130	122	91	101	111	128	104		31			
ARQUATA DEL TRONTO	123	118	118	116	123	139	103	56	38	35	35	
ASCOLI PICENO	129	124	135	119	116	140	106	59	45	36	26	21
CROCE DI CASALE	123	116	107	111	107	115	93	54	32	27	26	8

Dalla Tabella 5.7, per quanto riguarda il numero di mesi siccitosi (SPI<-1), si evince che:

- Per l'indice SPI 1 i valori più alti si sono registrati per le stazioni di Loreto, Tavoleto, Carpegna, con 133 mesi.
- Per l'indice SPI3 i valori più alti si sono registrati per la stazione di Urbania con 149 mesi:
- Per l'indice SPI 6 i valori più alti si sono registrati per la stazione di Corinaldo con 146 mesi:
- Per l'indice SPI 9 i valori più alti si sono registrati per la stazione di Pergola con 145 mesi;

- Per l'indice SPI 12 i valori più alti si sono registrati per la stazione di Corinaldo e Diga di Carassai con 150 mesi;
- Per l'indice SPI 24 i valori più alti si sono registrati per la stazione di Montecarotto con 162 mesi.

Per guanto riguarda invece il numero di eventi siccitosi (SPI<-1), si nota che:

- Per l'indice SPI 1 i valori più alti si sono registrati per le stazioni di, Diga di Carassai, Tolentino e Carpegna con 111 eventi.
- Per l'indice SPI3 i valori più alti si sono registrati per la stazione di Pianello con 72 eventi;
- Per l'indice SPI 9 i valori più alti si sono registrati per la stazione di Montecarotto con 42 eventi:
- Per l'indice SPI 12 i valori più alti si sono registrati per la stazione di Baraccola con 37 eventi;
- Per l'indice SPI 24 i valori più alti si sono registrati per le stazioni di Urbania e Piagge con 30 eventi.

Se ci si focalizza invece su una stazione, e prendiamo come esempio la stazione di Carpegna, si riportano in tabella 5.6 le caratteristiche di siccità, in termini di mesi siccitosi, numero di eventi siccitosi, durata minima e massima della siccità in mesi.

CDI corio	Numerous massi CDL 4.1	Numara avanti CDI < 1	Durata della siccità in mesi					
SPI serie	Numero mesi spi<-1	Numero eventi SPI<-1	minimo	massimo	media			
SPI 1	133	111	1	5	3			
SPI 3	119	65	1	6	3.5			
SPI 6	129	44	1	9	5			
SPI 9	132	33	1	16	8.5			
SPI 12	130	25	1	19	10			
SPI 24	142	24	2	26	14			

Tabella 5.7 – Caratteristiche di siccità per le serie SPI della stazione di Carpegna

Chiaramente il numero degli eventi siccitosi risulta sempre inferiore al numero dei mesi siccitosi. È inoltre evidente come il numero degli eventi diminuisce mentre il numero dei mesi e la durata media aumentano, all'aumentare della scala temporale con cui è calcolato l'indice SPI.

Ad esempio, sono stati identificati 111 eventi per SPI 1 con durata media di 3 mesi; tuttavia, per SPI 24, sono stati osservati solo 24 eventi con una durata media di 14 mesi. Invece, il numero di mesi di siccità è circa lo stesso al variare della scala temporale dell'indice, compreso tra 133 e 142 mesi su 68 anni totali.

Per la siccità a breve termine, la durata media è di 3 (per SPI 1) e 3.5mesi (per SPI 3). Per la siccità a medio termine, le durate medie sono 5 (SPI 6) e 8.5 mesi (SPI 9). Per la siccità a lungo termine, le durate medie sono 10 (per SPI 12) e 14 mesi (per SPI 24).

Questa situazione è relativa alla stazione di Carpegna, ma si sono notati andamenti simili per tutte le stazioni.

La durata massima continua di una siccità per SPI 24 tra tutte le stazioni si è registrata per la stazione di Diga di Carassai, con 73 mesi siccitosi, più di 6 anni, dal 2001 al 2007. La stessa stazione ha registrato il maggior numero di mesi siccitosi sempre per SPI 24.

In generale invece, la concentrazione maggiore degli eventi siccitosi a lungo termine con SPI 24, si è avuta nei periodi 1987-1991, 2001-2005 e 2007-2009.

Essendo SPI 24 un indice utile nel monitoraggio del lungo periodo sarebbe utile valutare se effettivamente la disponibilità di acqua a livello di falda ha subito negli anni seguenti a tali periodi, ripercussioni negative.

Per gli stessi periodi, le serie SPI basate su altre scale temporali (da 1 a 12) mostrano un'elevata concentrazione di siccità.

Con riferimento alla siccità a lungo termine con SPI 12, gli eventi siccitosi sono durati principalmente tra uno e due anni, con delle eccezioni di eventi più gravosi, che sono:

- Lornano dal 1995 al 1997, evento siccitoso di 3 anni;
- Pergola dal 2005 al 2007, evento siccitoso di 3 anni.

Nella figura 5.18 si riporta la distribuzione spaziale del numero di mesi siccitosi (con SPI<-1) basati su una scala temporale di 1, 3, 6, 9, 12, 24 mesi.

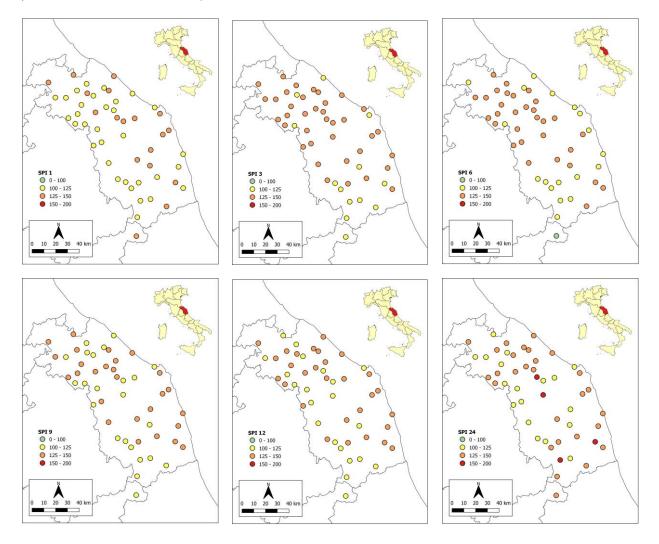


Figura 5.18 - Distribuzione spaziale del numero di mesi siccitosi nella Regione Marche, dal 1951 al 2018, calcolati considerando l'indice di siccità SPI

Dalla Figura 5.18 si nota che in generale la zona a Nord delle Marche presenta maggiori mesi siccitosi. Questo è confermato anche dall'andamento dei trend visti nel precedente capitolo. La zona a sud presenta un maggior numero di mesi siccitosi in relazione all'indice SPI a 24 mesi. Sembrano invece essere meno presenti mesi siccitosi nella zona montuosa, dove però i trend mostrano situazioni più marcate.

In Figura 5.19 è rappresentata la distribuzione spaziale del numero degli eventi per ogni scala temporale dell'indice SPI, che conferma nuovamente le considerazioni fatte precedentemente. In linea di massima la zona a Nord sembra essere più siccitosa del resto del territorio.

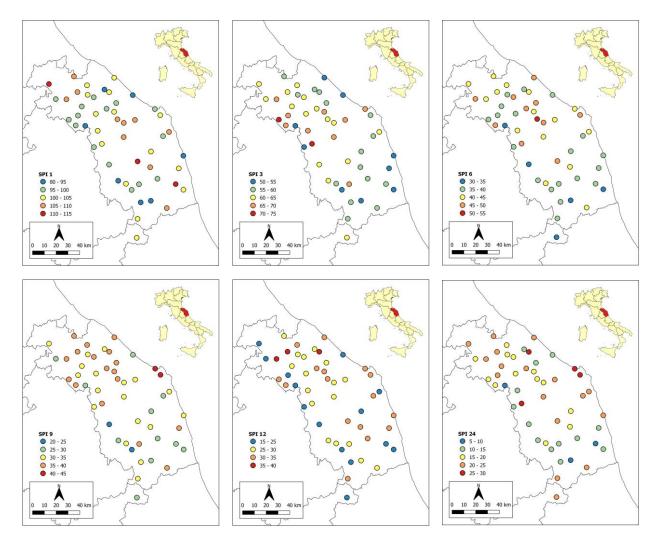


Figura 5.19 - Distribuzione spaziale del numero di eventi siccitosi nella Regione Marche, dal 1951 al 2018, calcolati considerando l'indice di siccità SPI

5.3 RDI

5.3.1 SOFTWARE DRINC

5.3.1.1 PANORAMICA

Il software DrinC (Drought Indices Calculator) è un pacchetto software sviluppato dal Centre for the Assessment of Natural Hazards and Proactive Planning and the Laboratory of Reclamation Works and Water Resources Management dell'Università Tecnica Nazionale di Atene per fornire un'interfaccia semplice e comprensibile per il calcolo degli indici di siccità, tra cui RDI. Il software è descritto nell'articolo Tigkas et al. (2015).

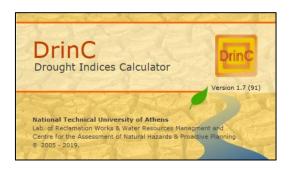


Figura 5.20 – Interfaccia software DrinC

Il processo di calcolo viene eseguito tramite un'interfaccia utente grafica e le opzioni disponibili possono essere regolate per adattarsi agli obiettivi di analisi della siccità di ogni caso particolare. Inoltre, DrinC include strumenti aggiuntivi, come la stima della potenziale evapotraspirazione (PET) attraverso metodi basati sulla temperatura.

Tutte le funzioni principali sono accessibili tramite il menu principale del software, mentre alcune opzioni aggiuntive sono disponibili per operazioni specifiche. Il calcolo dell'indice RDI richiede come dati di input le precipitazioni e il PET.

I dati possono essere mensili, annuali o stagionali e c'è la possibilità di utilizzare serie di dati reali (fino a 150 anni) o sintetici (fino a 1.500 anni). I dati possono essere importati direttamente dai file Excel.

Per i dati mensili il software ispeziona automaticamente la struttura del file e identifica la posizione dei dati all'interno del foglio di calcolo, mentre per i dati annuali o stagionali l'utente definisce le celle da cui deve partire il caricamento. I dati importati vengono caricati in un modulo griglia in cui possono essere esaminati.

La base di riferimento primaria in DrinC è l'anno idrologico (ottobre - settembre), quindi il periodo di calcolo predefinito inizia da ottobre e le fasi di calcolo principali sono 1 mese, 3 mesi, 6 mesi e 12 mesi. Tuttavia, è possibile definire altre fasi di calcolo (ad esempio 4 mesi) o diversi mesi di inizio (ad esempio gennaio) attraverso elenchi a discesa e pulsanti di opzione. Questa flessibilità può essere utile per diverse applicazioni reali; ad esempio, lo studio degli effetti della siccità su colture specifiche dovrebbe coincidere con il periodo di crescita delle colture.

I risultati possono essere salvati come file Excel (in un file o in file inseparati per ogni indice) e l'utente può scegliere di disegnare automaticamente il grafico nel file di output.

5.3.1.2 MODULI PER IL CALCOLO DEL PET E IL MONITORAGGIO DELLA SICCITÀ

Il PET, illustrato nel capitolo 2, può essere calcolato con diversi metodi direttamente attraverso una funzione presente all'interno del software: a scala mensile, generalmente di riferimento nelle analisi di falda, si utilizza l'approccio proposto da *Thornthwaite-Mather* (1955).

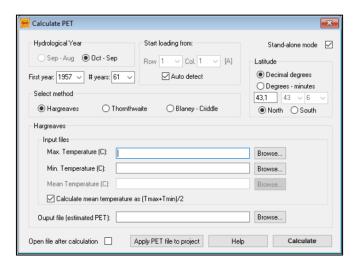


Figura 5.21 – Modulo per il calcolo del PET

Da questi metodi, il primo richiede le serie di dati delle temperature minime e massime sulla temperatura, e tramite le coordinate della stazione in analisi il software restituisce in output un foglio Excel con il PET.

Noto il PET e con la serie di dati sulle precipitazioni si procede al calcolo dell'indice RDI con l'apposito modulo (Figura 5.22).

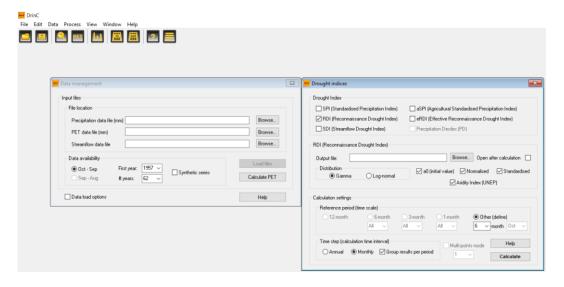


Figura 5.22 – Modulo per il calcolo di RDI

5.3.2 CALCOLO INDICE RDI

Per il calcolo dell'indice RDI è necessario disporre della serie di dati sulle precipitazioni e sulle temperature minime e massime per ogni stazione.

Tuttavia, delle stazioni considerate complete e omogenee descritte nel Capitolo 4.4, le 14 stazioni termometriche sono in minoranza rispetto alle 50 pluviometriche, per cui è ovvio che non si hanno a disposizione tutti i dati.

Delle 14 stazioni termografiche vanno escluse quindi le stazioni di Lornano, Cingoli, Arcevia, sulle quali non vi sono dati di precipitazione.

L'indice RDI viene perciò calcolato sulle stazioni che presentano sia i dati di precipitazione che di temperatura e sono 11, come rappresentato in Tabella 5.8.

FANO
URBINO
FONTE AVELLANA
PERGOLA
FABRIANO
JESI
ANCONA TORRETTE
SERVIGLIANO
MONTEMONACO
AMATRICE
ASCOLI PICENO

Tabella 5.8 – Stazione valide per il calcolo di RDI

Essendo inoltre i dati di temperatura disponibili dal 1957, a differenza di quelli di precipitazione disponibili dal 1951, si calcola l'indice di siccità RDI nel periodo dal 1957 al 2018. Alla serie di dati di precipitazione vengono quindi eliminati gli anni precedenti al 1957.

Come illustrato precedentemente, vengono quindi caricati i dati delle stazioni scelte nel software DrinC, per una singola stazione alla volta.

Inserendo le coordinate della stazione nel modulo apposito e caricando le serie di temperatura minima e massima, il programma restituisce il file contenente i valori calcolati del PET, il cui stralcio di output è riportato nella Figura 5.23, per la stazione di Montemonaco.

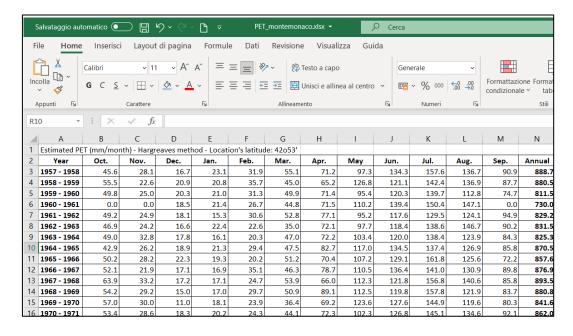


Figura 5.23 – Stralcio di output con valori del PET per la stazione di Montemonaco

Subito dopo è possibile calcolare per la stessa stazione l'indice RDI. Il programma DrinC utilizza quindi i valori della precipitazione cumulata mensile e i valori del PET appena calcolato, e selezionando un periodo di calcolo alla volta (1, 3, 6, 9, 12 mesi) restituisce un file Excel con l'indice calcolato per ogni mese dei vari anni, come dallo stralcio di Figura 5.24, sempre per la stazione di Montemonaco.

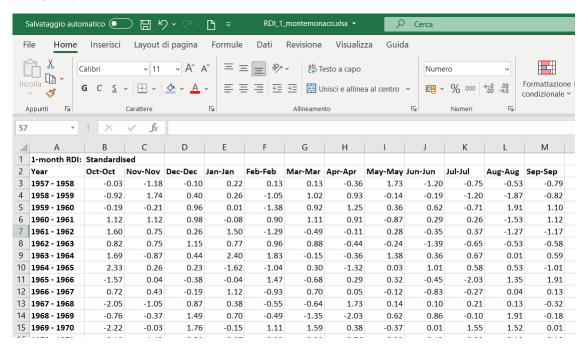


Figura 5.24 - Stralcio di output con valori RDI 1 per la stazione di Montemonaco

Con la stessa procedura sono stati quindi calcolati gli indici alle diverse scale temporali:

- RDI 1;
- RDI 3;
- RDI 6;
- RDI 9;
- RDI 12.

L'indice RDI, come l'indice SPI è basato sul confronto tra la precipitazione registrata in un determinato periodo di t mesi (dove t = 1,2, ...,24 mesi) con la distribuzione a lungo termine della precipitazione aggregata per lo stesso periodo di tempo.

A seconda della durata del periodo t considerato, l'indice RDI può fornire informazioni utili per valutare i potenziali impatti della siccità meteorologica:

- RDI riferito a periodi brevi di aggregazione temporale (da 1 a 3 mesi) fornisce indicazioni sugli impatti immediati, quali quelli relativi alla riduzione di umidità del suolo, del manto nevoso e della portata nei piccoli torrenti;
- RDI riferito a periodi medi di aggregazione temporale (da 3 a 12 mesi) fornisce indicazioni sulla riduzione delle portate fluviali e delle capacità negli invasi.

Una volta calcolati tutti gli indici RDI per tutte le 11 stazioni, sono stati rispettivamente riuniti in unica tabella Excel, come quella riportata nella Tabella 5.9 relativa all'indice RDI 1.

DATA	FANO	URBINO	FONTE AVELLANA	PERGOLA	FABRIANO	JESI	ANCONA TORRETTE	SERVIGLIANO	MONTEMONACO	AMATRICE	ASCOLI PICENO
01/10/1957	0.34	0.47	0.17	0.39	1.05	0.94	0.68	0.27	-0.03	0.35	0.34
01/11/1957	-1.82	-1.35	-0.85	-1.52	-1.94	-2.25	-2.06	-0.49	-1.18	-1.42	-0.67
01/12/1957	-0.61	-0.17	0.13	-0.45	-0.43	-0.58	-0.39	-0.69	-0.10	-0.29	0.03
01/01/1958	1.23	1.25	0.77	1.08	0.68	1.08	1.44	1.06	0.22	-0.16	0.90
01/02/1958	-0.27	-0.16	0.81	0.12	0.70	-0.32	-0.32	0.02	0.13	0.46	0.08
01/03/1958	-0.18	-0.64	-0.67	-0.46	-0.64	-0.26	-0.31	-0.37	0.13	-0.05	0.05
01/04/1958	0.92	1.02	0.16	0.78	1.01	0.33	0.79	-0.16	-0.36	0.00	0.38
01/04/2018	-1.52	-1.55	-0.93	-0.82	-1.19	-1.30	-1.11	-1.74	-1.80	-1.05	-2.05
01/05/2018	1.46	0.49	0.27	0.76	1.08	0.24	0.67	1.02	2.17	1.80	2.51
01/06/2018	0.85	-1.34	-1.04	-0.10	-1.04	0.87	0.37	0.26	1.50	0.89	1.14
01/07/2018	0.67	1.14	-0.44	0.01	-0.17	0.53	0.25	-1.28	-0.45	0.42	-0.84
01/08/2018	-0.97	-0.81	-0.04	-0.42	0.47	-0.30	0.23	-0.40	1.37	0.65	-0.32
01/09/2018	-0.56	-0.18	-0.81	-0.59	-0.66	0.83	-0.74	0.18	1.20	0.16	-0.91

Tabella 5.9 – RDI 1 per tutte le 11 stazioni nel periodo 1957-2018

5.3.3 TREND DETECTION

Per valutare la presenza di un trend di crescita o decrescita dell'indice di siccità RDI, è stata utilizzata la stessa procedura, applicando alle diverse serie temporali di RDI (1, 3, 6, 9, 12 mesi), per tutte le 11 stazioni i test di Mann-Kendall, Spearman e Cox-Stuart.

5.3.3.1 MANN-KENDALL, SPEARMAN E COX-STUART TEST

Il test è stato svolto in ambiente Matlab contemporaneamente per i tre diversi test. La procedura applicata è stata la stessa spiegata nel capitolo 5.2.3.1, utilizzata per valutare il trend degli indici SPI.

Il computo degli indici viene eseguito su tutti gli anni dal 1957 al 2018 e alla fine dell'esecuzione del test, per ogni stazione, il programma fornisce un file *Excel* dal nome 'TREND_nomestazione', al cui interno sono contenuti tanti fogli quanti sono gli indici RDI, al cui interno ci sono i risultati di tutti e tre i test, come da esempio in Tabella 5.10.

Tabella 5.10 - Esempio tabella Excel in output dai trend test –stazione di Fano (RDI 1)

Stazione di	FANO	
Serie termometrica	RDI 1	
N° dati	666	
Primo dato	1957	
Ultimo dato	2018	
Liv. Signif.	0.05	
Coeff. ang. m retta	-3.800E-08	
Intercetta b retta	0.030	
Kendall's tau	-0.008	
Statistica S	-7244	
Varianza S	32896883.00	
Variabile Z	-1.263	
MK p-value	0.207	MANN-KENDALL
Esito MK test	FALSO	
Theil-Sen's estimator	-0.059	
Coefficiente rSRC	-0.050	
Variabile tSRC	-1.286	
SR p-value	0.199	SPEARMAN
Esito SR test	0	
Variabile Z	1	
CS p-value	0.228	COX-STUART
Esito CS test	FALSO	

Se l'esito del test è VERO, valori positivi della variabile Z indicano una possibile tendenza crescente nelle osservazioni (trend positivo), contrariamente, valori negativi ne delineano una possibile tendenza decrescente. L'esito '0' indica 'no trend'

Tale valutazione è stata fatta per tutte le stazioni e per tutti gli indici temporali RDI; i risultati finali sono riassunti nelle tabelle 5.11, 5.12, 5.13 e negli istogrammi delle figure 5.30, 5.31, 5.32, in valore percentuale. Con '0' si indica la non significatività del trend (NO TREND), i valori evidenziati in rosso sono i trend significativi ma negativi, quindi tendenti a decrescere e i valori evidenziati in verde sono i trend significativi positivi, quindi tendenti alla crescita dell'indice specifico.

Tabella 5.11 - Risultati finali Mann-Kendall test, indici RDI - 11 stazioni

	MANN-KEND	ALL TEST -	serie temp	orale		
	STAZIONE	RDI1	RDI3	RDI6	RDI9	RDI12
	FANO	0	0	0	-2.18001	-2.38085
	URBINO	0	-2.13478	-3.36024	-4.24429	-4.81266
FON	ITE AVELLANA	-4.75039	-6.99626	-8.17922	-8.8498	-9.18484
	PERGOLA	-2.29217	-3.34003	-3.66474	-3.99823	-4.3637
	FABRIANO	-2.31661	-3.59517	-5.09015	-6.21063	-6.9752
	JESI	0	0	0	0	2.096476
ANC	ONA TORRETTE	-2.94159	-4.6491	-6.24978	-7.43712	-8.27506
SI	ERVIGLIANO	-2.2061	-3.11719	-3.78198	-4.54835	-5.27343
MO	NTEMONACO	0	-3.50553	-4.87117	-5.36568	-6.05677
	AMATRICE	0	-2.05472	-3.18456	-3.85163	-4.21346
AS	COLI PICENO	0	0	0	0	0
atariani aha	trend positivo - n. valori	0	0	0	0	1
stazioni che	trend positivo - %	0.00	0.00	0.00	0.00	2.00
rispettano requisiti di	no trend - n. valori	6	3	3	2	1
completezza e	no trend - %	12.00	6.00	6.00	4.00	2.00
omogeneità	trend negativo - n. valori	5	8	8	9	9
Omogeneita	trend negativo - %	10.00	16.00	16.00	18.00	18.00

Tabella 5.12 - Risultati finali Spearman test, indici RDI - 11 stazioni

SPEARMAN-RHO TEST - serie temporale								
	STAZIONE	RDI1	RDI3	RDI6	RDI9	RDI12		
	FANO	0	0	0	-2.19603	-2.32322		
	URBINO	0	-2.16148	-3.47574	-4.37338	-4.9665		
FON	ITE AVELLANA	-4.87466	-7.37014	-8.68091	-9.60966	-10.2714		
	PERGOLA	-2.34054	-3.41899	-3.81064	-4.18356	-4.47276		
	FABRIANO	-2.33428	-3.74072	-5.24025	-6.43142	-7.32946		
	0	0	0	0	2.137825			
ANC	-2.94976	-4.75052	-6.6861	-8.4673	-9.82444			
SI	-2.20052	-3.13244	-3.74537	-4.59787	-5.25684			
MO	NTEMONACO	0	-3.52106	-4.9437	-5.40609	-6.05856		
	AMATRICE	0	-1.99461	-3.02905	-3.6536	-4.01459		
AS	COLI PICENO	0	0	0	0	0		
	trend positivo - n. valori	0	0	0	0	1		
stazioni che	trend positivo - %	0.00	0.00	0.00	0.00	2.00		
rispettano requisiti di	no trend - n. valori	6	3	3	2	1		
completezza e	no trend - %	12.00	6.00	6.00	4.00	2.00		
omogeneità	trend negativo - n. valori	5	8	8	9	9		
omogeneita	trend negativo - %	10.00	16.00	16.00	18.00	18.00		

Tabella 5.13 - Risultati finali Cox-Stuart, indici SPI - 50 stazioni

COX-STUART TEST - serie temporale								
	STAZIONE	RDI1	RDI3	RDI6	RDI9	RDI12		
	FANO	0	0	0	-2.07871	-2.64628		
	URBINO	0	-2.50558	-2.08798	-2.92318	-3.34077		
FON	ITE AVELLANA	-4.46211	-6.46772	-8.55705	-9.73831	-11.0153		
	PERGOLA	-2.61916	-4.44575	-5.00694	-7.05263	-6.29837		
	FABRIANO	-2.71438	-4.28037	-5.74195	-5.53315	-6.57715		
	0	0	0	0	0			
ANC	-2.56205	-4.94289	-6.86114	-7.66301	-10.1928			
SI	ERVIGLIANO	0	-4.05826	-4.36238	-4.88797	-5.41356		
MO	NTEMONACO	-3.14054	-5.21996	-8.03873	-8.14313	-8.35193		
	AMATRICE	0	0	-2.12298	-2.33528	0		
AS	COLI PICENO	0	0	0	0	0		
stazioni che	trend positivo - n. valori	0	0	0	0	0		
	trend positivo - %	0.00	0.00	0.00	0.00	0.00		
rispettano requisiti di	no trend - n. valori	6	4	3	2	3		
completezza e	no trend - %	12.00	8.00	6.00	4.00	6.00		
omogeneità	trend negativo - n. valori	5	7	8	9	8		
	trend negativo - %	10.00	14.00	16.00	18.00	16.00		

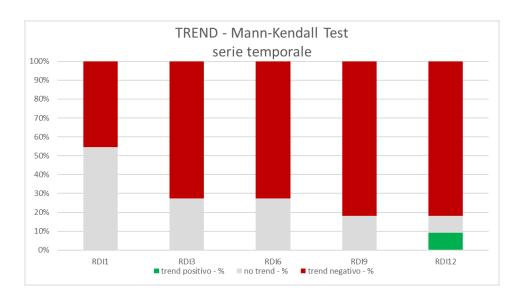


Figura 5.25 – Percentuale delle stazioni che mostrano trend positivo, negativo e no trend, M-K

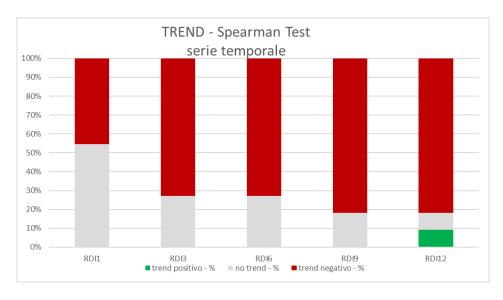


Figura 5.26 – Percentuale delle stazioni che mostrano trend positivo, negativo e no trend, Spearman

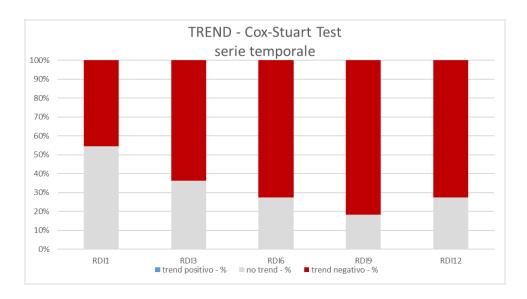


Figura 5.27 – Percentuale delle stazioni che mostrano trend positivo, negativo e no trend, C-S

Per le ragioni spiegate nel Capitolo 5.2.3.1, si ritengono maggiormente significativi i trend evidenziati dall'applicazione del Mann-Kendall test, seppure tutti e tre i test mostrino valori molto simili anche in questo caso. Infatti, la prevalenza del trend è negativa in tutte e tre le situazioni con lievi differenze.

Analizzando i trend del Mann-Kendall, nell'insieme si evidenzia che per tutti gli indici si ha prevalenza del trend negativo.

Per la stazione di Ascoli Piceno si mostra l'assenza di qualunque tendenza in ogni indice, mentre Jesi mostra una sola tendenza positiva, e quindi anomala in considerazione del trend generale. La stazione che presenta un trend più marcato è quella di Fabriano, ma in generale sono simili.

Si può quindi complessivamente affermare che anche questi indici sono aumentati negativamente, indicando ulteriormente una maggiore tendenza alla siccità nella Regione Marche.

Tuttavia, si dispone di un numero decisamente inferiore di stazioni rispetto all'indice SPI, per cui non è possibile avere una visione completa ed esaustiva dell'andamento generale. Si confermano in ogni caso risultati simili all'indice SPI.

Dai diagrammi di figura 5.30 si nota invece l'aumentare della percentuale di stazioni con trend negativo all'aumentare del periodo di riferimento. Questo perché l'indice RDI tende a oscillare maggiormente per periodi brevi, per cui non si nota un trend marcato a differenza dell'indice SPI a 14 mesi dove l'80% circa delle stazioni presenta un trend negativo.

5.3.4 ANOMALIE

Anche per gli indici RDI sono state calcolate le anomalie, utilizzando la stessa procedura vista al Capitolo 5.2.4, analizzando i trentenni di riferimento 1961-1990 e 1981-2010, rispettivamente per investigare il lungo e il breve termine.

Anche qui si è considerata la stagionalità, quindi è stato valutato l'indice a tre mesi, e si è considerato rappresentativo il mese di febbraio per l'inverno, il mese di maggio per la primavera, il mese di agosto per l'estate e il mese di novembre per l'autunno. Quindi le serie considerate sono quelle contenenti gli indici per i mesi appena citati, calcolati per ogni stazione.

Vengono di seguito riportati in Figura 5.14 i grafici delle anomalie per tutti i 4 mesi che rappresentano la stagionalità, sia con riferimento al trentennio 1961-1990 (colonna di sinistra) che 1981-2010 (colonna di destra).

Dal 90 al 2007

Anche per l'RDI in linea di massima i risultati tracciati dai grafici mostrano un irregolare comportamento dei dati oscillante tra valori positivi e valori negativi, e non si nota nessuna particolare evidenza di aumento o diminuzione.

La differenza dovuta alla stagionalità è poco evidente e gli andamenti sembrano simili, tendenti all'aumento nella parte finale soprattutto per le anomalie dei mesi invernali.

Le anomalie della stagione invernale sono quelle che mostrano i picchi più grandi soprattutto nei valori negativi, dove si evidenzia un'ampia zona con anomalie negative, tra il 1990 e il 2007.

Per gli indici di cui si sono calcolate le anomalie rispetto ai diversi periodi di riferimento c'è un piccolo cambiamento delle anomalie col cambiare del trentennio.

Figura 5.28 – Anomalie indice SPI 3 per i mesi feb, mag, ago, nov, con trentennio 1961-1990 e 1981-2010

5.3.5 MESI ED EVENTI SICCITOSI

Con il foglio Excel riportante tutti i valori RDI per le 11 stazioni, è stata utilizzata come per l'indice RDI una formattazione condizionale per evidenziare in giallo tutte le celle corrispondenti ai mesi che presentavano un indice RDI compreso tra -1 e -2, cioè siccità moderata, mentre le celle con RDI<-2, ovvero siccità estrema, sono state evidenziate in rosso, come si nota dalla figura 5.36.

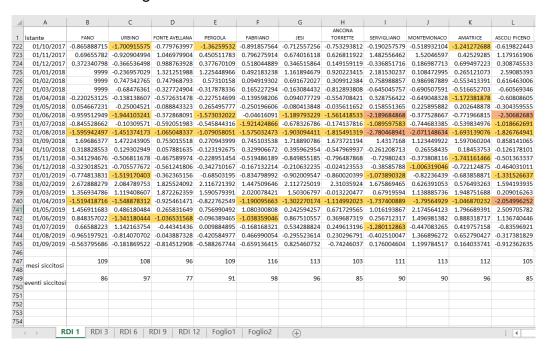


Figura 5.29 – stralcio tabella SPI con formattazione condizionale

Anche qui è stato seguito il suggerito dalla pubblicazione *Investigating drought in Apulia region, Italy using SPI and RDI (G. Marini et al., 2018)*, e sono stati individuati i mesi e gli eventi siccitosi per tutte le stazioni, in tutta la serie dal 1957 al 2018.

Si può capire perciò quanto questi eventi siccitosi siano durati, qual è stato il peggiore, e quanti eventi siccitosi ci sono stati negli ultimi 62 anni.

Una volta conteggiati il numero di mesi ed eventi siccitosi, sono stati riportati in Tabella 5.7, applicando per ogni serie RDI una formattazione condizionale che colora in maniera più marcata i valori più alti.

Tabella 5.14 – Riepilogo mesi ed eventi siccitosi

	NUMERO DI MESI RDI < -1					NUMERO DI EVENTI RDI < -1				
STAZIONE	RDI 1	RDI 3	RDI 6	RDI 9	RDI 12	RDI 1	RDI 3	RDI 6	RDI 9	RDI 12
FANO	109	94	65	38	30	86	45	30	11	12
URBINO	108	120	128	128	121	97	58	37	31	23
FONTE AVELLANA	96	103	84	72	48	77	44	25	21	19
PERGOLA	109	105	80	53	58	91	54	36	20	20
FABRIANO	116	122	119	118	122	98	62	42	34	26
JESI	113	112	72	35	40	96	54	33	12	15
ANCONA TORRETTE	103	120	86	47	45	85	55	37	18	20
SERVIGLIANO	111	113	81	50	26	90	61	34	24	16
MONTEMONACO	113	98	105	116	111	90	48	36	22	24
AMATRICE	112	105	63	54	43	96	52	31	18	14
ASCOLI PICENO	105	103	91	59	48	85	5	38	22	18

Dalla Tabella 5.15, per quanto riguarda il numero di mesi siccitosi (RDI<-1), si evince che:

- Per l'indice RDI 1 i valori più alti si sono registrati per la stazione di Fabriano, con 116 mesi.
- Per l'indice RDI3 i valori più alti si sono registrati per la stazione di Fabriano con 122 mesi:
- Per l'indice RDI 6 i valori più alti si sono registrati per la stazione di Urbino con 128 mesi;
- Per l'indice RDI 9 i valori più alti si sono registrati per la stazione di Urbino con 128 mesi;
- Per l'indice RDI 12 i valori più alti si sono registrati per la stazione di Urbino con 121 mesi;

Per quanto riguarda invece il numero di eventi siccitosi (RDI<-1), si nota che:

Per tutti gli indici la stazione di Fabriano registra i valori maggiori.

La durata massima continua di una siccità per RDI 12 tra tutte le stazioni si è registrata per la stazione di Montemonaco, con 27 mesi siccitosi, più di 2 anni, dal 2000 al 2002.

In generale invece, la concentrazione maggiore degli eventi siccitosi a lungo termine con SPI 12, si è avuta nei periodi 1988-1990 e 2000-2002.

Effettivamente si trova un riscontro molto simile a quello osservato per gli SPI.

5.4 PRECIPITAZIONE MEDIA ANNUALE

Data la serie di dati di precipitazione mensili dal 1951 al 2018, per le 50 stazioni definite omogenee e complete, con i dati mancanti rimpiazzati dai dati del COPERNICUS, è stata fatta una rappresentazione spaziale del valore medio del totale annuo di precipitazione, con riferimento al periodo di osservazione 1951-2018, dell'intera Regione Marche.

Per ogni stazione sono stati perciò sommati i dati mensili di ogni anno, generando una nuova serie di dati di precipitazione cumulata annuale, come sono visibile dallo stralcio di Tabella 5.17.

Tabella 5.15 – Stralcio serie dati di precipitazione annuale cumulata, per le 50 stazione dal 1951 al 2018.

STAZIONE	CARPEGNA	PETRIANO	TAVOLETO	FANO	• • •	AMATRICE	ASCOLI PICENO	CROCE DI CASALE
1951	1671	1197.4	1195.1	1020.8		1559.6	2018.8	1293.8
1952	947	746.8	728.8	674.6		1185	1307	779.4
1953	992.2	1175.8	880.2	806.2		1090.6	1203.2	971.2
1954	1123.4	860.3	752.8	757.4		1121.1	1311	958.2
1955	1356	1159.2	1108.2	943.2		1393.1	1385.8	1156.7
1956	1173	1067.6	1074.8	748.6		1162.1	1153.2	991.1
1957	974.8	835.3	776.2	666.4		965.2	992.2	877.3
1958	1216.4	1035.7	920.8	862.6		1563.3	1511.8	988
1959	1544.8	1097.7	1206.8	994		1704.9	1648.2	1198.1
1960	1400.8	1036.6	1145.4	929.6		1672	1679	1220.3
•								
2012	1326.4	913	744.8	798.6		1180.6	1409	1110
2013	1460.8	1123	917	1022.6		1360.8	1726.2	1257.7
2014	1135.2	1186.4	1124.8	1266.6		1447.8	1565.8	1283.4
2015	1165.6	1010	985	857.6		1173.9	1499.8	981.2
2016	1237.6	846.8	820.6	892.2		1192.8	1379	995.7
2017	841.6	863.6	585	771.2		1041.4	1393.6	919.5
2018	1155.4	891.8	689.4	849.6		922.7	1246.8	1126.3

È stata quindi calcolata per ogni stazione la media di tali valori sull'intero periodo 1951-2018; i dati così ottenuti sono stati interpolati spazialmente tramite il metodo delle distanze inverse (IDW), e l'elaborato è stato prodotto mediante il software QGis ed è rappresentato in Figura 5.20. Questa tecnica è ampiamente utilizzata nell'interpolazione spaziale dei dati di pioggia su una regione ampia (Cannarozzo et al. 2006; Appiotti et al. 2014).

Il valore medio di precipitazione totale annua varia approssimativamente da un valore minimo di 600 mm ad un valore massimo di 1700 mm di precipitazione.

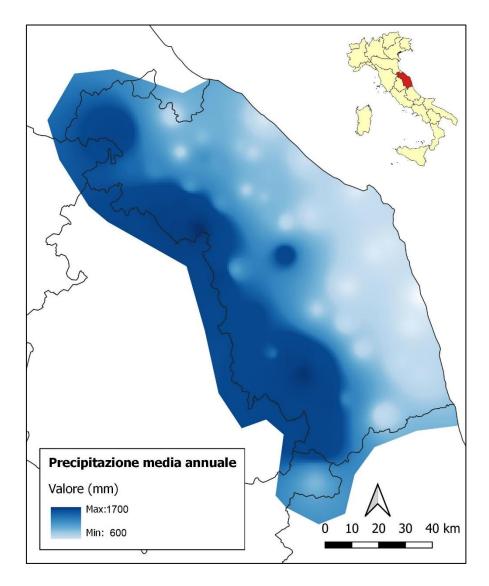


Figura 5.30 – Distribuzione spaziale della precipitazione totale annua mediata nel periodo 1951-2018, ricostruita con tecnica IDW.

Tale elaborato conferma le tre fasce citate al Capitolo 3.4, infatti è possibile operare un'ulteriore contestualizzazione geografica, secondo la quale possono essere riconosciute:

- fascia litoranea, localizzata in corrispondenza della costa meridionale. Le precipitazioni minime assolute all'interno della regione (600÷700 mm medi annui) si hanno fra Ancona e Porto Sant'Elpidio;
- fascia medio e basso collinare, a nord della regione nelle zone dell'alta valle del Foglia (800÷900 mm) e più a sud, al centro del territorio regionale, nella parte medio alta del fiume Potenza (750÷900 mm);
- fascia montuosa ed alto collinare, le precipitazioni maggiori si concentrano lungo la catena appenninica, in cui il massimo assoluto annuo viene raggiunto nella zona del monte Catria (1600÷1700 mm), mentre altri valori significativi si riscontrano in corrispondenza del massiccio dei Sibillini (1200÷1500 mm), e del monte San Vicino (1000÷1100 mm).

5.4.1 ANALISI DELLA PRECIPITAZIONE MEDIA ANNUALE SU 30 ANNI

Oltre alla media su tutto il periodo 1951-2018, è stata calcolata la media per i seguenti trentenni:

- a) 1951-1980;
- b) 1961-1990;
- c) 1971-2000;
- d) 1981-2010.

Si è scelto di operare la media su 30 anni così da avere un campione di dati significativo (Guttman, 1994) per comprendere la variazione delle precipitazioni su diversi archi temporali.

Lo scopo è quello di osservare in maniera immediata se si riscontrano variazioni nei valori medi spostando il periodo verso gli anni più recenti.

STAZIONE	CARPEGNA	PETRIANO	TAVOLETO	FANO	• • •	AMATRICE	ASCOLI PICENO	CROCE DI CASALE
1951	1671	1197.4	1195.1	1020.8		1559.6	2018.8	1293.8
1952	947	746.8	728.8	674.6		1185	1307	779.4
1953	992.2	1175.8	880.2	806.2		1090.6	1203.2	971.2
1954	1123.4	860.3	752.8	757.4		1121.1	1311	958.2
1955	1356	1159.2	1108.2	943.2		1393.1	1385.8	1156.7
1956	1173	1067.6	1074.8	748.6		1162.1	1153.2	991.1
:								
2015	1165.6	1010	985	857.6		1173.9	1499.8	981.2
2016	1237.6	846.8	820.6	892.2		1192.8	1379	995.7
2017	841.6	863.6	585	771.2		1041.4	1393.6	919.5
2018	1155.4	891.8	689.4	849.6		922.7	1246.8	1126.3
Precipitazio	one totale annuale m	nedia nel tre	entennio					
51-80	1185.0	951.2	914.6	788.9		886.5	843.0	1079.9
61-90	1106.8	879.0	838.3	717.6		878.0	772.4	1012.5
71-00	1108.3	849.7	810.9	723.8		850.3	792.4	918.6
81-10	1085.8	806.7	746.0	709.1		890.7	771.2	842.0
Precipitazione totale annuale media di tutta la serie								
51-18	1137.0	886.3	828.8	763.6		896.6	823.1	982.9

Tabella 5.16 - Stralcio calcolo medie nei trentenni.

Da una prima osservazione sui valori si osserva una diminuzione del valore di precipitazione annuale medio, spostandosi verso anni più recenti. Come si può vedere per la stazione di Carpegna, riportata nello stralcio della Tabella 5.16, si passa gradualmente da un valore medio di 1185 mm di pioggia per il periodo 1951-1980, ad un valore di 1085.8 mm di pioggia nel periodo 1981-2010, con 100 mm di pioggia in meno.

Tale comportamento risulta confermato in tutte le 50 stazioni; infatti, in tabella 5.17 si vede come la media su tutte le stazioni mantiene lo stesso comportamento.

Tabella 5.17 – Media sulle 50 stazioni per i vari trentenni

PRECIPITAZIONE TOTALE ANNUALE MEDIA NEL TRENTENNIO			
51-80	1017.32		
61-90	950.75		
71-00	914.24		
81-10	872.87		

Inoltre, la diminuzione delle precipitazioni si nota anche dai disegni della Figura 5.41 che riporta le interpolazioni spaziali, con il metodo delle distanze inverse (IDW), dei valori medi di ogni stazione per i differenti trentenni.

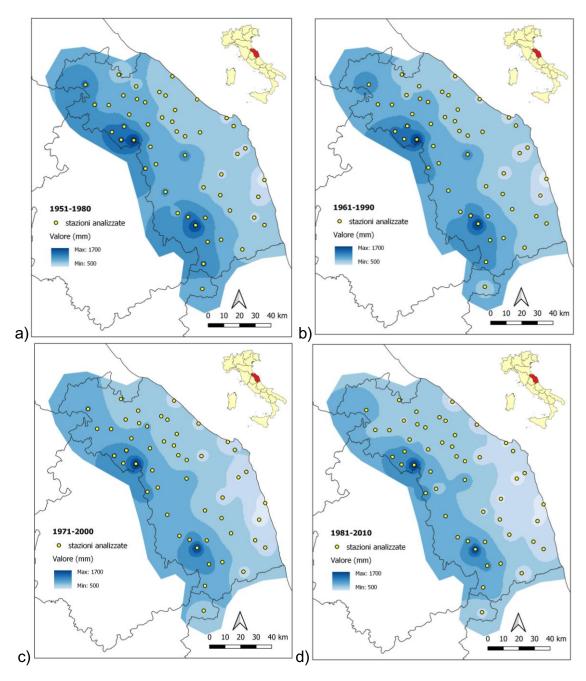


Figura 5.31 - Distribuzione spaziale della precipitazione totale annua mediata nei trentenni

CONCLUSIONI

Nel presente lavoro di tesi sono state analizzate le serie storiche di precipitazione della Regione Marche con l'obiettivo di conoscere e valutare l'evoluzione nel tempo dei cambiamenti nei regimi pluviometrici.

Ad oggi l'argomento dei cambiamenti climatici è posto di fronte alla comunità internazionale con una certa rilevanza, e per questo sempre più ricercatori e organizzazioni mettono a disposizione strumenti utili all'analisi del clima e dei suoi cambiamenti.

Grazie a questo è stato possibile attingere a dati sviluppati dal programma COPERNICUS per completare le serie con dati mancanti e avere una stima migliore degli indici climatici.

I test sulla regressione lineare hanno infatti confermato la validità di questi dati.

Negli anni più recenti sono stati implementati diversi indici che andassero a definire la gravità dei cambiamenti climatici. L'indice raccomandato dalla World Meteorological Organization è lo Standardized Precipitation Index, grazie alla sua facilità di calcolo e alla possibilità di confrontare i risultati che ne derivano anche per regioni con regimi pluviometrici sostanzialmente diversi.

Tuttavia, poiché l'indice SPI viene derivato utilizzando solo i dati sulle precipitazioni, esso non può davvero rappresentare la disponibilità di acqua di una regione, che deve essere misurato in base alla differenza tra le precipitazioni ed evapotraspirazione (Mishra et al.2011). Si è cercato di superare questa limitazione utilizzando l'indice RDI, Reconnaissance Drought Index, che utilizza sia l'evapotraspirazione che le precipitazioni per valutare le varie caratteristiche della siccità.

Grazie al calcolo di questi indici sono stati rilevati scenari che propendono per un peggioramento delle condizioni climatiche future della Regione Marche. Infatti l'analisi degli eventi siccitosi ha mostrato la maggiore frequenza di questi fenomeni negli ultimi anni

Tuttavia, le stazioni a disposizione per la valutazione degli indici e dei loro trend risultano essere, in particolare per le stazioni termografiche, insufficienti ad un'opportuna analisi d'insieme.

Sarebbe perciò opportuno in uno sviluppo futuro implementare la banca dati con ulteriori dati messi a disposizione dalle comunità scientifiche internazionali, specificati per la Regione Marche.

A tal proposito sarebbe opportuno prelevare dati di previsione futura su cui calcolare gli indici di siccità e valutare gli scenari futuri.

L'analisi sui valori di precipitazione annuale cumulata medi, hanno ulteriormente definito, a conclusione di questo studio, che nella Regione Marche si sono evidenziati scenari peggiorativi rispetto al passato, e le condizioni future non sembrano ad ora far pensare a sviluppi futuri migliori.

BIBLIOGRAFIA

Stefano Mariani, Giovanni Braga, Linee guida sugli indicatori di siccità e scarsità idrica da utilizzare nelle attività degli osservatori permanenti per gli utilizzi idrici.

Luciano Soldini e Giovanna Darvini (2017). "Extreme rainfall statistics in the Marche region", Italy, Hydrology Research 48.3:686-700.

Master ADAPT, "Linee guida, principi e procedure standardizzate per l'analisi climatica e la valutazione della vulnerabilità a livello regionale e locale".

APAT, Linee guida per l'individuazione delle aree soggette a fenomeni di siccità

Gustavo Marini et al., 2018, Investigating drought in Apulia region, Italy using SPI and RDI

- B. Bonaccorso et al., 2003, Spatial Variability of Drought: An Analysis of the SPI in Sicily
- G. Marini et al., Establishing a Drought Index Incorporating Evapotranspiration G. Tsakiris and H. Vangelis
- D. Tigkasa et al., Introducing a modified Reconnaissance Drought Index (RDIe) incorporating effective precipitation
- T. Kretzschmar, Precipitation-temperature variability and drought episodes in northwest Baja California

Thornthwaite C.W., 1948, An approach towards a rational classification of climate, Geogr. Rev., 38, 55–89

Giovanni Braca - Linee Guida sugli Indicatori di Siccità e Scarsità Idrica da utilizzare nelle attività degli Osservatori Permanenti per gli Utilizzi Idrici - Stato Attuale e Prospettive Future

Dipartimento di Scienze Ambientali, Università di Parma, 2007, Manuale di Statistica per la Ricerca e la Professione

Relazione Di Arpa Marche, Tavolo Tecnico Interagenziale "Gestione Sostenibile Delle Risorse Idriche"

ISPRA, 2012, Elaborazione delle serie temporali per la stima delle tendenze climatiche

Piano Regolatore degli Acquedotti della Regione Marche – ELABORATO DI PIANO.

Copernicus, 2015, Lo sguardo dell'europa sulla terra - opuscolo del programma copernicus, commissione europea.

Chiara Ciocconofri, 2006, Analisi degli eventi estremi di precipitazione sulle Marche con possibile applicazione dei risultati alla valutazione della pericolosità da alluvioni

WMO, 2012, Standardized Precipitation Index User Guide

Nathaniel B. Guttman, 1994, On the Sensitivity of Sample L Moments to Sample Size

D. Tigkas, DrinC: a software for drought analysis based on drought indices

Veronica Calvaresi, 2019, "Analisi dei valori estremi delle precipitazioni nella regione marche", Tesi di laurea, Facoltà di Ingegneria, Università Politecnica delle Marche.

https://surfobs.climate.copernicus.eu/

https://www.wmo.int/pages/themes/climate/climate projections.php

http://drought-software.com/