

UNIVERSITÀ POLITECNICA DELLE MARCHE FACOLTÀ DI INGEGNERIA

Corso di Laurea Triennale

Ingegneria Civile e Ambientale

Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente e Urbanistica

EMISSIONI DIRETTE E INDIRETTE DA IMPIANTI DI DEPURAZIONE DI PICCOLA TAGLIA. CASI STUDIO E MISURE REALI

DIRECT AND INDIRECT EMISSIONS FROM SMALL SCALE SEWAGE TREATMENT PLANTS. CASE STUDIES AND REAL MEASUREMENTS

Relatore:	Tesi di laurea di:
Prof. Anna Laura Eusebi	Luca Calò
Correlatori:	
Prof. Francesco Fatone	

Anno Accademico 2019/2020

SOMMARIO

1	Int	roduz	zione	4
	1.1	Effe	etto serra	5
2	INC	QUAD	PRAMENTO NORMATIVO	6
	2.1	Del	ibera ARERA 917/2017/R/idr - Parametro G5.3	6
	2.1	1	UNI EN ISO 14064 2019	7
	2.1	2	Quantificazione delle emissioni	13
	2.2	Pro	duzione di GHG in un WWTP	14
	2.2	2.1	Emissioni dirette	14
	2.2	2.2	Emissioni indirette	17
	2.3	APF	PROFONDIMENTO DI LETTERATURA SULLE EMISSIONI DA FOSSE SETTICHE	17
	2.3	3.1	Generalità	17
	2.3	3.2	Emissioni da Fosse Settiche	20
3	IM	PIAN	TI ANALIZZATI	22
	3.1	1	DESCRIZIONE IMPIANTO DI GIAVERA	22
	3.1	2	DESCRIZIONE IMPIANTO DI MUSSOLENTE	23
	3.1	3	DESCRIZIONE IMPIANTO DI PEDEROBBA	24
	3.1	4	DESCRIZIONE IMPIANTO DI SERNAGLIA	26
	3.1	5	DESCRIZIONE IMPIANTO DI REVINE	27
	3.1	6	DESCRIZIONE IMPIANTO DI VALDOBBIADENE	28
4	RIS	ULTA	TI E DISCUSSIONE	30
	4.1	RIS	ULTATI GHGs DISCIOLTI	30
	4.2	IMF	PIANTO DI GIAVERA	31
	4.2	2.1	PUNTO DI PRELIEVO: INGRESSO IMPIANTO	31
	4.2	2.2	PUNTO DI PRELIEVO: USCITA IMPIANTO	35
	4.2	2.3	PUNTO DI PRELIEVO: SURNATANTE	39
	4.3	IMF	PIANTO DI MUSSOLENTE	43
	4.3	3.1	PUNTO DI PRELIEVO: INGRESSO IMPIANTO	43
	4.3	3.2	PUNTO DI PRELIEVO: USCITA IMPIANTO	47
	4.3	3.3	PUNTO DI PRELIEVO: SURNATANTE	51
	4.4	IMF	PIANTO DI PEDEROBBA	55
	1 1	1 1	DIINTO DI PRELIEVO: INGRESSO IMPIANTO	55

	4.4.2	PUNTO DI PRELIEVO: USCITA IMPIANTO	59
	4.4.3	PUNTO DI PRELIEVO: SURNATANTE	63
4	4.5 IMI	PIANTO DI SERNAGLIA	67
	4.5.1	PUNTO DI PRELIEVO: INGRESSO IMPIANTO	67
	4.5.2	PUNTO DI PRELIEVO: USCITA IMPIANTO	71
	4.5.3	PUNTO DI PRELIEVO: SURNATANTE	75
4	4.6 IMI	PIANTO DI REVINE	79
	4.6.1	PUNTO DI PRELIEVO: INGRESSO IMPIANTO	79
	4.6.2	PUNTO DI PRELIEVO: USCITA IMPIANTO	83
	4.6.3	PUNTO DI PRELIEVO: SURNATANTE	87
4	4.7 IMI	PIANTO DI VALDOBBIADENE	91
	4.7.1	PUNTO DI PRELIEVO: INGRESSO IMPIANTO	91
	4.7.2	PUNTO DI PRELIEVO: USCITA IMPIANTO	95
	4.7.3	PUNTO DI PRELIEVO: SURNATANTE	99
5	SINTESI	DEI RISULTATI	103
Į	5.1 CO	NCLUSIONI	105
6	RIFERIM	1ENTI BIBLIOGRAFICI	119

TERMINI E DEFINIZIONI

-Gas ad effetto serra (GHG greenhouse gas): costituente gassoso dell'atmosfera, sia naturale sia di origine antropica, che assorbe ed emette radiazioni a specifiche lunghezze d'onda all'interno dello spettro della radiazione infrarossa emessa dalla superficie terrestre, dall'atmosfera e dalle nubi;

-Sorgente di gas serra: unità fisica o processo che rilascia un GHG nell'atmosfera;

-Emissione di gas serra: massa totale di un GHG rilasciato in atmosfera nell'arco di uno specificato periodo di tempo;

-Fattore di emissione o di rimozione di gas serra (EF Emission Factor): fattore che correla dati di attività ad emissioni o rimozioni di GHG;

-Emissione diretta di gas serra: emissione di GHG da sorgenti di gas serra di proprietà o controllate dall'organizzazione;

-Emissione indiretta di gas serra da consumo energetico: emissione di GHG derivante dalla produzione di elettricità, calore o vapore importati e consumati dall'organizzazione;

-Altra emissione indiretta di gas serra: emissione di GHG diversa dalle emissioni indirette di GHG da consumo energetico;

-Dati di attività relativa al gas serra: misure quantitative di attività che risultano dalle emissioni o rimozioni di GHG;

-Inventario di gas serra: sorgenti di gas serra, assorbitori di gas serra, emissioni e rimozioni di GHG di un'organizzazione;

-Potenziale di riscaldamento globale, GWP (global warming potential): fattore che descrive l'impatto come forza radiante di un'unità di massa di un dato GHG rispetto ad un'unità equivalente di biossido di carbonio nell'arco di un determinato periodo di tempo;

-Biossido di carbonio equivalente (CO₂e): unità che permette di confrontare la forza radiante del GHG con quella del biossido di carbonio;

-Organizzazione: gruppo, società, azienda, impresa, ente o istituzione, ovvero loro parti o combinazioni, in forma associata o meno, pubblica o privata, che abbia una propria struttura funzionale e amministrativa.

-BOD: Biological Oxygen Demand-Domanda Biologica di Ossigeno

-COD: Chemical Oxygen Demand-Domanda Chimica di Ossigeno

-TKN: Total Kjeldahl Nitrogen-Azoto Totale Kjeldahl

-WWTP: Wastewater treatment plant

-AE: Abitante Equivalente

1 INTRODUZIONE

La quantificazione delle emissioni è uno step fondamentale per l'analisi e la valutazione del riscaldamento globale, come sancito dal "Protocollo di Kyoto", entrato in vigore il 16 febbraio 2005, anche in ottica di individuare pratiche ed attività che abbiano un impatto inferiore sulle emissioni di gas serra in atmosfera. Il Carbon Footprint (impronta di Carbonio) è un indicatore ideato per misurare e quantificare le emissioni provenienti dalla produzione di un bene da parte di un'impresa, espressa in genere in tonnellate di CO2 equivalente. Questo importante passo avanti è recepito come un indice di sostenibilità di un'organizzazione.

Gli impianti di trattamento delle acque reflue emettono gas serra in atmosfera in quantità non trascurabili e per questo motivo le aziende che operano in questo ambito sono tenute a calcolare l'impronta di carbonio nel rispetto della norma UNI EN ISO 14064-1 e della delibera ARERA.

Nello specifico, il lavoro di questa tesi si riferisce sulla valutazione dell'impronta di carbonio del servizio di depurazione, facente capo all'azienda "Alto Trevigiano Servizi". Per ciascuno degli impianti analizzati è stata svolta un'accurata fase di analisi di laboratorio su campioni di refluo prelevati giornalmente, con il fine di determinare dei fattori emissivi specifici, da poter confrontare con benchmark forniti dalla letteratura tecnico-scientifica di settore, in special modo dall'IPCC. Si è potuto quindi verificare di quanto essi si discostino da questo riferimento.

A completamento, è stato fatto un raffronto tra questi impianti di depurazione di piccola taglia e sistemi di trattamento domestici, quali le fosse settiche, con il fine di osservare, in modo particolare, quanto questi ultimi, in realtà abbastanza obsoleti ma ancora in uso soprattutto in realtà decentralizzate, impattano sull'ambiente. Tale valutazione è stata condotta confontando il fattore di emissione ricavato per gli impianti di piccola taglia con quello relativo alla fossa settica, individuato tramite analisi di letteratura. Si è giunti poi a considerazioni finali a concludere.

1.1 Effetto serra

L'effetto serra è un fenomeno naturale responsabile del riscaldamento del nostro pianeta. Alcuni gas presenti nell'atmosfera trattengono una parte delle radiazioni solari che rimbalzano sulla superficie terrestre e, poiché tra queste vi è anche quella infrarossa, ne immagazzinano anche il calore necessario per portare la temperatura dai 19°C sotto lo zero a quella adatta allo sviluppo della vita. Di per sé l'effetto serra è benefico per gli organismi viventi, poiché permette la loro sopravvivenza, ma il suo incremento repentino ha causato squilibri nell'ecosistema globale.

Il fenomeno dell'effetto serra ha iniziato ad avere dei connotati preoccupanti negli ultimi decenni poiché si è notevolmente intensificato, facendo aumentare rapidamente la temperatura media del globo. Le cause di questo fenomeno sono da ricercarsi nelle attività antropiche, responsabili delle emissioni di grandi quantità di GHGs.

Nello specifico, ogni singolo gas influisce sul cambiamento climatico secondo tre fattori principali:

- Concentrazione: quantità di gas in un volume d'aria;
- <u>Tempo di permanenza nell'atmosfera</u>: i range vanno da pochi giorni a molti anni;
- Impatto sull'atmosfera: alcuni più di altri sono rilevanti per i loro effetti.

Ogni gas serra, in realtà, assorbe una determinata lunghezza d'onda dell'infrarosso, che è tipico del calore emesso dalla superficie terrestre. Possiamo dire, quindi, che tutti insieme riescono in gran parte ad assorbirlo e la quantità assorbita è strettamente correlata con la loro presenza in percentuale in atmosfera.

Le principali osservazioni sugli effetti del sistema climatico in linea generale si basano su misurazioni fisiche e biogeochimiche dirette e sul telerilevamento da stazioni a terra e satelliti. Le informazioni derivate dagli archivi paleoclimatici forniscono un contesto a lungo termine. Le osservazioni su scala globale dell'era strumentale sono iniziate a metà del XIX secolo e le ricostruzioni paleoclimatiche estendono alcune misurazioni da centinaia a milioni di anni. Insieme forniscono una visione completa della variabilità e dei cambiamenti a lungo termine nell'atmosfera, nell'oceano, nella criosfera e sulla superficie terrestre (Fonte: IPCC report 2013).

I dati in possesso, comunque, consentono di stabilire che il 2019 si è concluso con una temperatura media globale di 1,1°C al di sopra dei livelli preindustriali stimati (Fonte: WMO, 3 dicembre 2019). Le oscillazioni medie di temperatura come detto, sono fenomeni fisiologici e naturali, se non fosse per il fatto che in passato non si era mai registrato un cambiamento in una maniera così repentina. Il valore medio attuale della temperatura terrestre è il risultato di un preciso equilibrio tra il calore emanato dal Sole e la concentrazione di gas serra che consentono di mantenere tale calore nell'atmosfera. In particolare, negli ultimi decenni è stato riscontrato un aumento anomalo di gas serra presenti in atmosfera e quasi tutti i climatologi sono arrivati alla conclusione che buona parte del riscaldamento globale è fortemente legato all'incremento della concentrazione dei gas serra. Gli effetti che causa un maggiore calore, e quindi energia in atmosfera, sono ormai sotto gli occhi di tutti. Si può partire dai fenomeni meteorologici estremi, a causa di un clima tropicale sempre più incalzante, desertificazione, scioglimento dei ghiacci, innalzamento dei mari, per arrivare anche alla

diffusione di specie non autoctone e malattie tropicali, in zone notoriamente temperate, come l'Italia ad esempio.

Può essere considerato, quindi, inquinamento atmosferico, tutto ciò che è causa di un'alterazione di un naturale ciclo climatico.

2 INQUADRAMENTO NORMATIVO

I documenti di riferimento per la valutazione dell'impronta di carbonio relativa al servizio di depurazione delle acque reflue sono: la Delibera 917/2017/R/idr rilasciata dall'ARERA e la UNI EN ISO 14064-1.

2.1 Delibera ARERA 917/2017/R/idr - Parametro G5.3

La Delibera 917/2017/R/IDR definisce la disciplina della qualità tecnica del servizio idrico integrato entrata in vigore il 1° gennaio 2018, pur prevedendo un'applicazione temporale graduale delle diverse regolazioni previste.

In particolare, l'articolazione di qualità tecnica prevede un sistema di macro-indicatori suddivisi tra:

- a) <u>standard specifici</u>: che identificano i livelli minimi di performance da garantire nelle prestazioni erogate al singolo utente;
- b) <u>standard generali</u>: che descrivono le condizioni tecniche di erogazione del servizio, e a cui è associato il meccanismo incentivante, tramite una serie di macro-indicatori e indicatori semplici;
- c) <u>prerequisiti</u>: che rappresentano le condizioni necessarie all'ammissione al meccanismo incentivante associato agli standard generali con strumenti di applicazione selettiva e graduale sia ex ante che post.

A completamento della disciplina, sono previsti anche obblighi di monitoraggio, registrazione e comunicazione dei dati ottenuti, al fine di controllare meglio l'applicazione della regolazione e di mettere i consumatori al corrente delle principali novità previste.

La norma definisce al Titolo 7 "Meccanismi di incentivazione", le procedure di attribuzione di premialità o penalizzazioni in ragione delle performances dei gestori, sulla base del sistema di macro-indicatori e di indicatori semplici esplicitati tra gli standard generali. I premi e le penalità (art. 28 e 29 della norma) sono quantificati a partire dal 2020, sulla base delle performance realizzate in ciascuno dei 2 anni precedenti.

Il meccanismo incentivante di qualità tecnica del servizio idrico integrato tiene conto dello stato di efficienza conseguito, inteso come livello di maturità tecnologica e gestionale, ex ante alla fascia di mantenimento (classe A) per almeno un macro-indicatore, e della variazione di efficienza, in termini di entità del miglioramento dei livelli prestazionali iniziali, non appartenenti ex ante alla richiamata Classe A oggetto del provvedimento.

In <u>Tabella1</u> sono descritti i diversi stadi in cui è articolato il meccanismo di incentivazione o penalizzazione in base alla classe di partenza ed al livello di valutazione.

Livelli di valutazione

		Livello base	Livello avanzato	Livello di eccellenza
	Obiettivi di	Stadio I	Stadio III	Stadio V
	<u>mantenimento</u>	permanenza in	prime (ultime) tre	prime tre posizioni a
	(classe A)	classe A (cambio di	posizioni in classe A	livello globale
		classe) per ogni	(cambio di classe) per	considerando tutti i
		macro-indicatore	ogni singolo macro-	macro-indicatori valutati
-			indicatore	(di cui almeno uno in
÷				classe A)
Obiettivi	Obiettivi di	Stadio II	Stadio IV	
O	<u>miglioramento</u>	superamento (non	prime (ultime) tre	
	(classi diverse	raggiungimento)	posizioni in termini di	
	da A)	dell'obiettivo per	miglioramento	
		ogni macro-	(peggioramento)	
		indicatore	rispetto all'obiettivo	
			stabilito per ogni	
			macro-indicatore	

<u>Tabella 1</u> - Livelli di valutazione e meccanismi di incentivazione/penalizzazione

Nello specifico dell'indicatore G5.3, l'ARERA, ha introdotto il calcolo dell'impronta di carbonio del servizio di depurazione prevedendo nell'allegato alla delibera ARERA 917/2017/R/idr, al punto 18.12, quanto segue:

"Ad integrazione del macro-indicatore M5 ("smaltimento fanghi in discarica"), al fine di valutare il miglioramento dell'impatto ambientale complessivamente associato al servizio di depurazione, si considera l'indicatore G5.3 denominato "Impronta di carbonio del servizio di depurazione" in relazione alla Regolazione della Qualità Tecnica del Servizio Idrico Integrato (RQTI), entrato in vigore il 1° gennaio 2018, valutato in accordo alla norma UNI EN ISO 14064-1 e misurato in termini di tonnellate di CO2 equivalente".

Ai fini dell'applicazione dei fattori premiali e di penalizzazione nell'anno (a + 2), costituiscono elementi di valutazione il livello, negli anni (a) e (a+1), dei macro-indicatori. Nel caso specifico, l'indicatore G5.3 "Impronta di carbonio del servizio di depurazione" costituisce un elemento ulteriore di valutazione ai fini dell'attribuzione di punteggio e formazione delle graduatorie con riferimento agli stadi III, IV e V.

Gli obiettivi di qualità tecnica sono stabiliti da tale regolamento, a partire dall'anno 2019, sulla base del valore registrato nell'annualità precedente o laddove non disponibile al momento della definizione della programmazione degli interventi, sulla base del valore previsto o di quello assunto, con riferimento all'annualità più recente (articolo 4).

2.1.1 UNI EN ISO 14064 2019

Con l'utilizzo della UNI EN ISO 14064-1 (Gas ad effetto serra - Parte 1: Specifiche e guida, al livello dell'organizzazione, per la quantificazione e la rendicontazione delle emissioni di gas ad effetto serra

e della loro rimozione), l'Organizzazione può calcolare la propria impronta di carbonio aziendale con riferimento ad alcune o tutte le proprie installazioni, ai siti produttivi, ad un cantiere od un appalto.

La progettazione e lo sviluppo dell'inventario passano attraverso la definizione dei confini organizzativi. All'interno dei confini, l'organizzazione può comprendere più installazioni, le quali possono essere aggregate secondo due approcci:

• <u>Controllo</u>: in base all'approccio del controllo, un'organizzazione contabilizza il 100% delle emissioni provenienti da operazioni sulle quali essa ha il controllo. Non contabilizza le emissioni provenienti da operazioni rispetto alle quali essa ha un interesse ma non il controllo. Il controllo può essere definito sia in termini finanziari sia in termini operativi, in fase di rendicontazione delle emissioni GHG le organizzazioni possono scegliere uno dei due criteri.

Un'organizzazione ha il controllo finanziario dell'operazione se essa ha la capacità di dirigere le politiche finanziarie ed operative dell'operazione con l'ottica di acquisire benefici economici dalle sue attività. Un'organizzazione ha il controllo operativo di un'operazione se essa ha la piena autorità, a livello operativo, di introdurre ed attuare le proprie politiche operative.

• **Equa ripartizione**: l'equa ripartizione è la percentuale dell'interesse economico o del beneficio derivato da un'installazione. Questo approccio tende a riflettere l'approccio adottato dalle norme di contabilità e rendicontazione finanziaria. L'aggregazione a livello organizzativo basata sull'equa ripartizione richiede che venga stabilita la percentuale di proprietà di ciascuna installazione, e che vengano contabilizzate le emissioni in base a tale percentuale dalle rispettive installazioni.

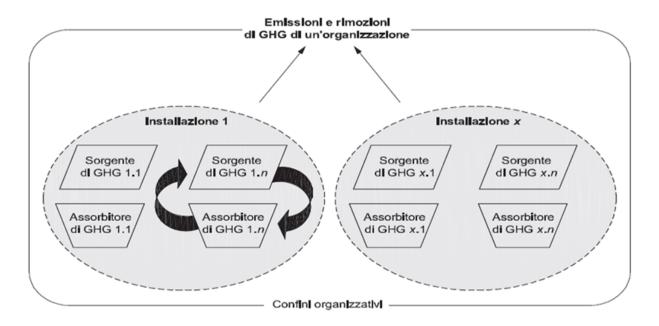


Figura 1 - Confini organizzativi

In base a quanto evidenziato nella già menzionata delibera ARERA 917/2017/R/idr, l'impronta di carbonio è da calcolare in relazione al solo servizio di depurazione per il quale i confini organizzativi andrebbero ragionevolmente associati alle singole installazioni ad esso legate, ovvero agli impianti di depurazione. In tal senso, il criterio di Controllo su base Operativa definito dalla UNI sembra quello più plausibile relativamente ai confini dell'organizzazione

A fronte di questo, tuttavia, si specifica che impatti indiretti legati, ad esempio, alle destinazioni ultime dei fanghi/rifiuti prodotti nelle singole installazioni o all'uso di specifici reagenti saranno, comunque, discussi e calcolati sebbene i loro effetti si collochino esternamente rispetto al confine fisico delle istallazioni controllate. Il dettaglio delle tipologie di impatti indiretti, comunque considerati, ma associati a contributi esterni rispetto al confine organizzativo, è sintetizzato in *Tabella2*.

Il calcolo dell'impronta di carbonio, secondo quanto descritto dall'ARERA (articolo 4, paragrafo 4.2) deve far riferimento ai dati di gestione del servizio di depurazione relativi all'annualità più recente.

IMPATTI INDIRETTI ASSOCIATI A CONTRIBUTI	SPECIFICHE NEL SETTORE DELLA
ESTERNI RISPETTO AL CONFINE	DEPURAZIONE
Impatti derivanti da prodotti e servizi usati dall'organizzazione	Reagenti e relativo rifornimento/trasporto
Impatti derivanti dai rifiuti generati	Destinazione finale dei fanghi di depurazione
Impatti derivati dai trasporti	Trasporti per lo smaltimento dei rifiuti (sabbie, vagliato, fanghi)

 $\underline{\textit{Tabella 2}}$ - Impatti indiretti associati a contributi esterni rispetto al confine organizzativo

Le tipologie di GHG che contribuiscono maggiormente all'emissione diretta e indiretta nel caso del servizio di depurazione, sono state individuate sulla base di un'attenta analisi della letteratura tecnico-scientifica di settore, applicata in modo specifico al servizio della depurazione.

Nel calcolo dell'impronta di carbonio, pertanto, sono stati presi in considerazione i contributi dovuti al metano, all'anidride carbonica e al protossido di azoto in accordo con quanto esposto nelle linee guida dell'IPCC 2019 e con Nuygen et al., 2019, riportato qui di seguito in <u>Tabella3.</u>

TIPOLOGIE DI	GHG considerate		
CO2			
CH4			
N2O			
NF3	Non significativo al.,2019)	(Nuygen	et
SF6	Non significativo al.,2019)	(Nuygen	et
Altri gruppi	Non significativi al.,2019)	(Nuygen	et

<u>Tabella 3</u> - Applicazione della norma UNI ISO EN 14064-1 sui gas serra da considerare

Si specifica che classi di gas clima-alteranti quali quelle degli NOx (Ossidi di Azoto) e della CO (Monossido di Carbonio) non vengono contabilizzate nel calcolo del CF in quanto principalmente associate a processi industriali di trasformazione e di generazione di energia o al settore dei trasporti (IPCC 2019).

Secondo la norma ISO 14064-1 la contabilità inventariale dei GHG viene realizzata nell'ambito di 3 diverse aree di emissione, che sono quindi classificate in tre campi d'applicazione a responsabilità decrescente:

a) *Emissioni dirette*:

Emissioni derivanti dalla combustione diretta di combustibili fossili utilizzati per la produzione di energia termica, per l'eventuale produzione in loco di energia elettrica, per il rifornimento di veicoli di trasporto. Le fonti di emissioni classificate come Scope 1 sono generalmente possedute e controllate direttamente dall'organizzazione e le conseguenti emissioni avvengono direttamente all'interno dei confini scelti.

Emissioni dirette dai processi

Emissioni dirette fuggitive per rilascio di GHG nei sistemi antropogenici: le emissioni fuggitive possono derivare dal rilascio di GHG da sistemi antropogenici che estraggono, processano, stoccano e/o trasportano combustibili e da perdite di tali apparecchiature, ma includono anche processi agricoli di fermentazione e processi di decomposizione incontrollata che possono avvenire negli impianti di trattamento delle acque o dei rifiuti.

b) *Emissioni indirette*:

Emissioni indirette da energia importata

Questa categoria comprende emissioni di gas serra dovute all'utilizzo di idrocarburi e associate alla produzione delle diverse tipologie di energia, come, ad esempio, elettricità, calore, vapore, raffreddamento e aria compressa. Nell'annesso E si specifica che le emissioni di gas serra derivanti dal consumo di energia elettrica importata devono essere contabilizzate con un fattore di emissione possibilmente locale, che tenga in considerazione le condizioni sito-specifiche della rete di produzione e trasmissione nazionale o regionale.

Emissioni indirette da trasporto

Le emissioni da trasporto vengono prodotte da fonti mobili situate al di fuori dei confini operativi dell'organizzazione. Tali fonti di emissione sono principalmente dovute al carburante utilizzato nei mezzi di trasporto. Le emissioni indirette da trasporto possono essere ulteriormente suddivise in:

Emissioni indirette da prodotti e servizi usati dall'organizzazione

In questa categoria rientrano le emissioni derivanti da fonti situate al di fuori dai confini organizzativi, ma connesse con l'utilizzo di prodotti da parte dell'organizzazione. Tali contributi sono associati ai prodotti acquistati dall'organizzazione. Si specifica che è necessario tenere in considerazione tutte le emissioni che si verificano durante l'intero processo di produzione di tali prodotti e/o servizi.

Emissioni indirette associate all'uso di prodotti dall'organizzazione

In questa categoria rientrano le emissioni associate all'utilizzo, al di fuori dei confini organizzativi, di prodotti venduti dall'organizzazione.

Emissioni indirette da altre fonti

In tale categoria rientrano tutte quelle emissioni che non possono essere contabilizzate in nessuna delle precedenti definizioni ma che sono comunque da considerarsi come significative nel calcolo globale dell'impronta di carbonio.

Emissioni derivanti dai prodotti e servizi utilizzati dall'organizzazione, quali le emissioni generate dai viaggi di lavoro, dai beni utilizzati, dalla mobilità dei lavoratori, ecc.;

Inoltre, la normativa internazionale ISO 14064-1, al punto 5.3.1, impone all'organizzazione di stabilire l'anno di riferimento storico per la valutazione delle emissioni.

Al fine di calcolare l' "Impronta di carbonio del servizio di depurazione", avendo a riferimento quanto fatto in altri casi europei, metodologicamente si procede secondo i seguenti punti:

- Individuazione dei confini organizzativi ed operativi con un approccio per l'analisi e la quantificazione dei GHG di tipo a "controllo operativo", per cui verranno contabilizzate le emissioni relative al servizio di depurazione sulle quali l'organizzazione ha il controllo operativo. Ossia l'individuazione degli impianti di depurazione a livello di installazione, dei loro confini operativi e dei loro confini di controllo.
- 2. Individuazione delle fonti di emissione, caratterizzazione e rendicontazione dell'inventario in accordo agli scopi previsti dalla ISO 14064-1:
 - 1. Emissioni dirette da combustione fissa;
 - 2. Emissioni dirette da combustione mobile;
 - 3. Emissioni dirette correlate ai processi;
 - 4. Emissioni dirette fuggitive;
 - 5. Emissioni indirette da consumo di elettricità importata;
 - 6. Emissioni indirette da consumo di energia importata attraverso una rete fisica (vapore, riscaldamento, raffreddamento ecc.) esclusa l'elettricità
 - 7. Emissioni indirette sul corpo idrico recettore;
 - 8. Attività correlate all'energia non incluse nelle emissioni dirette o indirette da consumo energetico;
 - 9. Rifiuti generati;
 - 10. Chemicals;
 - 11. Trasporto e distribuzione;
 - 12. Viaggi d'affari;
 - 13. Trasporto clienti e visitatori;
 - 14. Pendolarismo dei dipendenti;
- 3. Selezione della metodologia di quantificazione: il calcolo dell'impronta di carbonio è basato sulla moltiplicazione dei dati di attività per i relativi fattori di conversione, in accordo con le linee guida IPCC del 2006, sulla base di dati scientifici di letteratura e sulla base del monitoraggio in situ.
- 4. Selezione e raccolta dati distinta a livello di installazione. Per gli impianti di depurazione i dati necessari sono individuati in:
 - 1. portate, carichi di massa degli inquinanti influenti ed effluenti;
 - 2. consumo di energia elettrica, ripartizione e consumo di altri vettori energetici;
 - 3. trattamento di rifiuti extrafognari;

- 4. produzione e destinazione del biogas;
- 5. consumo di reagenti esterni e loro composizione;
- 6. rifiuti prodotti e loro destinazione (sabbie e vagliato);
- 7. numero di viaggi, km percorsi e mezzi utilizzati relativi al trasporto dei reagenti esterni ed al trasporto dei rifiuti prodotti in impianto;
- 8. fanghi da depurazione prodotti e loro caratterizzazione, eventuale stoccaggio, smaltimento o riutilizzo;
- 9. pendolarismo e viaggi in ambito lavorativo del personale dipendente.
- 5. Calcolo dell'impronta di carbonio e confronto con benchmark nazionale ed internazionale, in linea con i principi che hanno guidato la succitata delibera dell'ARERA.

In caso di indisponibilità di alcuni dati si procede, ove possibile, all'utilizzo di indicatori da reperire in letteratura prima nazionale e internazionale.

Le emissioni di gas serra in atmosfera da parte degli impianti di depurazione delle acque reflue si dividono in due macro categorie: "dirette" e "indirette".

2.1.2 Quantificazione delle emissioni

Misurare l'entità delle loro emissioni e capirne i meccanismi di produzione nella filiera di processo sono attività di importanza fondamentale ai fini della riduzione del relativo impatto.

Le emissioni dirette possono essere misurate direttamente in impianto oppure calcolate attraverso i fattori di emissione, ed è possibile utilizzare questa relazione:

Emissione di GHG = Dato attività * EF * GWP

Dove:

<u>Emissione di GHG</u> è la quantificazione dei GHG emessi dall'attività, espressa in termini di tonnellate di CO2 (tCO2) o tonnellate di CO2 equivalente (tCO2e);

<u>Dato attività</u> è la quantità che descrive l'attività, espressa in termini di volume (m³ o l), o in termini di carico in entrata o in uscita, espresso in kg/d

<u>EF</u> è il fattore di emissione che trasforma la quantità nella conseguente emissione di GHG, è espresso in kg GHG/dato attività.

<u>GWP</u> "Global Warming Potential", coefficienti che derivano dall'IPCC utilizzati per convertire le emissioni dei singoli gas serra in emissioni di CO2e, aventi per unità di misura (kg CO2eq/kg GHG).

I potenziali climalteranti dei vari gas (GWP) sono stati elaborati dall'Intergovernmental Panel on Climate Change (IPCC Fifth Assessment Report, 2014, AR5 (http://www.ipcc.ch/) e sono riportati in

<u>Tabella4</u>. Maggiore è il GWP, maggiore è il contributo all'effetto serra. Sommando i vari contributi di carichi emessi di CO₂, CH₄ e N₂O convertiti in CO₂ equivalente si ottiene l'impronta di carbonio totale.

		GWP valu	es for 100-year	time horizon
Industrial designation or common name	Chemical formula	Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessment Report (AR5)
Carbon dioxide	CO ₂	1	1	1
Methane	CH ₄	21	25	28
Nitrous oxide	N ₂ O	310	298	265

Tabella 4 - Valori di GWP

2.2 Produzione di GHG in un WWTP

I principali gas che vengono prodotti negli impianti di depurazione sono essenzialmente tre, <u>anidride</u> <u>carbonica</u> (CO2), <u>metano</u> (CH4) e <u>protossido di azoto</u> (N2O), e sono i principali responsabili dell'alterazione climatica attuale, in questo contesto specifico.

2.2.1 Emissioni dirette

Le emissioni *dirette* in genere comprendono i gas serra prodotti in impianto ed emessi in atmosfera, durante lo svolgimento dei processi fisici, chimici e biologici, per la depurazione delle acque e il trattamento dei fanghi.

Anidride carbonica (CO2), metano (CH4) e protossido di azoto (N2O) sono i più importanti greenhouse gases (GHG) connessi agli impianti di trattamento di acque reflue.

La CO2 viene emessa direttamente, durante il processo di degradazione della materia organica nel reattore a fanghi attivi, il CH4 è originato principalmente da processi anaerobici, mentre le emissioni di N2O sono principalmente causate dai processi di nitrificazione e denitrificazione biologica. Oltre alle emissioni dirette gli impianti di trattamento delle acque reflue sono responsabili di emissioni indirette, risultanti dal consumo di energia, dall'utilizzo di chemicals, dai trasporti e dallo smaltimento dei fanghi e di rifiuti da parte dell'impianto di depurazione. Le emissioni indirette comprendono tutti i gas serra generati fuori impianto da attività e prodotti necessari ad attuare i processi fisici, chimici, biologici, per la depurazione delle acque reflue e lo smaltimento dei fanghi.

CH4 e N2O incidono significativamente in quanto hanno un GWP-Global Warming Potencial, ossia un potere climalterante rapportato alla CO2, rispettivamente di 25 e 265 volte superiore a quello attribuito all'anidride carbonica, su un periodo di 100 anni.

2.2.1.1 EMISSIONI DIRETTE DI CO2

In genere l'anidride carbonica (CO2), si genera nelle acque reflue durante l'ossidazione del materiale organico. La CO2 viene prodotta direttamente durante i processi biologici aerobici e anaerobici nel trattamento delle acque reflue. Nel primo caso, i composti organici vengono ossidati in CO2 e altri metabolizzati e influiranno sulla crescita cellulare, mentre nel secondo caso la materia organica presente nel refluo in arrivo viene trasformata in biogas. Tuttavia, secondo l'intergovernmental panel on climate change (IPCC,2013), le emissioni dirette di CO2 che derivano dagli impianti di trattamento sono considerate di origine biogenica e per questo vengono contabilizzati separatamente nel calcolo dei GHG.

2.2.1.2 EMISSIONI DIRETTE DI CH4

Il metano (CH4) si genera a causa della decomposizione della materia organica in ambiente anaerobico. Tale condizione potrebbe verificarsi in fognatura, soprattutto in presenza di temperature abbastanza elevate che portano alla diminuzione dell'ossigeno disciolto (DO), e nel comparto anaerobico della linea acque e in tutta la linea fanghi. Il CH4 disciolto nelle acque reflue e il suo strippaggio vengono favoriti nelle vasche che prevedono una fase di aerazione (continua o intermittente).

Il CH4 è un gas climalterante importante con un potenziale di riscaldamento globale (GWP) 25 superiore a quello della CO2 su un periodo di 100 anni (IPCC 2006).

2.2.1.3 EMISSIONI DIRETTE DI N20

Nei comparti biologici in linea acque è presente un processo aerobico dove, come detto prima, avviene la nitrificazione: l'NH4 all'interno delle acque reflue si ossida a NO2 e poi in NO3; poi i nitrati passano all'interno del reattore anaerobico dove avviene la denitrificazione, passando da NO3 a N2. Nel passaggio tra questi ultimi due composti, a causa di una denitrificazione incompleta nelle acque reflue, si ha la formazione del protossido di azoto (N2O), che successivamente viene strippato, appunto, in atmosfera, essenzialmente nel comparto aerobico.

L'N2O è in genere emessa dalle vasche aerate dell'impianto di depurazione poiché l'aerazione favorisce lo stripping del gas che causa il trasferimento dell'N2O dalla fase liquida alla fase gassosa. Durante la denitrificazione, avviene l'ossidazione dell'ammoniaca (NH₃) in NO₂- è seguita dalla riduzione di NO₂⁻ in N₂O e azoto gassoso (N₂), senza produzione di nitrato (NO₃⁻). Durante la nitrificazione, invece, N2O è formato dalla decomposizione chimica dei prodotti intermedi, come idrossilammina (NH₂OH) e nitrito (NO₂-). L'N₂O viene anche prodotto durante l'ossidazione incompleta di NH₂OH a causa della formazione di radicali nitrosilici (NOH). Quindi l'N₂O è un derivato del percorso di denitrificazione e allo stesso tempo l'N₂O è prodotto come un derivato delle reazioni di nitrificazione eterotrofica. N₂O ha un effetto 298 volte più forte di CO₂ per un tempo di residenza in atmosfera di 100 (IPCC 2006). L'International Panel on Climate Change (IPCC 2006) riferisce che i WWTP contribuiscono con il 2,8% delle emissioni di N_2O antropogeniche.

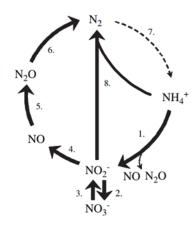


Figura 2 - Trasformazioni biologiche dell'azoto.(1) ossidazione aerobico dell'ammoniaca (autotrofica ed eterotrofica),(2) ossidazione aerobica del nitrito tramite NOB,(3) riduzione dei nitrati a nitriti,(4) passaggio da nitriti a ossido di azoto,(5) passaggio da ossido di azoto a protossido di azoto,(6) passaggio da protossido di azoto ad azoto gas,(7) fissazione azoto,(8) ossidazione dell'ammoniaca con nitriti ad azoto gas (anamox).

• Fattori che influenzano la produzione e l'emissione di N2O

Diversi fattori operativi influenzano la produzione di N₂O durante il processo di nitrificazione, ad esempio concentrazione di ossigeno disciolto (DO), concentrazione di NO₂, uno shock di carico, COD/ N, pH (Kampschreur et al. ,2009).

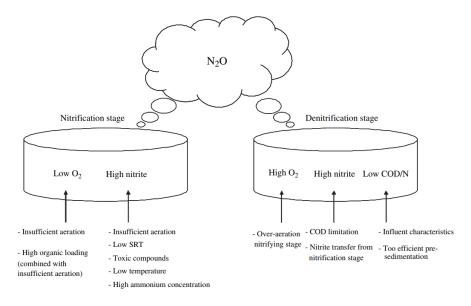


Figura 3 - Fattori che influenzano la produzione e l'emissione di N₂O.

2.2.2 Emissioni indirette

2.2.2.1 EMISSIONI INDIRETTE DA CONSUMO ENERGETICO

Il consumo energetico all'interno di un impianto necessario per il funzionamento delle apparecchiature che si utilizzano nei processi fisici, chimici e biologici è il contributo più importante in termini di emissioni *indirette*.

L'utilizzo e la distribuzione di energia elettrica, non proveniente da fonti di energia rinnovabili, comporta l'emissione di CO2 a causa dell'utilizzo dei combustibili fossili.

2.2.2.2 ALTRE EMISSIONI INDIRETTE

Le altre emissioni indirette, che danno un contributo minore in termini di carbon footprint dell'impianto sono:

- CO2, CH4, N2O disciolti nel corpo idrico recettore
- Utilizzo di Chemicals nei processi chimici
- Trasporto dei fanghi di depurazione trattati, delle sabbie e del grigliato
- Viaggi d'affari
- Trasporto clienti e visitatori
- Pendolarismo dei dipendenti

2.3 APPROFONDIMENTO DI LETTERATURA SULLE EMISSIONI DA FOSSE SETTICHE

2.3.1 Generalità

La fossa settica è una delle unità più antiche in uso per il trattamento primario di acque reflue da fonti decentralizzate, in genere adoperate da nuclei abitativi isolati. Le principali emissioni di CO2eq provengono dalla produzione di metano da parte delle fosse settiche.

La fossa biologica è composta in genere da fosse settiche, quasi sempre interrate nel sottosuolo, ed è usata per il trattamento delle acque di scarico domestiche prima che le stesse, chiarificate, vengano poi immesse in un corpo idrico ricettore, se presente nelle vicinanze, o direttamente nel terreno, nella maggior parte dei casi.

In genere i solidi contenuti nelle acque reflue in ingresso, provenienti da un'abitazione, arrivano nelle fosse settiche come fanghi. La funzione più importante di una fossa settica è quella di trattenere i solidi sedimentabili, quindi il fango, e galleggianti, quindi le schiume, dalle acque reflue in ingresso. I solidi dispersi tendono quindi a sedimentare sul fondo della vasca per gravità, dove subiscono passivamente una digestione anaerobica. La frazione di liquido rimane nella vasca per un breve periodo, con un tempo di ritenzione idraulica (HRT) che varia da 24 a 72 ore a seconda del volume della vasca e del carico idraulico. La frazione di solidi che si accumula, rimane invece nella vasca per svariati anni, e subisce come detto anaerobiosi. Il tempo di ritenzione dei solidi (SRT) dipende dalla frequenza del prelievo.

La degradazione anaerobica che si verifica all'interno dello strato di fango nella fossa settica, si traduce in produzione di gas, composti essenzialmente da metano ed anidride carbonica, oltre che da acido solfidrico.

Successivamente, l'effluente trattato e quindi chiarificato, è scaricato in un sistema di dispersione attraverso dei tubi di drenaggio, noto anche come "campo di lisciviazione". Il sistema di dispersione del suolo riceve le acque reflue trattate e lo distribuisce nel terreno attraverso un sistema di tubazioni forate. Il suolo, quindi, funziona come un biofiltro, dove avvengono i processi biologici, fisici e chimici. I composti inorganici e organici vengono trasformati mentre muoiono i patogeni. Possono verificarsi dei problemi nel sistema di dispersione del suolo quando l'effluente supera la capacità di infiltrazione del suolo. La capacità di infiltrazione del suolo è una funzione delle proprietà del suolo e delle caratteristiche dell'effluente della fossa settica. In generale il carico di materia organica disciolta supporta la crescita della biomassa che limita lo spazio poroso del suolo, mentre il carico di particolato riempie e blocca i pori del suolo (Leverenz et al., 2009).

Quindi, a un carico elevato di materia organica, sia disciolta che particolata, si tradurrà in una ridotta infiltrazione.

In casi estremi l'effluente può affiorare nel campo di dispersione del suolo, che è un'indicazione che il tasso di carico idraulico ha superato il tasso di infiltrazione del suolo.

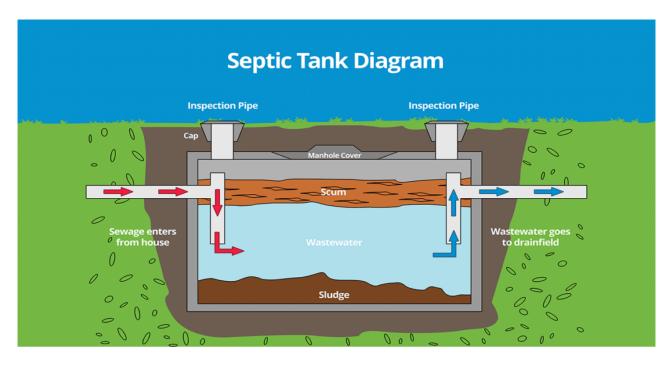


Figura 4 - Dettaglio costruttivo di una fossa settica

La combinazione di fossa settica e campo di lisciviazione è il sistema di trattamento delle acque reflue in loco più comunemente utilizzato.

In realtà la fossa settica ha avuto nel tempo un miglioramento in termini di efficienza e di sviluppo, nel senso che è stato ideato negli ultimi anni un tipo di fossa settica più moderna e prende il suo nome dall' ingegnere tedesco Karl Imhoff. Questo dispositivo è chiamato quindi "vasca Imhoff".

Le vasche settiche tipo Imhoff sono costituite da una vasca principale dove avviene la digestione anaerobica. Questa vasca a sua volta contiene al suo interno un secondo vano di sedimentazione a sezione a tramogia con un'apertura verso il comparto inferiore. L'affluente quindi entra nel comparto di sedimentazione, il quale ha lo scopo di trattenere i corpi solidi e di destinare il materiale che si sedimenta attraverso l'apertura sul fondo inclinato, al comparto inferiore dove avviene la digestione del fango, ad opera di batteri anaerobici che ne riducono il suo carico inquinante. Esso è proporzionato in modo tale da garantirne il giusto tempo di ritenzione e per impedire che fenomeni di turbolenza, causati dal carico idrico, possano diminuire l'efficienza di sedimentazione. Il comparto di digestione è dimensionato affinché avvenga la stabilizzazione biologica delle sostante organiche sedimentate.

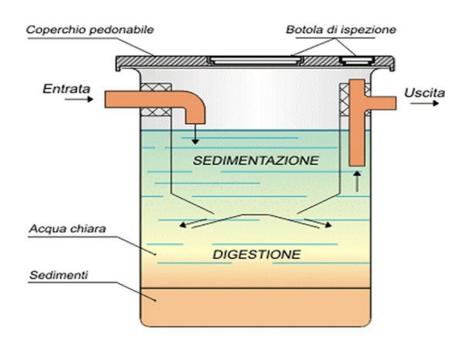


Figura 5 - Dettaglio costruttivo di una Vasca Imhoff

Le emissioni dipendono in primo luogo dal quantitativo di acqua reflua generata ed un emission factor può caratterizzare la misura in cui questa acqua genera i principali gas serra.

Considerando che una fossa settica produce un refluo quasi sovrapponibile a quello che arriva in impianto da rete fognaria, è possibile fare un parallelo tra il refluo in arrivo presso l'impianto di depurazione e quello rilasciato da una fossa settica, andando a considerare però fattori di emissione differenti perché si vanno a considerare impianti che impattano sull'ambiente in maniera differente.

2.3.2 Emissioni da Fosse Settiche

Le fosse settiche, nello specifico, possono essere considerate un tipo di trattamento non collettato.

Le acque reflue possono essere fonte di metano, di emissioni di protossido di azoto, e di anidride carbonica solo che come detto, l'IPCC non considera la fonte di anidride carbonica.

In linea di massima il potenziale di emissione di CH4 e di N2O dipende dal tipo di trattamento delle acque reflue e dai sistemi di scarico delle stesse, nei paesi sviluppati e in via di sviluppo.

È stato riscontrato, tra l'altro, che una fossa settica in realtà non ha una grossa emissione in termini di N2O, mentre è molto impattante in termini di metano.

In realtà l'effettiva emissione dipende dalla specificità in relazione a ciascun sito analizzato.

Ad esempio può dipendere da:

- <u>Variazioni di ossigeno disciolto (OD)</u>;
- <u>Variazioni di temperatura</u>: la solubilità dei gas diminuisce all'aumentare della temperatura ed è inoltre un parametro molto importante perché influenza la velocità di digestione anaerobica;
- <u>Variazioni di HRT</u> (tempo di ritenzione idraulica), <u>SRT</u> (tempo medio di residenza dei fanghi), ricordando che elevati HRT di solito comportano una maggiore formazione di CH4.

Il metodo di calcolo degli EF presentato qui di seguito fa riferimento al capito 6 dell'IPCC 2019 "<u>WASTEWATER TREATMENT AND DISCHARGE</u>", in cui viene definito che l'Emission Factor per un sistema di trattamento è funzione del massimo potenziale di produzione di CH4 (indicato con B_o) e di un fattore di correzione del metano (indicato con MCF), come indicato nella formula qui di seguito riportata:

$$\mathsf{EF} = \mathsf{B}_{\mathsf{o}} * \mathsf{MCF}$$

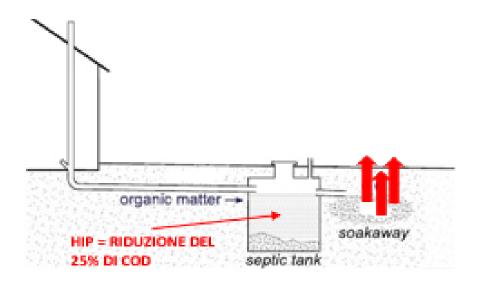
- <u>EF</u> = emission factor, kg CH4/kg BOD o kg CH4/kg BOD
- <u>Bo</u> = massima capacità di produzione di CH4, kg CH4/kg COD o kg CH4/kg BOD
- MCF = fattore di correzione del CH4

DEFAULT MAXIMUM CH4 PRODUCING CAPACITY (BO) FOR DOMESTIC WASTEWATER	
0,6 kg CH4/kg BOD	
0,25 kg CH4/kg COD	
Based on expert judgment by lead authors and on Doorn et al. (1997)	

 $\underline{\textit{Tabella 5}}$ - Massimo potenziale di produzione di CH4 (B $_{\circ}$) per reflui domestici

EMISSIONE	EF ¹ (kg CH4/kgBODin)	EF ¹ (kg CH4/kgCODin)
DIRETTA	0,3	0,125

¹ Emission factors calculated using default B₀ and default MCF.


<u>Tabella 6</u> - EF considerati da letteratura

EMISSIONE	EF ¹ (kg CH4/kgBODout)	EF ¹ (kg CH4/kgCODout)
<u>INDIRETTA</u>	0,021	0,009

¹ Emission factors calculated using default B₀ and default MCF.

Tabella 7 - EF considerati da letteratura

Per la stima delle emissioni dirette correlate ai processi delle fosse settiche, è stato considerato quindi, un fattore emissivo pari a 0.125 Kg CH4/kgCOD influente (Leverenz et al. 2010; Diaz-Valbuena et al. 2011; Truhlar et al. 2016), mentre, per le emissioni indirette su corpo idrico recettore è stato ipotizzato, a vantaggio di sicurezza, che un generico sistema Imhoff sia in grado di rimuovere circa il 25% del COD in ingresso ed è stato applicato un fattore emissivo di 0.009 kgCH4emesso/kgCOD effluente, come da IPCC del 2019.

<u>Figura 6</u> - Schematizzazione dell'emissione indiretta vasche Imhoff

Studi recenti (Leverenz et al. (2010) and Diaz-Valbuena et al. (2011)) hanno evidenziato che la principale fonte di emissione nelle fosse settiche è di CH4, mentre l'emissione di N2O è come detto trascurabile (IPCC 2019).

3 IMPIANTI ANALIZZATI

3.1.1 DESCRIZIONE IMPIANTO DI GIAVERA

L'impianto è autorizzato a trattare 18.000 AE ed è caratterizzato in linea acque da un processo biologico di tipo denitro-nitro ed in linea fanghi da disidratazione meccanica dei fanghi.

3.1.1.1 Unità operative

Linea liquami

- Stacciatura fine automatica;
- Dissabbiatura-disoleatura aerata;
- Vasca di accumulo acque di pioggia;
- Pre-denitrificazione biologica;
- Ossidazione-nitrificazione (n. 3 linee);
- Sedimentazione secondaria (n. 2 linee);
- Disinfezione con ipoclorito di sodio;

Linea fanghi

- Disidratazione meccanica fanghi con centrifuga;

3.1.1.2 DATI DI INPUT PER IL CALCOLO PARAMETRICO DELL'IMPRONTA DI CARBONIO:

Di seguito si riportano i dati di processo e i dati gestionali ricavati dalla tabella di marcia per l'anno di riferimento 2017 utilizzati nel calcolo dell'impronta di carbonio.

PORTATE E CARICHI DI MASSA INFLUENTI ED E	FFLUENTI	
Portata trattata	166	m³/h
Carico di massa di COD influente	394	ton/y
Carico di massa di BOD influente	196	ton/y
Carico di massa di N totale influente	40	ton/y
Carico di massa di P totale influente	6	ton/y
Carico di massa di Ntot effluente	13	ton/y
Carico di massa di COD effluente	38	ton/y
Carico di massa di Ptot effluente	2	ton/y
Carico di massa di BOD effluente	8	ton/y

<u>Tabella 8</u> - Portate e carichi di massa influenti ed effluenti impianto Giavera

IMPIANTO DI DEPURAZIONE DI GIAVERA DEL MONTELLO SCHEMA DI FLUSSO

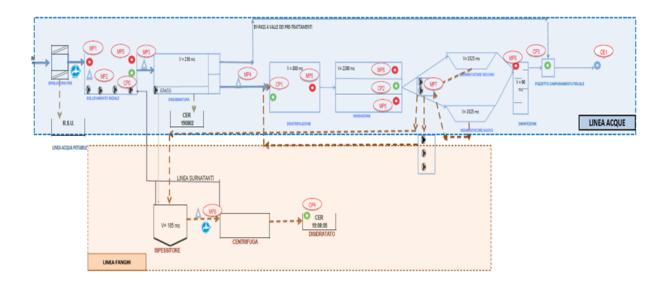


Figura 7 - Schema a blocchi dell'impianto di Giavera

3.1.2 DESCRIZIONE IMPIANTO DI MUSSOLENTE

L'impianto è autorizzato a trattare 22.000 AE ed è caratterizzato in linea acque da un processo biologico di tipo denitro-nitro ed in linea fanghi da ispessimento disidratazione dei fanghi.

3.1.2.1 Unità operative

Linea acque:

- Grigliatura grossolana
- Dissabbiatura/Disoleatura
- Denitrificazione-2 vasche
- Ossidazione/nitrificazione-3 vasche (due attive)
- Sedimentazione secondaria-2vasche
- Filtrazione
- Disinfezione

Linea fanghi:

- Pozzetto di ricircolo
- Ispessimento
- Disidratazione

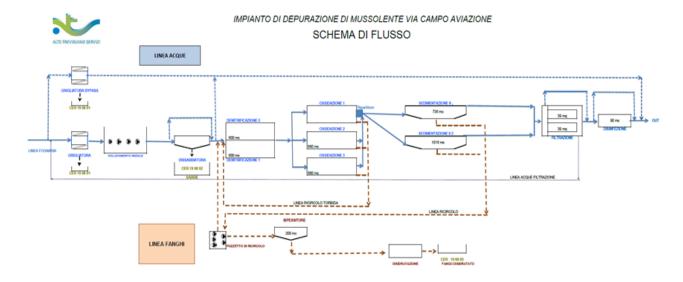


Figura 8 - Schema di flusso dell'impianto di Mussolente

3.1.2.2 DATI DI INPUT PER IL CALCOLO PARAMETRICO DELL'IMPRONTA DI CARBONIO

Di seguito si riportano i dati di processo e i dati gestionali ricavati dalla tabella di marcia per l'anno di riferimento 2017 utilizzati nel calcolo dell'impronta di carbonio.

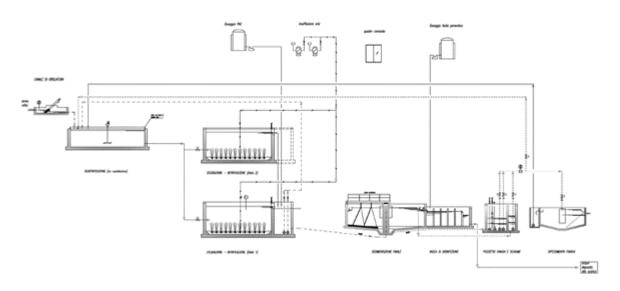
PORTATE E CARICHI DI MASSA INFLUENTI ED EFFLUENTI		
Portata trattata	96.16	m³/h
Carico di massa di COD influente	193.20	ton/y
Carico di massa di BOD influente	83.05	ton/y
Carico di massa di N totale influente	29.02	ton/y
Carico di massa di P totale influente	3.14	ton/y
Carico di massa di Ntot effluente	6.37	ton/y
Carico di massa di COD effluente	14.89	ton/y
Carico di massa di Ptot effluente	0.96	ton/y
Carico di massa di BOD effluente	4.03	ton/y

<u>Tabella 9</u> - Portate e carichi di massa influenti ed effluenti impianto Mussolente

3.1.3 DESCRIZIONE IMPIANTO DI PEDEROBBA

L'impianto è autorizzato a trattare 3.000 AE ed è caratterizzato in linea acque da un processo biologico di tipo denitro-nitro ed in linea fanghi da ispessimento dei fanghi.

3.1.3.1 Unità operative


Linea acque:

- Grigliatura grossolana
- Grigliatura fine
- Denitrificazione
- Ossidazione/nitrificazione-2 vasche
- Sedimentazione secondaria

- Disinfezione

Linea fanghi:

- Ispessimento

Figura 9 - Schema di flusso dell'impianto di Pederobba

3.1.3.2 DATI DI INPUT PER IL CALCOLO PARAMETRICO DELL'IMPRONTA DI CARBONIO

Di seguito si riportano i dati di processo e i dati gestionali ricavati dalla tabella di marcia per l'anno di riferimento 2017 utilizzati nel calcolo dell'impronta di carbonio.

5.84	m³/h
5.90	ton/y
9.37	ton/y
12	ton/y
13	ton/y
29	ton/y
38	ton/y
26	ton/y
23	ton/y
	.37 12 13 29 38

<u>Tabella 10</u> - Portate e carichi di massa influenti ed effluenti impianto Pederobba

3.1.4 DESCRIZIONE IMPIANTO DI SERNAGLIA

L'impianto è autorizzato a trattare 9.500 AE ed è caratterizzato in linea acque da un processo biologico di tipo denitro-nitro e in linea fanghi dalla stabilizzazione aerobica. L'impianto inoltre è dotato di sistemi di deodorizzazione.

3.1.4.1 Unità operative

3.1.4.1.1 Linea liquami:

- Grigliatura grossolana
- Grigliatura fine
- Dissabbiatura aerata/Disoleatura
- Sedimentazione Primaria
- Denitrificazione
- Ossidazione/nitrificazione
- Sedimentazione Secondaria
- Disinfezione

3.1.4.1.2 Linea fanghi:

- stabilizzazione aerobica
- ispessimento
- disidratazione fanghi con estrattore centrifugo

3.1.4.1.3 Linea aria:

- scrubber a servizio della linea acque
- scrubber a servizio della linea fanghi
- biofiltro

IMPIANTO DI DEPURAZIONE DI SERNAGLIA DELLA BATTAGLIA SCHEMA DI FLUSSO

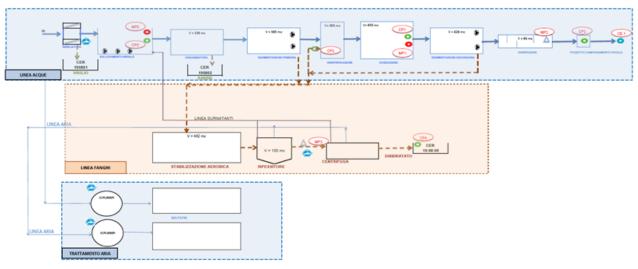


Figura 10 - Schema a blocchi dell'impianto di Sernaglia

3.1.4.2 DATI DI INPUT PER IL CALCOLO PARAMENTRICO DELL'IMPRONTA DI CARBONIO

Di seguito si riportano i dati di processo e i dati gestionali ricavati dalla tabella di marcia per l'anno di riferimento 2017 utilizzati nel calcolo dell'impronta di carbonio.

3.1.4.2.1 PORTATE E CARICHI DI MASSA INFLUENTI	ED EFFLUENTI	
Portata trattata	80	m³/h
Carico di massa di COD influente	372	ton/y
Carico di massa di BOD influente	173	ton/y
Carico di massa di N totale influente	36	ton/y
Carico di massa di P totale influente	6	ton/y
Carico di massa di Ntot effluente	10	ton/y
Carico di massa di COD effluente	19	ton/y
Carico di massa di Ptot effluente	1	ton/y
Carico di massa di BOD effluente	4	ton/y

<u>Tabella 11</u> - Portate e carichi di massa influenti ed effluenti impianto Sernaglia

3.1.5 DESCRIZIONE IMPIANTO DI REVINE

L'impianto è autorizzato a trattare 4.500 AE ed è caratterizzato in linea acque da un processo biologico di tipo denitro-nitro ed in linea fanghi da ispessimento dei fanghi.

3.1.5.1 Unità operative

3.1.5.1.1 Linea liquami:

- Stacciatura fine automatica
- Dissabbiatura aerata/Disoleatura
- Denitrificazione
- Ossidazione nitrificazione
- Sedimentazione Secondaria
- Disinfezione

3.1.5.1.2 Linea fanghi:

- Ispessimento

IMPIANTO DI DEPURAZIONE DI REVINE VIA MARCONI - SCHEMA DI PROCESSO

Figura 11 - Schema a blocchi dell'impianto di Revine

3.1.5.2 DATI DI INPUT PER IL CALCOLO PARAMETRICO DELL'IMPRONTA DI CARBONIO:

Di seguito si riportano i dati di processo e i dati gestionali ricavati dalla tabella di marcia per l'anno di riferimento 2017 utilizzati nel calcolo dell'impronta di carbonio.

3.1.5.2.1 PORTATE E CARICHI DI MASSA INFLUENTI	ED EFFLUENTI	
Portata trattata	23.1	m³/h
Carico di massa di COD influente	141.0	ton/y
Carico di massa di BOD influente	63.0	ton/y
Carico di massa di N totale influente	12.9	ton/y
Carico di massa di P totale influente	1.5	ton/y
Carico di massa di Ntot effluente	2.2	ton/y
Carico di massa di COD effluente	6.6	ton/y
Carico di massa di Ptot effluente	0.4	ton/y
Carico di massa di BOD effluente	1.3	ton/y

Tabella 12 - Portate e carichi di massa influenti ed effluenti impianto Revine

3.1.6 DESCRIZIONE IMPIANTO DI VALDOBBIADENE

L'impianto è autorizzato a trattare 10.000 AE ed è caratterizzato in linea acque da un processo biologico di tipo denitro-nitro ed in linea fanghi dalla stabilizzazione aerobica. L'impianto è dotato di una linea di trattamento di rifiuti liquidi extrafognari composta da glrigliatura e dissabbiatura.

3.1.6.1 Unità operative

3.1.6.1.1 Linea acque:

- grigliatura grossolana
- sollevamento iniziale
- dissabbiatura
- denitrificazione
- ossidazione

- sedimentazione secondaria
- disinfezione finale

3.1.6.1.2 Linea fanghi:

- stabilizzazione aerobica
- ispessitore
- nastropressa

3.1.6.1.3 Linea Rifiuti Liquidi:

- Grigliatura
- Dissabbiatura
- Accumulo

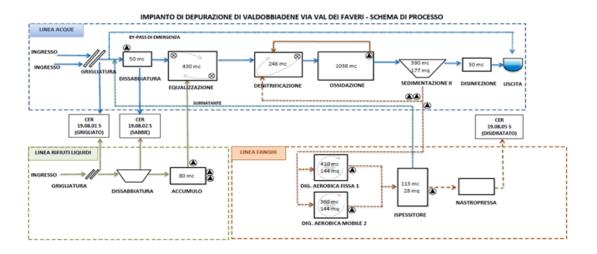


Figura 12 - Schema a blocchi dell'impianto di Valdobbiadene

3.1.6.2 DATI DI INPUT PER IL CALCOLO PARAMETRICO DELL'IMPRONTA DI CARBONIO

Di seguito si riportano i dati di processo e i dati gestionali ricavati dalla tabella di marcia per l'anno di riferimento 2017 utilizzati nel calcolo dell'impronta di carbonio.

3.1.6.2.1 PORTATE E CARICHI DI MASSA INFLUENTI	ED EFFLUENTI	
Portata trattata	51	m³/h
Carico di massa di COD influente	186	ton/y
Carico di massa di BOD influente	73	ton/y
Carico di massa di N totale influente	16	ton/y
Carico di massa di P totale influente	2	ton/y
Carico di massa di Ntot effluente	2	ton/y
Carico di massa di COD effluente	12	ton/y
Carico di massa di Ptot effluente	0	ton/y
Carico di massa di BOD effluente	3	ton/y

 $\underline{\textit{Tabella 13}}$ - Portate e carichi di massa influenti ed effluenti impianto Valdobbiadene

4 RISULTATI E DISCUSSIONE

4.1 RISULTATI GHGs DISCIOLTI

Attraverso l'analisi dei gas disciolti appena esaminata sui campioni puntuali prelevati negli impianti descritti in precedenza e con l'ausilio delle seguenti formule si sono calcolate le concentrazioni di CO2, CH4, N2O disciolte in mg/L nelle acque reflue.

Tali valori sono riportati successivamente nella tabella dei risultati.

ppm CO * K = ppm N2O

KN2O = 7,7 fattore di conversione

ppm CH4 * K = ppm CH4

KCH4 = 7,7 fattore di taratura

ppm GHG *(mol gas in 1,37 $I / 10^6$) = mol GHG

mol gas in 1,37 l = 0,057 mol

mol GHG * PM (GHG) = g GHG

g GHG / volume campione = concentrazione GHG disciolto

4.2 IMPIANTO DI GIAVERA

4.2.1 PUNTO DI PRELIEVO: INGRESSO IMPIANTO

Letture progressive: 1 lettura									
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	29,9	461	85,7	13700					
	29,5	469	88,5	13900					
	29,6	471	89,9	14000					
	30,7	476	90,9	14100					
strippato	29,8	770	89,5	14100					
	30,2	772	89,9	14200					
	29,4	766	89,5	14100					
	29,8	773	90,4	14200					

<u>Tabella 14</u> - Lettura 1 ingresso impianto Giavera

	Massa di gas strippato: 1 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
-3,8500	-2,2E-07	-3,9E-06	0,000	297	1,69E-05	0,0007	0,030	-1	-3,4E-08	0,000	0,000

<u>Tabella 15</u> - Primo valore di gas strippato ingresso impianto Giavera

Letture progressive: 2 lettura									
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	30,9	475	89,3	14300					
	29,5	478	88,2	13600					
	28,5	465	86,5	13100					
	29,3	479	88,4	13200					
strippato	29,8	593	89,8	13600					
	29,8	594	90	13700					
	30	594	89,5	13500					
	28,8	586	88,3	13500					

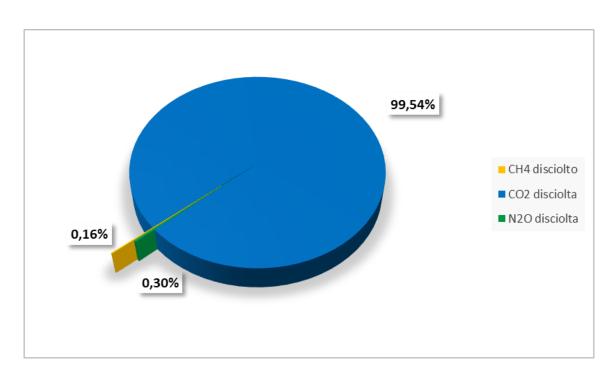
<u>Tabella 16</u> - Lettura 2 ingresso impianto Giavera

	Massa di gas strippato: 2 lettura										
N2O CO2								CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
5,390	5,390 3,07E-07 5,53E-06 0,001 115 6,55E-06 0,0003 0,012						2	1,08E-07	0,000	0,000	

 $\underline{\textit{Tabella 17}}$ - Secondo valore di gas strippato ingresso impianto Giavera

	Letture progressive: 3 lettura								
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	29,8	512	89,3	13300					
	29,8	500	89,1	13300					
	29,6	480	88,3	13100					
	29,5	492	88,2	13000					
strippato	29,5	593	88,7	13700					
	29	609	87,6	13700					
	29,8	607	89,1	13900					
	29,3	590	88,1	13600					

<u>Tabella 18</u> - Lettura 3 ingresso impianto Giavera


Massa di gas strippato: 3 lettura											
N2O CO2					CH4						
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
	1,32E-	2,37E-							6,05E-		
2,310	07	06	0,000	117	6,66E-06	0,0003	0,012	1,0620	08	0,000	0,000

<u>Tabella 19</u> - Terzo valore di gas strippato ingresso impianto Giavera

<u>RISULTATI</u>

massa CH4 strippata	0,000002	g
massa CO2 strippata	0,00133	g
massa N2O strippata	0,000004	g
CH4 disciolto	0,086	mg/L
CO2 disciolta	53,037	mg/l
N2O disciolta	0,158	mg/l

<u>Tabella 20</u> - Risultati complessivi ingresso impianto Giavera

 $\underline{\textit{Figura 13}}$ - Risultati complessivi ingresso impianto Giavera in percentuale

4.2.2 PUNTO DI PRELIEVO: USCITA IMPIANTO

	Letture progressive: 1 lettura								
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	30,6	483	90,9	17100					
	30,2	487	92,5	17400					
	30,4	486	90,7	17400					
	29,5	488	91,7	17400					
strippato	30,7	527	92,7	20200					
	30,2	546	95,5	20500					
	31	555	95	21100					
	30,3	550	92	21000					

<u>Tabella 21</u> - Lettura 1 uscita impianto Giavera

Massa di gas strippato: 1 lettura											
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
11,5500	6,58E-07	1,18E-05	0,001	67	3,82E-06	0,0002	0,007	4	2,55E-07	0,000	0,000

<u>Tabella 22</u> - Primo valore di gas strippato uscita impianto Giavera

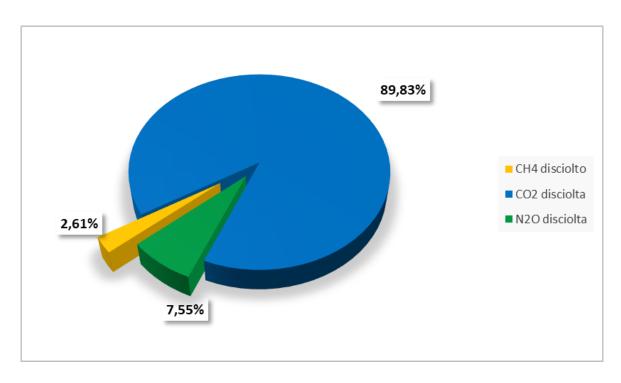
	I	etture progressiv	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,9	495	91,2	1,69E+04
	29,6	511	90,9	16900
	30,2	490	91,7	16900
	29,1	489	90,3	16700
strippato	30,8	539	93,6	16700
	30,4	536	93,7	20200
	30,4	534	92,6	20700
	29,9	532	91,5	20900

<u>Tabella 23</u> - Lettura 2 uscita impianto Giavera

	Massa di gas strippato: 2 lettura										
N2O CO2					CH4						
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
13,090	7,46E-07	1,34E-05	0,001	50	2,85E-06	0,0001	0,005	4	2,28E-07	0,000	0,000

<u>Tabella 24</u> - Secondo valore di gas strippato uscita impianto Giavera

	l	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30	499	90,4	17800
	29,8	493	90,3	17800
	29,6	496	90,2	17500
	29,7	499	89,4	17200
strippato	29,8	519	90,6	18700
	30,4	527	91,7	19100
	30,4	524	91,4	19200
	30,4	528	92,1	19400


<u>Tabella 25</u> - Lettura 3 uscita impianto Giavera

	Massa di gas strippato: 3 lettura										
N2O	CO2					CH4					
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
5,390	3,07E-07	5,53E-06	0,001	29	1,65E-06	0,0001	0,003	3,1860	1,81E-07	0,000	0,000

 $\underline{\textit{Tabella 26}}$ - Terzo valore di gas strippato uscita impianto Giavera

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00037	g
massa N2O strippata	0,00003	g
CH4 disciolto	0,426	mg/L
CO2 disciolta	14,638	mg/l
N2O disciolta	1,231	mg/l

<u>Tabella 27</u>- Risultati complessivi uscita impianto Giavera

 $\underline{\textit{Figura 14}}$ - Risultati complessivi uscita impianto Giavera in percentuale

4.2.3 PUNTO DI PRELIEVO: SURNATANTE

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,1	485	89,3	11200
	29,9	479	89	10900
	30,6	489	89	11100
	30,4	490	89	11100
strippato	31,2	941	93,6	17100
	30,9	950	93,6	18000
	31,2	944	93,2	18600
	31,1	947	93,1	19100

<u>Tabella 28</u> - Lettura 1 surnatante impianto Giavera

	Massa di gas strippato: 1 lettura										
N2O CO2								CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	ppm	molCH4	g CH4	%	
6,1600	3,51E-07	6,31E-06	0,001	460	2,62E-05	0,0012	0,046	5	3,09E-07	0,000	0,001

 $\underline{\textit{Tabella 29}}$ - Primo valore di gas strippato surnatante impianto Giavera

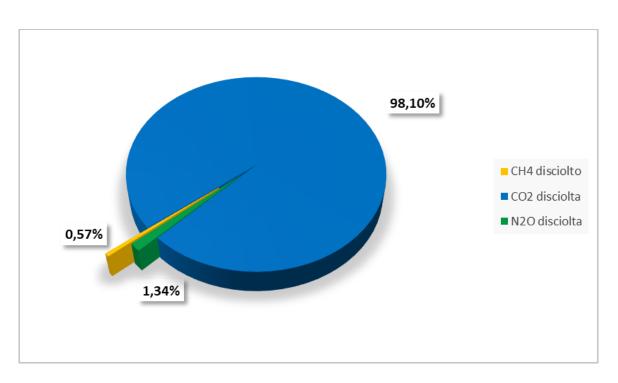
	Letture progressive: 2 lettura								
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	29,7	496	88,8	11200					
	29,2	489	88,4	11400					
	30,3	492	88,2	11600					
	29	494	88,4	11500					
strippato	28,2	765	90,3	17900					
	30,9	785	92,7	19400					
	31,5	790	93,4	19800					
	31,2	791	93	20000					

<u>Tabella 30</u> - Lettura 2 surnatante impianto Giavera

	Massa di gas strippato: 2 lettura										
N2O CO2							CH4				
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
19,250 1,1E-06 1,97E-05 0,002 297 1,69E-05 0,000						0,0007	0,030	6	3,36E-07	0,000	0,001

 $\underline{\textit{Tabella 31}}$ - Secondo valore di gas strippato surnatante impianto Giavera

	l	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30	497	89,3	10400
	29,3	490	87,6	10400
	29,5	492	88,1	10400
	29,5	491	87,9	10300
strippato	29,7	683	90,1	14200
	30	673	89,5	15100
	30,3	683	91,1	16200
	30,1	679	90,6	16800


<u>Tabella 32</u> - Lettura 3 surnatante impianto Giavera

	Massa di gas strippato: 3 lettura											
N2O				CO2	CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
6,160	3,51E-07	6,31E-06	0,001	192	1,09E-05	0,0005	0,019	3,7760	2,15E-07	0,000	0,000	

<u>Tabella 33</u> - Terzo valore di gas strippato surnatante impianto Giavera

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00238	g
massa N2O strippata	0,00003	g
CH4 disciolto	0,551	mg/L
CO2 disciolta	95,145	mg/l
N2O disciolta	1,295	mg/l

<u>Tabella 34</u> - Risultati complessivi surnatante impianto Giavera

 $\underline{\textbf{Figura 15}}\text{-} \textit{Risultati complessivi surnatante impianto Giavera percentuale}$

4.3 IMPIANTO DI MUSSOLENTE

4.3.1 PUNTO DI PRELIEVO: INGRESSO IMPIANTO

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,5	491	91,9	17400
	29,9	490	91,5	17200
	29,3	480	90,4	17100
	29,6	483	88,5	17000
strippato	29,7	714	91,1	17400
	29	717	92	17800
	30,5	731	93,2	17900
	29,6	719	93,3	18100

<u>Tabella 35</u> - Lettura 1 ingresso impianto Mussolente

	Massa di gas strippato: 1 lettura											
N2O					CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
6,9300	3,95E-07	7,1E-06	0,001	248	1,41E-05	0,0006	0,025	6	3,23E-07	0,000	0,001	

<u>Tabella 36</u> - Primo valore di gas strippato ingresso impianto Mussolente

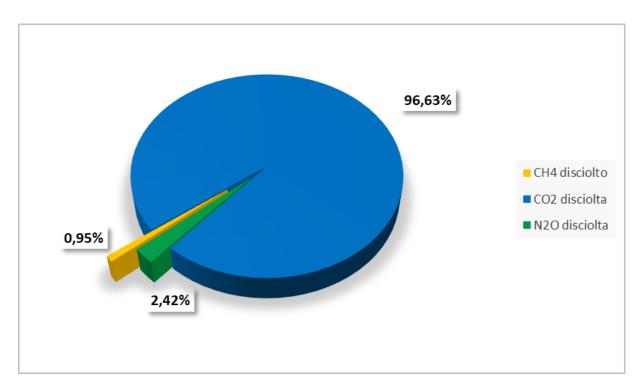
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	28,4	465	85,9	16600
	28,3	466	86,1	16400
	28,3	467	85,8	16400
	27,6	463	85,5	16600
strippato	28,3	592	86,9	17500
	28,2	586	89,2	17500
	29,3	618	90,4	18200
	29,9	616	90,9	18300

<u>Tabella 37</u> - Lettura 2 ingresso impianto Mussolente

Massa di gas strippato: 2 lettura											
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
17,710	1,01E-06	1,82E-05	0,002	155	8,83E-06	0,0004	0,016	6	3,63E-07	0,000	0,001

 $\underline{\textit{Tabella 38}}$ - Secondo valore di gas strippato ingresso impianto Mussolente

	ı	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,7	497	90,3	17100
	30,3	497	90,5	17000
	29,6	491	89,1	16900
	29,5	505	90,5	16900
strippato	30,2	593	91,6	18300
	30,2	592	91,1	18400
	30	593	91,5	18300
	29,5	593	91,4	18300


<u>Tabella 39</u> - Lettura 3 ingresso impianto Mussolente

	Massa di gas strippato: 3 lettura											
N2O				CO2				CH4				
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
5,3900	3,07E-07	5,53E-06	0,001	88	5,01E-06	0,0002	0,009	1	7,39E-08	0,000	0,000	

<u>Tabella 40</u> - Terzo valore di gas strippato ingresso impianto Mussolente

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00123	g
massa N2O strippata	0,00003	g
CH4 disciolto	0,486	mg/L
CO2 disciolta	49,227	mg/l
N2O disciolta	1,231	mg/l

 $\underline{\textit{Tabella 41}}$ - Risultati complessivi ingresso impianto Mussolente

<u>Figura 16</u> - Risultati complessivi ingresso impianto Mussolente percentuale

4.3.2 PUNTO DI PRELIEVO: USCITA IMPIANTO

	l	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,3	484	91,7	17800
	30,5	494	92	17500
	29,1	489	91,1	17600
	29,4	482	88,5	17700
strippato	30,3	542	92,5	18800
	30,5	533	91,1	19200
	30,4	544	93,4	19800
	31,2	552	94,9	19800

<u>Tabella 42</u> - Lettura 1 uscita impianto Mussolente

	Massa di gas strippato: 1 lettura											
N2O CO2							CH4					
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
13,8600	7,89E-07	1,42E-05	0,001	70	3,99E-06	0,0002	0,007	8	4,3E-07	0,000	0,001	

<u>**Tabella 43**</u> - Primo valore di gas strippato uscita impianto Mussolente

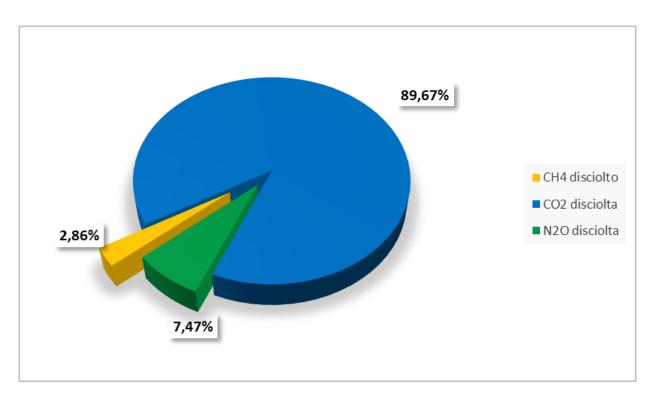
	ı	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,2	494	88,7	16400
	28,9	494	89,3	16200
	29,7	489	89,1	16600
	29,1	486	88,5	16600
strippato	30,2	533	91,8	20500
	30,4	535	92,5	21200
	30	528	92	21800
	29,7	528	91,6	21900

<u>Tabella 44</u> - Lettura 2 uscita impianto Mussolente

	Massa di gas strippato: 2 lettura											
N2O					CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
10,010	5,7E-07	1,03E-05	0,001	49	2,79E-06	0,0001	0,005	5	2,69E-07	0,000	0,000	

<u>Tabella 45</u> - Secondo valore di gas strippato uscita impianto Mussolente

	ι	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,7	493	89,7	16700
	29,6	496	89,7	16500
	28,9	493	89,8	16500
	29,2	493	90,1	16800
strippato	30,1	521	89,8	17800
	29,9	523	91,1	18300
	30,2	529	91,2	18500
	30	527	91,2	18700


<u>Tabella 46</u> - Lettura 3 uscita impianto Mussolente

	Massa di gas strippato: 3 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
7,7000	4,39E-07	36	2,05E-06	0,0001	0,004	1	7,39E-08	0,000	0,000		

<u>Tabella 47</u> - Terzo valore di gas strippato uscita impianto Mussolente

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00039	g
massa N2O strippata	0,00003	g
CH4 disciolto	0,495	mg/L
CO2 disciolta	15,540	mg/l
N2O disciolta	1,295	mg/l

<u>Tabella 48</u> - Risultati complessivi uscita impianto Mussolente

 $\underline{\textit{Figura 17}}$ - Risultati complessivi uscita impianto Mussolente percentuale

4.3.3 PUNTO DI PRELIEVO: SURNATANTE

	l	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,5	477	91,1	17400
	29,5	480	92,6	17500
	29,9	473	90,6	17400
	30,1	482	91,9	17200
strippato	30,4	608	92,3	18600
	30,7	623	94,1	18700
	30,6	613	92,1	18700
	30,4	626	93,3	18700

<u>Tabella 49</u> - Lettura 1 surnatante impianto Mussolente

	Massa di gas strippato: 1 lettura											
N2O					CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
4,6200	2,63E-07	4,74E-06	0,000	144	8,2E-06	0,0004	0,014	3	1,48E-07	0,000	0,000	

<u>Tabella 50</u> - Primo valore di gas strippato surnatante impianto Mussolente

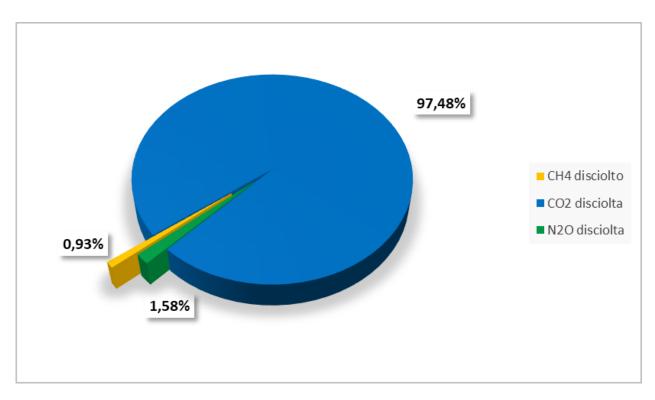
	l	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,3	491	91,8	17300
	30	494	91,3	17200
	30	492	91,8	17200
	29,7	483	89,8	16900
strippato	29,7	574	92	19000
	30,3	579	91,7	19000
	29,9	573	91,5	19000
	29,5	567	90,2	18800

<u>Tabella 51</u> - Lettura 2 surnatante impianto Mussolente

	Massa di gas strippato: 2 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
4,620	2,63E-07	4,74E-06	0,000	96	5,47E-06	0,0002	0,010	3	1,48E-07	0,000	0,000

 $\underline{\textit{Tabella 52}}$ - Secondo valore di gas strippato surnatante impianto Mussolente

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	28,8	490	90,1	17000
	29	489	88,4	16800
	29,3	489	90,6	16900
	29,9	501	89,8	16900
strippato	29,6	563	90,3	20000
	29,7	562	90,6	20100
	29,9	566	92	20400
	30,3	571	92,3	20500


<u>Tabella 53</u> - Lettura 3 surnatante impianto Mussolente

	Massa di gas strippato: 3 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
3,0800 1,75E-07 3,16E-06 0,000					3,99E-06	0,0002	0,007	3	1,68E-07	0,000	0,000

 $\underline{\textit{Tabella 54}}$ - Terzo valore di gas strippato surnatante impianto Mussolente

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00078	g
massa N2O strippata	0,00001	g
CH4 disciolto	0,297	mg/L
CO2 disciolta	31,080	mg/l
N2O disciolta	0,505	mg/l

 $\underline{\textit{Tabella 55}}$ - Risultati complessivi surnatante impianto Mussolente

 $\underline{\textit{Figura 18}}$ - Risultati complessivi surnatante impianto Mussolente percentuale

4.4 IMPIANTO DI PEDEROBBA

4.4.1 PUNTO DI PRELIEVO: INGRESSO IMPIANTO

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,6	484	87,9	12900
	29,3	484	88,4	13100
	28,7	477	87,2	13200
	28,1	463	86,6	13500
strippato	29,3	675	89,2	15900
	29,8	687	90,1	16200
	29,7	688	90,6	16200
	29,7	687	90,1	16300

<u>Tabella 56</u> - Lettura 1 ingresso impianto Pederobba

	Massa di gas strippato: 1 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
13,0900	7,46E-07	1,34E-05	0,001	225	1,28E-05	0,0006	0,023	5	2,69E-07	0,000	0,000	

<u>Tabella 57</u> - Primo valore di gas strippato ingresso impianto Pederobba

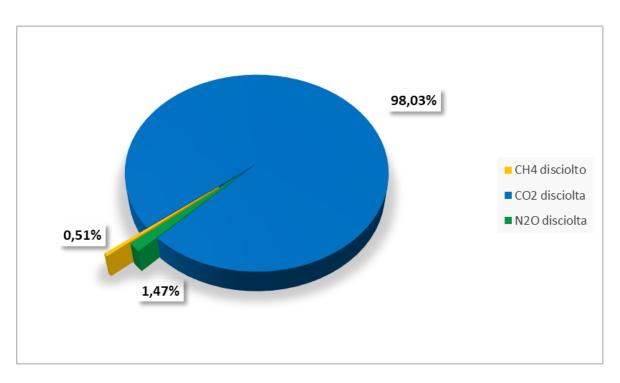
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,7	482	88,8	13700
	29	473	87,5	13600
	29	475	87,4	13600
	29,4	480	87,8	13900
strippato	29,4	650	89	14600
	29,9	650	89,5	15000
	29,9	648	89,6	15100
	29,7	648	89,9	15200

<u>Tabella 58</u> - Lettura 2 ingresso impianto Pederobba

	Massa di gas strippato: 2 lettura										
N2O					CO2				CH4		
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
3,850	2,19E-07	3,95E-06	0,000	170	9,68E-06	0,0004	0,017	2	1,41E-07	0,000	0,000

<u>Tabella 59</u> - Secondo valore di gas strippato ingresso impianto Pederobba

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,7	483	89,4	14200
	29,5	485	89,2	14200
	29,7	485	89,3	14200
	29,8	485	90,1	14100
strippato	29,8	572	89,6	14600
	29,9	574	89,8	14800
	29,4	574	89,2	14700
	29,4	571	89,1	14700


<u>**Tabella 60**</u> - Lettura 3 ingresso impianto Pederobba

	Massa di gas strippato: 3 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
0,7700	4,39E-08	7,89E-07	0,000	89	5,07E-06	0,0002	0,009	0	-2E-08	0,000	0,000

 $\underline{\textit{Tabella 61}}$ - Terzo valore di gas strippato ingresso impianto Pederobba

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00121	g
massa N2O strippata	0,00002	g
CH4 disciolto	0,250	mg/L
CO2 disciolta	48,525	mg/l
N2O disciolta	0,726	mg/l

<u>Tabella 62</u> - Risultati complessivi ingresso impianto Pederobba

 ${\it \underline{\it Figura~19}}$ - Risultati complessivi ingresso impianto Pederobba percentuale

4.4.2 PUNTO DI PRELIEVO: USCITA IMPIANTO

	l	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30	498	90,3	16800
	30	498	90,2	17100
	30,2	500	90,7	17100
	30,3	507	90,7	17100
strippato	30,4	606	91,4	19800
	29,7	612	92,2	20500
	30,4	615	92,1	20800
	30,8	615	90,8	20500

<u>Tabella 63</u> - Lettura 1 uscita impianto Pederobba

Massa di gas strippato: 1 lettura											
N2O					CO2				CH4		
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
3,8500	2,19E-07	3,95E-06	0,000	108	6,15E-06	0,0003	0,011	2	1,01E-07	0,000	0,000

<u>Tabella 64</u> - Primo valore di gas strippato uscita impianto Pederobba

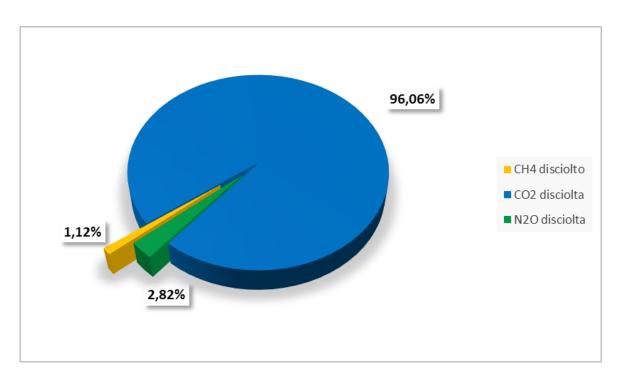
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,2	491	88,7	16500
	29,2	509	88,8	16700
	29,6	496	89,6	16300
	29,7	496	89,5	16200
strippato	29,8	547	90,7	18200
	30,1	548	91	18500
	30	548	91,5	18700
	30,2	550	91,6	18600

<u>Tabella 65</u> - Lettura 2 uscita impianto Pederobba

	Massa di gas strippato: 2 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
3,850	2,19E-07	3,95E-06	0,000	54	3,08E-06	0,0001	0,005	2	1,41E-07	0,000	0,000

<u>Tabella 66</u> - Secondo valore di gas strippato uscita impianto Pederobba

	Letture progressive: 3 lettura										
	N2O	CO2	CH4	H2O							
	ppm	ppm	ppm	ppm							
ambiente	29,8	497	89,8	16600							
	30,1	498	90	16400							
	29,6	501	89,9	16300							
	29,2	491	88,8	16300							
strippato	29,9	550	90,5	20000							
	30,3	554	91,1	21000							
	30,1	552	91,3	21600							
	29,7	546	90,3	21800							


<u>Tabella 67</u> - Lettura 3 uscita impianto Pederobba

	Massa di gas strippato: 3 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
8,4700	4,82E-07	8,68E-06	0,001	63	3,59E-06	0,0002	0,006	3	1,68E-07	0,000	0,000

 $\underline{\textit{Tabella 68}}$ - Terzo valore di gas strippato uscita impianto Pederobba

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00056	g
massa N2O strippata	0,00002	g
CH4 disciolto	0,263	mg/L
CO2 disciolta	22,558	mg/l
N2O disciolta	0,663	mg/l

<u>Tabella 69</u> - Risultati complessivi uscita impianto Pederobba

<u>Figura 20</u> - Risultati complessivi uscita impianto Pederobba percentuale

4.4.3 PUNTO DI PRELIEVO: SURNATANTE

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,4	474	91,5	14800
	30,4	475	91,4	14700
	30,7	476	91,5	14600
	30,2	474	91,8	14700
strippato	30,1	691	87,7	15200
	29,9	699	90,4	15200
	29,8	698	89,8	15000
	29,8	700	90	14700

<u>Tabella 70</u> - Lettura 1 surnatante impianto Pederobba

	Massa di gas strippato: 1 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
-0,7700	-4,4E-08	-7,9E-07	0,000	226	1,29E-05	0,0006	0,023	-2	-9,4E-08	0,000	0,000	

<u>Tabella 71</u> - Primo valore di gas strippato surnatante impianto Pederobba

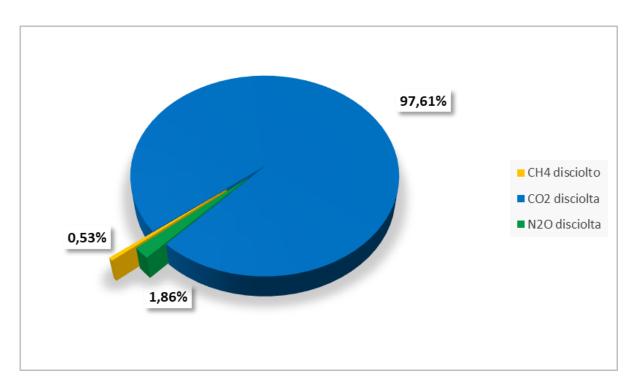
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,8	475	87,9	14200
	29,6	472	88,8	14200
	29,4	464	87,8	14200
	28,4	469	88	14300
strippato	29,9	685	90,8	16000
	29,3	663	88,5	16100
	30,3	685	90,6	16400
	29,7	691	91,9	16600

<u>Tabella 72</u> - Lettura 2 surnatante impianto Pederobba

	Massa di gas strippato: 2 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
14,630	8,33E-07	1,5E-05	0,001	222	1,26E-05	0,0006	0,022	5	2,62E-07	0,000	0,000	

<u>Tabella 73</u> - Secondo valore di gas strippato surnatante impianto Pederobba

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	29,4	491	89,7	13100
	29,3	480	89	13100
	29,8	469	85,1	12500
	27,8	465	84,5	12400
strippato	28,4	530	86,6	13400
	29,1	540	88,5	13900
	29,2	546	88,7	13800
	28,9	530	85,8	13800


<u>Tabella 74</u> - Lettura 3 surnatante impianto Pederobba

	Massa di gas strippato: 3 lettura											
N2O	N2O CO2 CH4											
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
10,7800	6,14E-07	1,11E-05	0,001	81	4,61E-06	0,0002	0,008	5	2,82E-07	0,000	0,000	

<u>Tabella 75</u> - Terzo valore di gas strippato surnatante impianto Pederobba

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00133	g
massa N2O strippata	0,00003	g
CH4 disciolto	0,288	mg/L
CO2 disciolta	53,037	mg/l
N2O disciolta	1,010	mg/l

<u>Tabella 76</u> - Risultati complessivi surnatante impianto Pederobba

 ${\it \underline{\it Figura~21}}$ - Risultati complessivi surnatante impianto Pederobba percentuale

4.5 IMPIANTO DI SERNAGLIA

4.5.1 PUNTO DI PRELIEVO: INGRESSO IMPIANTO

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,2	505	96,5	17300
	31,3	519	96,8	17400
	30,7	501	95,1	17200
	30,7	493	94,3	17200
strippato	30,9	800	95	17900
	31	800	95,4	18300
	30,7	793	95	18500
l	30,9	787	94,2	18300

<u>Tabella 77</u> - Lettura 1 ingresso impianto Sernaglia

	Massa di gas strippato: 1 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
2,3100	1,32E-07	2,37E-06	0,000	307	1,75E-05	0,0008	0,031	1	7,39E-08	0,000	0,000	

<u>Tabella 78</u> - Primo valore di gas strippato ingresso impianto Sernaglia

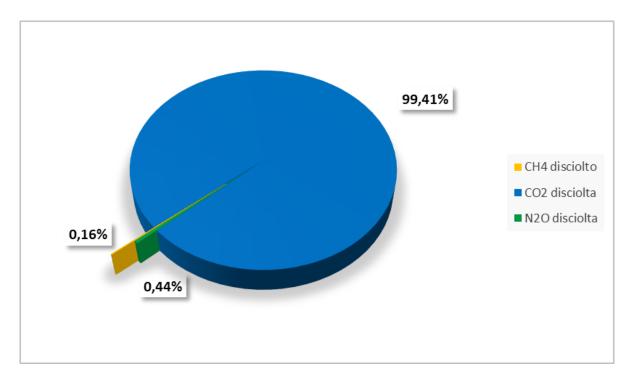
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,2	495	93,6	16700
	30,1	484	92,9	16600
	30	479	92,9	16500
	30,3	487	93,5	16500
strippato	30,6	748	94,3	17000
	30,5	743	94,1	17400
	30,6	743	94,1	17500
	30,6	743	94,2	17500

<u>Tabella 79</u> - Lettura 2 ingresso impianto Sernaglia

	Massa di gas strippato: 2 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
2,310	1,32E-07	2,37E-06	0,000	261	1,49E-05	0,0007	0,026	1	5,38E-08	0,000	0,000	

 $\underline{\textit{Tabella 80}}$ - Secondo valore di gas strippato ingresso impianto Sernaglia

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,4	497	93,6	16500
	30,4	492	93,8	16300
	30,3	496	93,1	16400
	30,2	490	93,3	16300
strippato	30,4	708	93,8	17100
	30,6	711	94	17300
	30,7	710	94,2	17400
	30,6	712	94,3	17400


<u>Tabella 81</u> - Lettura 3 ingresso impianto Sernaglia

	Massa di gas strippato: 3 lettura											
N2O	N2O CO2 CH4											
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
3,850	2,19E-07	3,95E-06	0,000	222	1,26E-05	0,0006	0,022	1,1800	6,72E-08	0,000	0,000	

 $\underline{\textit{Tabella 82}}$ - Terzo valore di gas strippato ingresso impianto Sernaglia

massa CH4 strippata	0,00000	g
massa CO2 strippata	0,00198	g
massa N2O strippata	0,00001	g
CH4 disciolto	0,125	mg/L
CO2 disciolta	79,204	mg/l
N2O disciolta	0,347	mg/l

<u>Tabella 83</u> - Risultati complessivi ingresso impianto Sernaglia

<u>Figura 22</u> - Risultati complessivi ingresso impianto Sernaglia percentuale

4.5.2 PUNTO DI PRELIEVO: USCITA IMPIANTO

Letture progressive: 1 lettura						
	N2O	CO2	CH4	H2O		
	ppm	ppm	ppm	ppm		
ambiente	30,3	487	93,6	17000		
	30,5	482	93,5	16900		
	30,3	484	93,2	16900		
	30,3	485	93,5	16800		
strippato	30,6	579	94,3	18400		
	30,5	578	94,1	18700		
	30,3	579	94,5	18700		
	30,7	578	94,8	18700		

<u>Tabella 84</u> - Lettura 1 uscita impianto Sernaglia

Massa di gas strippato: 1 lettura											
N2O			CO2			CH4					
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
3,0800	1,75E-07	3,16E-06	0,000	94	5,35E-06	0,0002	0,009	2	8,74E-08	0,000	0,000

<u>Tabella 85</u> - Primo valore di gas strippato uscita impianto Sernaglia

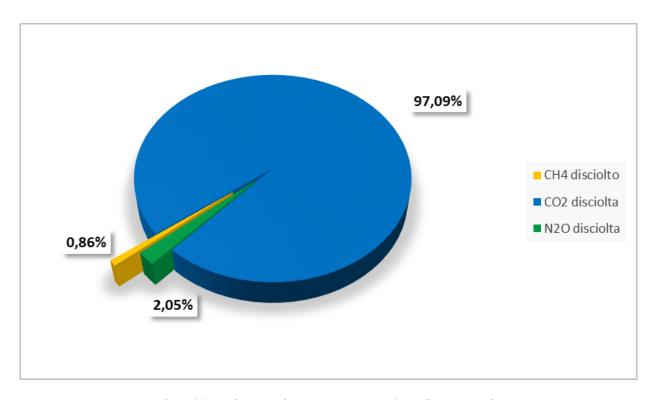
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,1	497	93,4	16800
	30,3	482	93,3	16800
	30,4	485	93,9	16900
	30,7	484	93,9	16800
strippato	30,5	538	94,3	17700
	30,6	539	94	18100
	30,7	541	94,4	18000
	30,8	541	94,7	18100

<u>Tabella 86</u> - Lettura 2 uscita impianto Sernaglia

	Massa di gas strippato: 2 lettura											
N2O CO2							CH4					
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
0,770	4,39E-08	7,89E-07	0,000	57	3,25E-06	0,0001	0,006	1	5,38E-08	0,000	0,000	

<u>Tabella 87</u> - Secondo valore di gas strippato uscita impianto Sernaglia

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,3	490	93,5	16400
	30,5	488	93,8	16200
	30,5	492	93,8	16400
	30,1	491	93,4	16300
strippato	30,5	529	94,2	17900
	30,8	532	94,8	18500
	30,9	532	95,3	18900
	30,7	534	95,1	19100


<u>Tabella 88</u> - Lettura 3 uscita impianto Sernaglia

Massa di gas strippato: 3 lettura											
N2O CO2					CH4						
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
6,160	3,51E-07	6,31E-06	0,001	43	2,45E-06	0,0001	0,004	2,2420	1,28E-07	0,000	0,000

<u>**Tabella 89**</u> - Terzo valore di gas strippato uscita impianto Sernaglia

massa CH4 strippata	0,00000	g
massa CO2 strippata	0,00049	g
massa N2O strippata	0,00001	g
CH4 disciolto	0,172	mg/L
CO2 disciolta	19,450	mg/l
N2O disciolta	0,410	mg/l

<u>Tabella 90</u> - Risultati complessivi uscita impianto Sernaglia

 $\underline{\textit{Figura 23}}$ - Risultati complessivi uscita impianto Sernaglia percentuale

4.5.3 PUNTO DI PRELIEVO: SURNATANTE

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	32	490	99	18600
	32,1	493	98,7	18400
	32,4	486	99,6	18400
	30,9	486	97,6	18100
strippato	32,1	850	100	19700
	32,1	867	102	20100
	32,3	863	100	20600
	32,2	862	99,5	20500

<u>Tabella 91</u> - Lettura 1 surnatante impianto Sernaglia

	Massa di gas strippato: 1 lettura										
N2O CO2 CH4											
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
10,7800 6,14E-07 1,11E-05 0,001 381 2,17E-05 0,0010 0,038 5					5	2,96E-07	0,000	0,001			

<u>Tabella 92</u> - Primo valore di gas strippato surnatante impianto Sernaglia

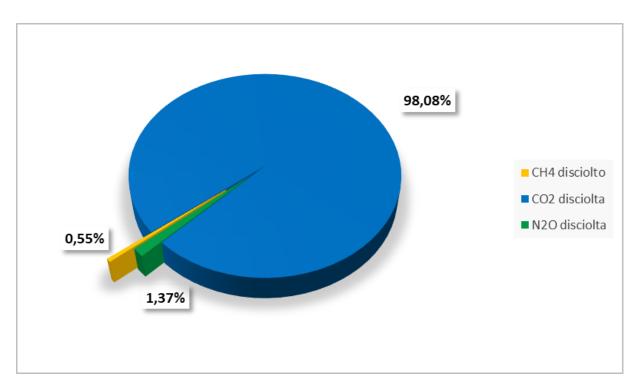
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31	484	96,8	18600
	31,6	489	97,7	18600
	31,9	494	99,1	18500
	30,1	471	94,1	18600
strippato	31,5	691	98,4	20200
	32	699	99,1	19900
	31,7	704	99,6	20800
	31,7	698	99,5	21000

<u>Tabella 93</u> - Lettura 2 surnatante impianto Sernaglia

Massa di gas strippato: 2 lettura											
N2O CO2						CH4					
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
14,630	8,33E-07	1,5E-05	0,001	233	1,33E-05	0,0006	0,023	6	3,7E-07	0,000	0,001

<u>Tabella 94</u> - Secondo valore di gas strippato surnatante impianto Sernaglia

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,8	494	98,2	18800
	31,5	484	96,7	18500
	31,5	490	96,8	18400
	31,6	497	97,6	18300
strippato	31,6	621	97,5	19400
	31,4	629	97	20100
	31	622	97,2	20300
	30,9	623	95,9	20800


<u>Tabella 95</u> - Lettura 3 surnatante impianto Sernaglia

	Massa di gas strippato: 3 lettura										
N2O CO2 CH4											
ppm	molN2O	g N2O	%	ppm molCO2 g CO2 %				ppm	molCH4	g CH4	%
0,000	0	0	0,000	132	7,52E-06	0,0003	0,013	- 0,1180	-6,7E-09	0,000	0,000

 $\underline{\textit{Tabella 96}}$ - Terzo valore di gas strippato surnatante impianto Sernaglia

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00187	g
massa N2O strippata	0,00003	g
CH4 disciolto	0,422	mg/L
CO2 disciolta	74,793	mg/l
N2O disciolta	1,042	mg/l

<u>Tabella 97</u> - Risultati complessivi surnatante impianto Sernaglia

 $\underline{\textit{Figura 24}}$ - Risultati complessivi surnatante impianto Sernaglia percentuale

4.6 IMPIANTO DI REVINE

4.6.1 PUNTO DI PRELIEVO: INGRESSO IMPIANTO

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,5	493	96,7	18500
	31,2	494	95,4	18100
	30,2	478	92,7	17900
	30,3	482	93,6	17800
strippato	30,2	631	94,7	19400
	30,3	638	95,9	20100
	30,2	626	94,2	20000
	30,2	625	93,9	20300

Tabella 98 - Lettura 1 ingresso impianto Revine

	Massa di gas strippato: 1 lettura											
N2O CO2 CH4												
ppm	ppm molN2O g N2O % ppm molCO2 g CO2 %					%	ppm	molCH4	g CH4	%		
0,0000 0 0 0,000 156 8,88E-06 0,0004 0,016 3 1,55E-07 0,0									0,000	0,000		

<u>Tabella 99</u> - Primo valore di gas strippato ingresso impianto Revine

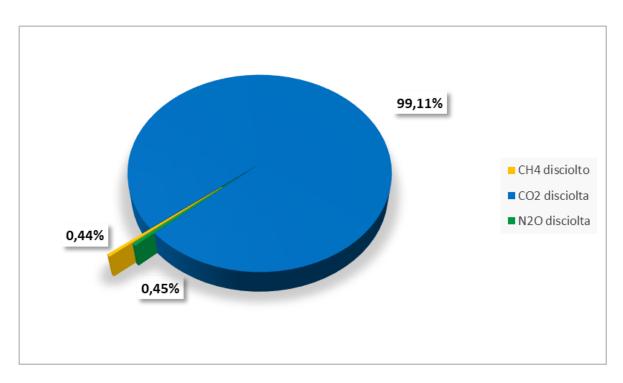
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,3	497	96,9	18600
	31,1	493	96,6	18400
	31,4	496	96,7	18300
	31,2	498	97,1	18400
strippato	31,6	654	97,7	19300
	31,4	652	97,4	19600
	31,5	653	97,7	19800
	31,2	645	96,5	19600

<u>Tabella 100</u> - Lettura 2 ingresso impianto Revine

	Massa di gas strippato: 2 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	ppm molCO2 g CO2 %				molCH4	g CH4	%	
3,080 1,75E-07 3,16E-06 0,000 156 8,88E-06 0,0004 0,016 1 4,03E-08 0,00									0,000	0,000		

<u>Tabella 101</u> - Secondo valore di gas strippato ingresso impianto Revine

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,3	497	96,9	18300
	31,1	493	96,6	18200
	31,4	496	96,7	18300
	31,2	498	97,1	18100
strippato	31,6	654	97,7	18300
	31,4	652	97,4	18400
	31,5	653	97,7	18700
	31,2	645	96,5	18700


<u>Tabella 102</u> - Lettura 3 ingresso impianto Revine

	Massa di gas strippato: 3 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	ppm molCO2 g CO2 %				molCH4	g CH4	%	
3,080 1,75E-07 3,16E-06 0,000 156 8,88E-06 0,0004 0,016 1 4,03E-08 0,000 0										0,000		

 $\underline{\textit{Tabella 103}}$ - Terzo valore di gas strippato ingresso impianto Revine

massa CH4 strippata	0,00000	g
massa CO2 strippata	0,00104	g
massa N2O strippata	0,000005	g
CH4 disciolto	0,185	mg/L
CO2 disciolta	41,708	mg/l
N2O disciolta	0,189	mg/l

<u>Tabella 104</u> - Risultati complessivi ingresso impianto Revine

 $\underline{\textit{Figura 25}}$ - Risultati complessivi ingresso impianto Revine percentuale

4.6.2 PUNTO DI PRELIEVO: USCITA IMPIANTO

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	32,4	488	101	19300
	32,5	490	101	19300
	32,3	484	99,7	19200
	32,4	495	99	19000
strippato	32,3	525	100	20300
	32,7	535	102	20600
	32,8	534	101	20700
	32,7	531	101	20700

<u>Tabella 105</u> - Lettura 1 uscita impianto Revine

	Massa di gas strippato: 1 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	ppm molCO2 g CO2 %				molCH4	g CH4	%	
3,0800 1,75E-07 3,16E-06 0,000 40 2,28E-06 0,0001 0,004 4 2,02E-07 0,000 0,00											0,000	

 $\underline{\textit{Tabella 106}}$ - Primo valore di gas strippato uscita impianto Revine

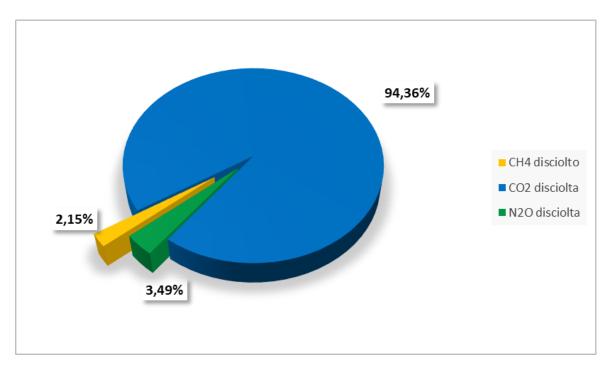
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,7	477	94,8	18400
	30,9	476	95,5	18600
	31,2	489	96,6	18800
	31,5	499	97,3	18700
strippato	31	514	94	19900
	31,1	524	95,5	20800
	32	535	99,2	21300
	32,1	534	99,8	21600

<u>Tabella 107</u> - Lettura 2 uscita impianto Revine

	Massa di gas strippato: 2 lettura											
N2O CO2 CH4												
ppm	molN2O	g N2O	%	ppm	ppm molCO2 g CO2 %				molCH4	g CH4	%	
4,620 2,63E-07 4,74E-06 0,000 36 2,05E-06 0,0001 0,004 3 1,68E-07 0,000 0										0,000		

<u>Tabella 108</u> - Secondo valore di gas strippato uscita impianto Revine

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	30,4	495	92,8	18100
	30,5	519	95,5	17600
	29,9	493	93,2	17500
	31,1	526	97,5	18200
strippato	30,9	579	98	19300
	31,7	583	98,5	19700
	31,7	586	99,2	19500
	31,1	568	95,4	19800


<u>Tabella 109</u> - Lettura 3 uscita impianto Revine

	Massa di gas strippato: 3 lettura											
N2O				CO2				CH4				
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
4,620	2,63E-07	4,74E-06	0,000	60	3,42E-06	0,0002	0,006	2,0060	1,14E-07	0,000	0,000	

<u>Tabella 110</u> - Terzo valore di gas strippato uscita impianto Revine

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00034	g
massa N2O strippata	0,00001	g
CH4 disciolto	0,310	mg/L
CO2 disciolta	13,635	mg/l
N2O disciolta	0,505	mg/l

<u>Tabella 111</u> - Risultati complessivi uscita impianto Revine

 ${\it \underline{Figura~26}}$ - Risultati complessivi uscita impianto Revine percentuale

4.6.3 PUNTO DI PRELIEVO: SURNATANTE

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	32	490	98,6	18900
	31,9	485	96,1	18400
	31,7	489	98,6	18600
	32	488	98,3	18700
strippato	31,9	623	97,3	19100
	30,8	627	96,9	19600
	31,5	628	97,3	19500
	31,8	631	97,4	19500

<u>Tabella 112</u> - Lettura 1 surnatante impianto Revine

Massa di gas strippato: 1 lettura												
N2O					CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
-0,7700	-4,4E-08	-7,9E-07	0,000	143	8,14E-06	0,0004	0,014	-1	-6E-08	0,000	0,000	

<u>Tabella 113</u> - Primo valore di gas strippato surnatante impianto Revine

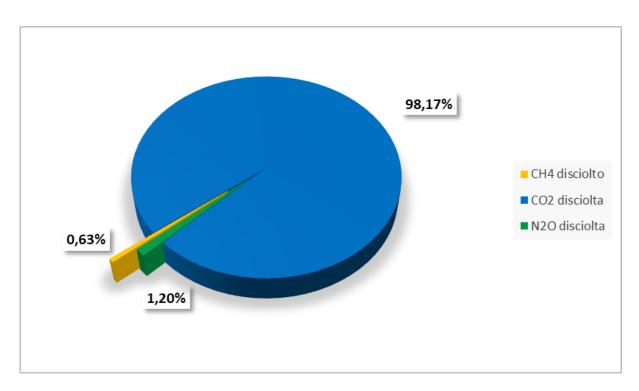
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31	492	98,3	18400
	30,9	494	95,9	18400
	30,9	495	94	18300
	31	490	93,9	18200
strippato	30,7	622	98,2	19900
	31,7	618	97,8	20200
	31,8	620	98	20100
	31,1	603	96,5	19900

<u>Tabella 114</u> - Lettura 2 surnatante impianto Revine

	Massa di gas strippato: 2 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
6,160	3,51E-07	6,31E-06	0,001	132	7,52E-06	0,0003	0,013	5	2,89E-07	0,000	0,001

 $\underline{\textit{Tabella 115}}$ - Secondo valore di gas strippato surnatante impianto Revine

	l	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,3	512	97	17700
	31,2	501	96,5	17400
	31,3	516	97	17300
	30,9	493	95,7	17300
strippato	31,6	656	98,4	20000
	31,9	658	98,5	20700
	31,9	658	98,9	20900
	31,9	657	98,9	21000


<u>Tabella 116</u> - Lettura 3 surnatante impianto Revine

	Massa di gas strippato: 3 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
7,700	4,39E-07	7,89E-06	0,001	165	9,4E-06	0,0004	0,017	3,7760	2,15E-07	0,000	0,000

 $\underline{\textit{Tabella 117}}$ - Terzo valore di gas strippato surnatante impianto Revine

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00110	g
massa N2O strippata	0,00001	g
CH4 disciolto	0,284	mg/L
CO2 disciolta	44,114	mg/l
N2O disciolta	0,537	mg/l

<u>Tabella 118</u> - Risultati complessivi surnatante impianto Revine

<u>Figura 27</u> - Risultati complessivi surnatante impianto Revine percentuale

4.7 IMPIANTO DI VALDOBBIADENE

4.7.1 PUNTO DI PRELIEVO: INGRESSO IMPIANTO

	L	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	32,7	484	100	20100
	32,7	487	100	20100
	32,6	482	99,8	20200
	32,4	484	99,5	20000
strippato	32,4	604	99,3	20300
	32,6	600	101	20200
	32,4	598	99,8	20100
	32,4	598	99,4	20000

<u>Tabella 119</u> - Lettura 1 ingresso impianto Valdobbiadene

	Massa di gas strippato: 1 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
1,5400	8,77E-08	1,58E-06	0,000	120	6,83E-06	0,0003	0,012	2	1,01E-07	0,000	0,000

 $\underline{\textit{Tabella 120}}$ - Primo valore di gas strippato ingresso impianto Valdobbiadene

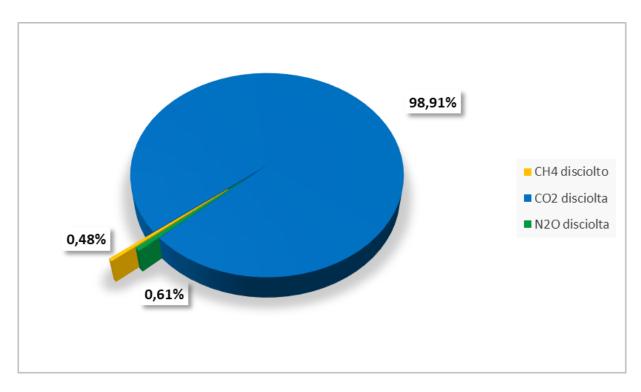
	L	etture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,4	483	97,8	19100
	31,9	499	99,3	19300
	31,9	496	98,8	19200
	32,1	496	98,4	19100
strippato	31,7	592	98,4	20200
	32,1	597	98,9	20600
	32,1	595	98,7	20500
	31,7	598	99	20600

<u>Tabella 121</u> - Lettura 2 ingresso impianto Valdobbiadene

	Massa di gas strippato: 2 lettura											
N2O					CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
0,000	0	0	0,000	102	5,81E-06	0,0003	0,010	1	4,03E-08	0,000	0,000	

 $\underline{\textit{Tabella 122}}$ - Secondo valore di gas strippato ingresso impianto Valdobbiadene

	L	etture progressive	e: 3 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,4	489	97,3	19300
	31,6	493	97,6	19200
	31,5	494	97,6	19100
	31,4	493	97,5	18900
strippato	31,5	574	97,7	19500
	31,8	579	98,9	20200
	31,8	570	98,4	20400
	31,8	574	98,4	20600


<u>Tabella 123</u> - Lettura 3 ingresso impianto Valdobbiadene

	Massa di gas strippato: 3 lettura											
N2O				CO2				CH4				
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
3,080	1,75E-07	3,16E-06	0,000	86	4,9E-06	0,0002	0,009	1,6520	9,41E-08	0,000	0,000	

<u>Tabella 124</u> - Terzo valore di gas strippato ingresso impianto Valdobbiadene

massa CH4 strippata	0,00000	g
massa CO2 strippata	0,00077	g
massa N2O strippata	0,000005	g
CH4 disciolto	0,151	mg/L
CO2 disciolta	30,880	mg/l
N2O disciolta	0,189	mg/l

 ${\it \underline{Tabella~125}}$ - Risultati complessivi ingresso impianto Valdobbiadene

Figura 28 - Risultati complessivi ingresso impianto Valdobbiadene percentuale

4.7.2 PUNTO DI PRELIEVO: USCITA IMPIANTO

	l	etture progressive	e: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,8	485	99,4	19800
	31,9	484	98,7	19600
	32,2	487	99,2	19500
	32	484	99,8	19500
strippato	31,9	550	95,2	18500
	31,1	546	97,5	18600
	30,8	555	98	19300
	32,1	571	100	19300

<u>**Tabella 126**</u> - Lettura 1 uscita impianto Valdobbiadene

Massa di gas strippato: 1 lettura												
N2O (CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
0,7700	4,39E-08	7,89E-07	0,000	87	4,95E-06	0,0002	0,009	0	1,34E-08	0,000	0,000	

<u>Tabella 127</u> - Primo valore di gas strippato uscita impianto Valdobbiadene

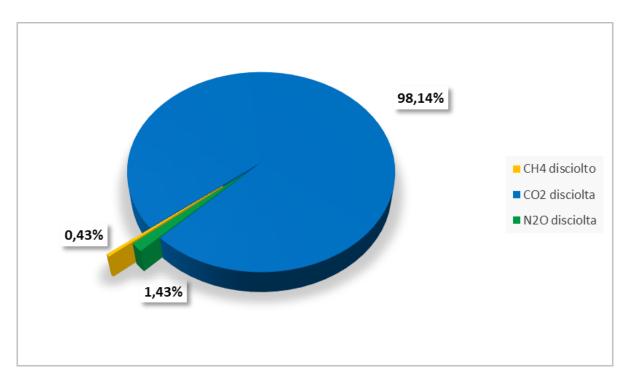
	ı	Letture progressive	e: 2 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,2	485	97	19500
	31,5	495	98	19300
	31,5	497	97,6	19400
	31,4	488	96,9	19200
strippato	30,9	540	94,9	18200
	30,7	534	95,3	18400
	30,9	543	96,8	18900
	31,4	546	97,4	18900

<u>Tabella 128</u> - Lettura 2 uscita impianto Valdobbiadene

	Massa di gas strippato: 2 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
0,000	0	0	0,000	58	3,3E-06	0,0001	0,006	1	3,36E-08	0,000	0,000

 $\underline{\textit{Tabella 129}}$ - Secondo valore di gas strippato uscita impianto Valdobbiadene

Letture progressive: 3 lettura									
N2O	CO2	CH4	H2O						
ppm	ppm	ppm	ppm						
31,6	499	98,1	18900						
31,4	494	97,5	19000						
31,6	490	97,4	19100						
31,2	489	97,5	19300						
31,8	537	98,6	19000						
31,9	537	98,4	19100						
31,7	537	98,3	19200						
32	539	98,8	19200						
	N2O ppm 31,6 31,4 31,6 31,2 31,8 31,9 31,7	N2O CO2 ppm ppm 31,6 499 31,4 494 31,6 490 31,2 489 31,8 537 31,9 537 31,7 537	N2O CO2 CH4 ppm ppm ppm 31,6 499 98,1 31,4 494 97,5 31,6 490 97,4 31,2 489 97,5 31,8 537 98,6 31,9 537 98,4 31,7 537 98,3						


<u>Tabella 130</u> - Lettura 3 uscita impianto Valdobbiadene

	Massa di gas strippato: 3 lettura											
N2O CO					CO2			CH4				
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%	
6,160	3,51E-07	6,31E-06	0,001	50	2,85E-06	0,0001	0,005	1,5340	8,74E-08	0,000	0,000	

<u>Tabella 131</u> - Terzo valore di gas strippato uscita impianto Valdobbiadene

massa CH4 strippata	0,00000	g
massa CO2 strippata	0,00049	g
massa N2O strippata	0,00001	g
CH4 disciolto	0,086	mg/L
CO2 disciolta	19,550	mg/l
N2O disciolta	0,284	mg/l

<u>Tabella 132</u> - Risultati complessivi uscita impianto Valdobbiadene

Figura 29 - Risultati complessivi uscita impianto Valdobbiadene percentuale

4.7.3 PUNTO DI PRELIEVO: SURNATANTE

	L	etture progressive	: 1 lettura	
	N2O	CO2	CH4	H2O
	ppm	ppm	ppm	ppm
ambiente	31,4	499	98	19000
	31,6	497	98,2	19000
	31,7	499	98,3	19000
	31,6	502	97,9	19000
strippato	32,1	1110	101	19700
	32	1110	102	19900
	32,2	1120	102	19900
	32,1	1110	101	19900

Tabella 133 - Lettura 1 surnatante impianto Valdobbiadene

	Massa di gas strippato: 1 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
4,6200 2,63E-07 4,74E-06 0,000				618	3,52E-05	0,0015	0,062	5	2,76E-07	0,000	0,000

<u>Tabella 134</u> - Primo valore di gas strippato surnatante impianto Valdobbiadene

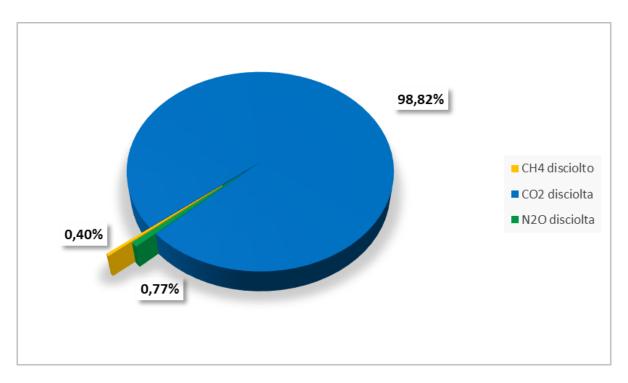
	Letture progressive: 2 lettura								
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	30	473	92	18200					
	30,5	480	94,3	18200					
	30,4	488	94,3	18200					
	30,8	496	95,5	18200					
strippato	31	649	96,6	19700					
	31,1	654	97,6	20300					
	31,4	657	97,8	20700					
	31,8	658	98,2	20800					

<u>Tabella 135</u> - Lettura 2 surnatante impianto Valdobbiadene

	Massa di gas strippato: 2 lettura										
N2O				CO2				CH4			
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
7,700	4,39E-07	162	9,23E-06	0,0004	0,016	3	1,81E-07	0,000	0,000		

 $\underline{\textit{Tabella 136}}$ - Secondo valore di gas strippato surnatante impianto Valdobbiadene

	Letture progressive: 3 lettura								
	N2O	CO2	CH4	H2O					
	ppm	ppm	ppm	ppm					
ambiente	30,8	489	95,2	18200					
	30,7	494	96,1	18200					
	30,6	502	96,4	18200					
	31,4	498	96,8	18300					
strippato	31,6	677	98,4	19000					
	32	683	99	19400					
	32,2	681	99,2	19800					
	31,8	677	98,7	20000					


<u>Tabella 137</u> - Lettura 3 surnatante impianto Valdobbiadene

	Massa di gas strippato: 3 lettura										
N2O			CO2				CH4				
ppm	molN2O	g N2O	%	ppm	molCO2	g CO2	%	ppm	molCH4	g CH4	%
6,160	3,51E-07	6,31E-06	0,001	185	1,05E-05	0,0005	0,019	2,8320	1,61E-07	0,000	0,000

 $\underline{\textit{Tabella 138}}$ - Terzo valore di gas strippato surnatante impianto Valdobbiadene

massa CH4 strippata	0,00001	g
massa CO2 strippata	0,00242	g
massa N2O strippata	0,00002	g
CH4 disciolto	0,396	mg/L
CO2 disciolta	96,750	mg/l
N2O disciolta	0,758	mg/l

<u>Tabella 139</u> - Risultati complessivi surnatante impianto Valdobbiadene

<u>Figura 30</u> - Risultati complessivi surnatante impianto Valdobbiadene percentuale

5 SINTESI DEI RISULTATI

Dopo aver determinato le concentrazioni dei vari gas disciolti all'interno di ogni singolo campione, si riporta l'Emission Factor di ciascun gas preso in esame e calcolato per ciascun impianto, considerando gli abitanti equivalenti (AE) su base COD e su base N.

			<u>EF DISCIOLTI</u>					
	AE base	AE base AE base	EF_N2O	EF_	_CH4	EF_CO2		
NOME IMPIANTO	COD	N N	kgN2O/kgNtot rimosso	kgCH4/kgCOD in	kgCH4/kgCOD out	kgCO2/kgCOD rimosso		
Giavera	11040	12791	0,0512	0,0014	0,0111	0,0532		
Mussolente	11536	6815	0,0149	0,0005	0,0099	0,0492		
Pederobba	382	1282	0,0151	0,0018	0,0087	0,1841		
Revine	1051	1667	0,0282	0,0038	0,0114	0,2765		
Sernaglia	6741	9318	0,0093	0,0004	0,0078	0,0464		
Valdobbiadene	1585	12232	0,0037	0,0007	0,0158	0,1515		

Tabella 140 - EMISSIONI INDIRETTE SU CORPO IDRICO RECETTORE - Principali EF calcolati per ogni impianto analizzato

A questo punto gli EF calcolati sono stati raggruppati su determinati range, in funzione della potenzialità degli impianti presi in esame.

		<u>EF DISCIOLTI</u>					
		EF_N2O	EF_CH4		EF_CO2		
		kgN2O/kgNtot rimosso	kgCH4/kgCOD in	kgCH4/kgCOD out	kgCO2/kgCOD rimosso		
AE < 5.000	media	0,0217	0,0021	0,0120	0,2040		
	dev. std	0,0092	0,0016	0,0036	0,0648		
	dev. std (%)	42%	76%	29%	31%		
5.000 < AE < 15.000	media	0,0198	0,0007	0,0096	0,0496		
	dev. std	0,0215	0,0005	0,0017	0,0034		
	dev. std (%)	108%	73%	17%	6%		

<u>Tabella 141</u> - EMISSIONI INDIRETTE SU CORPO IDRICO RECETTORE - EF suddivisi per AE < 5000 e 5000 < AE < 15000 su impianti analizzati

In parallelo al presente lavoro di tesi sono state effettuate anche le misure delle emissioni dirette negli stessi impianti di piccola taglia, qui di seguito si sintetizzano gli EF delle emissioni dirette utili poi per un confronto con i dati di letteratura riguardanti le emissioni da fosse settiche.

		EF-EMISSIONI DIRETTE			
			EF_N2O	EF_CH4	EF_CO2
NOME IMPIANTO	AE base COD	AE base N	kgN2O/kgNtot rimosso	kgCH4/kgCOD in	kgCO2/kgCOD in
Giavera	11040	12791	0,0029	0,0005	0,1655
Mussolente	11536	6815	0,0062	0,0010	0,3206
Pederobba	382	1282	0,0018	0,0020	0,9328
Revine	1051	1667	0,0036	0,0073	0,7037
Sernaglia	6741	9318	0,0188	0,0125	0,4035
Valdobbiadene	1585	12232	0,0032	0,0045	3,0833

<u>Tabella 142</u> - EMISSIONI DIRETTE - Principali EF calcolati per ogni impianto analizzate

		EF-EMISSIONI DIRETTE		
	EF_N2O	EF_CH4	EF_CO2	
		kgN2O/kgNtot rimosso	kgCH4/kgCOD in	kgCO2/kgCOD in
AE < 5.000	media	0,00270	0,00243	1,57323
	dev. std	0,00123	0,00194	1,31274
	dev. std (%)	46%	80%	83%
5.000 < AE < 15.000	media	0,0078	0,0047	0,2965
	dev. std	0,0075	0,0068	0,1208
	dev. std (%)	96,192	144,437	40,732

 $\underline{\textit{Tabella 143}}$ - EMISSIONI DIRETTE - EF suddivisi per AE < 5000 e 5000 < AE < 15000 su impianti analizzati

Per avere un'idea più chiara delle emissioni degli impianti, sono stati confrontati i dati ottenuti con i riferimenti forniti dalla letteratura in *Tabella144*, qui di seguito riportata.

	EF MEDIA	DEV STD	REFERENZA
EF CH4	0,0032 kgCH4/kgCOD influente	±80%	STOWA,2010 Masuda,2018
EF CO2	0,0800 kgCO2/kgCOD rimosso	-	Campos,2016
EF N2O	0,0078 kgN2O/kgN denitrificato	±85%	Foley 2010 Masuda,2018

<u>Tabella 144</u> - Fattori di emissione di CH4, N2O e CO2 da emissioni dirette da processi-Linea acque.

Relativamente al focus sulle fosse settiche è stato confrontato il relativo dato di letteratura riguardante il CH4 (IPCC 2019), riportato in tabella qui di seguito, con i valori di EF sempre per il CH4 in uscita sui campioni analizzati riportati in precedenza in <u>Tabella 141</u>.

Si sintetizzano di seguito i risultati ottenuti dai confronti tra i dati misurati negli impianti di piccola taglia oggetto di questo lavoro di tesi e i dati di letteratura riguardanti le emissioni dirette e indirette delle fosse settiche.

	GAS SERRA	<u>IMPIANTO</u> < 5000 AE	<u>IMPIANTI</u> 5000 < AE < 15000	FOSSE SETTICHE	DIFFERENZA % IMPIANTI < 5000 AE E F. SETTICHE	DIFFERENZA % IMPIANTI 5000 < AE < 15000 E F. SETTICHE
N2O	KgN2O/kgNden	0,022	0,020	ı	1	-
СН4	KgCH4/kgCODout	0,012	0,010	0,009	33%	11%
CO2	KgCO2/kgCODrim	0,204	0,05	ı	-	-

<u>Tabella 145</u> - EMISSIONI INDIRETTE SU CORPO IDRICO RECETTORE - Confronto tra EF di impianti con potenzialità indicata e EF di una fossa settica

GAS SERRA		IMPIANTO < 5000 AE	<u>IMPIANTI</u> 5000 < AE < 15000	FOSSE SETTICHE
N2O	KgN2O/kgNden	0.003	0.009	-
CH4	KgCH4/kgCODin	0.002	0.005	0.125
CO2	KgCO2/kgCODin	1.573	0.297	ı

Tabella 146 - EMISSIONI DIRETTE - Confronto tra EF di impianti con potenzialità indicata e EF di una fossa settica

5.1 CONCLUSIONI

Come già osservato in precedenza, per quanto riguarda le emissioni indirette su corpo idrico recettore degli impianti analizzati, confrontando con i dati trovati in letteratura e tenendo conto della deviazione standard di questi, i valori risultano sostanzialmente in linea.

Parlando invece più in dettaglio delle fosse settiche, dall'osservazione dei dati ottenuti sui campioni analizzati e in modo particolare focalizzando l'attenzione sugli EF del CH4, si riscontra anche un elevato range di variazione nei risultati rispetto alla media (29% per potenzialità inferiori a 5.000 AE, mentre 17%, per potenzialità compresa tra 5.000 e 15.000 AE), e tenuto conto di questo margine di

variabilità nei dati si può concludere che i valori di EF ottenuti dalle analisi e l'EF ricavato da letteratura sono in realtà confrontabili, nonostante si riscontri un EF nei dati analizzati per potenzialità inferiore a 5.000 AE superiore al 33% rispetto al dato di letteratura, mentre dell'11% circa per potenzialità compresa tra 5.000 e 15.000 AE .

Per completezza si è fatto il confronto per le emissioni dirette, si evince che per quanto riguarda l'emissione di CH4, il valore EF di letteratura (IPCC2019) con il misurato EF in impianti di piccola taglia è di 2 ordini di grandezza maggiore rispetto a quello ricavato da misura.

Si può quindi dire in conclusione che, l'emissione indiretta prodotta da un refluo di una fossa settica (domestico), produce un EF che risulta confrontabile con quello di un impianto di depurazione di piccola taglia, misurati in questo lavoro di tesi.

Invece, analizzando i fattori emissivi relativi alle emissioni dirette, emerge che, per quanto riguarda l'aliquota del metano, le fosse settiche hanno un EF di due ordini di grandezza superiore rispetto a quello relativo agli impianti di piccola taglia. Si specifica che il confronto è stato effettuato relativamente al gas metano, poiché in letteratura i fattori emissivi specifici per le fosse settiche sono espressi rispetto a questo GHG. Il confronto tra i dati di letteratura ed i valori ottenuti tramite le campagne di misura sperimentali fa emergere che, da un punto di vista ambientale, il trattamento centralizzato delle acque reflue presso impianti di depurazione risulta avere un impatto minore, in termini di impronta di carbonio, rispetto alle modalità diffuse nel territorio con soluzioni domestiche, quali le fosse settiche.

Si stima che nell'Unione Europea circa il 23% delle famiglie utilizza questa modalità di trattamento (EEA 2013), soprattutto in realtà dove la densità di popolazione è relativamente bassa e gli insediamenti sono dispersi.

Un esempio rappresentativo è costituito dalla realtà irlandese, dove circa il 38% della popolazione vive in zone rurali e quasi il 30% delle famiglie tratta le proprie acque refue in loco (CSO, 2011). Più in generale nei paesi nordici è collegata circa il 34% della popolazione (Norin e Tideström, 2003), mentre negli Stati Uniti circa un quinto della popolazione utilizza tali sistemi domestici (USEPA, 2016).

Esiste inoltre un rischio concreto e non meno importante che questi dispositivi possano filtrare gli agenti inquinanti nelle acque sotterranee e rilasciare i gas serra in atmosfera, nel caso non dovessero ricevere una corretta manutenzione, con inevitabili problemi anche di salute pubblica.

> APPENDICE: Metodi Analitici

MISURA DEI PARAMETRI IN FASE LIQUIDA

Il campione influente e quello effluente, diversamente da quello del biologico, non è un campione puntuale, ma deve essere rappresentativo di un arco temporale di circa un giorno. Il campionamento in ingresso e in uscita è stato, dunque, effettuato tramite l'ausilio di un campionatore, che veniva lasciato acceso per 24 h, raccogliendo il tutto in una bottiglia da campionamento di 1L.

Tutti i campioni prelevati sono stati sottoposti a caratterizzazione nel laboratorio di Ingegneria Sanitaria del dipartimento SIMAU all'interno dell'Università Politecnica delle Marche (AN,Italia) e nello specifico sono state eseguite le seguenti analisi:

- pH;
- COD totale;
- Azoto kjeldahl (TKN);
- Anioni.

Si riportano di seguito tutte le procedure analitiche utilizzate sui campioni prelevati durante la campagna di monitoraggio.

ANALISI PH

La misurazione del pH (Potential of Hydrogen) ci permette di comprendere l'acidità o la basicità di un campione liquido. La misura indica la concentrazione di ioni idrogeno presenti (H+). È definito come:

```
pH = - log 10 [H+]
```

7 è il valore di pH di una sostanza neutra. Sono acide tutte le sostanze che in acqua creano il rilascio di ioni H+, per via dei quali si generano valori di pH, nella soluzione, minori di 7. Sono definite basiche le sostanze che in acqua rilasciano ioni OH-, producendo soluzioni con valori di pH superiori a 7.

La concentrazione di H+ è uno dei parametri fondamentali per il controllo e la gestione dei processi biologici.

La prova viene svolta su un campione di 50 ml di refluo posto all'interno di una piccola beuta insieme ad un'ancoretta magnetica in modo tale che durante la misurazione venga garantita una completa miscelazione del campione ad opera dell'agitatore magnetico.

Per la determinazione del pH si utilizza pH-metro, un apparecchio formato da una sonda a vetro collegata ad un dispositivo elettronico che:

raccoglie il segnale della sonda;

- calcola il valore di pH tramite la formula precedente;
- lo rappresenta su un display.

Nel dettaglio la sonda utilizzata è parte dello strumento di titolazione Metrohm mod. 848 posto al di sopra di un agitatore magnetico Stirrer mod. 801; questa è costituita da un elettrodo capace di misurare la differenza di potenziale elettrico generato su due lati di una sottile membrana di vetro posta alla sua estremità. Tale differenza di potenziale è legata alla differente concentrazione di ioni idrogeno H+ all'interno e all'esterno della membrana posta a contatto con il refluo da analizzare.

L'unica accortezza per questo genere di misurazione è quella di attendere che il valore si attesti ad un valore costante (alla seconda cifra decimale almeno).

ANALISI COD (Chemical Oxygen Demand)

Il COD, ovvero la Richiesta Chimica di Ossigeno, è un utile strumento per quantificare l'O2 necessario ad ossidare chimicamente la sostanza organica presente in un campione. Viene espresso in mg O2/I.

Questo parametro viene normalmente utilizzato per quantificare il carico organico, quindi il quantitativo di sostanze carboniose presenti nel refluo.

Il COD viene normalmente suddiviso in frazioni che ne permettono la classificazione in maniera più completa, spesso eseguita per via respirometrica:

- rbCOD: è definito come il COD "rapidamente biodegradabile" e perciò quello prontamente disponibile all'utilizzo da parte dei microrganismi. È rappresentato dalle sostanze solubili a basso peso molecolare come i VFA, zuccheri e alcoli, rappresentando il 15-20% del COD totale.
- sbCOD: è definito come il COD "lentamente biodegradabile" e quindi costituito da sostanze di medio o alto peso molecolare che devono essere prima adsorbiti sulla biomassa e poi idrolizzati oppure idrolizzati in soluzione trasformandolo in rbCOD; rappresenta il 65-70% della totalità.
- nbCOD: è il COD "non biodegradabile" relativo a composti che non subiscono fenomeni di solubilizzazione e che fungono da traccianti all'interno degli impianti per il trattamento delle acque reflue, consiste nel circa 15% del COD entrante in impianto.

La definizione della concentrazione di COD nei campioni prelevati durante la sperimentazione è stata eseguita nello specifico per determinare il COD totale, valutato utilizzando un campione tal quale.

La procedura prevede l'inserimento di 10 ml di campione all'interno degli appositi provettoni di vetro a cui vengono aggiunti:

- una punta di spatola di argento solfato (Ag2SO4) che funge da catalizzatore,
- 1/3 di spatola di mercurio solfato (HgSO4) in modo da bloccare l'ossidazione dei cloruri che andrebbero ad utilizzare parte dell'ossigeno presente nel refluo andando a falsare i risultati,
- 10 ml di bicromato di potassio (K2Cr2O7) con concentrazione 0.1 N per ossidare la sostanza organica presente nel campione e 25 ml di acido solforico (H2SO4).

I provettoni così riempiti vengono, poi, posizionati all'interno di un digestore della VELP SCIENTIFICA mod. ECO 6 e vengono ricoperti con condensatori in vetro utili al recupero dei liquidi evaporati; dopodiché viene avviato il programma che prevede il riscaldamento dei campioni ad una temperatura di 150 °C per 2 ore.

Figura 31 - Digestore, provettoni e condensatori utilizzati per valutazione del COD

Al termine della digestione, i provini vengono estratti dal macchinario e lasciati raffreddare prima di essere titolati per via colorimetrica. Vengono aggiunte all'interno di ogni provettone tre gocce di Ferroina, un indicatore di colore rosso che aiuta a visualizzare il viraggio; a questo viene poi aggiunta una certa quantità di Ferro Ammonio Solfato (Fe(NH₄)2(SO₄)2) 0.125 N, utilizzato per titolare il bicromato in eccesso all'interno del campione, ovvero quel bicromato che non è stato utilizzato per ossidare le sostanze organiche durante la fase di digestione. Durante l'aggiunta del reagente chimico si nota un graduale viraggio dal colore giallo-verde ad uno marrone-rosso a cui corrisponde la completa titolazione.

Vengono registrati i ml di ferro ammonio solfato aggiunti e viene calcolata la concentrazione di COD, espressa come mg O2/l, tramite la seguente formula:

$$COD \ (mgO2/l) = \frac{(a-b)*N*8000}{V}$$

Dove:

- a è il volume di ferro ammonio solfato utilizzati per la titolazione del campione definito "bianco", ovvero eseguito con la stessa procedura di un campione normale con l'unica differenza di avere acqua distillata al posto del refluo (ml);
- b è il volume di ferro ammonio solfato utilizzati per la titolazione del campione di refluo (ml);
- N è la normalità del ferro ammonio solfato (0.125 N);
- V è il volume di campione usato per l'analisi (ml).

ANALISI TKN

Il metodo denominato TKN permette di valutare la quantità di N-NH4+ e di azoto organico presente nel campione di refluo analizzato, tramite la trasformazione di tutti i composti dell'azoto organico in N-NH4+, mediante una digestione acida a 370°C.

L'analisi per la determinazione del TKN può essere suddivisa in due fasi: la prima prevede la digestione del refluo mentre la seconda la distillazione del campione.

Per la prova si utilizzano 50 ml di campione tal quale, che vengono inseriti in provettoni di vetro a cui vengono aggiunti:

- 1 cucchiaio di potassio solfato (K2SO4) per facilitare l'innalzamento del punto di ebollizione del composto,
- una punta di spatola di ossido di mercurio (HgO) che funge da catalizzatore,
- 10 ml di acido solforico (H2SO4), indispensabile per lo sviluppo del processo di idrolisi.

I provettoni vengono, poi, inseriti nel digestore VELP SCIENTIFICA mod. DK 6 e coperti con un apposito aspiratore in modo da convogliare i vapori acidi in uno Scrubber tramite una pompa aspirante. Una volta che la pompa entra in funzione viene avviato il programma di digestione della durata di 7 ore che permette la trasformazione dell'azoto organico in solfato di ammonio ((NH4)2SO4).

Figura 32 - Digestore e Scrubber utilizzati per la determinazione del TKN

A digestione ultimata il campione ottenuto viene fatto raffreddare e viene eseguita la distillazione: si inserisce il provettone nell'apposito vano del distillatore e si avvia il ciclo di distillazione che prevede l'aggiunta di 60 ml di NaOH per una durata di 7 minuti, durante il quale si raccoglie il prodotto in una beuta contenente 25 ml di acido borico.

Al termine, si esegue la titolazione utilizzando il titolatore Metrohm mod. 848 con agitatore meccanico Stirrer mod. 801, il quale dosa acido cloridrico (HCl), fino al raggiungimento del pH pari a 4.5.

La concentrazione di TKN viene così determinata:

$$TKN\left(\frac{mg}{l}\right) = \frac{(a-b)}{V} * N * 14 * 1000$$

Dove:

- a è il volume di acido cloridrico aggiunto per titolare il campione (ml);
- b è il volume di acido cloridrico aggiunto per titolare il bianco di riferimento (ml);
- V è il volume del campione utilizzato (ml);
- N è la normalità dell'acido cloridrico (eq/l);
- 14 è il fattore che esprime la conversione dell'azoto ammoniacale in mg/l di N-NH4 e non in mg/l di NH4.

Figura 33 - Distillatore e Titolatore per la determinazione del TKN

ANALISI ANIONI

La tecnica con il quale si è determinata la concentrazione dei differenti anioni e cationi presenti nel campione da analizzare di refluo prelevati settimanalmente, è la cromatografia ionica: si sfrutta il principio dell'attrazione degli ioni di carica opposta.

Si inizia filtrando il campione sottovuoto, sfruttando una beuta da vuoto e un'apposita struttura in metallo ove serve allocare un filtro da $0,45~\mu m$, utile per eliminare qualsiasi impurità presente e non danneggiare la colonna cromatografica. I campioni così preparati vengono inseriti all'interno di apposite provette ermetiche, chiamate VIALS, le quali vengono a loro volta inserite all'interno di un apposito supporto e inserite nel cromatografo.

Il cromatografo utilizzato è il DIONEX DX-120: è uno strumento formato da una colonna impaccata con una speciale resina selettiva, che per la misura degli anioni è caricata positivamente. Il campione viene siringato con l'eluente (ammonio solfato disciolto in acqua) in una pre-colonna di sicurezza. Passerà poi attraverso la colonna di lettura con la resina ionica; all'interno della colonna i vari ioni sono soggetti ad essere trattenuti dalla resina in base alla loro affinità, alla valenza e alla concentrazione delle sostanze: gli ioni hanno quindi un tempo di ritenzione differente in base alla tipologia di sostanza chimica a cui appartengono. Questo permette di ottenere come risposta un grafico nel quale si notano dei picchi in corrispondenza dei tempi di ritenzione della sostanza: le aree sottese a tali picchi rendono come risultato la concentrazione degli ioni.

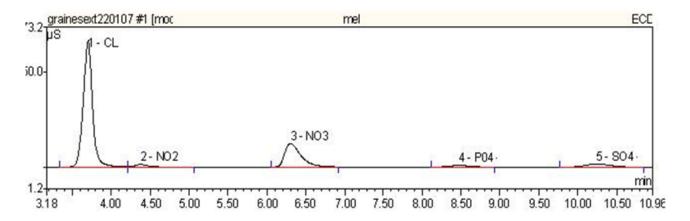


Figura 34 - Esempio profilo tipico ottenuto dal cromatografo

Una volta registrati i segnali di conducibilità, si risale alle concentrazioni sfruttando un apposito software, il Chromeleon, che usa dei valori standard di riferimento (è importante introdurre un campione standard a concentrazioni note) con cui è possibile relazionare le aree degli spettri con le concentrazioni.

Inoltre, i campioni da esaminare vengono alternati a provette contenenti acqua distillata con il compito di ripulire la colonna da eventuali residui.

Gli Anioni misurati sono:

- Cloruri (Cl-);
- Solfati (SO4--);
- Ortofosfati (PO4);
- Azoto nitrico (NO3-);
- Azoto nitroso (NO2-);

Per calcolare la quantità di azoto è necessario utilizzare due formule che convertono la quantità di NO2- e di NO3- in quella di N-NO2- e di N-NO3-, espresse entrambe in mg/l.

In modo particolare avrò quindi che:

MISURA DEI PARAMETRI IN FASE GASSOSA

ANALISI GAS DISCIOLTI

Per ottenere le concentrazioni di metano, protossido di azoto e anidride carbonica disciolti nelle fasi liquide sono stati richiesti campioni medi 24h per ogni impianto monitorato al fine della determinazione dei GHG disciolti.

La procedura di misura dei GHG disciolti nella fase liquida prevede in un primo momento lo strippaggio dei gas disciolti e successivamente la misura della concentrazione dell'inquinante gassoso.

Si utilizza un campione di 25 ml di acqua reflua che viene posta in una beuta da vuoto ben sigillata, per evitare la fuoriuscita di gas durante lo strippaggio.

Una volta preparato il campione quindi, si inserisce la beuta in un sonicatore ad immersione e ad ultrasuoni. Dopo 15 minuti di sonificazione, si cambia l'acqua della vaschetta e si riaccendono gli ultrasuoni per altri 15 min. Questo poiché è necessario controllare la temperatura, che deve essere la più costante possibile, visto che è un parametro molto correlato allo strippaggio del gas.

Dopo questa mezz'ora si estrae dalla beuta, con l'ausilio di una bombola di volume 1,37 litri messa in precedenza sottovuoto, tutto il gas contenuto nello spazio di testa. Poi vengono aperte le valvole della bombola per alcuni instanti, così facendo entra un volume di aria di diluizione dall'ambiente circostante; questo è necessario poiché la depressione residua all'interno della bombola può danneggiare lo strumento che si utilizzerà successivamente.

Figura 35 - Dettaglio dello strumento di sonicazione SONOREX SUPER mod. RK 120 H.

Così facendo non si stripperà tutto il gas disciolto presente e, di conseguenza, servirà ripetere la procedura 3-4 volte, fino ad evidenziare un plateau nell'andamento dei gas serra in funzione delle prove, che indicherà l'inutilità di strippare oltre. Si avrà così la certezza di aver strippato tutto il possibile in laboratorio.

Occorre rilevare che in impianto non si raggiungeranno mai queste concentrazioni di emissioni, in quanto nel reattore le acque reflue non subiscono un evento paragonabile alla sonificazione che possa strippare i gas serra completamente: l'aerazione utilizzata nella fase di nitrificazione in impianto, infatti, è comunque troppo blanda per poter strippare tutto il gas disciolto presente in quel grande volume.

In definitiva, la misurazione rappresenta la massima concentrazione di emissione possibile.

Successivamente la bombola verrà collegata con l'apparecchio, che permette di compiere l'analisi tramite spettroscopia fotoacustica (Brüel & Kjaer Multi-gas Monitor Type 1302), in modo da acquisire almeno 4 misure consecutive del campione. Prima di collegare la bombola si registrano quattro misure dell'aria dell'ambiente circostante dove si svolge la prova, necessarie per il confronto con i dati del campione. Infatti, al suo interno troviamo anche dell'aria di diluizione entrata in precedenza proveniente dall'ambiente. Pertanto, l'effettiva quantità di gas strippato durante la sonificazione è data dalla differenza tra il valore più alto registrato mentre la bombola è collegata all'apparecchio e il valore ambientale registrato poco prima di collegare la bombola.

È stato utilizzato poi uno strumento denominato "Brüel & Kjaer Multi-gas Monitor Type 1302", utile per la misurazione delle concentrazioni di diversi composti chimici. In particolare, si basa sul principio di rilevamento fotoacustico: in spettroscopia fotoacustica (PAS, photoacustic spectrometry) il gas da misurare viene irradiato da una luce intermittente avente lunghezza d'onda prescelta. Le molecole di gas assorbono parte dell'energia luminosa e la convertono in un segnale acustico che viene rilevato da un microfono. Più alta è la concentrazione del gas nella cella, più luce viene assorbita e proporzionalmente il segnale acustico rilevato dal microfono sarà più intenso.

La sorgente luminosa utilizzata è un corpo nero riscaldato che emette luce infrarossa a grande banda. La lunghezza d'onda desiderata viene ottenuta facendo passare questa luce a banda larga attraverso un filtro. Il filtro ottico è un filtro a banda stretta sulla frequenza dell'infrarosso, tutti i filtri ottici sono caratterizzati da una banda caratterizzata da un valore di picco e a elevata attenuazione al di fuori della banda passante. Ciò favorisce alta immunità alle interferenze da vapore acque, da CO2 e altri gas presenti nell'atmosfera.

Nel modello 1302 sono presenti contemporaneamente 5 filtri intercambiabili. Nel nostro caso sono presenti i modelli riportati in tabella con rispettivamente la sostanza monitorata e il picco di banda passante:

Id filtro	Sostanza monitorata	Picco di banda	Ampiezza banda	
		cm ⁻¹	cm ⁻¹	%
UA0982	CO2	711	53	7.5
UA0976		941	66	7
UA0972		1139	68	6
SB0527	H2O	1985	40	2
UA0984	CO	2150	65	3
UA0987	CH4	2950	177	6

Tabella 147 - Modelli dei filtri presenti nello strumento 3.3.3 BRÜEL & KJAER multi-gas monitor

La misura del N_2O andrebbe fatta nel filtro UA 0985, in mancanza di quest'ultimo viene fatta sul canale dello spettrofotometro corrispondente al monossido di carbonio (CO) UA 0984 che parzialmente si sovrappone ad esso e quindi correlabile con la misura del N_2O .

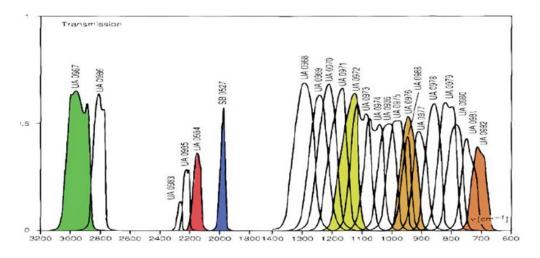


Figura 36 - Dettaglio filtri e picco di banda utilizzati

Lo strumento restituisce un valore in ppm volumetrici di inquinante che successivamente verrà convertito in concentrazioni (mg/l).

✓ Legge di Henry

Terminata la prova, per una ulteriore verifica dello strippaggio di tutto il gas all'interno del campione, si calcola la quantità di gas serra ancora disciolto nell'acqua attraverso la legge di Henry, la quale è valida in condizione di equilibrio. Nel nostro caso si è trascurato tale requisito poiché la sonificazione agevola lo strippaggio dei gas, quindi la quantità reale di gas serra ancora disciolto nell'acqua è minore rispetto alla quantità calcolata con la relazione di Henry.

$$p_g = \frac{H}{P_T} x_g$$
 Legge Dihenry

 p_g = frazione molare del gas in aria, $\frac{\text{mole gas}}{\text{mole di aria}}$

 $H = costante della legge di Henry, \frac{atm (mole gas / mole aria)}{(mole gas / mole acqua)}$

 P_T = pressione totale, di solito 1,0 atm

 x_g = frazione molare di gas in acqua, $\frac{\text{mole gas}}{\text{mole acqua}}$

La costante di Henry (H) dipende notevolmente dalla temperatura: la solubilità dei gas nei liquidi diminuisce all' aumentare della temperatura.

$$\log_{10} H = \frac{-A}{T} + B$$

H = costante di Henry alla temperatura T, atm

A = costante empirica che dipende dal cambiamento di entalpia all'interno dell'acqua, il quale è dovuto dalla dissoluzione di componenti in acqua e dalla legge universale dei gas

T = temperatura, K

B = costante empirica

• Costante di Henry per CH4 e CO2 (da metcalf)

	А	В	Т	T	Н
			°C	°K	atm
CH4	675,74	6,88	20	293,15	37575
CO2	1012,4	6,606	20	293,15	1421

• Costante di Henry per N2O (Rolf Sander, 1999)

$$k_{\rm H} = k_{\rm H}^{\ominus} \times \exp\left(\frac{-\Delta_{\rm soln} H}{R} \left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right)$$

T ⁰	Kh ⁰	$\frac{\Delta_{\text{soln}} H}{R}$	Т	Т	Kh
°C	M/atm		°C	°K	M/atm
25	0,025	2700	20	293,15	0,029176
°K					
298,15					

Kh	$\underline{}$ concentrazione in acqua $\underline{}$ $\underline{}$ $\underline{}$	
	pressione parziale del gas in aria atm	
pressione parziale	mol gas mol aria	
M	mol gas / dm³	
peso molecolare H2O	g /mol	18,01
densità H20	g /mL	0,998
volume campione	L	0,025
moli H20	mol acqua	1,3853
1/H N2O	mol gas / mol acqua atm (mol gas / mol aria)	0,0005265
H N20	atm (mol gas / mol aria) (mol gas / mol acqua)	1899,3140

6 RIFERIMENTI BIBLIOGRAFICI

- [1] Delibera ARERA 917/2017/R/idr
- [2] UNI EN ISO 14064-1
- [3] IPCC report 2013
- [4] 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Deborah Bartram (USA), Michael D. Short (Australia), Yoshitaka Ebie (Japan), Juraj Farkaš (Slovakia), Céline Gueguen (France), Gregory M. Peters (Sweden), Nuria Mariana Zanzottera (Argentina), M. Karthik (India), Shuhei Masuda (Japan). "Wastewater treatment and discharge" (Chapter 6)
- [5] "Carbon dioxide emissions from a septic tank soakaway in a northern maritime climate". Celia Somlai-Haase, Jan Knappe, Laurence Gill (Ireland)
- [6] "Application of On-Site Wastewater Treatment in Ireland and Perspectives on Its Sustainability". Donata Dubber and Laurence Gill (Ireland)
- [7] "Evaluation of Greenhouse Gas Emissions from septic system". Harold L. Leverenz, P.E., Ph.D George Tchobanoglous, P.E., Ph.D. Jeannie L. Darby, P.E., Ph.D. . University of California, Davis
- [8] WMO, 3 dicembre 2019
- [9] "Clima, WMO: il riscaldamento globale sta accelerando", Marco Talluri
- [10] "Greenhouse Gas Emissions from Septic Systems in New York State". Allison M. Truhlar, Brian G. Rahm, Rachael A. Brooks, Sarah A. Nadeau, Erin T. Makarsky, and M. Todd Walter
- [11] "2019 concludes a decade of exceptional global heat and high-impact weather" . Clare Nullis, World Meteorological Organization
- [12] "Climate change indicators in the United States", 2016. Fourth edition. USEPA