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Sommario (Italian abstract) 

 

 

Il lavoro descritto in questa tesi è incentrato su un obiettivo specifico all'interno del più ampio 

progetto nazionale Epignosis. Il progetto coinvolge l'Università Politecnica delle Marche 

(Univpm) e varie aziende per creare un prototipo di veicolo all’avanguardia che anticipi i 

progressi nel settore automobilistico dei prossimi anni. In particolare, lo scopo della tesi è di 

dare un contributo alle fasi iniziali dello sviluppo di un innovativo sistema di monitoraggio del 

conducente (Driver Monitoring System, DMS), specificatamente trovando indicatori 

appropriati in grado di rilevare le variazioni dello stato di attenzione del conducente. Per 

raggiungere questo obiettivo, è stato inizialmente condotto un lavoro di ricerca per definire 

lo stato dell'arte di questi sistemi e raccogliere gli indici utilizzati negli studi correlati, che 

possano essere adatti all'implementazione nel DMS in fase di sviluppo. L’esigenza di questi 

sistemi è evidenziata anche dal Report Globale sullo Stato della Sicurezza Stradale del 2023, 

che definisce gli incidenti stradali come un problema globale di salute e sviluppo, 

sottolineando la necessità di una valutazione globale della sicurezza su strada. Nonostante i 

progressi, un'azione urgente è necessaria per raggiungere l'obiettivo di ridurre almeno del 

50% morti e feriti da incidenti stradali entro il 2030, a livello mondiale. Le principali cause di 

incidenti stradali includono errori umani e cattive condizioni stradali. In Europa, l'errore 

umano è coinvolto in circa il 95% degli incidenti stradali, evidenziando l'importanza di sistemi 

di supporto alla guida. Di conseguenza, l'Unione Europea ha stabilito normative per rendere 

obbligatori sistemi come il DMS con l’obiettivo di rendere le strade più sicure, sia per le 

persone a bordo del veicolo sia per gli utenti della strada in generale.  

In particolare, la distrazione e la sonnolenza sono fattori interconnessi che possono avere un 

impatto significativo sulla sicurezza stradale, portando a compiere errori e contribuendo 

quindi agli incidenti.  
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La distrazione, nel contesto della sicurezza stradale, è definita come la deviazione 

dell'attenzione da attività critiche per la guida sicura verso un'attività concorrente, come l'uso 

dello smartphone, l'aggiustamento dei sistemi di intrattenimento in auto, mangiare, 

impegnarsi in conversazioni ed in generale tutte quelle attività che possono portare a 

un'attenzione insufficiente o assente alle attività cruciali della guida. La sonnolenza è definita 

invece come lo stato di affaticamento, che può portare a un livello ridotto di allerta e a 

funzioni cognitive e motorie compromesse durante la guida. Quando un conducente è 

sonnolento, il suo livello di allerta e la capacità di reagire a eventi imprevisti sono pregiudicati, 

rendendo i conducenti più suscettibili a diventare distratti al volante. Questi stati hanno 

quindi effetti simili sul comportamento di guida e spesso sovrapponibili.  Per questo motivo 

la loro rilevazione condivide alcune somiglianze, in particolare nell'uso di soluzioni 

tecnologiche, dato che entrambi possono manifestarsi come tempi di reazione rallentati e 

stili di guida erratici. 

Dalla fase di ricerca sullo stato dell’arte sono stati quindi individuati i parametri ritenuti più 

adatti alla rilevazione di questi comportamenti. In particolare sono stati scelti cinque indici 

riferiti alla dinamica del veicolo: deviazione standard della posizione in corsia (Standard 

Deviation of Lane Position, SDLP), tempo per l’attraversamento della linea di corsia (Time to 

line Crossing, TLC), deviazione standard della velocità (Standard deviation of Speed, SDS), 

movimenti rapidi del volante (Steering Wheel Rapid Movements, RSWM) e le inversioni del 

volante (Steering Wheel Reversal Rate, SWRR). A questi indici sono stati poi affiancati altri 

parametri di natura diversa, andando ad indagare lo stato d’attenzione del conducente anche 

attraverso sistemi di computer vision, già precedentemente sviluppati dall’Università, che 

analizzano le emozioni in tempo reale attraverso le sei emozioni universali di Ekman e la 

posizione della testa del soggetto alla guida. 

Per verificare l’andamento di tutti questi parametri è stata quindi eseguita una fase 

sperimentale di raccolta dati in un simulatore di guida stazionario, opportunamente 

attrezzato, presente nella sede di una delle aziende che collaborano al progetto (RE-Lab), in 

cui 19 soggetti hanno eseguito prove di guida nelle quali sono stati inseriti eventi per indurre 

distrazione durante la conduzione del veicolo. 
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 I dati ottenuti dai log del simulatore e dai software per la determinazione della posizione 

della testa ed il rilevamento delle emozioni sono stati poi processati per porli in una struttura 

adatta alla successiva fase di analisi.  

In particolare sono stati raccolti in file CSV, organizzati per soggetto e scenario, utilizzando il 

linguaggio di programmazione Python nell'editor Visual Studio Code. Per farlo sono state 

utilizzate le due librerie principali per l’analisi dei dati Numpy e Pandas. Sono stati poi 

sviluppati gli algoritmi per l’analisi dei dati e la loro visualizzazione grafica tramite la libreria 

Matplotlib in modo da poter svolgere un’analisi qualitativa dei risultati ottenuti.  

L’analisi dei risultati del software di rilevamento delle emozioni evidenzia come in alcuni dei 

soggetti esaminati, il software sia stato in grado di rilevare cambiamenti significativi nelle 

emozioni, in termini di engagement e di  valence, durante le fasi di distrazione. 

In alcuni soggetti si è visto come, in particolare durante le ultime tre attività di distrazione, il 

software abbia rilevato picchi al di fuori della tendenza registrata precedentemente alla 

distrazione. Ciò porta alla conclusione che, in quei momenti, il soggetto ha provato emozioni 

ben definite e con particolare trasporto. La risposta emotiva alle distrazioni si dimostra molto 

soggettiva, con differenze tra una persona e l’altra. In alcuni casi il soggetto esprime un 

repentino cambiamento nel tipo di emozione provata rispetto a quella precedente all’evento. 

Alcuni soggetti mostrano bassi valori di valence ed alto engagement facendo presupporre 

un’emozione di preoccupazione, probabilmente attribuibile allo sforzo cognitivo richiesto per 

svolgere un compito secondario e alla consapevolezza di impegnarsi in attività di distrazione 

che quindi lo distolgono dal concentrarsi sulla guida. In altri soggetti, si è potuto anche 

osservare che i picchi nei valori di engagement, indicanti cioè un alto coinvolgimento 

emotivo, si verificano poco prima che l'azione di distrazione si verifichi effettivamente. Ciò fa 

intendere che questi soggetti abbiano avuto una risposta emotiva già al comando vocale che 

descrive l'azione da eseguire, evidenziando come il comando stesso possa essere una fonte 

di distrazione. Va considerato però che, per la maggior parte degli altri utenti, non è stato 

possibile identificare tendenze specifiche. Ciò potrebbe essere attribuito al fatto che le 

misurazioni non siano state prese con precisione.  
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In particolare, per quanto riguarda gli indici basati su telecamere, la tendenza osservata per 

tutta la durata del test differisce da quanto ci si potrebbe aspettare. Durante la guida, ad 

eccezione dei momenti in cui è imposta la distrazione, l’andamento del segnale dovrebbe 

essere molto più lineare. I fattori che potrebbero aver compromesso i dati raccolti possono 

essere una illuminazione inadeguata, che può causare problemi nella rilevazione facciale per 

i sistemi di visione artificiale e problemi di posizionamento della telecamera, come angoli 

errati rispetto al viso del soggetto. Per un'analisi più approfondita dei dati raccolti e del loro 

effettivo significato emotivo, consultare un esperto nel campo come uno psicologo 

fornirebbe inoltre una comprensione più completa degli stati emotivi dei conducenti durante 

le attività.  

Passando all'analisi dei dati raccolti dal software per determinare l'attenzione del conducente 

in base all'orientamento della testa, si osserva che deviazioni più pronunciate in yaw portano 

a una perdita di attenzione come ci si aspettava, dato che la rotazione in yaw rappresenta la 

rotazione attorno all'asse verticale. Pertanto, valori elevati di questa misurazione, indicano 

che il soggetto, in quel momento, ha la testa girata in una direzione diversa da quella frontale. 

Durante i test condotti, la maggior parte delle attività di distrazione richiedeva all'utente di 

girarsi a destra. Come previsto, le maggiori variazioni sono state registrate sia durante queste 

attività che durante le fasi iniziali o finali del test, dove è consueto vedere il conducente 

guardarsi attorno. 

Analizzando i dati relativi alla dinamica del veicolo, ci sono varie considerazioni da fare. 

Esaminando la tendenza degli indici, è evidente come essi subiscano fluttuazioni durante le 

fasi di distrazione, raggiungendo i valori soglia raccolti nella fase di ricerca in letteratura. 

L’analisi della velocità dell’auto mostra come per diversi soggetti, in corrispondenza degli 

scenari di distrazione, si può osservare una deviazione nella tendenza del segnale rispetto al 

periodo precedente all'evento di distrazione. Come evidenziato in precedenti studi, durante 

la distrazione o nei momenti che la precedono, il soggetto tende a ridurre la velocità del 

veicolo: questa riduzione è attribuita ad un comportamento comune in cui il conducente, 

consapevole che sta per impegnarsi in un compito secondario che distrae la sua attenzione 

dalla guida per un certo periodo, abbassa istintivamente la velocità come misura di 

protezione, spesso estendendola per tutta la durata del compito.  
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L'analisi dei dati relativi a SDLP e TLC con una soglia di 6,4 secondi come indicato dalla 

letteratura, rivela una correlazione tra questi indici, indicando che variazioni in uno 

corrispondono a variazioni nell'altro. Esaminando l’andamento di diversi soggetti si è visto 

come, anche se durante il test il conducente sia riuscito a mantenere quasi sempre la 

traiettoria all’interno della corsia, durante l'attività di distrazione più impegnativa, i 

conducenti spesso sperimentino un’uscita di corsia, rilevabile dal picco di SDLP ed allo stesso 

tempo, da una concentrazione di valori di TLC al di sotto della soglia, anche nulli o molto bassi, 

che suggeriscono prossimità alla linea limite di corsia o il suo attraversamento. 

 È importante sottolineare come la conformazione del tracciato stesso può influenzare 

significativamente i valori registrati per queste metriche legate alla dinamica del veicolo ed 

associate al comportamento del conducente. 

L'ultimo insieme di dati sulla dinamica del veicolo da analizzare riguarda l'uso del volante. 

Esaminando questo tipo di dati emerge immediatamente quanto la configurazione del 

tracciato sia ancora più rilevante nell'interpretare questi indici, poiché mostrano una 

sensibilità significativa ad essa. Tra tutti i soggetti, vengono rilevati numerosi segnali correlati 

ai movimenti rapidi del volante (SWRM) mentre i segnali relativi alle inversioni del Volante 

(SWRR) sono probabilmente distorti dalle curve del tracciato. Tuttavia, approfondendo 

l'analisi dei dati specifici di un singolo soggetto, è evidente che, in alcuni casi, vi è 

effettivamente una concentrazione di valori di SWRM coincidenti con gli eventi di distrazione. 

Questo identifica un uso anomalo del volante, che però viene anche registrato in altre fasi del 

test. Una soluzione potenziale per affrontare questo problema potrebbe prevedere che il 

soggetto percorra un tracciato predeterminato dove gli eventi di distrazione si verifichino 

solo su tratti rettilinei. Questo approccio mira ad escludere l'uso del volante per percorrere le 

curve durante gli eventi di distrazione così da non alterare i risultati. 

Infine, occorre fare alcuni considerazioni per quanto riguarda i valori soglia degli indici di 

dinamica del veicolo identificati durante la fase iniziale del progetto, ed approfondire il loro 

significato. 
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Sebbene questi valori forniscano un quadro fondamentale per condurre le analisi, è 

essenziale approfondirli ulteriormente ed ottimizzarli per migliorare l'accuratezza e l'efficacia 

delle analisi. La messa a punto di questi valori soglia in base alle scoperte empiriche e ad 

applicazioni in contesti reali di guida in strada può portare ad un miglioramento dei risultati. 

Quelli ottenuti da questo studio mettono in luce aspetti significativi legati al monitoraggio 

del conducente e all'analisi della distrazione.  

In particolare, l'approccio adottato in questo studio ha fornito nuovi spunti sulla 

comprensione del comportamento del conducente e sulla valutazione degli indici di 

distrazione. L'uso di diversi parametri ha permesso di esplorare il comportamento del 

conducente da varie prospettive durante i diversi test. Analizzando i dati sulla dinamica del 

veicolo e sull'uso del volante, è stata valutata la capacità del conducente di mantenere la 

traiettoria all'interno della corsia ed identificato le correzioni necessarie per prevenire le 

deviazioni. Questi risultati forniscono una comprensione completa del comportamento 

dell'auto sulla strada e dell'interazione del conducente con essa attraverso l'uso del volante. 

Rilevare variazioni in questi indici durante le fasi simulate di distrazione nella 

sperimentazione, fornisce una base per sviluppare l'architettura successiva del software 

integrato nel DMS, che nelle fasi di sviluppo future potrebbe essere in grado di segnalare gli 

eventi di distrazione dalla sola interpretazione dei dati. 

Oltre ai dati telemetrici, sono stati esaminati anche i dati relativi al volto. L'analisi del software 

relativo all'attenzione basato sulla posizione della testa rivela prove che indicano una perdita 

di attenzione durante la guida quando la testa del conducente non è rivolta in avanti, come 

previsto da studi precedenti e dall'esperienza reale. Riguardo alle emozioni, si osserva come 

queste siano altamente soggettive. 

Come in ogni ricerca, è essenziale riconoscere determinate limitazioni e sfide incontrate 

durante lo studio. I test ed il set-up del simulatore utilizzati, sebbene efficaci, presentavano 

vincoli intrinseci che hanno influenzato i risultati. Queste considerazioni sono necessarie per 

interpretare l'affidabilità e la generalizzabilità dei risultati.  
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L'uso di un simulatore statico all'interno di una stanza, sebbene fornisca una simulazione 

realistica e fedele delle condizioni di guida reali, potrebbe far sentire il soggetto in una 

situazione leggermente diversa rispetto alla guida nel mondo reale, potenzialmente 

portando a effetti diversi sui livelli di attenzione alla guida. Per migliorare la generalizzabilità, 

aumentare il numero di partecipanti nell'esperimento può essere utile, data la soggettività 

intrinseca legata allo stile di guida di ciascun individuo. Inoltre, analizzando i dati, è stato 

possibile valutare che le azioni imposte ai conducenti per indurre la distrazione erano 

effettivamente poche e brevi rispetto a quanto potrebbe essere stato necessario per una 

rilevazione più completa delle tendenze nei parametri selezionati per lo studio. 

La selezione di indicatori dalla letteratura adatti per rilevare la distrazione e compatibili con i 

dati disponibili, unitamente all'analisi preliminare condotta, fornisce una base da cui 

sviluppare ulteriormente il DMS. Questo è essenziale per raggiungere l'obiettivo di 

progettare un innovativo sistema di analisi in tempo reale del conducente come previsto dal 

Progetto Epignosis, riservando quindi un potenziale pratico per future implementazioni in 

scenari del mondo reale. Inoltre, lo studio suggerisce percorsi per la ricerca e l'esplorazione di 

perfezionamenti al DMS, considerando l'indagine di ulteriori fattori che influenzino la 

distrazione del conducente. In particolare, una parte significativa della letteratura attuale è 

concentrata sulla rilevazione della stanchezza e sulla sua correlazione con il livello di 

attenzione del conducente, su come possa influenzarlo e su come ciò, a sua volta, influenzi il 

comportamento del conducente. Le dinamiche derivanti dalla perdita di attenzione dovuta 

alla stanchezza, sebbene sovrapponibili in larga misura a quelle dell'attenzione comune, 

possono presentare differenze. Pertanto, continuare ad indagare su altre potenziali cause di 

distrazione, come quelle derivanti da compiti secondari o da fattori ambientali, potrebbe 

essere un catalizzatore per lo sviluppo di questi sistemi. Questo consente una prova più ampia 

dell'efficacia degli indici identificati, confermando o confutando l'utilità di ciascuno e 

apportando le necessarie correzioni per garantirne l'adattabilità a tutti gli scenari di 

distrazione.  
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Inoltre, lo step successivo potrà essere quello di effettuare la fusione tra questi dati di diversa 

natura. In questo modo, come anche evidenziato nella letteratura, l'uso combinato di dati 

provenienti da diverse fonti consente una maggiore precisione e una più rapida rilevazione di 

potenziali casi di distrazione del conducente.  

I risultati di questo lavoro confermano e sottolineano l'importanza di integrare tali tecnologie 

innovative nel contesto più ampio dei Sistemi Avanzati di Assistenza al Conducente 

(Advanced Driver Assistance System, ADAS), offrendo spunti per il progresso di queste 

tecnologie e mirando a fungere da base per lo sviluppo del DMS che sarà installato sul veicolo 

prototipo previsto dal progetto Epignosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
1 

 

Chapter 1 

Introduction 

 

 

This thesis is focused on a specific goal within the broader framework of a national project 

named Epignosis. The project involves collaborative efforts between the Polytechnic 

University of Marche (Univpm) and various companies to create a prototype vehicle that 

anticipates the advancements in the automotive sector. In particular, the functionalities 

included in the prototype vehicle will encompass: 

1. Assisted driving systems and active safety 

2. Integration of predictive functions related to Advanced Driver Assistant Systems 

(ADAS) and Powertrain domains 

3. Integrated Driver Monitoring System (DMS) for continuous monitoring of the driver's 

attention level 

4. Adaptive Human-Machine Interface (HMI) based on artificial intelligence algorithms 

considering human factors (behavior, emotions, eye and head orientation) recognized 

by non-invasive multimedia sensors 

5. "Augmented audio" system for pedestrian safety on the road, especially for electric 

vehicles, and to achieve an immersive driving experience 

The work described in this thesis regards in particular the third point of the project, with the 

purpose to give a contribution on the early stages of the development of an innovative Driver 

Monitoring System (DMS). The specific goal here is to find appropriate indicators that are 

able to detect the changes on the attention state of the driver. To achieve this, a research 

effort was initially conducted to define the state-of-the-art of these systems and gather the 

indicators used in related studies that could be suitable for implementation in the developing 

DMS. 
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Moreover, an experimental phase was carried out using a driving simulator provided by one 

of the project's collaborating companies (RE-Lab).  Additionally, the presence of cameras in 

the simulator allowed the detection of the driver's state, particularly enabling the application 

of pre-existing machine learning software developed by the university. Through these 

software applications, it was possible to detect the driver's head position and categorize their 

emotions using Ekman's emotion methodology. This information was utilized to determine 

the driver's attention state and the relationship between a non-neutral emotional state and 

the variation in attention level. After a data preprocessing phase, a comparison was made 

between the trends of the literature-selected indices, video detection, and the software-

generated outputs. In this way we’ve been able to determine the actual behaviour of these 

indices during an alteration of the driver's attention state. The results obtained from 

conducted analyses highlight how emotion detection software detected significant 

emotional changes in some subjects during distraction phases. Some subjects exhibited 

peaks in engagement and valence values during specific distraction activities, showing 

emotional responses to distractions and to vocal commands. However, for most users, 

specific trends couldn't be identified, potentially due to inaccurate measurements, 

particularly with cameras. Further analysis involved examining data on driver attention based 

on head orientation, which showed that pronounced yaw deviations led to attention loss, as 

expected, especially during distraction phases. The vehicle dynamics data analysis revealed 

correlations between Standard Deviation of Lane Position (SDLP) and Time to Line Crossings 

(TLC), indicating variations in one corresponding to variations in the other. Subjects often 

exhibited increased SDLP values, indicating deviations from their usual lane-keeping 

behavior during distraction events.  This deviation was particularly notable during demanding 

distraction tasks, where subjects displayed significant lane position variability, accompanied 

by low TLC values. Steering wheel usage analysis in terms of Steering Wheel Rapid 

Movements (SWRM) and Steering Wheel Reversal Rate (SWRR) highlighted significant 

sensitivity to track layout. While the initial threshold values found in the literature provide a 

foundational framework for the vehicle dynamics indices, deeper exploration and 

optimization are essential to enhance analysis accuracy and efficacy.  
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Fine-tuning these thresholds based on empirical findings and real-world scenarios can 

improve results and analytical robustness. 

In the remainder of this paragraph, a brief overview of the thesis structure and the content of 

the various chapters is provided. The thesis is structured as follows: the first chapter begins 

with an introduction about the context, followed by a description of Advanced Driver 

Assistance Systems (ADAS) and Driver Monitoring Systems (DMS). The technology 

commonly applied in these systems is also discussed. The second chapter presents the state-

of-the-art of DMS, focusing on studies related to indices that have contributed to the 

development of this work.  The third chapter provides an overview of all the steps undertaken 

to achieve the thesis objective, with an emphasis on the indices found in the literature. The 

fourth chapter describes the entire experimental phase and data collection conducted at the 

driving simulator, the set-up, the test methodology, how the software for head position 

detection and emotion recognition work and the dataset obtained. In the fifth chapter, the 

data analysis phase is presented, with a focus on the selection of the indices and the 

description of the algorithms used to calculate them. The sixth chapter contains the 

qualitative analysis of the results. Finally, in the seventh chapter, a discussion of these results 

and the potential for further research is presented. 
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1.1 Context 

 

 

The Global Status Report on Road Safety 2023 defines road traffic injuries as a global health 

and development problem, emphasizing the need for a global assessment of road safety.  

The political and social contexts of global road safety have evolved as a global public health 

issue, with efforts to re-evaluate the role and strategy for improving road safety (World 

Health Organization, 2023). The key findings of the report are as follows: 

• Reduction in Road Traffic Deaths: The report indicates that the number of annual road 

traffic deaths has slightly decreased to 1.19 million, reflecting a 5% reduction between 

2010 and 2021. 

• Impact of Road Safety Efforts: Efforts to improve road safety are shown to have an 

impact, with significant reductions in road traffic deaths achievable through the 

application of proven measures. 

• Vulnerable Road Users: More than half of the fatalities occur among pedestrians, 

cyclists, and motorcyclists, particularly those in low and middle-income countries. 

Road traffic injuries remain the leading cause of death for children and young people 

aged 5-29 years. 

• Urgent Action Needed: Despite the progress, the report emphasizes that the price 

paid for mobility remains too high, and urgent action is needed to achieve the global 

goal of at least halving road traffic deaths and injuries by 2030. 

These findings underscore the importance of continued efforts and interventions to address 

road safety and reduce the significant impact of road traffic injuries worldwide. 

The main causes of road traffic deaths, as highlighted in the report, include: 

• Human Error: The highest percentage of world's fatalities on the roads are caused by 

human errors such as over-speeding, distracted driving, drunk driving, and reckless 

driving. More than half of all road traffic deaths are among vulnerable road users. 
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• Poor Road Conditions: Traffic accidents are also attributed to poor maintenance of the 

road network and inefficient road design. 

These factors underscore the need for comprehensive strategies and interventions to address 

road safety and reduce the significant impact of road traffic deaths worldwide. 

European countries face several challenges in reducing road traffic injuries. 

The progress in reducing serious road traffic injuries has been considerably less than the 

reduction in road fatalities. Between 2010 and 2020, the EU27 collectively reduced the 

number of road deaths by 37%, while serious injuries showed only a smaller reduction 

estimated at around 14%. In addition, The COVID-19 pandemic and associated lockdowns 

and travel restrictions across Europe in 2020 have distorted the data, leading to a 

considerable reduction in both road deaths and serious injuries. This makes it challenging to 

assess the true impact of ongoing road safety measures. Thus, while road fatalities in the EU 

have more than halved in the last two decades, the latest figures show that the decline in the 

fatality rate is stagnating, indicating a need for additional measures to continue the 

downward trend (European Commission, 2021). 

In Europe human error is involved in about 95% of all road traffic accidents, highlighting the 

persistent challenge of addressing and mitigating human factors in road safety.  

Moreover, the technological developments produced new causes of distraction for drivers, 

especially the use of electronic devices while driving. In this scenario, it is clear that the 

introduction of systems that can support the driver during his activity it is of extremely 

importance. In the last decades, this kind of systems have been studied and developed and 

several car’s manufacturers have begun to install them in their newest vehicles with 

promising results in terms of safety. Due to this, the European Union has set a timeline to 

mandate the inclusion of these systems in new cars, aiming to continually enhance road 

safety in Europe. Regulatory bodies and advisory groups such as Society of Automotive 

Engineers  (SAE) , International Organization for Standardization  (ISO), National Highway 

Traffic Safety Administration (NHTSA), and New Car Assessment Program (NCAP) 

continuously update their recommendations on designing experiences that prioritize the 

safety of drivers, passengers, and others nearby.  
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 They emphasize the importance of creating user-friendly experiences that are as simple as 

tuning a radio station on a traditional radio head unit. The European Union's General Safety 

Regulation (GSR) has established a plan to make Driver Monitoring Systems (DMS) 

mandatory for the registration of every new car. The regulation mandates the compulsory 

integration of Driver Drowsiness and Attention Warning (DDAW) systems, a component of 

DMS. These systems evaluate the driver's alertness by only analyzing vehicle dynamics. 

Starting from 2022, new type approvals must include these systems, and from 2024 onward, 

all newly manufactured vehicles must be equipped with them. Additionally, Advanced Driver 

Distraction Warning (ADDW) systems, that asses the driver attentional state by analyzing the 

driver’s eyes and face movements will be mandatory for new type approvals from 2024 and 

all new vehicles from 2026, but these dates can be reviewed. Thus, from 2022 onwards, new 

vehicle types must be approved only if they are equipped with Driver Drowsiness and 

Attention Warning (DDAW) systems. However, the requirement for these systems on all new 

vehicles will come into effect starting from 2024 while ADDW systems are going to be 

mandatory for new vehicle types from 2024 and all new vehicles from 2026. This initiative 

aims to reduce accidents and fatalities, bringing the EU closer to its goal of halving the 

number of fatal and serious injuries from traffic accidents. 

Relying on state-of-the-art sensors and technologies, these systems are constantly evolving, 

seeking to achieve increasingly higher standards of accuracy while reducing their size and 

possibly their costs. 

 

 

1.2 Drowsiness and distraction 

 

 

Drowsiness and distraction are interconnected factors that can significantly impact road 

safety and contribute to injuries (Fredriksson et al., 2021). 
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Drowsiness is defined as the state of being sleepy or fatigued, which can lead to a decreased 

level of alertness and impaired cognitive and motor functions while driving, similar to the 

effects of alcohol and drugs.  

Distraction, in the context of road safety, is defined as the diversion of attention away from 

activities critical for safe driving toward a competing activity, such as smartphone use, 

adjusting in-car entertainment systems, eating or engaging in conversations which may 

result in insufficient or no attention to the crucial driving activities. 

When a driver is drowsy, their level of alertness and ability to react to unexpected events are 

compromised, leading to impaired driving performance. This state of drowsiness makes 

drivers more susceptible to becoming distracted while driving, increasing the risk of 

accidents. 

As described above, both drowsiness and distraction are associated with a high percentage 

of road injuries and fatalities. Their effects are not mutually exclusive, and they often overlap. 

Fatigue-induced impairment mirrors the cognitive decline seen with distractions, for this 

reason their detection shares some similarities, particularly in the use of technological 

solutions.  

Both of them can manifest as: 

• Impaired Reaction Time: Both can lead to delayed reaction times. Fatigue slows down 

cognitive processes, while distracted drivers may take longer to respond to 

unexpected situations. 

• Inconsistent Driving Patterns: Drivers experiencing drowsiness or distraction may 

exhibit inconsistent or erratic driving behaviors. This can include weaving within lanes, 

abrupt speed changes, or difficulty maintaining a constant speed. 

• Wandering Attention: Both drowsy and distracted drivers may display wandering 

attention, where their focus shifts away from the road. This can result in missed traffic 

signals, failure to notice road signs, or delayed responses to changing road conditions. 

• Poor Concentration: Drowsy and distracted drivers often struggle with maintaining 

concentration on the task of driving. This can lead to a lack of awareness of their 

surroundings and an increased likelihood of making errors. 
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Both conditions significantly increase the risk of accidents. Drowsy drivers may experience 

microsleeps, brief episodes of unintentional sleep, while distracted drivers may fail to 

perceive critical information, increasing the probability of collisions. 

This detection often involves the use of technological systems that can monitor various 

indicators, such as face position, eye movements and vehicle dynamic data to provide real-

time assessments of the driver's state and driving performance. 

 

 

1.3 ADAS and DMS systems 

 

 

Advanced Driver Assistance Systems (ADAS) are electronic systems in vehicles that use 

advanced technologies to assist drivers and increase the safety of driving. These systems are 

designed to prevent accidents and reduce the impact of those that cannot be avoided, as the 

majority of vehicle accidents are caused by human error. ADAS use sensors such as radar and 

cameras to perceive the vehicle's surroundings and can provide information to the driver or 

take automatic actions based on the detected situations (Antony et al, 2021).  

They can include various active safety features, such as adaptive cruise control, lane 

centering, automatic emergency braking, and parking assistance.  
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Figure 1: ADAS functionalities. Source: https://shorturl.at/TUZ17 

ADAS can also enable various levels of autonomous driving and are categorized into different 

levels based on the amount of automation, as defined by the Society of Automotive 

Engineers (SAE). 

The components commonly used in ADAS systems include windshield cameras, radar 

sensors, ultrasonic sensors, and controllers. These components work together to support the 

driver while informing them of potential hazards and ensuring the correct and safe 

movement of the vehicle. Some of the more advanced ADAS features can even manage 

steering and propulsion without the need for hands, such as in highway driving or stop-and-

go traffic, representing some of the most advanced functionality currently available on the 

market. 
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Figure 2: ADAS sensors. Source: https://shorturl.at/TUZ17 

As mentioned above, some examples of Advanced Driver Assistance Systems (ADAS) 

technologies include: 

• Adaptive cruise control: Automatically adjusts the vehicle's speed to maintain a safe 

following distance from the vehicle ahead. 

• Lane departure warning/assistance: Alerts the driver when the vehicle is drifting out 

of its lane and, in some cases, can also steer the vehicle back into the lane. 

• Automatic emergency braking: System that can detect an imminent crash and 

automatically apply the brakes if the driver does not respond in time. 

• Blind spot detection: Warns the driver of vehicles in adjacent lanes that may not be 

visible in the side mirrors. 

• Traffic sign recognition: Identifies and notifies the driver of traffic signs, such as speed 

limits and stop signs. 

• Forward collision warning: Alerts the driver of an imminent collision with a vehicle or 

object in the vehicle's path. 

• High beam assist: Automatically switches between high and low beams based on 

oncoming traffic and ambient light conditions. 
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ADAS improve the driving experience for both drivers and passengers in several ways. These 

systems are designed to enhance safety and driving comfort through the use of various 

components, sensors, and controllers. By providing real-time information and assistance, 

ADAS technologies contribute to a safer and more convenient driving experience.  

Some of the ways ADAS improves the driving experience include: 

• Increased Safety: ADAS components help prevent accidents and mitigate their 

severity, thus enhancing the safety of both drivers and passengers. 

• Improved Driving Comfort: By assisting with tasks such as parking, traffic sign 

recognition, and driver fatigue detection, ADAS technologies contribute to a more 

comfortable driving experience. 

• Enhanced Awareness: ADAS systems provide drivers with real-time information 

about their surroundings, potential hazards, and traffic conditions, thereby increasing 

their situational awareness and contributing to a more informed and confident driving 

experience. 

ADAS, in most of the cases, works together with the DMS (Driver Monitoring System) to 

enhance safety in vehicles, particularly in commercial and autonomous driving contexts.  

The integration of these technologies allows for comprehensive monitoring of both the driver 

and the surrounding environment, resulting in improved safety for all road users. 

The data collected by ADAS sensors are then processed by sophisticated algorithms and 

software to identify potential hazards, while DMS utilizes a combination of state-of-the-art 

sensors, high-resolution cameras, and artificial intelligence algorithms to assess whether the 

driver is alert, attentive, and capable of safely operating the vehicle. DMS can detect signs of 

fatigue, drowsiness, distraction, and other abnormal driver behavior.  
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Figure 3: DMS representation. Source: https://shorturl.at/aeBT9 

 

When integrated with ADAS, the DMS system can alert the driver and warn them to take 

corrective action in the event that the ADAS system detects a potential collision or other 

hazards. 

By combining the capabilities of ADAS and DMS, the system can provide a more 

comprehensive approach to safety, addressing both external environmental factors and the 

internal state of the driver.  This integration is particularly valuable in commercial vehicles and 

autonomous driving scenarios, where the safety of the driver, passengers, and other road 

users is of paramount importance. DMS are systems that can use in-vehicle infrared camera 

sensors to detect driver fatigue, eye gaze, facial gestures, and other visual cues that indicate 

risky driver behavior.  The primary purpose of DMS is to enhance vehicle safety by alerting 

the driver and, in some cases, initiating safety measures in response to detected risky 

behavior.  

For example, a DMS can detect when a driver looks down at a smartphone, prompting an 

alert to the digital display. DMS has become an essential safety feature for detecting driver 

distraction and drowsiness, and it is being recognized and implemented by legislators and 

influential organizations worldwide.  For instance, the US, the EU, and China are in different 

stages of implementing regulations that require the use of DMS in all new passenger vehicles. 

As anticipated in the previous subchapter, Euro NCAP, a prominent car safety performance 

assessment program, is also expected to make Driver Monitoring practically a requirement 



   

 
13 

 

for any new car model launched in Europe.  These systems are also evolving to include 

broader Occupant Monitoring System (OMS) applications, enabling automakers to provide a 

transformative driving experience for all passengers. OMS can detect and monitor events 

such as safety seatbelt status, seat occupancy, child seats, passenger identification, age, and 

gender. 

DMS available in the automotive industry can be of different types, each designed to enhance 

safety and improve the driving experience. These types of DMS include: 

• Driver Alertness/Distraction Monitoring: This type of DMS is designed to detect signs 

of driver distraction or inattention, such as looking away from the road or engaging in 

activities that divert attention from driving. 

• Driver Fatigue Monitoring: These systems are specifically aimed at detecting signs of 

driver fatigue, such as drowsiness and eyelid movements, and issuing warnings to the 

driver to prevent potential accidents. 

• Drunk Driving Monitoring: Some DMS are equipped to detect signs of impaired 

driving, such as erratic steering or unusual driving patterns, and can alert the driver or 

take preventive measures. 

• Identity Recognition: This type of DMS is used for identity verification and can be 

employed for various purposes, such as personalization of vehicle settings and 

security. 

The features equipped in DMS to assess and address driver behavior include: 

• Infrared Camera Monitoring: DMS uses infrared cameras to monitor the driver's face, 

particularly the eyes, mouth, and head movements, to detect signs of fatigue, 

distraction, or drowsiness. 

• Real-time Detection: The system continuously analyzes the driver's behavior in real 

time, such as eye closure, yawning, rapid blinking, head nodding, and other indicators 

of drowsiness or distraction. 

• Warning and Intervention: Upon detecting risky behavior, the system issues warnings 

to the driver through visual and auditory alerts. In some cases, it can also initiate 
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interventions, such as applying the brakes or making the driving environment less 

conducive to distraction. 

• Specific Activity Detection: Advanced DMS systems can detect specific activities like 

phone use, smoking, or other behaviors that contribute to driver distraction. 

DMS features are designed to comply with regulations mandating the detection of 

inattention, drowsiness, and other forms of driver impairment, as seen in the EU's General 

Safety Regulation. These features collectively aim to improve road safety by alerting and 

assisting the driver in mitigating the risks associated with drowsiness and distraction. 

The combination of ADAS and DMS systems in literature (Izquierdo et al., 2018) can be find 

under the name of Advanced Driving Monitoring and Assistance Systems (ADMAS) that can 

be seen as a more comprehensive system that includes a DMS as one of its components. The 

subtle difference between the two can be realized as the monitoring systems understand the 

driving situation, and assistance systems assist the drivers to handle the situation. 

Alternatively, the monitoring systems are more focused on safety while assistance systems 

have more to do with the drivers’ comfort (Mukhtar et al, 2015). 

 

 

1.4  Concepts of computer vision, machine learning, deep learning and data 

fusion applied in the automotive industry 

 

 

Artificial intelligence (AI) refers to the intelligence exhibited by machines or software, as 

opposed to the natural intelligence displayed by humans and other animals.  

It is a field of study in computer science that develops and studies intelligent machines, 

enabling them to mimic human problem-solving and decision-making capabilities.  

AI encompasses various sub-fields, including machine learning and deep learning, and is 

widely used in applications such as expert systems, natural language processing, speech 

recognition, and computer vision.  
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AI makes it possible for machines to learn from experience, adjust to new inputs, and perform 

tasks that typically require human intelligence. This technology has numerous benefits, such 

as automating repetitive tasks, processing information quickly, and performing tasks that 

may be too dangerous for humans. The integration of AI has also a huge impact in the 

automotive industry. This technological advancement has not only opened a new era but has 

also significantly altered the landscape of automotive engineering.  In recent years, AI has 

become one of the leading factors in shaping the way vehicles are designed, manufactured, 

and operated. One of the primary areas where AI has made a profound impact is in the 

development of ADAS, DMS and autonomous vehicles.  The capabilities of AI algorithms have 

enhanced vehicle safety by enabling features almost impossible to achieve before.  

As shown in the previous section, these intelligent systems utilize sensors and data 

processing algorithms to interpret the surrounding environment and the driver’s state, 

making split-second decisions to enhance overall driving safety. Moreover, AI has 

revolutionized the manufacturing processes within the automotive sector.  

Machine learning algorithms are employed in quality control, predictive maintenance, and 

optimization of production workflows. This not only ensures higher precision and efficiency 

in manufacturing but also contributes to the overall reliability and durability of vehicles. 

In the automotive design phase, AI plays a crucial role in computational simulations, aiding 

engineers in optimizing vehicle performance, fuel efficiency, and aerodynamics.  

The ability of AI to process vast amounts of data and identify patterns empowers engineers 

to create vehicles that are not only safer but also more energy efficient. 

Additionally, AI has permeated the in-car experience, enhancing user interfaces and 

infotainment systems.  Some of the key applications of AI in cars onboard systems include: 

• Generative AI for Talking Cars: Companies like Google Cloud and Continental are 

integrating generative AI in cars to create "talking cars," allowing drivers to interact 

with their vehicles through natural language conversations. 

• Onboard AI Computer for Driving Decisions: Bosch is utilizing onboard AI computers 

to enable cars to access and learn from millions of driving situations, allowing them to 

make decisions and react appropriately. 



 
16 

 

• Data Processing and Real-time Information: AI systems in cars process vast amounts 

of data from sensors and external sources, such as GPS and real-time traffic 

information, to determine the best routes, provide accurate trip information, and help 

drivers navigate around traffic and obstacles. 

• Safety Features: AI powers safety features like ADAS and DMS. 

 

1.4.1 Computer vision 

 

Onboard systems typically rely on the use of high-resolution cameras or infrared cameras to 

detect the driver’s state, in which computer vision technology is applied.  

Computer vision is a field of AI that enables computers to interpret and understand the visual 

world, primarily through digital images and videos. It involves the automatic extraction, 

analysis, and comprehension of useful information from visual data. Computer vision tasks 

include image recognition, object detection, and 3D scene modelling. The field has seen 

significant progress due to advances in deep learning and has found applications in various 

industries. 

The different techniques used in computer vision include: 

• Image Classification: This technique involves categorizing an image into a specific 

class or label, such as identifying whether an image contains a human or an animal. 

• Feature Extraction: Features are specific patterns or characteristics within an image 

that are crucial for analysis. Feature extraction involves identifying and extracting 

relevant information, which could be edges, corners, textures, or other patterns. 

• Object Recognition: One of the fundamental tasks in computer vision is recognizing 

and identifying objects within images. Object recognition involves training models to 

classify and detect objects in images. 

• Object Detection: Object detection is the process of identifying and locating objects 

within an image or video. It involves drawing a bounding box around the detected 

objects and assigning them a label. 
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• Semantic Segmentation: Semantic segmentation aims to understand the role of each 

pixel in an image by labelling and classifying them. It is used to differentiate and 

segment the various objects and areas within an image. 

• Instance Segmentation: This technique is an extension of object detection and 

semantic segmentation, where the goal is to detect each instance of a specific object 

within an image and assign it a unique label. 

• Object Tracking: Object tracking involves locating and following a specific object or 

multiple objects over a sequence of frames in a video. 

• 3D Computer Vision: Some computer vision applications deal with three-dimensional 

data, reconstructing and analyzing the 3D structure of objects from multiple 2D 

images or using depth sensors. 

These techniques are applied in the automotive industry for various purposes. 

Focusing on ADAS and DMS they enable vehicles to perceive and understand their 

surroundings, leading to the detection of potential hazards and the implementation of 

preventive measures. DMS, for example, utilize the image classification technique to monitor 

the driver behavior and attentiveness by detecting the driver's facial features, signs of 

distraction, distress or fatigue, and take appropriate actions. 

 

 

1.4.2 Machine learning and deep learning 

 

Machine learning and deep learning are two subsets of artificial intelligence that differ in their 

approach to learning from data. Machine learning focuses on the development of algorithms 

and statistical models that enable computers to perform tasks without explicit programming.  

It involves the creation of models that can learn from data and make predictions or decisions 

based on that learning. The 3 main types of machine learning are supervised learning, 

unsupervised learning, and reinforcement learning. In supervised learning, the model is 

trained on labeled data, where the input data and corresponding desired output are provided.  
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Unsupervised learning involves finding patterns or relationships in data without explicit 

labels, while reinforcement learning involves training a model through a system of rewards 

and punishments. 

Common algorithms used in machine learning include linear regression, decision trees, 

support vector machines, and neural networks.  Neural networks, especially deep learning 

models, have gained significant popularity for their ability to handle complex tasks, such as 

image and speech recognition. Data plays a crucial role in machine learning, and the quality 

and quantity of data can significantly impact model performance.  Preprocessing techniques, 

such as normalization and feature engineering, are often applied to improve data quality and 

enhance model training. Machine learning applications are widespread, ranging from image 

and speech recognition to natural language processing and recommendation systems.  

Deep learning is a subfield of machine learning that involves training neural networks 

(inspired by the structure and function of the human brain) with multiple layers, named deep 

neural networks.  

Convolutional Neural Networks (CNNs) are particularly effective for image recognition, while 

Recurrent Neural Networks (RNNs) are suitable for sequence data, such as language 

processing. The key differences between machine and deep learning involve the use of 

algorithms to analyze data, learn from it, and make decisions based on the learning. 

ML can learn from relatively small datasets and requires less data compared to DL and 

typically requires more human intervention to correct and learn from mistakes. 

It utilizes traditional algorithms to solve problems based on explicit programming. 

DL, on the other hand, utilizes artificial neural networks to learn from large amounts of data. 

For this reason, it requires big data sets that might include diverse and unstructured data. It 

learns on its own from the environment and past mistakes, requiring minimal human 

intervention and can solve problems based on the layers of neural networks, drawing 

conclusions similar to humans. DMS make use of both machine learning and deep learning 

techniques for various functions such as (Hanafi et al., 2021):  
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• Facial Recognition with Deep Learning: CNNs are employed for facial recognition, 

these models can identify facial features and expressions with high accuracy, allowing 

to detect the driver's face, track facial landmarks, and analyze expressions.  

• Eye Tracking and Gaze Detection: Machine learning algorithms, often based on deep 

learning architectures, analyze eye movements and gaze patterns to determine if the 

driver is looking away from the road for an extended period or if their gaze suggests 

drowsiness. ML models can learn normal eye movement patterns and identify 

deviations that may indicate distraction or fatigue. 

• Head Pose Estimation: CNNs or pose estimation networks, are used to estimate the 

driver's head pose. DMS analyze the head orientation to ensure the driver is facing 

forward. Unusual head positions or erratic movements can be indicative of inattention 

or impairment. 

• Behavioral Analysis: Both traditional machine learning and deep learning techniques 

are applied to analyze broader driver behavior so the systems can learn and recognize 

patterns related to distracted driving behaviors. 

• Integration with Sensor Data: Machine learning algorithms are often integrated with 

data from various sensors for a comprehensive analysis of the driving environment. 

For example, ML models can correlate steering patterns with eye movements to 

assess driver engagement. 

• Real-time Decision Making: Deep learning models are deployed for real-time 

inference to make quick decisions based on the analysis of driver behavior to generate 

immediate responses, such as generating warnings, alerts, or even triggering semi-

autonomous driving features. 

 

1.4.3 Data fusion 

 

Data fusion is a process that involves combining information from multiple sources to 

generate a more comprehensive and accurate representation of the underlying data. This 

integration of diverse data sets aims to enhance the overall understanding and reliability of 
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the information. In other words, data fusion seeks to leverage the strengths of individual data 

sources while compensating for their respective weaknesses. The sources of data can vary, 

encompassing a range of modalities such as sensors, databases, and even human input. By 

fusing these disparate data sets, analysts and systems can obtain a more holistic view of the 

subject under investigation. Data fusion can occur at different levels, including sensor, 

feature, decision, and information fusion. Sensor fusion involves merging data from various 

sensors to create a unified and more accurate representation of the environment. 

Feature fusion combines relevant characteristics or attributes from multiple data sources to 

enhance the overall understanding of a specific aspect. Decision fusion focuses on integrating 

diverse decisions or outputs to reach a more informed and robust conclusion.  

Information fusion involves the process of merging data at various levels to generate a 

comprehensive and coherent understanding of the overall scenario. In the context of DMS, 

data fusion involves integrating and analyzing data from multiple sources (D.Liu et al., 2020): 

• Sensor Fusion: 

o Camera Data: Cameras capture visual information about the driver. 

o Infrared Sensors: These sensors can be used to monitor the driver even in low-

light conditions or when the driver is wearing sunglasses. 

o Steering and Pedal Sensors: Information about steering wheel movements 

and pedal activities provides insights into the driver's control of the vehicle. 

• Feature Fusion: 

o Behavioral Analysis: Combining data from different sensors allows for a more 

detailed analysis of the driver's behavior. For example, correlating gaze 

direction with steering wheel movements can provide a better understanding 

of the driver's focus on the road. 

o Emotion Recognition: Integrating facial expression data with other behavioral 

cues can help in recognizing the driver's emotional state. 

• Decision Fusion: 

o Alert Generation: Combining information from various sensors enables the 

system to make more informed decisions about when to generate alerts.  
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o Context Awareness: By fusing data from GPS and environmental sensors, the 

system can better understand the driving context, adapting its analysis based 

on factors like traffic conditions, weather, and time of day. 

• Information Fusion: 

o Comprehensive Driver State Model: Integrating all the information gathered 

from different sources allows for the creation of a comprehensive driver state 

model. This model can include parameters such as attention level, fatigue, and 

emotional state. 

o Situational Awareness: By combining data from internal vehicle sensors 

(speed, acceleration) with external environmental data, the DMS can enhance 

its situational awareness, providing a more nuanced understanding of the 

driving environment. 

• Adaptive Systems: 

o Real-time Calibration: Fusion of real-time data allows for continuous 

calibration of the DMS, ensuring that it remains accurate and reliable even in 

dynamically changing driving conditions. 

By integrating data from different sources, these systems can provide high resolution, 

flexibility, and accurate analysis of driver behavior enhancing performance evaluation and 

safety. 
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Chapter 2 

State of the art 

 

 

The most recent ADAS technologies are transforming the automotive industry by harnessing 

the power of advanced sensors and the capabilities of artificial intelligence. 

Ongoing research, standardization efforts, and technological advancements continue to 

drive progress in the field, with a growing consensus that the presence of an in-vehicle DMS 

is required for any ADAS platform to function efficiently. The integration of ADAS and DMS 

technologies is also a crucial step towards achieving fully autonomous driving. In the 

literature, several articles explore various methodologies for the development of ADAS and 

DMS, along with their associated technologies.  In particular, to achieve the aim of this thesis, 

a targeted investigation was conducted to identify the various indices used in previous studies 

to detect signs of driver distraction and fatigue, which, as discussed earlier, are often 

overlapping. 

The paper that most inspired this work is (Daza et al., 2014). The authors present a non-

intrusive approach for monitoring driver drowsiness using a fusion of several optimized 

indicators based on driver physical and driving performance measures. The study was 

conducted in simulated conditions using ADAS and focused on real-time drowsiness 

detection technology. The indicators used in the study were primarily based on driver physical 

and driving performance skills. These indicators included PERCLOS (Percentage of Eye 

Closure), MSE he (Mean Squared Error of Heading Error), STD he (Standard Deviation of 

Heading Error), TLC avg (Average Time to Line Crossing), MSE lp (Mean Squared Error of 

Lateral Position), and RSWM (Rapid Steering wheel Movements). These indicators were 

evaluated using a neural network and a stochastic optimization method to obtain the best 

combination. 
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The study was designed such that each driver would carry out some sessions under two 

different conditions: without sleep deprivation, and with sleep deprivation.  The performance 

of single indicators and the best combinations of them were evaluated. The results obtained 

for all the users taking the parameters of the indicators specified in the literature, with and 

without optimization, were considered. The experimental part of the study involved an 

evaluation of indicators derived from trials over a simulator with several test subjects during 

different driving sessions. The dataset consists of several sequences collected in a driving 

simulator. 

A total of nine professional drivers participated in the experiments. The results showed that 

the performance, measured using the objective function, ranged from 0.37 to 0.75 for the 

indicators based on driving behaviour signals, whereas a score of 0.86 was obtained from the 

PERCLOS.  The driver behaviour indicator, PERCLOS, obtained the best results. The 

generation of the ground truth was based on a supervised Karolinska Sleepiness Scale (KSS). 

The binary output of the KSS was fed back by three experts, previously trained in driver 

drowsiness detection. Each expert classified each interval as alert or drowsy based on the 

binary KSS level assigned by the driver, the indicators obtained from the vision-based driver 

monitoring system, and the driving indicators obtained from the vehicle sensors. 

The study, by the way, has several limitations: Firstly, the sample size is relatively small, 

involving a total of 9 drivers, all classified as professionals, which may limit the 

generalizability of the study. Additionally, the study was conducted in a simulated 

environment.  

While there is existing literature supporting the effectiveness of fatigue tests using simulation 

methodologies, it is equally important to acknowledge that these tests may not fully replicate 

real fatigue conditions in an actual driving situation. Furthermore, the simulated scenarios 

were consistently limited to a highway with the same distance, width, and speed limits. This 

limitation prevents the generalization of findings to other driving contexts, such as different 

weather conditions or urban driving scenarios. 

It is essential also to note that the fatigue measurement method KSS has inherent limitations 

due to its subjective nature, relying on the driver's self-reporting of their fatigue level and 

their actual ability to express their state of fatigue accurately.  Lastly, it is crucial to consider 
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that the drivers subjected to sleep deprivation still slept for 4 hours, which may not 

necessarily lead to detectable symptoms of fatigue in every driver. These limitations should 

be considered when interpreting the findings of the study and when applying them to real-

world driving scenarios, but for our purpose we can rely on them to have a base for the choice 

of the indices that could be appropriate to reach our objective. This is true also because this 

study is actually inspired from a previous one, where the authors tested even more indices, 

to verify their capabilities to detect drowsiness symptoms and how they affect the attentional 

state of the driver. The article in question is (Sandberg et al., 2011) where the authors 

considered three classes of indicators: indicators from the literature, optimized indicators, 

and generalized indicators, totalling 35 different indicators.  The authors used stochastic 

optimization algorithm for optimizing detection systems. The evaluation of a solution 

candidate proceeds by a search for the threshold value that gives the best performance. The 

indicators are based on various driving behavior signals, such as standard deviation and mean 

square error of the lateral position, fraction of lane exits, steering-wheel reversal rate, and 

rapid steering wheel movement. The paper also discusses the Sleep/Wake Predictor (SWP) 

model, which captures the effects of time of day and prior sleep on sleepiness level. The 

results are evaluated using an objective function that considers sensitivity and specificity. The 

experimental part of the paper involves the optimization of the parameters of the indicators. 

The results of the study are presented in terms of the performance of the optimized 

indicators and detection systems in detecting driver sleepiness. The evaluation is based on an 

objective function that considers sensitivity and specificity, with the values ranging between 

0 and 1. The study had similar limitations to the previous one, having only 12 subjects actually 

utilized for the creation of the data set and the use of the subjective KSS. Moreover, some 

intervals had to be removed from the data due to simulator problems or test subject 

discomfort, which could have impacted the overall analysis and results. The analysis 

conducted on both articles has provided an initial foundation from which to extract the 

indices necessary to identify behaviors associated with fatigue and lower attention levels in 

vehicle dynamics that could be suitable for our case.   
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In particular, from this evaluation, three indices deemed suitable for our requirements were 

selected: the Standard Deviation of Lateral Position (SDLP), Steering Wheel Rapid 

Movements (SWRM), and Time to Line Crossing (TLC), as more thoroughly explained in the 

chapter on data analysis. 

(Bergasa et al., 2006) has been another useful paper where the authors present a nonintrusive 

prototype computer vision system for monitoring a driver's vigilance in real time. The system 

in this case is based on a hardware system for the real-time acquisition of a driver's images 

using an active IR illuminator and the software implementation for monitoring some visual 

behaviours that characterize a driver's level of vigilance.  The paper describes the system's 

architecture, the visual parameters used for monitoring driver vigilance, and the 

experimental results obtained.  The system calculates six parameters: Percent eye closure 

(PERCLOS), eye closure duration, blink frequency, nodding frequency, face position, and 

fixed gaze. These parameters are combined using a fuzzy classifier to infer the level of 

inattentiveness of the driver. The system has been tested with different sequences recorded 

in night and day in real driving conditions in a motorway and with different users.  

The system is based on the analysis of visual behaviours, it calculates the ocular measures to 

characterize eyelid movements while the face pose determination is related to the 

computation of the face orientation and position, and the detection of head movements. 

Frequent head tilts indicate the onset of fatigue.  The authors used fuzzy decision trees (FDT) 

with the pruned method (FDT+P) to generate rules. The induced rules with FDT+P were 

integrated into the expert knowledge base, resulting in a rule base consisting of 94 rules, 

eight expert rules, and 86 induced ones.  The fundamental properties of the rule base, such 

as consistency, lack of redundancy, and interpretability, were guaranteed through a 

consistency analysis and a simplification process.  

The experimental results obtained are very similar for different drivers in various 

circumstances. The system's performance was measured by comparing it to results obtained 

by manually analysing the recorded sequences.  This article has proven useful as a reference 

in the application of indicators related to head position in a real-world driving context. These 

indicators are one of the type of data we can collect from the simulator available to us during 

the preliminary experimentation phase. The simulator is equipped with cameras and 
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software designed for head position detection, particularly described in terms of rotation 

along the three reference axes (yaw, pitch, and roll) that allow to determine the head 

orientation of the driver. The limitations of this study are attributed to the fact that only visual 

parameters were analyzed. Focusing on the infrared (IR) system used to analyze the ocular 

dynamics, it provided highly reliable outcomes in nighttime and low-light conditions but 

demonstrated inaccuracies with daylight, when external artificial lights illuminated the cabin 

or when the driver wore sunglasses. This could also be attributed to the fact that the study 

was conducted in 2006, with a level of technology consistent with that time. 

A more recent article than the previous ones, (Zhang et al.,2016), allowed for a further 

assessment of the correlation between parameters related to vehicle dynamics, already 

present in the literature, and the driver's level of fatigue. The authors present a detailed 

analysis of the sensitivity of lane position and steering measurements to driver fatigue. The 

study involved a field test with 36 male professional taxi drivers, where lane position, steering 

wheel angle data, and self-reported fatigue level from KSS scale were recorded. The main 

objective was to evaluate the most sensitive parameter value of the lane position and steering 

measurements for monitoring driver fatigue. The experimental design involved the use of a 

laptop computer to acquire real-time data of lane position and steering angle. 

 The participants were surveyed every 5 minutes and required to self-report their fatigue level.  

The results indicated that individual differences may affect the accuracy of the correlation 

coefficient with fatigue level, and significant differences were found among individual 

participants when SDLP have been considered. 

The study also established a linear regression model between fatigue level and driving 

performance for Steering Wheel Reversal Rate (SWRR) and SDLP, showing a strong 

correlation between these parameters and fatigue level, but the sensitivity analysis of SWRR 

demonstrated that SWRR was more reliable than SDLP for monitoring fatigue level. 

This study further confirms that fatigue diminishes driving abilities and impairs the attention 

level. The article highlights the effectiveness of the Steering Wheel Reversal Rate parameter 

in detecting variations in the driver's behavior. Specifically, in this particular case, it proves to 

be even more effective than SDLP, a parameter generally considered suitable for this purpose 

according to the literature.  For this reason, it has been chosen to include this parameter in 
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our study, as we have access to simulator data related to the steering wheel angle. Also in this 

case there are some limitations involving the sample subjects, which are all male professional 

taxi-drivers so the findings cannot be generalized to the entire community of drivers.  

Another recent and useful article in the selection of indices to adopt for the development of 

the new DMS is (Bassani et al., 2023), where the authors present a simulation study to 

evaluate the impact of an auditory driver distraction warning (A-DDW) device on driving 

performance. The study used a driving simulator to assess the effects of distraction and the 

A-DDW device on driving behaviour.  The experimental design included distraction level and 

traffic density as factors, and the dependent variables investigated were average speed (S), 

standard deviation of speed (SDS), average lateral position (LP), and standard deviation of 

lateral position (SDLP). The study was conducted using a fixed-base driving simulator and the 

road scenario consisted of a rural motorway with varying traffic density conditions.  

The participants were instructed to drive as they would in a real motorway setting, while 

respecting traffic regulations. The distraction phase involved a written message on the 

central windscreen, inviting participants to perform simple mathematical operations using a 

tablet positioned to the right of the steering wheel.  The A-DDW device was used to detect 

and alert drivers in real-time when distracted. The study involved 42 participants, and their 

characteristics, such as age and driving experience, were recorded.  

The study used linear mixed-effects models (LMM) and generalized linear models (GLM) to 

analyze the data. The LMM and GLM included the experimental factors (distraction level and 

level of service) and gender as categorical variables, while age and driving experience were 

included as covariates. The results showed that the A-DDW device did not significantly affect 

average speed (S) or lateral position (LP).  However, it was found that distracted drivers 

reduced speed variation more than non-distracted drivers did.  The study also revealed that 

distracted males supported by the A-DDW device drove at significantly higher speeds than 

male drivers without the device.  Additionally, it was observed that distracted females drove 

at lower speeds than distracted males when supported by the A-DDW device.  Analyzing this 

paper, another parameter has been added to those already chosen for the purpose of our 

work. The selected parameter is the standard deviation of the vehicle speed (SDS) which, as 

described in the study, varies depending on the driver's level of distraction. Some distraction 



 
28 

 

activities have also been selected from this work to execute during the experimental phase, 

as described in the next chapter.  Also the correlation between a driver's emotional state and 

their attention level has been the subject of several studies. Research has shown that 

emotions can have specific effects on the attention mechanism of driving behavior. 

Furthermore, the level of arousal and the valence of emotional states have been shown to 

determine how cognition is influenced, indicating a direct relationship between emotional 

states and driving behavior. While a neutral and relaxed emotional state may show no 

significant impact on attention level, negative emotional states such as depression can lead 

to reduced attention to safety-related areas while driving. Similarly, happy drivers may 

exhibit a greater number of errors and perceived workload, while also being more likely to be 

distracted from certain driving events. Emotions like happiness and anger can alter the 

effects of attentional demands on driving behavior, exerting indirect effects on driving. There 

are existing evidence pointing to a direct relationship between a driver's state of anger and 

aggressive driving, highlighting the influence of specific emotions on driving behavior.  

For these reasons, the detection in real-time of the emotional state of the driver it is another 

subject deeply developed in the DMS field. For example, The paper (Wu et al., 2018) proposes 

a DMS, which aims to prevent potential driving risks by recognizing and easing the driver's 

negative emotions. The system utilizes a deep convolutional neural network for facial 

emotion recognition and an audio on demand mechanism to collect and play audio resources 

for preventing driving risks from negative emotions. The experiment results demonstrate 

that the system provides accuracy and reliability in terms of facial emotion recognition. The 

paper also presents the proposed system's architecture, including a facial emotion 

recognition module and an audio on demand module, along with the experimental evaluation 

results comparing the system with other CNN-based methods. Thus, we also opted to 

incorporate an emotion detection system to examine the relationship between the emotional 

state and the driver's distraction level, specifically focusing on valence and engagement. This 

integration was allowed through the utilization of the software described in (Ceccacci et al., 

2021). The paper proposes an emotion-aware in-car architecture to adapt driver's emotions 

to vehicle dynamics, investigating the correlations between negative emotional states and 

driving performances. The research aims to provide a model and implement an in-car 
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emotion-aware architecture through a human-computer interface. The proposed system 

consists of a driving style detection module, an emotion recognition module based on a 

Convolutional Neural Network, and a smart car interface to manage the adjustment of 

dashboard lights and radio music playlists based on the detected driver's emotional state. 

The CNN has been trained using a merged dataset with both "in the wild" and "in lab" 

properties, and it is capable of recognizing six main Ekman's Emotions. An experimental case 

study is presented, which investigates the relationship between driving performance 

parameters and detected emotions within a driving simulation environment. The study aims 

to understand the impact of altered emotional states on driving performance and discusses 

the importance of equipping vehicles with intelligent driver assistant systems to prevent road 

traffic accidents.  The description of the software is deepened in chapter 4, regarding the 

experimental phase of the thesis project. 
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Chapter 3 

Methodology 

 

 

The methodology employed in this study follows a systematic approach that includes several 

key stages: 

1. Research: The research phase involved an in-depth exploration to find the parameters 

used in similar projects. This encompassed a thorough review of existing literature and 

studies related to driver distraction, video analysis, and signal correlation during 

distracted driving. 

 

2. Data Collection: A significant component of the research involved the collection of 

relevant data. This was achieved through experimental trials using a driving simulator. 

Participants engaged in driving scenarios while their actions were recorded. The data 

collected included video footage, video data elaborated from software EMOJ and 

vehicle dynamics data. 

 

3. Parameter Selection: The next step involved the selection of parameters essential for 

assessing distracted driving. These parameters were chosen based on the literature 

review and the specific goals of the study, considering the most adequate to the 

dataset built from the trials. 

 

4. Manual Video Analysis: To extract meaningful information, a manual analysis of the 

video footage was conducted. This step involved observing and annotating the 

behavior of drivers during periods of distraction. Facial expressions, gaze direction, 

and other relevant visual cues were examined to provide qualitative insights. 
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5. Data Preprocessing: Raw data obtained from the experimental phase underwent 

preprocessing. This step involved cleaning, filtering, and organizing the data to ensure 

its suitability for subsequent analysis. 

 

6. Algorithmic Parameter Calculation: To quantitatively evaluate distracted driving, 

algorithms were employed to calculate specific parameters chosen in the earlier 

stages. This automated approach aimed to extract numerical values from the data, 

allowing for a more objective and consistent analysis. 

With this methodology, the study aimed to provide a better understanding of the correlation 

between the various signals selected in the first steps and their reliability for future 

development of the DMS. 

The following lists all the parameters collected during the research conducted on the state of 

the art. As evident, for the most accurate and precise detection of the driver's attention state, 

a wide variety of parameters have been experimented with and evaluated over the years. One 

key insight gained from this research is the necessity of considering these parameters always 

in combination with others, as none of them, taken individually, can be deemed accurate 

enough to comprehensively define such a complex state as distraction. For this reason, in all 

studies, an increasing number of parameters are analyzed to assess the driver's state, which 

may belong to the same category or not. The categories are defined by the nature of the 

parameters themselves, particularly physiological, video, vehicle dynamics, or ocular 

dynamics. Almost all studies focus on using these parameters to detect states of distraction 

and/or fatigue (which, as often observed, overlap), hence the table indicates whether they 

are suitable for detecting one, the other, or both. 
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CATEGORY VARIABLE DROWSINESS DISTRACTION REFERENCE 

Physiological 
Electroencephalogram 
measures (EEG) 

Yes Yes (Kircher et al., 2002)  

Physiological 
Heart rate variability 
(HRV) 

Yes Yes 
(Kircher et al., 2002)  
 
(Hansen et al., 2017) 

Physiological Heart rate (HR) Yes Yes 
(Kircher et al., 2002)  
 
(Hansen et al., 2017) 

Physiological 
Electrodermal activity 
(EDA) 

Yes Yes 
(Milardo et al., 2022)  
 
(Esteves et al., 2021) 

Physiological Respiration Yes No (Doudou et al., 2020) 

Physiological Skin Temperature Yes Yes (Milardo et al., 2022)  

CATEGORY VARIABLE DROWSINESS DISTRACTION REFERENCE 

Video based 
Observation of body 
motions 

Yes No (Kircher et al., 2002) 

Video based Nodding frequency Yes No (Bergasa et al., 2006) 

Video based Face position Yes Yes 
(Bergasa et al., 2006) 
 
(Doudou et al., 2020) 

Video based 
Drivers’ interaction 
with car interior 

No Yes (Milardo et al., 2022)  

Video based Emotions detection No Yes 
(Ceccacci et al., 2021) 
 
(Generosi et al., 2022)  

Video based 
Expression 
recognition 

Yes Yes 
(Junaedi et al.,2018)  
 
(Ceccacci et al., 2020) 
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CATEGORY VARIABLE DROWSINESS DISTRACTION REFERENCE 

Vehicle behaviour 
Steering wheel rapid 
movements (SWRM) 

Yes Yes 
(Kircher et al., 2002) 
 
(Daza et al., 2014) 

Vehicle behaviour 
Steering wheel 
reversal rate (SWRR) 

Yes Yes 
(Ceccacci et al., 2021) 
 
(Zhang et al., 2016) 

Vehicle behaviour 
Standard deviation of 
lane position (SDLP) 

Yes Yes 
(Kircher et al., 2002)  
 
(Ceccacci et al., 2021) 

Vehicle behaviour 
Standard deviation of 
steering wheel 
movements (STDSW) 

Yes Yes 
(Kircher et al., 2002)   
 
(Ceccacci et al., 2021) 

Vehicle behaviour 
Mean square of the 
lane deviation 

Yes Yes (Kircher et al., 2002)  

Vehicle behaviour 
Microcorrection 
steerings 

Yes No (Kircher et al., 2002) 

Vehicle behaviour 
Time to line crossing 
(TLC) 

Yes Yes 
(Kircher et al., 2002) 
 
(Daza et al., 2014) 

Vehicle behaviour Lane keeping offset Yes Yes 
(Aksjonov et al., 2019) 
 
(Doudou et al., 2020) 

Vehicle behaviour 
Standard deviation of 
speed (SDS) 

Yes Yes 
(Bassani et al., 2023) 
(Ceccacci et al., 2021) 
(Doudou et al., 2020) 

Vehicle behaviour 
Standard deviation of 
pressure (SDP) of the 
gas pedal 

Yes Yes (Ceccacci et al., 2021) 

Vehicle behaviour 
Brake pedal angular 
position 

No Yes (Milardo et al., 2022)  

Vehicle behaviour 
Gas pedal angular 
position 

No Yes (Milardo et al., 2022)  

Vehicle behaviour Heading Error Yes Yes (Daza et al., 2014)  
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CATEGORY VARIABLE DROWSINESS DISTRACTION REFERENCE 

Ocular dynamics Blink duration Yes No (Kircher et al., 2002) 

Ocular dynamics Blink frequency Yes No 
(Kircher et al., 2002)  
 
(Bergasa et al., 2006) 

Ocular dynamics 
Partial eye closures 
during fixation 

Yes No (Kircher et al., 2002)  

Ocular dynamics Eye closures Yes No (Kircher et al., 2002) 

Ocular dynamics Eye closure duration Yes No (Bergasa et al., 2006) 

Ocular dynamics Saccade frequency Yes No 
(Catalbas et al., 2017)  
(Biswas et al., 2018) 

Ocular dynamics 
Percent eyelid closure 
(PERCLOS) 

Yes No 
(Kircher et al., 2002)  
  
(Bergasa et al., 2006) 

Ocular dynamics Fixation Yes Yes 
(Bergasa et al., 2006)  
 
(Çetinkaya et al., 2023) 

Ocular dynamics Eye glance position No Yes 
(Çetinkaya et al, 2023) 
 
(Hansen et al., 2017) 

Ocular dynamics Pupil diameter Yes Yes (Bergasa et al., 2006) 

 

Detecting distraction and drowsiness in drivers can relies on a set of physiological parameters 

that provide insights into their cognitive and physical states. These indicators include 

variations in heart rate, which can escalate during periods of distraction or diminish when 

drowsiness sets in. Skin conductance, gauges changes in the electrical conductance of the 

skin, reflecting alterations in the autonomic nervous system that occur during both 

distraction and drowsiness. 
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Furthermore, monitoring electroencephalography (EEG) signals provides valuable 

information about brain activity. An increase in theta waves, for instance, may signify 

drowsiness, while sudden shifts in beta waves can suggest distraction. Respiratory rate is also 

monitored, as irregularities may indicate a lack of alertness or focus. In addition, changes in 

skin temperature can be indicative of alterations in the autonomic nervous system, revealing 

the physiological responses to distraction or drowsiness. The temperature tends to fluctuate 

based on blood flow and sympathetic nervous system activity. In detail, increased distraction 

might result in heightened sympathetic nervous system activity and vasoconstriction, 

causing a drop in skin temperature. Conversely, drowsiness may lead to decreased 

sympathetic activity, allowing for vasodilation and an increase in skin temperature. 

Video-based parameters involve the analysis of various visual cues within the captured video 

feed. One critical aspect is facial expressions, as an evaluation in facial features changes to 

identify signs of distraction, such as excessive yawning or facial grimaces. Additionally, head 

movements are scrutinized, with a focus on the head orientation that may indicate a lack of 

attentiveness. This parameter is evaluated by the definition of 3 angular measures referred to 

the rotations around the 3 principal axes of the relative frame of reference, defined as yaw, 

pitch and roll. As already seen in the previous chapter the detection of the emotional state is 

also relevant to establish the potential lack of attention of the driver. Also the posture is 

another parameter usually monitored, assessing any unusual slouching or body movements 

that deviate from the norm. Hand movements on the steering wheel can signal potential 

distraction when correlated to sudden or erratic adjustments. The analysis extends to the 

overall spatial awareness of the driver, examining their responsiveness to the surrounding 

environment. 

Vehicle dynamics parameters encompass a set of factors that collectively contribute to 

understanding the state of the vehicle and, by extension, the attentiveness of the driver. 

Variables such as steering wheel movement, erratic accelerations and decelerations, and 

lateral movements provide valuable insights into the driver's engagement with the driving 

task.  
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Examining the steering behavior involves analyzing the frequency, amplitude, and 

smoothness of steering inputs. Abrupt or erratic steering changes can be indicative of 

distraction or drowsiness. Acceleration and deceleration patterns are also critical, as sudden 

or inconsistent changes in speed may suggest a lack of focus. Lateral movements, such as 

lane deviations or drifting, offer additional clues about the driver's state.  

Moreover, the analysis of vehicle dynamics extends to parameters like yaw rate, which 

measures the rotation of the vehicle around its vertical axis that can lead to lane exits 

measured as heading error. Unusual yaw behavior, such as excessive swaying or instability, 

can be linked to impaired driving attention. Additionally, the study of brake usage, gas pedal, 

and other control inputs contributes to a comprehensive assessment of driver vigilance. 

Finally, ocular dynamics parameters can give a more comprehensive understanding of the 

driver's alertness and focus. One crucial factor is the frequency and duration of eye closures, 

as prolonged or frequent closures may indicate drowsiness. Additionally, the measurement 

of blink rate and amplitude provides valuable insights into cognitive workload and attention 

levels. Tracking the gaze direction is another essential parameter, as shifts in focus away from 

the road suggest distraction. The analysis of saccades, rapid eye movements between 

fixations, helps assess the ability to shift attention efficiently. Reduced saccadic velocity may 

indicate drowsiness, affecting the driver's responsiveness. Pupil diameter is also a sensitive 

indicator, with dilation often associated with increased cognitive load. Variations in pupil size 

can reveal fluctuations in alertness, helping identify moments of distraction or drowsiness. 

Moreover, the assessment of eye movement patterns, such as smooth pursuit, helps gauge 

the driver's ability to track moving objects. Jerky or irregular movements may indicate 

impaired concentration. PERCLOS, or Percentage of Eye Closure, measures the percentage 

of time that a person's eyes are closed over a specific duration, usually expressed as a 

percentage. In the context of DMS, PERCLOS is commonly employed to assess the level of 

drowsiness a driver may be experiencing.  

As a driver becomes drowsy, the frequency and duration of eye closures tend to increase. By 

continuously analyzing PERCLOS, DMS can provide real-time feedback on the driver's level 

of alertness. In the course of this investigation, we have chosen to adopt a set of parameters 

derived from the existing state.  
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These parameters encompass Standard Deviation of Lane Position (SDLP), Steering Wheel 

Rapid Movements (SWRM), Time to Line Crossing (TLC), Standard Deviation of Speed (SDS), 

Steering Wheel Reversal Rate (SWRR), Valence and Engagement derived from emotional 

analysis, and head orientation measures, specifically focusing on yaw and pitch. The rationale 

behind this selection was grounded in the identification of the most influential parameters in 

the existing literature, which effectively signify both the driver's level of distraction and 

drowsiness. 
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Chapter 4 

Experimental Phase 

 

 

4.1 Description of RE-Lab simulator and instrumentation 

 

The experimental phase took place in Reggio Emilia, at RE-Lab facility, where the driving 

simulator is settled. The simulator is based on SCANeR Studio 1.7 platform, including features 

for sensors simulation and automated driving functionalities. It’s a platform designed to 

simulate real-world driving scenarios, allowing to perform our tests in a controlled 

environment and includes features for sensors simulation, and automated driving 

functionalities. 

The static driving simulator has a simulation engine and is equipped with real car commands 

(e.g., driving seat, pedals, indicators, gearbox) and SensoDrive steering wheel including 

haptic force feedback.  SCANeR Studio offers a suite of tools and models essential for 

constructing a realistic virtual world. This encompasses various elements such as the road 

environment, vehicle dynamics, traffic dynamics, sensors, headlights, diverse weather 

conditions, and the ability to script complex scenarios. This versatility allows for the creation 

of highly realistic scenarios but also facilitates a wide range of setups to address diverse 

simulation needs. The simulator also includes a video projector (to display the scenarios) and 

a 15.6” display placed behind the steering wheel to display a full digital Human-Machine 

Interface. The system is synchronized using the simulator machine timestamp.  This feature 

allows obtaining the distributed system feature for the architecture which is the requirement 

needed to test and validate all the AI algorithms involved in the system.  

The software used for the driving simulation is AVSimulation SCANeR. Using this tool two 

different environmental scenarios have been created.  
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The driver, to interact with the vehicle during simulated driving sessions, has at their disposal 

a tablet conveniently positioned on the dashboard of the simulator.  Through this device, they 

have the ability to monitor various parameters of the vehicle and, simultaneously, issue 

commands to it. 

 The tablet serves as a multifunctional interface, allowing the driver to manage different 

aspects of the vehicle in an intuitive and immediate manner. In addition to its control 

function, the tablet screen has also been utilized as a tool to introduce distraction events. This 

approach aims to replicate realistic scenarios in which the driver may need to handle external 

factors that impact their attention while driving.  The use of the tablet as a source of 

distraction contributes to making the simulation more lifelike, enabling a thorough 

assessment of the driver's response to distracting stimuli. 

HD cameras have been strategically deployed to analyze the driver from various angles, 

ensuring a comprehensive view of their behaviors and movements. Specifically, one camera 

is positioned directly in front of the driver, where the EMOJ software is applied.  

Another camera is placed at the level of the interior rearview mirror, providing an additional 

perspective within the cabin. The third camera is situated in the passenger-side rearview 

mirror, all directed towards the driver. This camera setup allows for thorough observation and 

analysis of the driver's expressions, head movements, and overall engagement from different 

vantage points. 

   

                                  Figure 4: Simulator Set-up 

Sensors and modules installed to capture and analyze the data required for the continuation 

of our work are: 
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• HD Cameras: Hikvision Digital Technology DS-2CE16H0T-ITF 

• Tablet: Samsung Galaxy Tab A8 1920x1200 

• Emotion Detection Module Component EMOJ: The EMOJ module plays a crucial role 

in the system, actively monitoring the driver's satisfaction and emotional state 

throughout their experience. This is achieved through the utilization of an RGB 

camera strategically positioned atop the steering wheel. One of the distinctive 

features of the emotional module is its capacity to aggregate data over a predefined 

time window, with the current setting at 1 second. Within this timeframe, the module 

discerns and categorizes the driver's emotions, offering insights into states such as 

neutrality, joy, surprise, sadness, anger, disgust, and fear. This comprehensive 

emotional spectrum ensures a nuanced understanding of the driver's affective 

responses.  

• Head Position Module: The module has the ability to deliver reliable results for both 

face and head orientation detection, even in the presence of challenging lighting 

conditions and other environmental complexities, in terms of yaw, pitch, and roll.  

This analysis provides valuable information about the driver's engagement and 

attentiveness during different stages of the driving experience.  

• Onboard dedicated processing modules: These specialized modules are seamlessly 

integrated into the static driving simulator, leveraging the advanced AVSimulation 

SCANeR software. The static driving simulator boasts authentic car controls and a 

responsive steering wheel, featuring haptic force feedback for a lifelike driving 

experience. As already mentioned, the simulator is equipped with a video projector, 

enhancing the visualization of various scenarios. Furthermore, the simulator houses 

dedicated onboard modules and sensors designed specifically for monitoring and 

analyzing vehicle dynamics. 
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4.2 Description of software for head rotation and emotion analysis 

 

 

The software used for analyzing the driver's state through video data has been previously 

developed by the university and employed in other studies, as described in (Ceccacci et al., 

2021). 

The system is based on a Convolution Neural Network, and it utilizes computer vision 

techniques to detect and interpret a person's emotions based on their facial expressions, as 

well as their head position and orientation. By analyzing facial features and movements, the 

system can accurately identify various emotional states, providing a comprehensive 

understanding of the individual's emotional response while driving, allowing real time 

analysis. In the case study of the cited paper, the software, that includes an emotion-aware 

in-car architecture that adapts driver's emotions to vehicle dynamics, investigates the 

correlations between negative emotional states and driving performances, and regulates the 

driver's engagement through an innovative user experience in the car cabin.   

Thus, the Emotion Detection Classifier software module evaluates the driver's emotional 

state through video processing algorithms. To enable emotion detection, it implements an 

emotion recognition algorithm able to recognize Ekman's universal emotions (happiness, 

sadness, anger, fear, disgust, surprise) by analysing the driver’s facial expressions from a 

video stream. Additionally, the module analyses the head orientation of the driver and 

provides feedback in terms of yaw, pitch and roll of the head with respect to the camera 

position. 

The module takes as input the stream of an RGB camera and sends output in a JSON format 

to the downstream modules. It works with a varying framerate from 14 to 22 FPS depending 

on the performance of the hardware and produces the following output:  
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• for each frame an estimation of the driver head orientation is provided with this JSON 

structure:  

 

 Figure 5: Head position data structure 

• It aggregates emotional data for a specified time interval (by default 1 second) and 

then provides an emotional evaluation in this form:  

 

 Figure 6: Emotions detection data structure 

All the data is published on the broker which is set up for communication between the 

modules. The emotion detection software is also able to determine valence and engagement 

based on facial expression recognition and physiological measures. In particular, engagement 

refers to the emotional involvement or interest of a person in response to a stimulus, activity, 

or situation while valence refers to the positivity or negativity of an emotion or emotional 

experience. The module leverages the PAD model (Pleasure, Arousal, Dominance) to assess 

valence (pleasure) and engagement (arousal) through facial expression analysis. 
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 It uses a Facial Expression Recognition (FER) tool based on a CNN to recognize Ekman's six 

universal emotions from facial images.  

The final layer of CNN is specifically crafted to forecast both valence and engagement, 

derived from the percentages of predicted emotions. Valence reflects the overall positivity or 

negativity on a scale from -100 to 100, while engagement gauges the deviation of facial 

expressiveness from neutrality, ranging from 0 to 100. Furthermore, the system integrates an 

attention recognition tool utilizing facial landmarks and head orientation to assess 

attentiveness. It identifies yaw, pitch, and roll values of head orientation, determining lack of 

attention based on empirically set thresholds. Additionally, the system computes the eye 

aspect ratio (EAR) to detect frontal head tilting, with a noticeable reduction in the ratio when 

users look downwards. The EAR is a facial feature particularly employed in the context of 

detecting eye blinks and monitoring eye movements. It is calculated based on the ratios of 

the distances between various facial landmarks around the eye region. Specifically, it involves 

the ratio of the horizontal distance between the outer and inner corners of the eye to the 

vertical distance between the upper and lower eyelids. To prevent false positives, the EAR 

feature is combined with Pitch evaluation, and the user is considered distracted if both the 

EAR and Pitch are under certain thresholds.  

 

 

4.3 Description of scenarios and tests methodology 

 

 

The software used for the driving simulation is AVSimulation SCANeR. Using this tool 2 

environments have been created: highway and urban.  In the highway scenario, the behaviour 

of the traffic vehicle is randomized with some vehicles that have the possibility to overtake 

the others in order to add randomness to the simulation and make it more realistic. The urban 

scenario comprises a lot of semaphores, roads and zebra crossing.  Several kinds of elements 

are present in this scenario: cars, motorbikes, bikes and pedestrians. 
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In both environments, different traffic conditions can be encountered, ranging from minimal 

to severe, as well as various weather conditions such as sunny or rainy. The visual setting for 

the driving tests encompasses a city road with varying levels of traffic density, designed to 

prompt the driver to adapt their driving style to external conditions. Additionally, each test 

included an explanation to the participant regarding the context they were placed in at that 

moment. 

 

 

      Figure 7: Example of urban scenario 

 

Three contexts have been created: the first simulated the experience of a parent running late 

to pick up his son from school, aiming to induce a sense of urgency in the driver. The second, 

prompted the participant to envision embarking on a long-awaited trip, with the intention of 

inducing feelings of carefreeness and happiness. The third one tells the driver that it is their 

day off, but they have received a work call requesting them to attend the office for a long and 

important meeting. This situation aims to provoke feelings of frustration and anger in the 

individual. In each of these tests, secondary tasks were introduced during the session to 

prompt the driver to perform actions, aiming to induce distraction. 

These tasks involved activities such as: 

• Using or reaching for objects within the vehicle 
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• Executing actions like turning around 

• Interacting with the Human-Machine Interface (HMI) 

To extend attention diversion and induce mental distraction over a longer period, interactions 

with the car's dashboard, in this case the tablet, were implemented. These interactions 

involved completing various tasks to simulate potential distraction activities in real-world 

scenarios, including: 

• Answering the phone 

• Sending messages on the phone 

• Talking on the phone while holding it to the ear 

• Drinking 

The test included 19 participants, comprising 10 males and 9 females, aged between 21 and 

53 years old. Each participant underwent three separate sessions, each lasting approximately 

10 minutes, during which one of three different contexts was introduced. In all sessions, 

participants were instructed to perform the actions mentioned above to induce distraction. 

 

 

4.4 Description of the obtained dataset 

 

 

The log file generated by the driving simulator captures a snapshot of the simulated vehicle's 

dynamics.  

The log is a data structure in JSON format that includes various parameters and 

measurements related to the vehicle's state and surroundings at a specific point in time.  

The key components of the JSON created are: 

• Timestamp: Date and time 

• Topic: Vehicle Dynamics 
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• Position and Orientation: 

o Center of gravity (COG) position (x, y, z) 

o Vehicle's orientation (heading, pitch, roll) 

o Current speed and acceleration details. 

• Control Inputs: 

o Gearbox mode, accelerator, brake, clutch status. 

o Engine speed, engine status, and engaged gear. 

• Steering: 

o Steering torque, steering wheel angle, and speed. 

• Road and Radar Information: 

o Road information like lane and intersection details. 

o Radar information such as angle, distance to collision, and speed. 

• Scanner Timestamp: 

o Scanner timestamp for specific sensor readings. 

• Wheel States: 

o Detailed information for each wheel, including position, rotation, speed, grip, 

and other relevant parameters. 

The log essentially provides a comprehensive snapshot of the vehicle's state, control inputs, 

and environment perception. 
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 Figure 8: Vehicle dynamics data structure 
The logs obtained from the simulator and the software for head position determination and 

emotion detection were pre-processed to obtain structured data suitable for subsequent 
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analysis. These data were collected in CSV files, organized by subject and test scenario, using 

the Python programming language in the Visual Studio Code editor. In particular, 3 main 

libraries have been used: Numpy, Pandas and Matploltlib. NumPy is a fundamental library for 

scientific computing in Python, providing high-performance data structures by implementing 

multidimensional arrays and functions for mathematical operations on them. It introduces 

the concept of arrays, that represent a grid of values, all of the same data type, indexed by a 

tuple of non-negative integers, which allow efficient representation of data, particularly 

numerical data. NumPy facilitates vectorized operations, enabling operations to be 

performed on entire arrays, thus avoiding explicit iterations, and making the code more 

concise and efficient. NumPy arrays provide a powerful way to store and manipulate 

numerical data in Python and are used as a foundation for many other scientific and data 

analysis libraries. 

In fact, Pandas is designed to simplify data manipulation and analysis in Python, building 

upon NumPy. It offers data structures and functions for handling tabular data and time series 

data. Its primary data structure is the DataFrame, a tabular data structure with labeled rows 

and columns, similar to a spreadsheet. It provides powerful indexing options and tools for 

aggregation, grouping, and transformation of data. Additionally, it includes features for 

handling missing data efficiently, allowing users to fill or drop missing values. 
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   Figure 9: Example of csv generated after data pre-processing 

 

Matplotlib is a data visualization library, enabling the creation of high-quality graphs and 

visualizations.  
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It supports various types of plots and their customization such as colors, styles, labels, and 

more. For the representation of the data obtained in this project the line plot type was 

chosen. Together, these three libraries form a powerful stack for data analysis and 

visualization in Python, allowing to manipulate, analyze, and present data effectively. 

 

 

Figure 10: Example of plots generated for the results analysis 

 

Finally, the ground truth has been generated from the video recordings. In the context of data 

analysis, "ground truth" refers to the data or information considered as absolute truth or 

accurate reference point to evaluate or validate the results obtained from an analysis. In this 

case the reference data have been collected from the video footage captured by cameras. An 

extensive manual analysis of the recorded videos was conducted for each subject's test to 

pinpoint the moments when the user engaged in distracting actions.  
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This process provided a temporal reference frame to evaluate any deviations, during these 

moments, in all the indices considered, compared to their trends during the remaining 

distraction-free periods. In this way we obtained a known truth to evaluate the accuracy of 

results obtained from the analysis. 

 

           Figure 11: Example of the ground truth generated 
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Chapter 5 

Data analysis 

 

 

5.1 Selected parameters for driver state evaluation 

 

 

As outlined in the chapter about the state-of-the-art, the parameters selected for the 

development of the DMS in our project have been inspired by previous works documented in 

the literature. The chosen parameters regarding the vehicle dynamics and driving behavior 

are: 

• SDLP (Standard Deviation of Lateral Position): It is a metric that measures the 

variability or dispersion of a vehicle's lateral (sideways) position within its lane over a 

period of time. It is used to evaluate the stability and consistency of a driver's lane-

keeping behavior. In practical terms, SDLP is calculated based on the lateral position 

of a vehicle relative to the center of the lane. The lateral position is typically measured 

in meters. A higher SDLP value indicates greater variability in lateral position, 

suggesting less stable or consistent lane-keeping behavior. 

It is used to assess the impact of various factors on driving performance, such as road 

design, vehicle characteristics, driver fatigue, distraction, and impairment.  

Focusing on distraction and drowsiness, a strong correlation exists between them and 

this parameter. Distraction, stemming from various sources such as mobile phone 

use, in-car entertainment systems, or conversations, has been consistently associated 

with an increased SDLP. Drivers who engage in distracting activities tend to exhibit 

greater variability in their lateral position within a lane. 
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 This positive correlation underscores the detrimental effects of distraction on a 

driver's ability to maintain a stable and consistent trajectory. Similarly, drowsiness, 

fatigue, or sleepiness can significantly influence driving performance and is also linked 

to elevated SDLP values. As drivers become drowsy, their reaction times may slow, 

attention levels may diminish, and the ability to consistently stay within a lane can be 

compromised. The positive correlation between drowsiness and SDLP underscores 

the impact of driver fatigue on lateral vehicle movements. 

 

• SWRM (Steering Wheel Rapid Movements): SWRM involves monitoring the steering 

wheel movements to identify rapid and erratic changes, which could indicate that the 

driver is distracted, fatigued, or drowsy. In the context of distraction, SRWM systems 

monitor the driver's steering behavior to identify deviations from typical driving 

patterns. Distraction can manifest as sudden and unplanned movements, such as 

overcorrections or frequent changes in direction. When a driver is engaged in 

secondary tasks, like texting or adjusting in-car entertainment, the steering wheel 

may exhibit irregular movements. By detecting these deviations, the system 

contributes to preventing potential accidents caused by distracted driving. The 

correlation with drowsiness is rooted in the observation that fatigue often leads to 

lapses in attention and slower reaction times. SRWM track the smoothness and 

consistency of steering input. As drowsiness sets in, a driver may experience 

microsleep episodes, resulting in momentary lapses of control reflected in erratic 

steering movements. By monitoring these subtle cues. Values for drowsy drivers are 

higher than alert ones. 

 

• SWRR (Steering Wheel Reversal Rate): SWRR can reflect a driver’s ability to maintain 

stable control of the steering wheel. It can be used as a metric to detect driver fatigue 

and attentional state of the driver as it is proven that it changes as the cognitive 

workload changes. It detects all the reversals in the steering wheel angle above a 

determined threshold. This metric is intended for the assessment of the effects of 

secondary tasks, visual and cognitive load, and fatigue level on driving. 
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• TLC (Time to Line Crossing): TLC is used to detect driver distraction and drowsiness 

by analyzing the driver's behavior in relation to the time it takes for the vehicle to cross 

a lane marking.  

It can be used as an indicator of driver attentiveness, and it’s a measure often 

integrated into real-time driver monitoring systems, allowing for the simultaneous 

tracking of drowsiness and distraction.  

Although TLC can be accurately calculated using trigonometry, approximations are 

commonly employed due to the complexity of these operations and the problem of 

obtaining the required variables. In this work, the lateral speed is applied. 

 

• SDS (Standard Deviation of Speed): Studies conducted using driving simulations 

reveal that the speed of a driver tends to decrease when engaged in cell phone usage, 

while the standard deviation of speed shows an upward trend with an increase in the 

complexity of secondary tasks. In response to potential hazardous events that may 

necessitate evasive manoeuvres like steering and/or braking, countermeasures often 

involve a reduction in speed and/or an increase in the distance between the driver and 

the vehicle ahead. It is important to acknowledge that distracted drivers don't 

consistently exhibit degraded performance levels. In instances of self-inflicted 

distractions, drivers may deliberately opt for lower speeds as a compensatory 

measure for the perceived risks they are taking.  



   

 
55 

 

 

                     Figure 12: Vehicle dynamics indices chosen from the literature 

 

The selection of these indices is grounded in various factors. Firstly, literature findings 

consistently indicate their reliability in detecting variations in driver behavior due to signs of 

fatigue or distraction across different case studies. Furthermore, these parameters align with 

the data available in our dataset and its structure, allowing us to conduct their analysis 

effectively. Therefore, by relying on these parameters, we have access to information about 

different aspects of vehicle dynamics.  SDLP and TLC offer perspectives on the lateral 

movement of the vehicle, viewed from two different logics, a critical aspect to monitor as it 

can lead to lane departure or off-road incidents.  

SRWM, on the other hand, provides an analysis of steering wheel usage, another aspect 

sensitive to changes in the driver's state and SWRR similarly, has been pointed in the 

literature as one of the most useful parameters to detect driver fatigue and distraction.  
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Finally, SDS evaluates the vehicle's dynamics in terms of longitudinal direction. With these 

five parameters, we obtain a comprehensive view of the dynamic behavior of the vehicle and 

the driver's driving style from different perspectives. In addition to the vehicle dynamics 

parameters, by having access to video analysis software related to head position and driver 

emotion detection, we also have the opportunity to utilize these indices to analyze the driver. 

Specifically, the head orientation will be described through the angular rotations of yaw, 

pitch, and roll, while the impact of emotions on the driver's attention state will be assessed 

through the obtained values of valence and engagement. 

 

 

 

Figure 13: Resume of the indices involved in the detection of the driver's attentional state 
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5.2 Calculation of identified parameters trough algorithm 

 

 

In the following of this chapter the algorithms used to calculate the selected parameters are 

presented. The code has been developed using Python programming language in the Visual 

Studio Code editor. The indices related to the vehicle dynamics were calculated according to 

the following logics: 

SDLP (Standard Deviation of Lane Position): 

1. Output: List of SDLP values calculated within a predefined time window, which is 

advanced by a given timestep to process the lane gap data obtained from a subject 

throughout the entire duration of the test. 

2. Input: Lane Gap, time window, time step. 

3. Lane Gap = The lateral distance of the vehicle regarding to the middle of the lane 

reported in (m). 

4. Time window = 5 (s). 

5. Time step = 1 (s). 

6. Sum all lane gap values of the subject in the defined time window. 

7. Divide the obtained sum by the total number of elements in the sample to calculate 

the arithmetic mean. 

8. Find the difference between each i-th value and the mean. 

9. Square each of these differences. 

10. Sum all squared differences and divide by the total number of elements -1. 

11. Calculate the square root of the obtained value to achieve the standard deviation of 

the lane position and append this value in a list. 

12. Iterate the process by advancing the time window with a timestep of 1 (s) throughout 

the entire duration of the test. 
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SDS (Standard Deviation of Speed):  

1. Output: List of SDS values calculated within a predefined time window, which is 

advanced by a given timestep to process the lane gap data obtained from a subject 

throughout the entire duration of the test. 

2. Input: speed x, time window, time step. 

3. speed x = The x-component of the vehicle's speed in its reference frame, where x 

aligns with the longitudinal direction, in (m/s) 

4. Time window = 5 (s). 

5. Time step = 1 (s). 

6. Sum all x speed values of the subject in the defined time window. 

7. Divide the obtained sum by the total number of elements in the sample to calculate 

the arithmetic mean. 

8. Find the difference between each i-th value and the mean. 

9. Square each of these differences. 

10. Sum all squared differences and divide by the total number of elements -1. 

11. Calculate the square root of the obtained value to achieve the standard deviation of 

the longitudinal speed and append this value in a list. 

12. Iterate the process by advancing the time window with a timestep of 1 (s) throughout 

the entire duration of the test. 

SWRM (Steering Wheel Rapid Movements): 

1. Output: List of values reporting steering wheel speed as 1 if greater than or equal to 

the threshold value, and 0 if less. 

2. Input: Steering wheel speed, threshold 

3. Steering wheel speed = Steering wheel angular speed in (rad/s) 

4. Set a threshold value d = 13 (°/s). 

5. If the absolute value of the i-th steering wheel speed is > d, set it to 1, otherwise, 0 and 

append this value in a list. 

 

 



   

 
59 

 

SWRR (Steering Wheel Reversal Rate): 

1. Output: List of values reporting the SWRR 

2. Input: steering wheel angle, threshold 

3. Steering wheel angle = Angular position of the steering wheel (rad) 

4. Threshold = 6° 

5. Find the differences in the steering wheel angle greater than or equal to the threshold 

where the steering wheel has returned to the central position, defined 

as a steering wheel angle smaller or equal to 2° 

6. If these conditions are true append this value as SWRR to a list, otherwise assign  

0 to it. 

TLC (Time to Line Crossing): 

1. Output: List of values reporting TLC as 1 if greater than or equal to the threshold value, 

and 0 if less. 

2. Input: speed y, lane gap, right distance, left distance, lane width, car width, threshold. 

3. Speed y = The y-component of the vehicle's speed in its reference frame, where y 

aligns with the lateral direction, in (m/s). 

4. Lane Gap = The lateral distance of the vehicle regarding to the middle of the lane 

reported in (m). 

5. Right distance = distance between the right side of the vehicle and the right line of the 

lane in (m). 

6. Left distance = distance between the left side of the vehicle and the left line of the 

lane in (m). 

7. Lane width = distance between the right line and the left line of the lane in (m) 

8. Car width = distance between the left side and the right side of the vehicle in (m) 

9. Threshold = 6.4 (s) 

10. Knowing that a positive speed describes a leftward movement and vice versa, if v > 0 

and the left distance > 0, then the car is moving left, so calculate  

TLC = left distance / speed. 
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11. Otherwise, if v < 0 and the right distance > 0, then the car is moving right, so  

TLC = -right distance / speed. 

12. Additionally, there should be a TLC max in the case of speed = 0. 

13. If TLC < threshold, then TLC = 1, otherwise, TLC = 0. 

 

The head position software has the ability to determine the attentional state of the driver 

based on empirical threshold.  

Finally, the CNN used for the emotion detection software has the ability to recognize the six 

universal Ekman’s emotions from images of faces as input and giving as output a percentage 

of probability for each emotion.  
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Chapter 6 

Results 

 

 

6.1 Qualitative Analysis 

 

 

In this chapter, the obtained results from the conducted analyses are presented. Graphical 

representations will show how the selected indices behave during the various tests executed 

by the subjects. A comparison will be made among these indices and the recorded signals. An 

exploration of the behavior of the parameters will be carried out through a qualitative 

analysis, evaluating the trends, especially during distraction events.  

Starting the analysis of the results from the emotion detection software, it is evident that in 

some of the examined subjects, the software was able to detect significant changes in 

emotions, particularly in the values of engagement and valence, during distraction phases. 

Specifically, in subject 16, it is notable that although during the initial distractions, the subject 

remained in average engagement values associated with undefined emotions, during the last 

3 distraction activities (answering to 2 messages received on the phone and using the tablet) 

the software detected peaks outside the previous trend in both engagement and valence. 

This leads to the conclusion that, during those moments, the subject experienced emotions 

of joy with particular enthusiasm. Referring to another subject, analyzing subject 6, it is 

noticeable that this subject also exhibits an emotional response to distraction actions.  

Although subjective and different from the previously considered case, it allows the detection 

of a variation in the engagement values compared to moments when distraction is not 

imposed.  
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In this case, the subject consistently appears with relatively high engagement values. 

Moreover, looking to the valence plot, it is evident that when the distraction phases begin, 

the subject reaches very low values, describing a negative state of concern, likely attributed 

to the cognitive effort required to perform a secondary task and awareness of engaging in 

distracting activities. In another subject, when the person becomes distracted by the "drink 

from bottle" activity, there is a decrease in engagement, and generally, the valence lowers. 

This can be attributed to the fact that even though there might have been an initial emotional 

response, the task requiring greater cognitive effort applied to a secondary activity other than 

driving leads to a more neutral state, deviating from the emotional trend observed previously. 

In some subjects, it can also be observed that peaks in engagement values, indicating high 

emotional involvement, occur shortly before the distraction action actually takes place. This 

could be due to the fact that these subjects had a heightened emotional response to the vocal 

command describing the action to be performed, highlighting how the command itself can 

be a source of distraction. It should be considered that, for the majority of other users, it was 

not possible to identify specific trends. This could be attributed to the measurements not 

being taken accurately, particularly those involving cameras. In particular, concerning 

camera-based indices, the observed trend throughout the entire duration of the test differs 

from what one would expect. During driving, except for moments when distraction is 

imposed, the signal's trend should be much more linear and therefore devoid of the peaks 

and valleys that instead compose all the data gathered. Various factors may have 

compromised the collected data, usually stemming from the environment. For example, 

inadequate lighting can cause issues in facial detection for computer vision systems. 

Similarly, camera positioning problems, such as incorrect angles relative to the subject's face, 

can challenge the software. Finally, for a more in-depth analysis of the collected data and 

their actual emotional significance, consulting with an expert in the field, such as a 

psychologist, would provide a more comprehensive understanding of the drivers' emotional 

states during the activities.  
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 Figure 14: Emotion detection plots 
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From the analysis of the data collected by the software to determine driver attention based 

on head orientation, it is observed that more pronounced yaw deviations lead to a loss of 

attention, as expected, given that yaw rotation represents rotation around the vertical axis. 

Therefore, high values of this measurement indicate that the subject, at that moment, has 

the head turned in a direction other than the frontal one. In particular, during the conducted 

tests, most distraction activities required the user to turn to the right. As expected, the 

greatest variations were recorded either during these activities or during the beginning or 

end phases of the test, where it is customary to see the driver looking around. 
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   Figure 15: Attention level based on head position 



 

 
66 

 

 Analysing the data related to the vehicle dynamics, there are various considerations to be 

made. Examining the trend of the indices, it's evident that they experience fluctuations 

during the distraction phases, reaching the threshold values collected in the initial phase of 

this project's development. Starting with the analysis of the car's speed, referring to the 

subject 2, it is noted that in correspondence with the distraction scenarios, particularly the 

one where the subject is instructed to drink from a bottle, a deviation in the signal trend can 

be observed compared to the period preceding the distraction event. As highlighted in the 

literature, during distraction or in the moments leading up to it, the subject tends to decrease 

the vehicle's speed, as evident from the reduction in speed along the x-axis, as well as the 

deceleration and the peak in relative standard deviation, indicating a sudden change in speed 

values. This reduction is attributed to a common behavior where the driver, aware that they 

are about to engage in a secondary task that will divert their attention from driving for a 

certain period, instinctively lowers the speed as a protective measure, extending throughout 

the duration of the task. Also in subject 4 there is a relevant change in the trend, having an 

inversion compared to the behavior before the distraction event.  
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 Figure 16: SDS plots 
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The analysis of the data related to SDLP and TLC with a threshold of 6.4 seconds as indicated 

from the literature, reveals a notable correlation between these indices, indicating that 

variations in one correspond to variations in the other. Taking a closer look at subject 9's 

analysis, it becomes apparent that the subject effectively maintained position within the lane 

for the majority of the test duration. This assessment considers the lane's width of 3.5 meters 

and the car's width of 1.65 meters, allowing for approximately 0.93 meters on each side if the 

car is centred. A deviation of this magnitude would signal a departure from the lane. During 

the distracting "drink from the bottle" activity, known for inducing cognitive fatigue, the 

driver experiences the sole lane departure, aligning with the highest peak in the overall trend 

of SDLP. Simultaneously, in the TLC graph, there is a concentration of values under the 

threshold, null or very low, during this distraction event compared to the rest of the trend. 

These low TLC values suggest instances of crossing or nearing the lane's limit. Another 

interesting trend, common to several subjects, is evident in the plot of subject 5, where the 

driver maintains effective control of the vehicle within the lane for most of the track. 

However, during distraction moments, notable peaks in SDLP are observed, consistently 

associated with clusters of low TLC values. It's important to highlight that the layout of the 

track itself can significantly influence the recorded values for these metrics related to vehicle 

dynamics and, more broadly, those associated with the driver's behavior.  
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Figure 17: SDLP and TLC plots 
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The last set of vehicle dynamics data to analyze pertains to steering wheel usage. Examining 

this type of data immediately reveals how the track layout is even more relevant in 

interpreting these indices, as they exhibit a significant sensitivity to it. Across all subjects, 

numerous signals related to Steering Wheel Reversal Movements (SWRM) are detected, 

while signals related to Steering Wheel Reversal Rate (SWRR) are likely distorted by track 

curves. However, delving into the analysis of data specific to an individual subject, it is 

noticeable that, in some cases, there is indeed a concentration of SWRM values coinciding 

with distraction events. This identifies an abnormal use of the steering wheel, but it is also 

recorded in many other phases of the test. A potential solution to address this issue could 

involve having the subject navigate a predetermined track where distraction events occur 

only on straight sections. This approach aims to exclude steering wheel usage for turning 

during distraction events. Lastly, regarding the threshold values of vehicle dynamics indices 

identified during the initial phase of the project, it is worth delving into their significance. 

While these thresholds provide a foundational framework for conducting analyses, it is 

essential to further deepen and optimize them to enhance the accuracy and efficacy of the 

analyses. Fine-tuning these thresholds based on empirical findings and real-world application 

scenarios can lead to improved results and a more robust analytical approach. 
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Figure 18: SWRM and SWRR plots 



 

 
72 

 

Chapter 7 

Conclusions and future work 

 

 

The attained results shed light on significant aspects related to driver monitoring and 

distraction analysis. In particular, the research has made valuable contributions to the 

existing knowledge in the field of Driver Monitoring Systems (DMS). The approach adopted 

in this study has provided new insights into the understanding of driver behavior and the 

effective assessment of distraction indices. The use of diverse parameters has allowed us to 

explore the driver's behavior from various perspectives during different tests. By analyzing 

data on vehicle dynamics and steering wheel usage, we assessed the driver's ability to 

maintain trajectory within the lane and identified necessary corrections to prevent deviation. 

These findings provide a comprehensive understanding of the car's behavior on the road and 

the driver's interaction with it, in particular with the steering wheel usage. Detecting 

variations in these indices during simulated distraction phases in the experimental trial 

provides a foundation for developing the subsequent architecture of the software integrated 

into the DMS, that in the next phases of the development could be capable of signaling 

distraction events by interpreting the data.  

In addition to telemetric data, we also examined facial-related data, focusing on head 

position in terms of yaw, pitch, and roll, along with valence and engagement values provided 

by the emotion recognition software based on Ekman's six universal emotions. 

Analysis of attention-related software based on the head position reveals evidence indicating 

a loss of attention while driving when the driver's head is not facing forward, as expected by 

previous studies and real life experience. Concerning emotions, particularly valence and 

engagement values, it is observed that these are highly subjective and vary from individual 

to individual.  
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Some subjects exhibit high engagement values, signifying emotional involvement during the 

driving test and in the distraction actions, but at different levels of valence, indicating that at 

the moment we cannot say which type of emotion is more correlated to the lack of attention. 

As with any research endeavour, it is essential to acknowledge certain limitations and 

challenges encountered throughout the study. The experimental trials and the simulator 

setup utilized, while effective, had inherent constraints that influenced the scope of the 

findings. A transparent acknowledgment of these limitations is crucial for interpreting the 

reliability and generalizability of the results. In particular, the use of a static simulator within 

a room, while providing a realistic and faithful simulation of real driving conditions, may lead 

the subject to feel in a somewhat different situation compared to driving in the real world, 

potentially resulting in different effects on levels of driving attention. To enhance 

generalizability, increasing the number of participants in the experimentation can be 

beneficial, given the inherent subjectivity related to each individual's driving style. 

Furthermore, upon analyzing the data, we were able to assess that the actions imposed on 

the drivers to induce distraction were indeed few and brief compared to what might have 

been necessary for a more comprehensive detection of the trends in the selected parameters 

for the study. 

The practical implications of this research extend beyond the academic field, with possible 

applications in enhancing driver safety. The selection of indicators from the literature suitable 

for detecting distraction and compatible with the available data, coupled with the preliminary 

analysis conducted, provides a guiding foundation from which to further develop the required 

DMS. This is essential for achieving the goal of developing an innovative real-time driver 

analysis system as mandated by the Epignosis Project, thereby reserving practical potential 

for future implementation in real-world scenarios. 

Furthermore, the study suggests avenues for future research and development in this 

dynamic field. Recommendations include exploring refinements to the DMS, considering 

alternative data analysis approaches, and investigating additional factors influencing driver 

distraction.  
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In particular, a significant portion of the current literature is focused on fatigue detection and 

its correlation with the driver's attention level, how it can affect it and how this, in turn, affects 

the driver's behavior.  The dynamics resulting from attention loss due to fatigue, while 

broadly overlapping with those of common inattention, may exhibit differences. Therefore, 

continuing to investigate other potential causes of distraction, such as those arising from 

secondary tasks or environmental factors, could be a catalyst for advancing the development 

of these systems. It allows for a broader testing of the efficacy of identified indices, 

confirming or refuting the utility of each and making necessary adjustments to ensure 

adaptability to all distraction scenarios. Moreover, the next step to undertake, now that these 

indices are at our disposal, it is to perform their fusion through data fusion techniques. In this 

way, as also highlighted in the literature, the combined use of data from different sources 

allows for greater accuracy and quicker detection of potential instances of driver distraction.  

These suggestions aim to guide future researchers to build upon the foundations laid by this 

study. The findings of this work confirm and underscore the importance of integrating such 

innovative technologies into the broader context of Advanced Driver Assistance Systems 

(ADAS). In essence, this study offers tangible insights for the advancement of technologies 

designed to enhance road safety and aims to serve as a foundation for developing the 

innovative DMS that will be installed on the prototype vehicle envisioned within the Epignosis 

project. 
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